
1. Introduction
Mantle convection governs the thermal evolution of terrestrial bodies. Modeling planetary thermal evolution is 
a crucial task, as it allows us to assess a planet's thermal history, for which observations are often sparse, and 
predict a planet's future thermal state. Thermal evolution modeling may be conducted by running full numerical 
simulations of mantle convection. However, this approach can be unwieldy due to computational limitations or 
impossible due to poorly constrained complexities (such as plate tectonics on Earth). As a result, an alternative 
modeling approach has often been employed—namely, parameterized mantle convection, which involves the 
use of scaling laws for heat transport as a function of internal properties (e.g., Christensen, 1985; Stevenson 
et al., 1983).

Scaling laws for convection driven by heating from below (Rayleigh-Bénard convection; e.g., Bercovici et al., 1992; 
Christensen, 1984; Jarvis & Mckenzie, 1980; Liu & Zhong, 2013; Morris & Canright, 1984; Parmentier et al., 1976; 
Solomatov,  1995; Turcotte & Oxburgh,  1967) and convection driven by heating from within (e.g., Davaille & 
Jaupart, 1993; Grasset & Parmentier, 1998; Korenaga, 2009, 2010; Parmentier & Morgan, 1982; Parmentier & 
Sotin,  2000; Solomatov & Moresi,  2000; Vilella & Kaminski,  2017) have been extensively studied. The basic 
principle on which many of these scaling laws rely is the boundary layer stability criterion, which states that a 
thermal boundary layer (TBL) grows until it becomes unstable and breaks off as an upwelling or downwelling 
(Howard, 1966). According to Howard's conjecture, TBLs are at a steady state with respect to stability and can be 
described by a stability criterion (i.e., a critical Rayleigh number). Scaling laws based on the boundary layer stabil-
ity criterion are highly successful in characterizing convection heated purely from below or purely from within. 
Parameterizations have been extended to account for many complexities relevant to planetary mantles, including 
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three-dimensional spherical geometry (e.g., Bercovici et al., 1992; Vilella & Kaminski, 2017), depth-, temperature-, 
and stress-dependent rheology (Christensen, 1984; Davaille & Jaupart, 1993; Korenaga, 2009, 2010; Moresi & 
Solomatov, 1998; Morris & Canright, 1984; Solomatov, 1995; Solomatov & Moresi, 2000), and compressibility 
(Bercovici et al., 1992; Jarvis & Mckenzie, 1980; Liu & Zhong, 2013).

Although scaling laws for convection with either purely internal heating or purely basal heating have commonly 
been used for thermal evolution modeling, these scalings are, strictly speaking, inappropriate for this task. Planetary 
mantles are heated both from below (due to a slowly cooling core) and from within (due to radiogenic heating, secu-
lar cooling of the mantle, and, in some cases, tidal heating). Ideally, therefore, thermal evolution modeling should be 
conducted using scaling laws that are generalized to the mixed heating mode of mantle convection.

Parameterization of mixed heating mantle convection has been elusive. Early numerical studies of mixed heated 
convection suggested a departure from the behavior predicted by the end-member scaling laws for temperature 
and/or heat flow (Jarvis & Peltier,  1982; Puster et  al.,  1995; Travis & Olson,  1994). Later scaling analyses 
found that mixed heating scaling laws obtained using the well-founded boundary layer stability criterion are 
successful for only part of the parameter space investigated (Moore, 2008; Sotin & Labrosse, 1999; Vilella & 
Deschamps, 2018). It was suggested that, due to interactions between the top and bottom boundary layers, the 
boundary layer stability criterion may not apply to the mixed heating mode of mantle convection. If true, such a 
notion is at odds with the well-founded concept that boundary layers are marginally unstable, the foundational 
physical principle from which many previous scaling laws are derived.

In this paper, we develop new scaling laws for the mixed heating mode of mantle convection, starting with a 
handful of basic physical principles. We analyze the physics of interactions between the top and bottom boundary 
layers, and, as long as these interactions are accounted for, the boundary layer stability criterion is successful in 
characterizing mixed heated convection. Indeed, our approach can be successfully extended to depth-dependent 
and temperature-dependent viscosity as well as spherical geometry. The fact that the boundary layer stability 
criterion still applies for mixed heating conforms to the notion that convection is driven by marginally stable 
boundary layers. Additionally, and more importantly, we may continue applying the traditional method of mode-
ling the thermal evolution of planetary mantles. This is because the heat flux through the top and bottom of the 
mantle is simply governed by the structure of the top and bottom boundary layers, respectively.

The structure of the paper is as follows. We first describe the theoretical formulation of a thermally convecting 
fluid. Next, we address previous scaling approaches for convection driven by heating from both within and below. 
We then derive new scaling laws using a set of principles suitable for the mixed heating mode. We then extend the 
scaling laws to depth-dependent viscosity, temperature-dependent viscosity, and spherical geometry. Finally, we 
discuss the implications of our findings and present an application to the strength of Earth's lithosphere.

2. Theoretical Formulation
Thermal convection of an incompressible fluid with internally generated heat is governed by conservation of 
mass, momentum, and energy, represented by the following respective nondimensional equations:

∇ ⋅ 𝐮𝐮
∗
= 0, (1)

−∇𝑃𝑃 ∗
+ ∇ ⋅

[

𝜂𝜂∗
(

∇𝐮𝐮
∗
+ ∇𝐮𝐮

∗𝑇𝑇
)]

+𝑅𝑅𝑅𝑅𝑇𝑇 ∗
𝐞𝐞𝑧𝑧 = 0, (2)

and

𝜕𝜕𝜕𝜕 ∗

𝜕𝜕𝜕𝜕∗
+ 𝐮𝐮

∗
⋅ ∇𝜕𝜕 ∗

= ∇
2𝜕𝜕 ∗

+𝐻𝐻∗. (3)

Here, time t* is normalized by the diffusion timescale D 2/κ, where D is the depth of the system and κ is thermal 
diffusivity. Spatial coordinates are normalized by D, and thus velocity u* is normalized by κ/D. Viscosity η* is 
normalized by a reference viscosity η0, and dynamic pressure P* is normalized by η0κ/D 2. Temperature T* is 
normalized by a reference temperature scale ΔT, H* is the heat generation rate per unit mass, H, normalized by 
ρ0D 2/kΔT, where ρ0 is a reference density and k is thermal conductivity. The upward unit vector is represented 
by ez. The Rayleigh number, Ra, is a nondimensional parameter representing the potential vigor of convection, 
which is defined as
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𝑅𝑅𝑅𝑅 =
𝛼𝛼𝛼𝛼0𝑔𝑔Δ𝑇𝑇𝑇𝑇

3

𝜅𝜅𝜅𝜅0
, (4)

where α is thermal expansivity and g is acceleration due to gravity. The nondimensional time-averaged heat 
flux at the top and bottom TBLs, 𝐴𝐴 𝐴𝐴∗

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴∗

𝑏𝑏
 , respectively, are normalized by kΔT/D. The top and bottom Nusselt 

numbers (Nut and Nub, respectively) are defined as the top and bottom heat flux, respectively, normalized by a 
hypothetical conductive heat flux for a system with the same temperature contrast. For mixed heating in which 
the nondimensional temperature contrast is fixed at unity, we simply have

𝑁𝑁𝑁𝑁𝑡𝑡 = 𝑞𝑞∗𝑡𝑡 , (5a)

𝑁𝑁𝑁𝑁𝑏𝑏 = 𝑞𝑞∗
𝑏𝑏
. (5b)

We develop scaling laws for three different viscosity cases, with corresponding numerical experiments: constant 
viscosity, depth-dependent viscosity, and temperature-dependent viscosity. For depth-dependent viscosity, we impose 
a two-layered viscosity structure in which one layer has a nondimensional viscosity of 1 and the other layer has a 
nondimensional viscosity of either 10 or 100. We vary the thickness and position (either at the top or bottom of the 
domain) of the stiff layer. For temperature-dependent viscosity, we use the following linear-exponential viscosity law:

𝜂𝜂∗(𝑇𝑇 ∗
) = exp

[

𝜃𝜃(1 − 𝑇𝑇 ∗
)
]

, (6)

where the Frank-Kamenetskii parameter, θ, controls the temperature dependence. The Frank-Kamenetskii param-
eter is related to activation energy E as

𝜃𝜃 =
𝐸𝐸Δ𝑇𝑇

𝑅𝑅(𝑇𝑇𝑆𝑆 + Δ𝑇𝑇 )
2
, (7)

where R is the universal gas constant and TS is the surface temperature.

All numerical experiments are performed using a finite element code (Korenaga & Jordan, 2003) to solve Equa-
tions 1–3 in a 2-D Cartesian domain with an aspect ratio of 4. The domain is discretized into a grid of 256 × 64 
elements in all experiments except for isoviscous runs with Ra ≥ 10 8. In order to achieve finer resolution in 
these high-Ra runs, which have very thin TBLs, the uppermost and lowermost five elements of the 256 × 64 
grid are vertically divided further into four elements each. The top and bottom boundaries are held at T* = 0 and 
T* = 1, respectively, and internal heat generation is given by H*, defined above. We employ free-slip boundary 
conditions. All quantities are measured on a time-averaged and horizontally-averaged temperature profile after 
the simulation reaches statistical steady-state. We consider a simulation at steady-state when time variations in 
Nut drop below 1%.

3. Scaling Laws
3.1. Previous Work

As previously stated, scaling laws for purely internally heated and purely basally heated convection have been 
successfully derived using the TBL stability criterion. We review these scaling laws here, as successful scaling 
laws for mixed heating must reduce to the scalings for the end-member cases of purely basal and purely internal 
heating.

In the case of heating only from below (Rayleigh-Bénard convection), the heat flux through the top of a 2-D 
Cartesian domain must be equal to the heat flux through the bottom. As a result, the top and bottom TBLs are 
symmetric, so that the temperature drop across the top and bottom TBLs (ΔTt and ΔTb, respectively) are both 1/2:

Δ𝑇𝑇𝑡𝑡 = Δ𝑇𝑇𝑏𝑏 = 1∕2. (8)

According to the boundary layer stability criterion, the TBLs are marginally stable, and thus their local Rayleigh 
numbers can be described by a critical Ra:

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑅𝑅Δ𝑇𝑇𝑡𝑡𝛿𝛿
3

𝑡𝑡 = 𝑅𝑅𝑅𝑅Δ𝑇𝑇𝑏𝑏𝛿𝛿
3

𝑏𝑏
, (9)
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where δt and δb are the thickness of the top and bottom TBL, respectively. The right-hand side of Equation 9 
corresponds to the local Rayleigh number of either the top or bottom TBL. Because the TBLs are conducting by 
definition, we may write

𝑁𝑁𝑁𝑁𝑡𝑡 =
Δ𝑇𝑇𝑡𝑡

𝛿𝛿𝑡𝑡
, (10a)

𝑁𝑁𝑁𝑁𝑏𝑏 =
Δ𝑇𝑇𝑏𝑏

𝛿𝛿𝑏𝑏
. (10b)

From Equations 8–10, we arrive at

𝑁𝑁𝑁𝑁𝑡𝑡 =
1

2

(

𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐

)1∕3

. (11)

This is the classic scaling law of the form Nut = αRa β for Rayleigh-Bénard convection, where β ∼ 1/3.

For purely internal heating, there is no bottom TBL, and the top heat flux is simply equal to the internal heating:

𝑞𝑞∗𝑡𝑡 =
Δ𝑇𝑇𝑡𝑡

𝛿𝛿𝑡𝑡
= 𝐻𝐻∗. (12)

However, the Nusselt number is now normalized by the internal temperature (approximately equal to the temper-
ature drop across the top TBL), and this temperature is not known a priori:

𝑁𝑁𝑁𝑁𝑡𝑡 =
𝑞𝑞∗
𝑡𝑡

Δ𝑇𝑇𝑡𝑡

. (13)

Equation 9 (i.e., the boundary layer stability criterion) still applies, so we can use Equations 9, 12, and 13 to 
derive the temperature scale,

Δ𝑇𝑇𝑡𝑡 ∝ 𝐻𝐻∗3∕4𝑅𝑅𝑅𝑅−1∕4, (14)

and the Nusselt number,

𝑁𝑁𝑁𝑁𝑡𝑡 ∝ (𝐻𝐻∗𝑅𝑅𝑅𝑅)
1∕4

. (15)

When it comes to convection driven by both heating from within and heating from below, it is not so obvious how 
to derive scalings for ΔTt and Nut as a function of Ra and H* using the boundary layer stability criterion. Previ-
ous studies have suggested that the boundary layer stability criterion may not accurately describe the behavior of 
mixed heated convection because of the effect of upwellings and downwellings that arrive at the opposite TBL, 
and for part or all of the scaling approaches utilized by these studies, no physical justification is provided. For 
example, Moore (2008) and Sotin and Labrosse (1999) invoke a scaling for the internal temperature (i.e., ΔTt) by 
simply taking a linear combination of the scalings for purely basal heating (Equation 8) and purely internal heating 
(Equation 14) to arrive at the form ΔTt ∼ 0.5 + γH* 3/4Ra −1/4, where γ is some constant. Sotin and Labrosse (1999) 
then use the boundary layer stability criterion (Equation 9) along with Equation 10a to arrive at a scaling for Nut 
of the form 𝐴𝐴 𝐴𝐴𝐴𝐴𝑡𝑡 ∝ 𝑅𝑅𝑅𝑅1∕3Δ𝑇𝑇

4∕3

𝑡𝑡
 , using their scaling for ΔTt. In an alternative approach for Nut, Moore (2008) start 

with the scaling for purely basal heating and add a term proportional to the internal heating: Nut ∝ H* + Ra 1/3. 
While these scaling laws are relatively successful, the approach of taking a linear combination of the two 
end-member cases is not rooted in physical principles. More recently, Vilella and Deschamps (2018) derive a 
scaling for Nut by assuming the sum of functions of each of the two input parameters: Nut = f1(Ra) + f2(H*). The 
authors then use the two end-member cases to solve for f1 and f2. However, the physical motivation behind this 
particular functionality is unclear. Vilella and Deschamps (2018) then derive a scaling for ΔTt by considering 
the force balance in a marginally stable TBL along with conservation of energy. Their initial scaling, of the 
form 𝐴𝐴 Δ𝑇𝑇𝑡𝑡 ∼ 𝐻𝐻∗1∕4𝑁𝑁𝑁𝑁

1∕2

𝑡𝑡
𝑅𝑅𝑅𝑅−1∕4 , fails in the case of purely basal heating, for which the scaling yields ΔTt = 0. To 

remedy this, additional functionalities of Ra are incorporated: 𝐴𝐴 Δ𝑇𝑇𝑡𝑡 = 𝑓𝑓3(𝑅𝑅𝑅𝑅) + 𝑓𝑓4(𝑅𝑅𝑅𝑅)𝐻𝐻
∗1∕4𝑁𝑁𝑁𝑁

1∕2

𝑡𝑡
𝑅𝑅𝑅𝑅−1∕4 , where 

f3 and f4 are determined by considering the end-member cases.

Thus, scaling laws for mixed heated convection have yet to be derived based solely on the physics of convection. 
While the existing scaling laws discussed above achieve a good fit to numerical experiments, it is unclear why 
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they do so, and it is unclear if such scaling laws are applicable beyond the parameter space investigated by previ-
ous studies and beyond isoviscous convection. In the following section, we derive mixed heating scaling laws 
starting from a set of physical principles.

3.2. Scaling Laws for Mixed Heated Convection With Isoviscous Rheology

We introduce several physical principles regarding a convecting isoviscous fluid, which we use to derive scaling 
laws. First, when convection is driven by heating from below and within, the heat flux at the top boundary must 
be the sum of the heat flux at the bottom boundary and the internal heating:

𝑁𝑁𝑁𝑁𝑡𝑡 = 𝐻𝐻∗
+𝑁𝑁𝑁𝑁𝑏𝑏. (16)

This relation is based on the conservation of energy. Second, heat flow at the boundaries takes place within 
conducting thermal boundary layers, such that heat flux is related to the boundary layer structure as

𝑁𝑁𝑁𝑁𝑡𝑡 =
Δ𝑇𝑇 HF

𝑡𝑡

𝛿𝛿 HF

𝑡𝑡

, (17a)

𝑁𝑁𝑁𝑁𝑏𝑏 =
Δ𝑇𝑇 HF

𝑏𝑏

𝛿𝛿 HF

𝑏𝑏

. (17b)

These equations are the same as Equations 10a and 10b, but here we make the distinction that the TBL thick-
nesses and temperature drops are, in this case, those relevant to heat flux (denoted by the superscript “HF”). This 
distinction is important because there are several ways of defining the TBLs, and the above relation calls for 
just one of these definitions. Additionally, when comparing scaling laws with numerical experiments, one must 
take care to measure TBL properties in a manner consistent with the TBL definition used in the scaling law. For 
example, 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴 HF

𝑡𝑡
 can be measured by extending the temperature gradient at the upper surface (y = 1) until 

the temperature at the midpoint (𝐴𝐴 𝑇𝑇 (𝑦𝑦 = 0.5) , where 𝐴𝐴 𝑇𝑇  is the time- and horizontally-averaged temperature profile) 
is reached (Figure 1a). This guarantees that Equation 17a is satisfied. Table 1 lists the numerical measurements 
under this definition as well as an alternative definition described below. Note that the structure of the TBL under 
either definition is hypothetical and not guaranteed to be realized in numerical experiments.

The third governing principle is the boundary layer stability criterion. Previous studies have questioned the appli-
cability of this to mixed heated convection, on account of the interaction of upwellings and downwellings with 
the opposite TBL (Moore,  2008; Sotin & Labrosse,  1999; Vilella & Deschamps,  2018). Upon arrival at the 
opposite TBL, upwellings and downwellings perturb the TBL temperature profile (resulting in the “overshoot” 

Figure 1. Measurement of thermal boundary layers corresponding to the definitions relevant for (a) heat flux and (b) onset of instability. The thermal boundary layer 
(TBL) structure relevant for heat flux (𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 , 𝐴𝐴 Δ𝑇𝑇 HF

𝑏𝑏
 , 𝐴𝐴 𝐴𝐴 HF

𝑡𝑡
 , and 𝐴𝐴 𝐴𝐴 HF

𝑏𝑏
 ) is determined by where the extension of the temperature gradients at y = 0 and y = 1 (sloped dashed 

blue lines) reach the temperature at the midpoint (vertical dashed blue line). The TBL structure relevant for the onset of instability (𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 , 𝐴𝐴 Δ𝑇𝑇 CR

𝑏𝑏
 , 𝐴𝐴 𝐴𝐴 CR

𝑡𝑡
 , and 𝐴𝐴 𝐴𝐴 CR

𝑏𝑏
 ) is found 

by calculating the local Rayleigh number of the TBL (RaTBL) as a function of its hypothetical inner boundary (dashed red line). The inner boundary depth (horizontal 
dotted blue lines) is then chosen at the depth where RaTBL = Racr = 500 is achieved. In panels (a) and (b), the case with Ra = 10 6 and H* = 1 is shown. Panel (c) 
shows the relationship between the two definitions: 𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 versus 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 is plotted with red circles, and 𝐴𝐴 𝐴𝐴 CR

𝑡𝑡
 versus 𝐴𝐴 𝐴𝐴 HF

𝑡𝑡
 is plotted with blue circles. In both cases, the two 

definitions are related linearly (with lines of best fit plotted as black dashed lines).
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of TBL temperature past the initial temperature, seen in Figure  1a). Yet, such perturbations alone are not 
sufficient to prevent the process of TBL growth and break-off of instabilities that ensures the marginal stability 
of TBLs. For instance, if the temperature perturbations from upwellings and downwellings made a TBL more 
stable (RaTBL < Racr, where RaTBL is the local TBL Rayleigh number), then the TBL would grow conductively 
until marginal stability is reached. Alternatively, if the temperature perturbations made a TBL more unstable 
(RaTBL > Racr), then by necessity instabilities would form and break off, returning the TBL to marginal instability. 

Table 1 
Input Parameters and Output Measurements of Numerical Simulations for Isoviscous Convection

Ra H* Nut Nub𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 𝐴𝐴 𝐴𝐴CR

𝑡𝑡
 𝐴𝐴 𝐴𝐴HF

𝑡𝑡
 𝐴𝐴 Δ𝑇𝑇 CR

𝑏𝑏
 𝐴𝐴 Δ𝑇𝑇 HF

𝑏𝑏
 𝐴𝐴 𝐴𝐴CR

𝑏𝑏
 𝐴𝐴 𝐴𝐴HF

𝑏𝑏
 

3 × 10 4 0 6.89 6.89 0.517 0.500 0.319 0.0724 0.517 0.500 0.319 0.0724

6 × 10 4 0 8.52 8.52 0.520 0.500 0.253 0.0583 0.520 0.500 0.253 0.0583

8 × 10 4 0 7.95 7.95 0.539 0.500 0.227 0.0627 0.539 0.500 0.227 0.0621

10 5 0 8.51 8.51 0.540 0.501 0.210 0.0585 0.539 0.499 0.211 0.0579

3 × 10 5 0 11.65 11.66 0.553 0.503 0.145 0.0423 0.534 0.497 0.147 0.0412

6 × 10 5 0 14.44 14.42 0.553 0.510 0.115 0.0340 0.526 0.490 0.117 0.0322

8 × 10 5 0 15.77 15.77 0.553 0.511 0.105 0.0309 0.526 0.489 0.106 0.0290

10 6 0 16.94 16.96 0.525 0.490 0.099 0.0267 0.551 0.510 0.097 0.0284

10 6 1 17.73 16.68 0.570 0.536 0.096 0.0285 0.508 0.464 0.100 0.0255

10 6 3 19.54 16.49 0.596 0.586 0.095 0.0283 0.486 0.414 0.101 0.0228

10 6 10 21.87 11.84 0.707 0.706 0.090 0.0308 0.367 0.294 0.111 0.0230

3 × 10 6 0 25.94 25.84 0.544 0.506 0.068 0.0170 0.532 0.494 0.068 0.0165

3 × 10 6 1 25.75 24.52 0.558 0.531 0.067 0.0181 0.518 0.469 0.069 0.0164

3 × 10 6 3 26.25 22.93 0.582 0.570 0.066 0.0192 0.491 0.430 0.070 0.0161

3 × 10 6 10 28.54 18.45 0.646 0.644 0.064 0.0201 0.418 0.356 0.074 0.0168

3 × 10 6 30 38.57 8.71 0.858 0.852 0.058 0.0197 0.213 0.148 0.093 0.0150

10 7 1 35.06 35.39 0.554 0.531 0.045 0.0121 0.516 0.469 0.046 0.0112

10 7 3 36.29 33.73 0.562 0.547 0.045 0.0124 0.499 0.453 0.047 0.0114

10 7 10 38.46 29.06 0.605 0.602 0.044 0.0128 0.451 0.398 0.049 0.0115

10 7 30 47.44 18.20 0.745 0.743 0.041 0.0127 0.320 0.257 0.054 0.0115

3 × 10 7 1 49.41 48.72 0.536 0.520 0.032 0.0089 0.509 0.480 0.032 0.0086

3 × 10 7 3 48.84 46.58 0.553 0.548 0.032 0.0089 0.492 0.452 0.033 0.0085

3 × 10 7 10 52.06 41.71 0.574 0.573 0.031 0.0092 0.465 0.427 0.033 0.0087

3 × 10 7 30 60.74 31.71 0.666 0.667 0.030 0.0091 0.385 0.333 0.036 0.0087

10 8 1 69.77 68.43 0.519 0.504 0.022 0.0069 0.510 0.496 0.022 0.0069

10 8 3 70.48 67.80 0.534 0.527 0.022 0.0072 0.495 0.473 0.022 0.0067

10 8 10 74.34 63.20 0.556 0.558 0.021 0.0072 0.471 0.442 0.022 0.0066

10 8 30 80.93 52.20 0.615 0.622 0.021 0.0074 0.414 0.378 0.023 0.0069

3 × 10 8 1 95.22 92.95 0.520 0.518 0.015 0.0050 0.495 0.482 0.015 0.0048

3 × 10 8 3 97.72 91.73 0.522 0.522 0.015 0.0049 0.493 0.478 0.016 0.0048

3 × 10 8 10 101.51 88.40 0.544 0.550 0.015 0.0050 0.473 0.450 0.016 0.0047

3 × 10 8 30 108.59 78.36 0.581 0.590 0.015 0.0050 0.438 0.410 0.016 0.0048

10 9 1 131.92 131.97 0.504 0.506 0.010 0.0034 0.503 0.494 0.011 0.0033

10 9 3 133.65 130.05 0.514 0.519 0.010 0.0034 0.491 0.481 0.011 0.0033

10 9 10 139.02 123.26 0.527 0.532 0.010 0.0034 0.481 0.468 0.011 0.0034

10 9 30 145.51 112.55 0.553 0.562 0.010 0.0034 0.459 0.438 0.011 0.0034
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Thus, it is reasonable to assume that the TBLs are still described by marginal stability, and thus the boundary 
layer stability criterion. A more precise form of the boundary layer stability criterion is given by

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑅𝑅Δ𝑇𝑇 CR

𝑡𝑡

(

𝛿𝛿 CR

𝑡𝑡

)3

= 𝑅𝑅𝑅𝑅Δ𝑇𝑇 CR

𝑏𝑏

(

𝛿𝛿 CR

𝑏𝑏

)3

. (18)

Here, the superscript “CR” refers to a second TBL definition corresponding to the depth at which instability sets 
in. This guarantees that the local Rayleigh number equals Racr. We measure 𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴 CR

𝑡𝑡
 by assuming some Racr 

and taking the inner boundary of the TBL at the depth where 𝐴𝐴 𝐴𝐴𝐴𝐴Δ𝑇𝑇 CR

𝑡𝑡

(

𝛿𝛿 CR

𝑡𝑡

)3

= 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 is achieved (Figure 1b). 
We choose Racr = 500, which generally corresponds to the transition from the conducting TBL to the isothermal 
interior (Figure 1b). The measured values of 𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 and 𝐴𝐴 𝐴𝐴 CR

𝑡𝑡
 are relatively insensitive to the exact value chosen for 

Racr (see Figure 1b) because 𝐴𝐴 𝐴𝐴 CR

𝑡𝑡
∝ 𝑅𝑅𝑅𝑅

1∕3

𝑐𝑐𝑐𝑐  (Equation 18) and the change in temperature with depth in this region 
is small. In order to ultimately derive scaling laws, we need to relate the two alternative TBL definitions we have 
introduced. From our numerical simulations, we find a linear relationship between properties measured by the 
two different methods (Figure 1c). Thus, we use the following to relate the two TBL definitions:

Δ𝑇𝑇 CR

𝑡𝑡 = 𝑏𝑏Δ𝑇𝑇 HF

𝑡𝑡 , Δ𝑇𝑇 CR

𝑏𝑏
= 𝑏𝑏Δ𝑇𝑇 HF

𝑏𝑏
, (19a)

𝛿𝛿 CR

𝑡𝑡 = 𝑐𝑐𝛿𝛿 HF

𝑡𝑡 , 𝛿𝛿 CR

𝑏𝑏
= 𝑐𝑐𝛿𝛿 HF

𝑏𝑏
. (19b)

Because 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 and 𝐴𝐴 Δ𝑇𝑇 HF

𝑏𝑏
 are simply the midpoint temperature and its complement, respectively, and the actual 

TBL temperature often “overshoots” this internal temperature, we expect that b  <  1. On the other hand, by 
extending the thermal gradient at y = 0 and y = 1, we are creating an idealized TBL structure that is thinner than 
a TBL based on the actual temperature profile. Thus, we expect that c > 1.

The fourth and last constraint is given by the fact that the convecting interior is isothermal, and nearly all of the 
temperature change occurs in the TBLs. This assumption is valid in the limit of high Ra, for which TBLs are 
well-defined. Under this assumption, we expect that the nondimensional temperature changes across the top TBL, 

𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 , and the bottom TBL, 𝐴𝐴 Δ𝑇𝑇 CR

𝑏𝑏
 , will sum to 1. However, the temperature at the inner boundary of the top TBL 

does not equal the temperature at the inner boundary of the bottom TBL; rather, the TBL temperature profiles 
overshoot the internal temperature, such that the sum of 𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 and 𝐴𝐴 Δ𝑇𝑇 CR

𝑏𝑏
 is greater than 1:

Δ𝑇𝑇 CR

𝑡𝑡 + Δ𝑇𝑇 CR

𝑏𝑏
= 1 + 𝜎𝜎𝜎 (20)

where σ represents the overshoot of 𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
+ Δ𝑇𝑇 CR

𝑏𝑏
 with respect to the net temperature change across the system 

of 1. In order to derive useful scaling laws, we need to parameterize this overshoot as a function of the dimension-
less input parameters. It has been previously speculated that this overshoot is the result of interactions between 
the boundary layers that perturbs the TBL temperature structure (Vilella & Deschamps, 2018). To go one step 
further, we argue that a hot upwelling may not equilibriate with the internal temperature as it rises through the 
convecting interior, so that it remains hotter than the interior temperature when it reaches the cold upper TBL. 
Because the upper TBL is conducting, the hot upwelling anomaly comes to rest at the base of the upper TBL, 
and contributes to a positive thermal anomaly; this is the so-called overshoot. A similar line of reasoning can be 
made for the effect of cold downwellings on the thermal structure of the lower TBL. The temperature overshoot 
at the inner boundary of the TBLs can be seen clearly as a deviation of 𝐴𝐴 𝑇𝑇 (𝑦𝑦) from an idealized temperature profile 
constructed from the internal temperature and the temperature gradients at y = 0 and y = 1 (𝐴𝐴 𝑇𝑇

′

 ; Figure 2a). As a 
corollary, in the example shown in Figure 2, most of the overshoot occurs at the bottom TBL because of the large 
internal heating ratio (IHR) (defined  as H*/Nut, or the relative contribution of internal heating to the surface heat 
flux). In general, however, the total overshoot will be the sum of the overshoot of each TBL with respect to the 
internal temperature. When we consider the 2-D thermal structure at a single timestep of a numerical simulation, 
we can clearly see that the deviation from the idealized thermal structure occurs where downwellings (and in 
some cases, upwellings) are pooling at the base of the opposite TBL (Figure 2b).

We use the following parameterization of the overshoot in our scaling laws:

𝜎𝜎 = −10.39𝑅𝑅𝑅𝑅−1∕3 + 4.01𝑅𝑅𝑅𝑅−0.22 (21)

This function, derived in Appendix A, models the measured overshoot well (Figure 3). Its two competing terms are 
consistent with our intuition. Higher Ra implies faster velocities, and less time for upwellings and downwellings 
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to equilibriate with the internal temperature before reaching the opposite TBL; this contributes to σ, and is repre-
sented by the positive term on the righthand side of Equation 21. At the same time, higher Ra implies thinner 
TBLs, and thus thinner upwellings and downwellings, resulting in a smaller influence on the temperature struc-
ture of the opposite TBL; this is represented by the negative term on the lefthand side of Equation 21.

We can solve this system of equations (Equations 16–21) for desired properties solely in terms of Ra and H*. 
First, one may derive the following scaling for 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 in terms of Ra, and H*:

(

Δ𝑇𝑇 HF

𝑡𝑡

)4∕3

=

(

1 + 𝜎𝜎

𝑏𝑏
− Δ𝑇𝑇 HF

𝑡𝑡

)4∕3

+
𝐻𝐻∗

𝑐𝑐

(

𝑏𝑏
𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐

)−1∕3

. (22)

Whereas 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 cannot be solved for analytically, a numerical solution may be readily obtained for a given pair 

of Ra and H*. Once 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 is solved for, we can use Equations 16–21 to obtain other desired parameters. For 

example, we have

𝛿𝛿 HF

𝑡𝑡 =
1

𝑐𝑐

(

𝑏𝑏Δ𝑇𝑇 HF

𝑡𝑡

𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐

)1∕3

, (23)

𝑁𝑁𝑁𝑁𝑡𝑡 =
Δ𝑇𝑇 HF

𝑡𝑡

𝛿𝛿 HF

𝑡𝑡

, (24)

Δ𝑇𝑇 CR

𝑡𝑡 = 𝑏𝑏Δ𝑇𝑇 HF

𝑡𝑡 , (25)

and

𝛿𝛿 CR

𝑡𝑡 = 𝑐𝑐𝛿𝛿 HF

𝑡𝑡 . (26)

We now solve for the best-fit coefficients by fitting the scaling equations to 
the numerical experiments. We first assume Racr = 500 as this value was 
used to measure TBL properties (and thus comparison between measure-
ments and scaling predictions will be justified). For a given pair of b and 
c, the overall misfit is defined as the mean of the normalized squared errors 
of Nut, 𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 , and 𝐴𝐴 𝐴𝐴 CR

𝑡𝑡
 . The normalized squared error of a property X is 

𝐴𝐴 Σ
(

𝑋𝑋measured −𝑋𝑋predicted

)2

∕Σ(𝑋𝑋measured)
2 , where the sum is over all the numeri-

cal runs. The best-fit coefficients are b = 0.95 and c = 2.5, which is close to 
the values found by comparing the TBL measurements under the two defini-
tions (Figure 1a). The scaling laws predict the results of the numerical exper-
iments very well (Figure 4).

We now verify that the scaling given by Equation  22 reduces to the 
well-established scaling laws of the end-member heating modes. This is 
expected because Equation  22 is derived using the same physical princi-
ples as these end-member scaling laws. In the case of purely basal heating 

Figure 3. The scaling for the temperature overshoot (dashed black curve) 
compared to the measured overshoot of the numerical simulations (blue 
circles). The measured overshoot is taken as 𝐴𝐴 𝐴𝐴 = Δ𝑇𝑇 CR

𝑡𝑡
+ Δ𝑇𝑇 CR

𝑏𝑏
− 1 , 

consistent with Equation 20.

Figure 2. Temperature overshoot due to thermal boundary layer interaction in isoviscous convection. (a) Time-averaged and horizontally-averaged temperature profile 
(solid gray curve) and an idealized temperature profile (dashed blue curve) constructed from the internal temperature and the top and bottom heat flux. (b) Temperature 
anomaly with respect to the idealized temperature profile at a single timestep of the numerical simulation. In both panels, the case with Ra = 10 6 and H* = 10 is shown.
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(H* = 0), Equation 22 yields a 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 that is independent of Ra. This is consistent with Equation 8 and the fact that 

the TBLs are symmetric in Rayleigh-Bénard convection regardless of Ra. Since 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 is constant, we may use 

Equations 17a and 18 to arrive at Nut ∝ Ra 1/3 which is exactly the classical scaling for Rayleigh-Bénard convec-
tion given by Equation 11. In the case of purely internal heating, the temperature scale is initially unknown, and 
we have 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
∕𝛿𝛿 HF

𝑡𝑡
= 𝐻𝐻∗ and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑡𝑡 = 𝐻𝐻∗

∕Δ𝑇𝑇 CR

𝑡𝑡
 instead of Equation 16. When we further consider the boundary 

layer stability criterion (Equation 18) along with the conversion between TBL definitions (Equation 19) we arrive 
at 𝐴𝐴 𝐴𝐴𝐴𝐴𝑡𝑡 ∝ (𝐻𝐻∗𝑅𝑅𝑅𝑅)

1∕4 ; this is indeed the traditional scaling given by Equation 15.

Though Equation  22 cannot be solved analytically, we may seek “empirical” scaling laws that express 
𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 and Nut explicitly (i.e., in closed-form) as functions of Ra and H*. Upon inspection of Equa-

tion  22, we may guess that the numerical measurements will be modeled well by an equation of the form 
𝐴𝐴 𝐴𝐴 HF

𝑡𝑡
= 𝐴𝐴′

(1 + 𝜎𝜎)∕𝑏𝑏 − Δ𝐴𝐴 HF

𝑡𝑡
+ 𝐵𝐵′

(𝐻𝐻∗
∕𝑐𝑐)

3∕4
(𝑏𝑏𝑏𝑏𝑏𝑏∕𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐)

−1∕4 , where A′ and B′ are some constants. We can now 
solve this approximate equation for 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 to get the following relationship:

Δ𝑇𝑇 CR

𝑡𝑡 ≈ 𝐴𝐴 + 𝐵𝐵𝐵𝐵∗3∕4𝑅𝑅𝑅𝑅−1∕4. (27)

Here, we have converted from 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 to 𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 using Equation 19a and combined all numerical constants into 

two coefficients, A and B. To complete the empirical scaling law, the combination of A = 1.038 and B = 0.509 
provide the best fit to the numerical simulations. To obtain an empirical scaling for Nut, we consider Equation 27 
in combination with Equations 17a, 18, and 19 to arrive at

𝑁𝑁𝑁𝑁𝑡𝑡 ≈ 𝐶𝐶𝐶𝐶𝐶𝐶1∕3 +𝐷𝐷𝐷𝐷∗, (28)

where C and D again result from the combination of numerical constants. The best-fit values for these coef-
ficients are C = 0.137 and D = 0.588. The empirical closed-form scaling laws given by Equations 27 and 28 
approximate well our exact scaling given by Equation 22 (Figure 5). Note that the empirical scaling laws resemble 
the scaling laws proposed by Moore (2008). While such empirical scaling laws may be reasonable, the exact scal-
ing laws (Equations 16–20) are better suited for extension to other rheologies, as they are based on a well-defined 
set of physical constraints.

In comparison with previous scaling analyses (Moore, 2008; Vilella & Deschamps, 2018), our scaling law (Equa-
tion 22, from which ΔTt and Nut may be determined) better predicts numerical measurements (Figure 6, Table 2). 
It should be noted that previous scaling analyses used different methods for measuring TBL properties. These 
measurements are then used to determine fitting parameters; thus, a comparison of accuracy between different 
scaling laws is cumbersome and may not be particularly meaningful. Further, the utility of a particular scaling lies 
not only in its accuracy but also in its capacity for extension to cases that are numerically inaccessible. Because 
our scaling is derived from physical principles, it may be readily extended beyond two-dimensional isoviscous 
convection.

Figure 4. Comparison of the scaling for isoviscous mixed heated convection (Equation 22) with numerical experiments. (a) Surface heat flux, (b) top thermal boundary 
layer (TBL) temperature change, (c) top TBL thickness. We include all runs in Table 1.
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3.3. Scaling Laws for Mixed Heated Convection With Depth-Dependent Viscosity

We now seek to extend the scaling given by Equation  22 beyond isoviscous convection, starting with the 
depth-dependent viscosity described in Section 2 (see Table 3 for numerical results). Examples of the viscosity 
profile and steady-state temperature profile resulting from layered viscosity are shown in Figure 7. Even with 
depth-dependent viscosity, the boundary layer stability criterion should still apply if we account for TBL 
viscosity in the local Rayleigh number. We first consider the case in which the high-viscosity layer overlies the 
low-viscosity layer. In this case, Equation 18 is modified to

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 =
𝑅𝑅𝑅𝑅Δ𝑇𝑇 CR

𝑡𝑡

(

𝛿𝛿 CR

𝑡𝑡

)3

𝜂𝜂max

= 𝑅𝑅𝑅𝑅Δ𝑇𝑇 CR

𝑏𝑏

(

𝛿𝛿 CR

𝑏𝑏

)3

, (29)

Figure 6. Comparison of proposed scaling laws for (a) heat flux and (b) temperature change across the top thermal boundary layer. “This study” 
refers to Equations 22–24 assuming b = 0.95 and c = 2.5, from which Nut and 𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 may be determined. The scalings proposed by Moore (2008) are 

𝐴𝐴 𝐴𝐴𝐴𝐴𝑡𝑡 = 1 +
1

2
𝐻𝐻∗

+ 0.206(𝑅𝑅𝑅𝑅 − 658)
0.318 and ΔTt = 0.499 + 1.33H* 3/4Ra −1/4. The heat flux and temperature scalings proposed by Vilella and Deschamps (2018) are 

𝐴𝐴 𝐴𝐴𝐴𝐴𝑡𝑡 =
1

2
(𝐻𝐻∗

+𝐻𝐻𝑐𝑐𝑐𝑐) and 𝐴𝐴 Δ𝑇𝑇𝑡𝑡 =
1

2

(

𝐻𝐻𝑐𝑐𝑐𝑐

2.2

)3∕4(

𝑅𝑅𝑅𝑅

658

)−1∕4
(

1 −

(

𝐻𝐻∗

𝐻𝐻𝑐𝑐𝑐𝑐

)1∕4
)

+

(

𝐻𝐻∗

2

)1∕4(

𝑁𝑁𝑁𝑁𝑡𝑡

2

)1∕2(

𝑅𝑅𝑅𝑅

658

)−1∕4

,with 𝐴𝐴 𝐴𝐴𝑐𝑐𝑐𝑐 = 2 + 2

(

𝑅𝑅𝑅𝑅

658
− 1

)1∕3

 .

Figure 5. Comparison of the empirical closed-form scalings (Equations 27 and 28) with the exact scalings (Equation 22 combined with Equations 17–19) for (a) 
surface heat flux and (b) top thermal boundary layer temperature drop in isoviscous mixed heated convection. Since the derived scalings do not yield closed-form 
solutions, empirical scalings constructed from the numerical experiments may be useful in the case that numerical solution of the derived scalings is not convenient. 
Refer to Figure 4 for the color scale.
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where ηmax is the viscosity of the stiff layer (either 10 or 100 in our numerical 
experiments). The bottom TBL has a viscosity of 1 and thus its local Ra is 
unchanged, but the higher viscosity of the upper TBL must be accounted for. 
The other assumptions used in the isoviscous scaling remain unaffected, and 
we arrive at

(

Δ𝑇𝑇 HF

𝑡𝑡

)4∕3

=

(

1 + 𝜎𝜎

𝑏𝑏
− Δ𝑇𝑇 HF

𝑡𝑡

)4∕3

𝜂𝜂
1∕3

max +
𝐻𝐻∗

𝑐𝑐

(

𝑏𝑏
𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐

)−1∕3

𝜂𝜂
1∕3

max . (30)

In the case of a high-viscosity layer underlying a low-viscosity layer, we 
follow a similar procedure, this time modifying the local Ra of the lower 
TBL. The scaling in this case is given by:

(

Δ𝑇𝑇 HF

𝑡𝑡

)4∕3

=

(

1 + 𝜎𝜎

𝑏𝑏
− Δ𝑇𝑇 HF

𝑡𝑡

)4∕3

𝜂𝜂
−1∕3

max +
𝐻𝐻∗

𝑐𝑐

(

𝑏𝑏
𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐

)−1∕3

. (31)

Note that, thus far, the scaling laws for layered viscosity are independent of the thickness of the high-viscosity 
layer. This is because the lower TBL (or upper TBL, depending on the scenario) is described by ηmax regardless of 
the thickness of the high-viscosity layer (as long as the TBL is fully contained within the layer).

The last modification necessary for depth-dependent viscosity is the formulation of the temperature overshoot. 
The overshoot scaling given by Equation 21 represents velocity and TBL thicknesses as functions of Ra, but for 

Table 2 
Accuracy and Number of Fitting Parameters of Proposed Scaling Laws

Fitting parameters Error a

Nut ΔTt Nut ΔTt

This study b , c 2 2 0.0025 0.0004

Moore (2008) 2 2 0.0114 0.0033

Vilella and Deschamps (2018) c 1 1 0.0255 0.0128

 aNormalized squared error as defined in Section  3.2.  bOvershoot scaling 
parameters were determined prior to fitting b and c.  cThe scaling laws for Nut 
and ΔTt use the same fitting parameters.

Table 3 
Input Parameters and Output Measurements of Numerical Simulations With Depth-Dependent Viscosity

Ra H* T/B a ηmax h Nut 𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 𝐴𝐴 𝐴𝐴CR

𝑡𝑡
 𝐴𝐴 𝐴𝐴HF

𝑡𝑡
 

3 × 10 6 3 T 10 0.25 15.29 0.745 0.742 0.131 0.0494

3 × 10 6 3 T 10 0.50 19.22 0.676 0.675 0.136 0.0340

3 × 10 6 3 T 10 0.75 15.26 0.733 0.736 0.132 0.0438

3 × 10 6 3 T 100 0.25 7.42 0.891 0.901 0.266 0.1224

3 × 10 6 3 T 100 0.50 8.16 0.899 0.888 0.265 0.1092

3 × 10 6 3 T 100 0.75 8.98 0.899 0.885 0.265 0.0988

10 7 10 B 10 0.50 26.19 0.486 0.431 0.047 0.0144

10 7 10 B 100 0.50 18.63 0.426 0.356 0.049 0.0165

10 7 10 T 10 0.25 26.76 0.757 0.763 0.088 0.0267

10 7 10 T 10 0.50 27.30 0.755 0.766 0.088 0.0262

10 7 10 T 10 0.75 25.61 0.775 0.794 0.087 0.0294

10 7 10 T 100 0.25 12.76 0.990 0.996 0.172 0.0794

10 7 10 T 100 0.50 13.87 0.976 0.971 0.173 0.0706

3 × 10 7 3 B 10 0.25 32.13 0.410 0.357 0.035 0.0108

3 × 10 7 10 B 100 0.50 22.88 0.374 0.293 0.036 0.0126

10 8 3 B 10 0.25 44.65 0.389 0.327 0.024 0.0070

10 8 10 B 100 0.75 28.69 0.318 0.268 0.026 0.0091

10 8 30 T 10 0.25 50.65 0.822 0.834 0.040 0.0165

3 × 10 8 3 T 10 0.75 61.60 0.667 0.682 0.030 0.0111

3 × 10 8 10 B 100 0.75 36.24 0.316 0.277 0.018 0.0065

3 × 10 8 30 B 10 0.50 75.77 0.484 0.441 0.016 0.0053

10 9 3 B 100 0.50 46.05 0.265 0.210 0.013 0.0042

10 9 10 T 10 0.25 84.40 0.678 0.695 0.020 0.0080

10 9 30 B 10 0.50 95.26 0.445 0.405 0.011 0.0038

 aDenotes whether the high-viscosity layer lies at the top (T) or bottom (B) of the domain.
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depth-dependent viscosity, Ra (which is defined with a nondimensional viscosity of 1) does not in general predict 
these convective properties. Therefore, we use a modified Rayleigh number for the overshoot scaling:

𝑅𝑅𝑅𝑅 =
𝑅𝑅𝑅𝑅

exp
[

log(𝜂𝜂max)ℎ
] , (32)

where h is the thickness of the stiff layer. We call this the “log-average Ra,” because it is normalized by the 
log-average of the viscosity. The scaling for the temperature overshoot is thus modified to:

𝜎𝜎 = −10.39𝑅𝑅𝑅𝑅
−1∕3

+ 4.01𝑅𝑅𝑅𝑅
−0.22

, (33)

Thus, the scaling for depth-dependent viscosity does depend on the thickness of the viscosity layers, although 
this dependence is a minor one, as 𝐴𝐴 𝑅𝑅𝑅𝑅 is not very different from Ra, and σ itself does not significantly affect the 
output of the scaling laws.

The validity of Equations 30–33 can be evaluated by comparing the scaling predictions with numerical exper-
iments. We use the same numerical constants that best fit the isoviscous numerical runs (Racr = 500, b = 0.95, 
and c = 2.5); thus, we are simultaneously evaluating the suitability of these particular numerical constants. The 
scaling predictions match the measured convective properties remarkably well (Figure 8).

Figure 7. Viscosity profile for two examples of depth-dependent (layered) viscosity convection (red curves), and the 
corresponding time-averaged and horizontally-averaged temperature profile (gray curves). (a) The case with Ra = 10 7, 
H* = 10, ηmax = 10, and h = 0.5, and the stiff layer is overlying the weak layer; (b) the case with Ra = 3 × 10 8, H* = 10, 
ηmax = 100, and h = 0.75, and the stiff layer is underlying the weak layer.

Figure 8. Comparison of numerical simulations with the scaling for mixed heated convection with depth-dependent viscosity (Equations 30–33). (a) Surface heat flux, 
(b) top thermal boundary layer (TBL) temperature drop, (c) top TBL thickness.
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3.4. Scaling Laws for Mixed Heated Convection With Temperature-Dependent Viscosity

Our next task is to extend the scaling laws to temperature-dependent viscosity given by Equation 6 (see Table 4 
for numerical runs). Under this formulation, there is one additional input parameter: θ, the temperature depend-
ence of viscosity. If θ is sufficiently large (greater than ∼10), then a conducting, immobile lid forms below the 
surface (Solomatov, 1995). It is this stagnant lid regime of convection that we seek to derive scaling laws for. This 
task is more involved than the case of depth-dependent viscosity, but by utilizing scaling arguments developed 
for purely internally heated stagnant lid convection, we will show that our approach based on boundary layer 
stability still works.

The first two constraints used in the isoviscous case are still valid here, which we summarize as:

𝑁𝑁𝑁𝑁𝑡𝑡 = 𝐻𝐻∗
+

Δ𝑇𝑇 HF

𝑏𝑏

𝛿𝛿 HF

𝑏𝑏

. (34)

The bottom TBL can be defined using the definitions related to heat flux and instability that we are familiar with. 
Thus, we still have:

Δ𝑇𝑇 CR

𝑏𝑏
= 𝑏𝑏Δ𝑇𝑇 HF

𝑏𝑏
, (35a)

𝛿𝛿 CR

𝑏𝑏
= 𝑐𝑐𝛿𝛿 HF

𝑏𝑏
. (35b)

As before, we can apply the boundary layer stability criterion to the bottom TBL:

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑅𝑅Δ𝑇𝑇 CR

𝑏𝑏

(

𝛿𝛿 CR

𝑏𝑏

)3

. (36)

Here, we assume that the bottom TBL can be described by a nondimensional viscosity of 1. This is because the 
presence of the stagnant lid leads to internal temperature very close to 1, so that the temperature of the bottom 
TBL is approximately 1.

The top TBL must be treated carefully, as it is comprised of the immobile lid and a rheological sublayer (Solomatov 
& Moresi, 2000). The rheological sublayer conducts heat like the overlying immobile lid but is weak enough to 
produce downwellings and participate in convection. It is thus reasonable to assume that this rheologial sublayer 
(but not the entire upper TBL) is marginally unstable and can be characterized by some Racr. There are then two 
definitions of the rheological sublayer: one relevant for heat flux, and one relevant for instability. In our numerical 
experiments, we only measure the sublayer that is relevant for instability (Figure 9). To do so, we first define 
the base of the immobile lid (and the top of the rheological sublayer) as the depth where the root-mean-square 
nondimensional velocity exceeds a critical value of 10. We then define the bottom of the rheological sublayer 
by setting the local Ra equal to Racr = 500, as we have done previously (Figure 9). We again have the following 
relationship between the two alternative definitions of the sublayer:

Δ𝑇𝑇 CR

𝑟𝑟𝑟
= 𝑏𝑏Δ𝑇𝑇 HF

𝑟𝑟𝑟
, (37a)

𝛿𝛿 CR

𝑟𝑟𝑟
= 𝑐𝑐𝛿𝛿 HF

𝑟𝑟𝑟
, (37b)

where ΔTrh and δrh represent the temperature change across the rheological sublayer and the sublayer thickness, 
respectively.

Using these definitions of the rheological sublayer, we now turn to establishing some fundamental relations from 
which we can derive scaling laws. The heat flux through the rheological sublayer must be the sum of the basal 
heating and the internal heating generated below the immobile lid:

Δ𝑇𝑇 HF

𝑟𝑟𝑟

𝛿𝛿 HF

𝑟𝑟𝑟

= 𝐻𝐻∗
(

1 −𝐷𝐷𝑣𝑣

𝐿𝐿

)

+
Δ𝑇𝑇 HF

𝑏𝑏

𝛿𝛿 HF

𝑏𝑏

, (38)

where 𝐴𝐴 𝐴𝐴𝑣𝑣

𝐿𝐿
 is the thickness of the immobile lid, defined by the velocity profile as described above (Figure 9). As 

the rheological sublayer satisfies the boundary layer stability criterion, we may write:

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 =
𝑅𝑅𝑅𝑅Δ𝑇𝑇 CR

𝑐𝑐𝑟

(

𝛿𝛿 CR

𝑐𝑐𝑟

)3

𝜂𝜂
, (39)
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Table 4 
Input Parameters and Output Measurements of Numerical Simulations With Temperature-Dependent Viscosity

Ra H* θ Nut 𝐴𝐴 Δ𝑇𝑇 CR

𝑏𝑏
 𝐴𝐴 𝐴𝐴CR

𝑏𝑏
 𝐴𝐴 Δ𝑇𝑇 𝑣𝑣

𝐿𝐿
 𝐴𝐴 𝐴𝐴𝑣𝑣

𝐿𝐿
 𝐴𝐴 Δ𝑇𝑇 CR

𝑟𝑟𝑟
 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶

𝑟𝑟𝑟
 

10 6 1 12.0 2.29 0.0549 0.209 0.189 0.340 0.285 0.129

10 6 3 12.0 3.04 0.0036 0.530 0.245 0.312 0.200 0.100

3 × 10 6 1 12.0 2.73 0.0674 0.136 0.225 0.248 0.359 0.126

3 × 10 6 3 12.0 3.35 0.0011 0.547 0.271 0.251 0.256 0.103

10 7 1 12.0 3.50 0.0665 0.091 0.289 0.179 0.397 0.107

10 7 3 12.0 4.30 0.0278 0.122 0.349 0.170 0.319 0.082

3 × 10 7 1 12.0 4.80 0.0691 0.063 0.398 0.124 0.415 0.079

3 × 10 7 3 12.0 5.45 0.0401 0.075 0.445 0.119 0.375 0.070

10 8 3 12.0 6.97 0.0604 0.044 0.533 0.078 0.402 0.079

10 8 3 15.0 5.54 0.0420 0.050 0.646 0.121 0.310 0.122

10 8 3 16.5 5.09 0.0355 0.053 0.686 0.141 0.278 0.142

10 8 3 18.0 4.74 0.0301 0.055 0.715 0.159 0.255 0.160

10 8 3 20.0 4.32 0.0240 0.060 0.748 0.185 0.229 0.186

10 8 3 22.5 3.98 0.0184 0.065 0.776 0.212 0.207 0.213

10 8 6 12.0 7.90 0.0313 0.055 0.581 0.076 0.381 0.077

10 8 6 15.0 6.69 0.0129 0.073 0.675 0.106 0.308 0.107

10 8 6 16.5 6.25 0.0044 0.105 0.722 0.123 0.269 0.124

3 × 10 8 3 15.0 7.21 0.0480 0.033 0.608 0.086 0.339 0.087

3 × 10 8 3 16.5 6.54 0.0418 0.035 0.650 0.102 0.305 0.103

3 × 10 8 3 18.0 5.95 0.0365 0.036 0.686 0.119 0.276 0.120

3 × 10 8 3 20.0 5.34 0.0309 0.038 0.712 0.139 0.256 0.140

3 × 10 8 3 22.5 4.84 0.0246 0.041 0.748 0.163 0.226 0.164

3 × 10 8 6 15.0 7.93 0.0270 0.040 0.613 0.080 0.354 0.081

3 × 10 8 6 16.5 7.38 0.0202 0.044 0.653 0.092 0.322 0.093

3 × 10 8 6 18.0 6.86 0.0141 0.050 0.693 0.106 0.289 0.107

3 × 10 8 6 20.0 6.39 0.0073 0.062 0.723 0.012 0.266 0.121

10 9 3 18.0 7.99 0.0444 0.023 0.659 0.084 0.293 0.085

10 9 3 20.0 6.98 0.0376 0.024 0.688 0.101 0.272 0.102

10 9 3 22.5 6.13 0.0307 0.026 0.707 0.119 0.260 0.120

10 9 6 15.0 10.00 0.0385 0.024 0.578 0.059 0.376 0.060

10 9 6 16.5 9.36 0.0320 0.025 0.630 0.069 0.331 0.070

10 9 6 18.0 8.36 0.0266 0.027 0.641 0.079 0.327 0.080

10 9 6 20.0 7.72 0.0203 0.030 0.676 0.091 0.298 0.092

10 9 6 22.5 7.03 0.0138 0.034 0.717 0.107 0.265 0.108

10 9 9 15.0 10.98 0.0238 0.028 0.599 0.056 0.368 0.057

10 9 9 16.5 10.02 0.0163 0.032 0.631 0.065 0.345 0.066

10 9 9 18.0 9.27 0.0104 0.037 0.660 0.074 0.322 0.075

10 9 9 20.0 8.72 0.0040 0.050 0.707 0.085 0.282 0.086

10 9 12 15.0 11.68 0.0081 0.040 0.612 0.054 0.370 0.055

3 × 10 9 6 20.0 9.30 0.0296 0.018 0.661 0.073 0.304 0.074

3 × 10 9 6 22.5 8.44 0.0232 0.020 0.702 0.086 0.270 0.087

3 × 10 9 9 15.0 13.64 0.0360 0.017 0.563 0.042 0.392 0.043

3 × 10 9 9 16.5 12.94 0.0324 0.018 0.696 0.055 0.263 0.056
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where 𝐴𝐴 𝜂𝜂 is the log-average of the viscosities at the upper and lower boundary of the rheological sublayer:

𝜂𝜂 = exp

[

𝜃𝜃

(

1 −
Δ𝑇𝑇 𝑣𝑣

𝐿𝐿
+ 1 − Δ𝑇𝑇 HF

𝑏𝑏

2

)]

. (40)

Here, 𝐴𝐴 Δ𝑇𝑇 𝑣𝑣

𝐿𝐿
 is the temperature change across the immobile lid as defined by the velocity profile, and we approxi-

mate the temperature at the bottom of the rheological sublayer as the temperature at the top of the bottom  TBL.

A final constraint on the rheological sublayer is that the temperature difference across it, 𝐴𝐴 Δ𝑇𝑇 CR

𝑟𝑟𝑟
 , drives convection 

and cannot produce a viscosity contrast of more than one order of magnitude, or else some upper portion of the 
sublayer will be too stiff and incorporate into the immobile lid (Solomatov, 1995; Solomatov & Moresi, 2000). 
This yields the following relationship between 𝐴𝐴 Δ𝑇𝑇 CR

𝑟𝑟𝑟
 and θ:

Δ𝑇𝑇 CR

𝑟𝑟𝑟
= 𝑎𝑎𝑎𝑎−1, (41)

where a is an undetermined constant. This scaling of the rheological sublayer was derived by Solomatov (1995) 
and Solomatov and Moresi  (2000) for purely basally heated convection and purely internally heated convec-
tion, respectively, and its applicability to mixed heated convection is reasonable. We find that a = 4.34 fits our 

numerical measurements of 𝐴𝐴 Δ𝑇𝑇 CR

𝑟𝑟𝑟
 best, so we assume this value hereafter. 

This value of a is somewhat different from that determined by Solomatov 
and Moresi (2000), but this is to be expected because we do not measure the 
rheological sublayer in the same manner.

A further constraint utilized by Solomatov and Moresi  (2000) is that the 
immobile lid is characterized by a conductive temperature profile:

Δ𝑇𝑇 HF

𝐿𝐿

𝐷𝐷HF

𝐿𝐿

=
Δ𝑇𝑇 HF

𝑏𝑏

𝛿𝛿 HF

𝑏𝑏

+𝐻𝐻∗
−

1

2
𝐻𝐻∗𝐷𝐷HF

𝐿𝐿
. (42)

We have thus far defined the immobile lid using the velocity profile, and this 
definition may not coincide with where the temperature gradient is conduc-
tive. Thus, we have introduced in Equation 42 a second definition of the lid 
that is relevant for the conductive temperature gradient (denoted by the super-
script “HF”). There is no reason to assume that these two definitions will be 
related by the same constants a and b relating the two TBL definitions, as the 
immobile lid is measured in a different manner. Thus, we introduce

Δ𝑇𝑇 HF

𝐿𝐿
= 𝑑𝑑Δ𝑇𝑇 𝑣𝑣

𝐿𝐿
, (43a)

𝛿𝛿 HF

𝐿𝐿
= 𝑒𝑒𝛿𝛿𝑣𝑣

𝐿𝐿
, (43b)

where d and e are undetermined constants.

Table 4 
Continued

Ra H* θ Nut 𝐴𝐴 Δ𝑇𝑇 CR

𝑏𝑏
 𝐴𝐴 𝐴𝐴CR

𝑏𝑏
 𝐴𝐴 Δ𝑇𝑇 𝑣𝑣

𝐿𝐿
 𝐴𝐴 𝐴𝐴𝑣𝑣

𝐿𝐿
 𝐴𝐴 Δ𝑇𝑇 CR

𝑟𝑟𝑟
 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶

𝑟𝑟𝑟
 

3 × 10 9 9 18.0 11.37 0.0256 0.019 0.654 0.059 0.313 0.060

3 × 10 9 9 20.0 10.32 0.0183 0.021 0.708 0.071 0.266 0.072

3 × 10 9 9 22.5 9.32 0.0116 0.025 0.732 0.082 0.249 0.083

3 × 10 9 12 15.0 14.56 0.0276 0.019 0.599 0.042 0.363 0.043

3 × 10 9 12 16.5 13.60 0.0214 0.020 0.715 0.054 0.253 0.055

3 × 10 9 12 18.0 11.89 0.0137 0.023 0.668 0.058 0.309 0.059

3 × 10 9 12 20.0 11.22 0.0060 0.031 0.744 0.069 0.241 0.070

3 × 10 9 15 15.0 15.03 0.0170 0.022 0.616 0.042 0.355 0.043

3 × 10 9 15 16.5 14.24 0.0105 0.026 0.704 0.051 0.273 0.052

Figure 9. Velocity profile for an example of temperature-dependent 
viscosity convection (red curve), and the corresponding time-averaged 
and horizontally-averaged temperature profile (gray curve). The top of the 
rheological sublayer (dotted red line) is defined where the non-dimensional 
root-mean-square (RMS) velocity surpasses 10. The bottom of the rheological 
sublayer (dotted blue line) is defined by the location where the local Ra of 
the rheological sublayer becomes Racr = 500. The example shown is achieved 
with the following nondimensional parameters: Ra = 10 8, H* = 3, and θ = 12. 
The velocity axis is normalized by the maximum RMS velocity; in this case, 
vmax ∼ 1,301.
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As a final constraint, we may reason that, because the convective interior is relatively isothermal, the temperature 
changes across the immobile lid, rheological sublayer, and the bottom TBL must sum to 1, the total temperature 
contrast across the system:

Δ𝑇𝑇 𝑣𝑣

𝐿𝐿
+ Δ𝑇𝑇 CR

𝑏𝑏
+ Δ𝑇𝑇 CR

𝑟𝑟𝑟
= 1. (44)

Note that we do not include the temperature overshoot σ in this constraint. This is because most of the tempera-
ture change occurs in the immobile lid, and the temperature change across the sublayer and the bottom TBL are 
sufficiently small such that boundary layer interactions are negligible.

Scaling laws can finally be obtained by combining Equations 34–44. We first derive an equation for 𝐴𝐴 𝐴𝐴𝑣𝑣

𝐿𝐿
 and 𝐴𝐴 Δ𝑇𝑇 HF

𝑏𝑏
 

in terms of the nondimensional input parameters. The equation is quadratic in 𝐴𝐴 𝐴𝐴𝑣𝑣

𝐿𝐿
 , and thus has two possible solu-

tions. Upon inspection of measurements of 𝐴𝐴 𝐴𝐴𝑣𝑣

𝐿𝐿
 and 𝐴𝐴 Δ𝑇𝑇 CR

𝑏𝑏

(

= 𝑏𝑏Δ𝑇𝑇 HF

𝑏𝑏

)

 , we determine which of the two solutions 
is appropriate:

��
� = 1

�2
+ �

�2�∗

(

Δ� HF
�

)4∕3
(

� ��
����

)1∕3

− �
�2�∗

[

(

−�∗

�
− �

�
(

Δ� HF
�

)4∕3(���∕����)1∕3
)2

− 2 �
2

�
�
(

1 − �Δ� HF
� − ��−1

)

]1∕2

.
 (45)

Equations 34–44 yield a second equation relating 𝐴𝐴 Δ𝑇𝑇 HF

𝑏𝑏
 and 𝐴𝐴 𝐴𝐴𝑣𝑣

𝐿𝐿
 :

𝑐𝑐

(

𝑎𝑎𝑎𝑎−1

𝑏𝑏

)4∕3(

𝑏𝑏
𝑅𝑅𝑎𝑎

𝑅𝑅𝑎𝑎𝑐𝑐𝑐𝑐

)1∕3

×

exp

[

−
𝑎𝑎

3

(

1 − 0.5

(

1 + Δ𝑇𝑇 HF

𝑏𝑏
+

𝐻𝐻∗

𝑑𝑑
𝐷𝐷𝑣𝑣

𝐿𝐿
−

𝑒𝑒2𝐻𝐻∗

2𝑑𝑑

(

𝐷𝐷𝑣𝑣

𝐿𝐿

)2

+
𝑐𝑐

𝑑𝑑
𝐷𝐷𝑣𝑣

𝐿𝐿

(

Δ𝑇𝑇 HF

𝑏𝑏

)4∕3

(

𝑏𝑏
𝑅𝑅𝑎𝑎

𝑅𝑅𝑎𝑎𝑐𝑐𝑐𝑐

)1∕3
))]

= 𝐻𝐻∗
(

1 −𝐷𝐷𝑣𝑣

𝐿𝐿

)

+ 𝑐𝑐
(

Δ𝑇𝑇 HF

𝑏𝑏

)4∕3

(

𝑏𝑏
𝑅𝑅𝑎𝑎

𝑅𝑅𝑎𝑎𝑐𝑐𝑐𝑐

)1∕3

.

 (46)

Thus, the two equations can be numerically solved for the two unknowns, 𝐴𝐴 Δ𝑇𝑇 HF

𝑏𝑏
 and 𝐴𝐴 𝐴𝐴𝑣𝑣

𝐿𝐿
 . Because we have already 

determined that Racr = 500, a = 4.34, b = 0.95, and c = 2.5, we only need to fit d and e to the numerical meas-
urements. We evaluate the fitness of a given combination of d and e to predict Nut, 𝐴𝐴 Δ𝑇𝑇 CR

𝑏𝑏
 , and 𝐴𝐴 𝐴𝐴𝑣𝑣

𝐿𝐿
 using the misfit 

measure introduced in Section 3.2. We find that d = 0.9 and e = 0.97.

The scaling is successful in predicting the measured values of Nut, 𝐴𝐴 Δ𝑇𝑇 CR

𝑏𝑏
 , and 𝐴𝐴 𝐴𝐴𝑣𝑣

𝐿𝐿
 (Figure 10). We have included 

several moderate–Ra cases (Ra < 10 8), which are characterized by relatively large variations in lid thickness. A few 
of these cases agree slightly more poorly with the scaling predictions than the high–Ra cases. This is to be expected, 
as our scaling is based on the assumption of well-defined boundary layers which are ubiquitous only at high Ra.

3.5. Extension to Spherical Geometry

To further demonstrate the merit of the boundary layer stability approach, we extend our scaling analysis to 
spherical geometry in both the isoviscous case and the depth-dependent viscosity case, for which published 
numerical experiments are available (Deschamps et al., 2010; O'Farrell et al., 2013; Weller et al., 2016). We first 
consider the isoviscous case.

It has previously been demonstrated for the end-member heating cases that spherical geometry can be accounted 
for by incorporating a geometrical factor in the scaling laws for 2-D Cartesian geometry (e.g., Vilella & 
Kaminski, 2017). This is also true for convection in the mixed heating mode. A spherical shell domain can be 
characterized by f, the ratio of the inner radius to the outer radius. The greater surface area of the upper boundary 
with respect to the lower boundary means that, in order for energy to be conserved, the upper boundary must 
experience a lower heat flow per unit area than the lower boundary (at least in the case of no internal heating). In 
general, we must modify the heat conservation equation (Equation 16) as follows:

𝑁𝑁𝑁𝑁𝑡𝑡 = 𝐻𝐻∗
1 − 𝑓𝑓 3

3(1 − 𝑓𝑓 )
+𝑁𝑁𝑁𝑁𝑏𝑏𝑓𝑓

2. (47)

As a result, the final scaling becomes
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(

Δ𝑇𝑇 HF

𝑡𝑡

)4∕3

= 𝑓𝑓 2

(

1 + 𝜎𝜎

𝑏𝑏
− Δ𝑇𝑇 HF

𝑡𝑡

)4∕3

+
𝐻𝐻∗

𝑐𝑐

1 − 𝑓𝑓 3

3(1 − 𝑓𝑓 )

(

𝑏𝑏
𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐

)1∕3

, (48)

where we may still use Equations 17–19 to solve for Nut after obtaining 𝐴𝐴 Δ𝑇𝑇 HF

𝑡𝑡
 . We use this scaling to predict Nut 

in the numerical experiments of Deschamps et al. (2010) and Weller et al. (2016) for isoviscous convection in 
spherical geometry. While Deschamps et al. (2010) normalize lengths using the thickness of the spherical shell, 
which is consistent with how our scaling is defined, Weller et al. (2016) normalize lengths using the total radius 
of the outer boundary. Thus, before using our scaling to predict Nut, we first modify the values of Ra and H* 
reported by Weller et al. (2016) to account for this. Figure 11a compares our scaling predictions with the meas-
urements of Deschamps et al. (2010) and Weller et al. (2016); the scaling is remarkably effective, considering that 
we have assumed the same Racr, b, c, and σ parameterizations derived for the 2-D Cartesian case.

We now turn to the case of a fluid with depth-dependent viscosity in a spherical shell domain, for which O'Farrell 
et al. (2013) have performed numerical experiments. The viscosity structure used in their simulations consists of 
continuously increasing viscosity in the lower portion of the spherical shell, with a maximum nondimensional 
viscosity of 30 at the base. In order to make use of the scaling we have derived for layered viscosity in Section 3.3, 
we will assume that the entire bottom TBL may be characterized by a viscosity of 30, which is reasonable in the 

Figure 10. Comparison of numerical simulations with the scaling for mixed heated convection with temperature-dependent viscosity (Equations 45 and 46). (a) Surface 
heat flux, (b) immobile lid thickness, (c) bottom thermal boundary layer temperature drop.

Figure 11. Comparison of previously published numerical simulations with the scaling for mixed heated convection in 
spherical geometry with (a) isoviscous rheology (Equation 48) and (b) depth-dependent rheology (Equation 49).
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limit of large Ra, for which TBLs are thin. We again make use of Equation 47 to account for spherical geometry, 
to arrive at:

(

Δ𝑇𝑇 HF

𝑡𝑡

)4∕3

= 𝑓𝑓 2

(

1 + 𝜎𝜎

𝑏𝑏
− Δ𝑇𝑇 HF

𝑡𝑡

)4∕3

𝜂𝜂
−1∕3

max +
𝐻𝐻∗

𝑐𝑐

1 − 𝑓𝑓 3

3(1 − 𝑓𝑓 )

(

𝑏𝑏
𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐

)1∕3

, (49)

where ηmax = 30. Here, too, we use the same numerical constants determined for the 2D planar case, and the 
resulting predictions are successful (Figure 11b).

4. Discussion
4.1. Implications for Global Geodynamics and Thermal Evolution Modeling

Previous studies of convection in the mixed heating mode (Moore, 2008; Sotin & Labrosse, 1999; Vilella & 
Deschamps, 2018) suggested that interactions between the top and bottom boundary layer may invalidate the 
boundary layer stability criterion and thus its use for deriving scaling laws. We have shown that, as long as TBL 
interactions are appropriately accounted for (in our case, by describing the so-called temperature overshoot σ of 
the TBLs), boundary layer stability analysis successfully describes mixed heated convection. This has allowed us 
to develop scaling laws based on the underlying physics, which lends confidence to the extension of such scaling 
laws to broader parameter spaces and to real-Earth complexities.

The question of whether heat flux and TBL properties are globally or locally determined has long remained nebulous 
(e.g., Stevenson et al., 1983). Thus, a key finding of our scaling analysis is that the surface heat flux is expected to 
depend only on the structure of the top TBL, and the basal heat flux only on the structure of the bottom TBL, not on 
the entire system. This agrees with what Howard (1966) originally proposed, but how depth dependence of material 
properties affects the behavior and observable features of mantle convection is a question that has been around for a 
long time. For example, how depth dependence of viscosity influences the planform of convection has been unclear 
(Bunge et al., 1996; Tackley, 1996). While planform is somewhat of a secondary convective property, we have shown 
that how heat is transported at the surface depends only on the local structure of the TBL. Additionally, in order to 
reproduce Earth's measured heat flux with a simple scaling argument, very high viscosity is needed (e.g., 10 22 Pa s), 
and it has often been thought that this may represent the lower mantle viscosity (e.g., Bercovici et al., 2000; Bercovici 
et al., 2015). Under this scenario, the surface heat flux is dependent on the global distribution of material properties. 
This may appear reasonable, as the manner in which subducted material descends is likely regulated by lower mantle 
viscosity. Our scaling for depth-dependent viscosity suggests, however, that this high viscosity represents an effective 
lithospheric viscosity, as the surface heat flux is governed by properties of the upper TBL (i.e., the lithosphere).

The fact that the boundary layer stability criterion is valid for mixed heating, and thus the surface heat flux is 
simply governed by the top TBL, means that thermal evolution modeling may proceed much as it has long been 
conducted. For example, modeling Earth's thermal evolution backwards in time using our scaling laws would 
proceed as follows. First, one would use the dimensional version of Equation 48 to solve for H, using estimates 
of the present-day thermal structure of the lithosphere as well as the Earth's Ra. Because secular cooling can be 
considered a contribution to internal heat generation for steady state solutions (e.g., Korenaga, 2017), it may be 
solved for from H by assuming the amount of radiogenic heat produced in the mantle. At each subsequent time-
step, one would solve for the surface and core heat fluxes using equations similar to Equation 50 (below) using 
the updated mantle temperature. Secular cooling is then simply found by balancing the surface heat flux with 
the core heat flux, radiogenic heat production, and secular cooling. Apart from numerically solving for H at the 
initial timestep using some form of Equation 49, this approach is identical to how thermal evolution is tradition-
ally modeled. Further, the temperature overshoot σ only need be considered at the initial timestep in Equation 48. 
Since our scaling of σ only depends on Ra, its incorporation is straightforward. It may seem like the use of σ and 
Equation 48 may not be so important, since the thermal evolution modeling proceeds as usual after the first time 
step; however, our scaling analysis shows that these components ensure modeling is conducted in a physically 
consistent manner. It is reassuring that traditional thermal evolution modeling is largely well-founded, as previous 
scaling analyses questioned the boundary layer stability criterion, the foundational assumption of such modeling.

4.2. Application to Lithospheric Strength

When applying our scaling theory to Earth, it is not immediately obvious that marginal stability applies to the 
entirety of the lithosphere. The so-called small-scale convection affects only the base of the lithosphere (Davaille 
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& Jaupart, 1994; Korenaga & Jordan, 2003), and this process resembles the 
stagnant lid mode of convection, where marginal stability only applies to 
a thin sublayer of the lithosphere. However, some weakening mechanism 
evidently allows for subduction of the lithosphere (Bercovici et  al.,  2015; 
Korenaga, 2020), and it is the marginal stability of the entire lithosphere that 
allows for this subduction and for the continuous operation of plate tectonics. 
Additionally, the lithosphere does not deform purely viscously; to incorporate 
the effect of plastic deformation into scaling laws for a viscous fluid, viscos-
ity can be treated as an effective parameter (e.g., Moresi & Solomatov, 1998).

With this in mind, our scaling analysis implies that the surface heat flux of 
Earth's mantle is simply governed by the marginal stability of lithosphere. 
Since we can reasonably estimate the heat flux coming out of the mantle, we 
may in theory infer lithospheric properties. In what follows, we attempt to 
estimate the effective viscosity of Earth's lithosphere.

By applying the dimensional versions of Equations  17a and  29 to Earth's 
mantle, we arrive at:

𝑄𝑄𝑀𝑀

(𝑘𝑘Δ𝑇𝑇 ∕𝐷𝐷)
= 4𝜋𝜋𝜋𝜋2

𝐸𝐸
𝑐𝑐

(

Δ𝑇𝑇𝑙𝑙

Δ𝑇𝑇

)4∕3
(

𝑏𝑏
𝜋𝜋𝑅𝑅

𝜋𝜋𝑅𝑅𝑐𝑐𝑐𝑐

)1∕3

Δ𝜂𝜂
−1∕3

𝑙𝑙
, (50)

where RE is the radius of Earth, ΔTl is the temperature contrast across the 
lithosphere, Ra is defined as in Equation 4, and Δηl = ηl/η0 is the viscosity 
contrast between the lithosphere and the convecting mantle. Actual viscosity 
varies greatly in the lithosphere, given its temperature dependence. Thus, the 
lithospheric viscosity ηl is an effective viscosity that represents lithospheric 
stiffness with a single value.

Because we have reasonable estimates of QM and ΔTl (Table 5), we can solve 
for Δηl in Equation  50 by assuming some reference mantle viscosity η0 to 
compute the Rayleigh number of the mantle. We test a range of values for η0, as 
this parameter involves a high degree of uncertainty (e.g., Forte et al., 2015).

The scaling analysis of Korenaga  (2010) suggests the following relationship between lithospheric viscosity 
contrast, lithospheric friction coefficient, and the Frank-Kamenetskii parameter:

Δ𝜂𝜂𝑙𝑙(𝛾𝛾𝛾 𝛾𝛾) = exp[𝐴𝐴(𝛾𝛾)𝛾𝛾]𝛾 (51)

where A(γ) = 0.327γ 0.647, γ = μ/(αΔT), and μ is the effective friction coefficient. If we assume some activation 
energy E for the mantle, we may use Equation 7 to compute θ for the mantle, and in turn solve for μ. We test a 
range of E, which is also not well constrained (Jain & Korenaga, 2020). Thus, we estimate μ as a function of both 
η0 and E. The parameters assumed in this calculation are listed in Table 5. In all cases, μ is small (less than 0.1; 
Figure 12a), which is unsurprising given that the lithosphere must be weak enough to subduct. Both low η0 and 
low E contribute to a large μ.

We may also include the effect of dehydration stiffening that occurs as a result of mantle melting. This is formu-
lated as (Korenaga, 2010):

Δ𝜂𝜂𝑙𝑙 = Δ𝜂𝜂𝑙𝑙𝑙ref exp

[

ln(Δ𝜂𝜂𝐷𝐷)min

(

1𝑙
ℎ∗

𝜒𝜒ℎ∗

ref

)]

𝑙 (52)

where Δηl,ref is the lithospheric viscosity contrast without considering dehydration stiffening (referred to as 
Δηl above), ΔηD is the viscosity contrast due to dehydration, χ  =  6, and 𝐴𝐴 𝐴∗

∕𝐴∗

ref
 is the normalized thickness 

of the  dehydrated layer. While ΔηD and 𝐴𝐴 𝐴∗
∕𝐴∗

ref
 are relatively uncertain, we can investigate an extreme case to 

estimate the maximum effect on μ. We choose ΔηD = 10 3 and 𝐴𝐴 𝐴∗
∕𝐴∗

ref
= 10 for this extreme case, and find that μ 

decreases slightly and is less than 0.08 (Figure 12b).

Table 5 
Parameters Used in the Application of Scaling Assumptions to Earth's 
Lithosphere

Parameter Unit Value

α K −1 2 × 10 −5

ρ0 kg m −3 4,500

g m s −2 9.8

ΔT a K 1,850

D m 2.9 × 10 6

κ m 2 s −1 10 –6

η0 Pa s 10 18 to 10 20

E b kJ mol −1 200 to 400

R J mol −1 K −1 8.3145

TS K 273

𝐴𝐴 𝐴𝐴𝑀𝑀 c TW 36

k W m −1 K −1 3

RE m 6.37 × 10 6

𝐴𝐴 Δ𝑇𝑇𝑙𝑙 d K 1,350

b 0.95

c 2.5

Racr 500

 aThe sum of ΔTl and the temperature jump across the lower mantle 
boundary layer, roughly 500 K (Deschamps & Trampert, 2004).  bHirth and 
Kohlstedt  (2003) and Jain et  al.  (2019).  cJaupart et  al.  (2007).  dHerzberg 
et al. (2007).
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5. Conclusions
We have derived scaling laws for convection in the mixed heating mode starting from the physics of such convec-
tion. These scaling laws succeed remarkably in predicting major convection diagnostics of numerical simulations, 
even when extended to depth-dependent viscosity, temperature-dependent viscosity, and spherical geometry. At 
the heart of our scaling analysis is the boundary layer stability criterion, the applicability of which has been ques-
tioned for mixed heated convection. The success of this criterion has important and encouraging implications. 
First, the heat flux at the surface and basal boundaries are determined locally by the TBL structure and not glob-
ally. And second, the classical method of thermal evolution modeling is appropriate for determining the thermal 
history of terrestrial planets.

Appendix A: Parameterization of TBL Temperature Overshoot
In Section 3.2, we established that upwellings and downwellings may perturb the thermal structure of the opposite 
TBL, leading to an overshoot σ equal to 𝐴𝐴 Δ𝑇𝑇 CR

𝑡𝑡
+ Δ𝑇𝑇 CR

𝑏𝑏
− 1 . Consider a downwelling parcel of fluid; its effect on 

the thermal structure of the opposite TBL depends on its temperature when it reaches the bottom TBL. The cold 
upper TBL has an average temperature of roughly ΔTt/2, where ΔTt is approximately the interior temperature, and 

Figure 12. Application of our scaling assumptions to solve for the friction coefficient of Earth's lithosphere as a function of activation energy and mantle reference 
viscosity. In (a), the effect of dehydration stiffening is not considered, and in (b) this effect is considered. The values of μ shown in (b) are taken as minimum possible 
values, as we consider the extreme case of ΔηD = 10 3 and 𝐴𝐴 𝐴∗

∕𝐴∗

ref
= 10 for use in Equation 52. Solid white contour lines demarcate intervals of 0.02.

Figure A1. Measured root-mean-square velocity as a function of Ra in the numerical simulations. Circles are colored by 
internal heating ratio, defined as H*/Nut. In addition to the runs listed in Table 1, we have included a number of purely 
internally heated runs, in which case the input Rayleigh number must be rescaled using the a posteriori maximum temperature 
Tmax of the system (i.e., we plot RaTmax on the x-axis).
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we may assume that the downwelling is also characterized by this temperature when it initially detaches and starts 
to descend (call this initial temperature Ti). As it descends, its temperature increases by thermal diffusion: δT/
δt ∝ ΔT/Δx 2 + ΔT/Δy 2. Here, δT is the temperature change of the parcel as it descends (such that the final parcel 
temperature Tf when it reaches the bottom TBL is Ti + δT), δt is the time it takes to descend, ΔT is the difference 
in temperature between the parcel and the ambient convecting interior, and Δx and Δy are the size of the parcel 
in the x and y dimensions, respectively. The term ΔT/Δy 2 can be neglected because the parcel is a thin, long, and 
vertically-oriented structure (see e.g., Figure 2b), such that Δy is large. The downwelling time, δt, will depend 
on vertical velocity w and the distance traveled by the parcel before reaching the bottom TBL. Because the TBLs 
are thin (in the limit of high Ra) this distance is approximately 1, the total height of the system. Thus, δt ∼ 1/w. 
We can approximate Δx, the thickness of the downwelling parcel, by considering that the downwelling originates 
from the top TBL. The size of the downwelling will be proportional to the thickness of the top TBL: Δx ∝ δt. 
Next, recalling that the initial parcel temperature is roughly ΔTt/2, the difference between the parcel temperature 
and the interior temperature (approximately ΔTt) will be proportional to ΔTt itself. We can reformulate ΔTt as 
Nutδt using Equation 17a, so that we finally arrive at δT ∝ Nut/(δtw). Thus, the parcel temperature when it arrives 
at the bottom TBL is Tf = Ti + δT ∝ ΔTt/2 + Nut/(δtw). The temperature anomaly caused by the downwelling is 
given by the difference between Tf and the temperature of the bottom TBL near its inner boundary. At the upper 
boundary of the bottom TBL, the unperturbed temperature will be roughly equal to the internal temperature 
(approximated by ΔTt). Thus, the temperature anomaly from the downwelling is proportional to −ΔTt/2 − Nut/
(δtw). This quantity is negative because we assume that the vertical velocity is large enough so that the parcel 
is still colder than its surroundings when it reaches the bottom TBL. If we further assume that ΔTt is roughly 
1/2 (this is true for cases with low IHR), then we can simplify this quantity to C − Nut/(δtw), where C is some 
constant. To determine the overshoot in the horizontally averaged temperature profile, we need to multiply this 
quantity by δt. This is because we need to integrate over the size of the parcel to determine the perturbation of the 
averaged profile. We can justify this factor of δt as follows.

Consider the thermal structure at a single timestep (such as in Figure 2b) and at a single height y = y* near the 
inner boundary of the bottom TBL where the temperature overshoot is prominent. The horizontally averaged 
temperature at y = y* is given by

𝑇𝑇 (𝑦𝑦 = 𝑦𝑦∗) =
1

𝐿𝐿 ∫
𝐿𝐿

0

𝑇𝑇 (𝑥𝑥𝑥 𝑦𝑦 = 𝑦𝑦∗)𝑑𝑑𝑥𝑥𝑥 (A1)

where L is the nondimensional horizontal length of the domain (in the case of our numerical simulations, L = 4). 
If we assume that some length X of T(x, y = y*) is characterized by the anomalous temperature Tf due to an arriv-
ing downwelling, and the rest of the material at y = y* is characterized by the ambient temperature (approximate 
this as ΔTt since y* is the near the convecting interior), then we have

𝑇𝑇 (𝑦𝑦 = 𝑦𝑦∗) =
1

𝐿𝐿

[

∫
𝑋𝑋

0

𝑇𝑇𝑓𝑓𝑑𝑑𝑑𝑑 + ∫
𝐿𝐿

𝑋𝑋

Δ𝑇𝑇𝑡𝑡𝑑𝑑𝑑𝑑

]

=
1

𝐿𝐿
(𝑇𝑇𝑓𝑓𝑋𝑋 + Δ𝑇𝑇𝑡𝑡(𝐿𝐿 −𝑋𝑋)). (A2)

It is reasonable to assume that the length X characterized by the anomalous temperature should be proportional 
to the size of the downwelling, which can be approximated by δt. Thus,

𝑇𝑇 (𝑦𝑦 = 𝑦𝑦∗) = Δ𝑇𝑇𝑡𝑡 +
1

𝐿𝐿
𝛿𝛿𝑡𝑡(𝑇𝑇𝑓𝑓 − Δ𝑇𝑇𝑡𝑡). (A3)

Because the ambient temperature at y = y* is ΔTt, the deviation from this temperature, 𝐴𝐴
1

𝐿𝐿
𝛿𝛿𝑡𝑡(𝑇𝑇𝑓𝑓 − Δ𝑇𝑇𝑡𝑡) , is the over-

shoot itself. It was determined above that Tf − ΔTt ∝ C − Nut/(δtw), So to obtain the overshoot in the horizontally 
averaged temperature profile, this quantity must be multiplied by a factor proportional to δt.

As a result, the overshoot due to the downwelling parcel is proportional to Cδt − Nut/w. To convert this quantity 
to a function of Ra and/or H*, we consider the limit of Rayleigh-Bénard convection, which has well-defined 
scalings for δt and Nut, which are proportional to Ra −1/3 and Ra 1/3, respectively. Lastly, we assume w ∝ Ra 0.55. It is 
well known that convective velocities depend strongly on Ra, and the exponent 0.55 is roughly midway between 
the exponents measured for purely internally heated runs and purely basally heated runs (Figure  A1). Thus, 
these considerations suggest that the overshoot caused by downwellings is proportional to C′Ra −1/3 − Ra −0.22. 
We can do a similar analysis for the effect of upwellings on the temperature structure of the top TBL, and 
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find an overshoot proportional to −C′Ra −1/3 + Ra −0.22. Collectively, the scaling for the overshoot is given by 
σ = c1Ra −1/3 + c2Ra −0.22, where c1 and c2 are unknown constants. Upon comparison with numerical experiments, 
we find that c1 = −10.39 and c2 = 4.01 are the best-fit constants (Figure 3), resulting in Equation 21.

Data Availability Statement
This work is theoretical in nature and can be reproduced from the methods described in the text. All numer-
ical data are presented in Tables 1, 3, and 4 and can be accessed directly at doi.org/10.17632/c95ysmspfm.1 
(Ferrick, 2023).
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