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The growth of spherical harmonic modes with increasing Rayleigh number Ra (a nondimensional measure 
of convective vigor) in numerical simulations of three-dimensional, Boussinesq, infinite Prandtl number, 
basally heated, spherical-shell convection is analyzed. Two regular polyhedral convective patterns with 
tetrahedral and cubic symmetry are examined. Apart from the dominant spherical harmonic modes which 
define the polyhedral patterns, the most important modes (in terms of modifying the convection as Ra 
increases) are ones whose wavenumbers (i.e., spherical harmonic degree and order) are exactly triple those 
of the dominant modes. Modes with wavenumbers that are five times those of the dominant modes also 
maintain large growth rates with increasing Ra. These results indicate the possibility that the spherical 
harmonic modes which are primarily responsible for modifying convection (e.g., narrowing the boundary 
layers) with increasing Rayleigh number, occur at wavenumbers that are odd integer multiples of those 
of the dominant modes. This suggests that an extended mean field method-wherein solutions in which 
only these modes are kept-may reasonably represent steady convection with regular polyhedral patterns 
up to relatively high Ra; such a method would entail a significant simplification in the analysis of nonlinear 
convection. 

KEY WORDS: Mantle convection, convective patterns, three-dimensional, spherical geometry, mean 
field methods. 

1. INTRODUCTION 

Three-dimensional thermal convection is not only important for understanding the 
dynamics of planetary interiors, it is also a paradigm of self-organizing structures 
and patterns in nonlinear systems. Basally heated convection, in both plane layers 
and spherical shells, is known for establishing horizontal patterns with regular 

* Present address: Department of Geology and Geophysics, School of Ocean and Earth Science and 
Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA. 
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polygonal (in plane layers) or polyhedral (spherical shells) symmetries (e.g., Busse, 
1975, 1978; Busse and Riahi, 1982; Machetel et al., 1986; Houseman, 1988; Bercovici 
et al., 1989a; Travis et al., 1990). For spherical shells, Busse (1975) predicted that 
the regular polyhedral patterns predicted by slightly supercritical perturbation theory 
would persist to Rayleigh numbers in the strongly nonlinear regime. This prediction 
was verified numerically (Machetel et al., 1986; Bercovici et al. 1989a) for several 
polyhedral patterns. However, while the basic polyhedral patterns persist, the structure 
of vertical and horizontal boundary layers changes significantly (i.e., the boundary 
layers narrow with increasing Rayleigh number). Thus, in addition to the spherical 
harmonic modes that define the polyhedral patterns, higher wavenumber modes 
become increasingly important as Rayleigh number increases. However, the manner 
in which these high wavenumber modes grow while preserving the structure of the 
polyhedral patterns is not clear. If the growth of high wavenumber modes is systematic, 
then it is possible that the way in which the convection planform changes with 
increasing convective vigor is predictable (at least for symmetric patterns). 

In this study, we examine the growth of spherical harmonic modes for numerical 
simulations of convection. The numerical modelling is of three-dimensional, infinite 
Prandtl number (i.e., highly viscous), Boussinesq convection in a basally heated 
spherical shell. The thickness of the shell is typical of the mantles of the Earth, Mars 
and Venus (i.e., the inner to outer radius ratio rbot/rtOp ~ 0 . 5 5 ;  Stevenson et al., 1983). 
The numerical solutions are steady, maintain regular polyhedral symmetry, and are 
for Rayleigh numbers up to RUE 100Ra,, (where Rucr is the critical Ra for the onset 
of convection). We find that modes whose wavenumbers (i.e., spherical harmonic 
degree and order) are odd integer multiples of those of the dominant modes (where 
the dominant modes determine the convective pattern) may be the most important 
modes for modifying convection as Rayleigh number increases. The predominance 
of these modes, therefore, indicates that modal growth is systematic. This suggests 
that an extended mean field method-wherein solutions are only expanded in terms 
of these modes-could possibly model three-dimensional convection to high Rayleigh 
numbers with far fewer complications than a rigorous numerical model. 

2. NUMERICAL METHOD AND SOLUTIONS 

The numerical method employs a spectral-transform, Chebyshev collocation scheme 
to solve the three-dimensional equations of mass, momentum and energy conservation 
for a Boussinesq, infinite Prandtl number Pr fluid with constant viscosity and thermal 
conductivity. The approach is discussed in further detail by Glatzmaier (1984, 1988) 
and Bercovici et al. (1989a). Solutions are generated up to R U E  lOORa,, for two 
regular polyhedral convective patterns: one pattern has cubic symmetry (the pattern 
actually forms an octahedron) and the other has tetrahedral symmetry. All solutions 
are found to be steady at  these Rayleigh numbers. The regular polyhedral solutions 
were predicted by perturbation theory (Busse, 1975; Busse and Riahi, 1982) and found 
numerically by Machetel et a!. (1986) and Bercovici et al. (1989a). The solutions 
discussed in this paper are examined in further detail in Bercovici (1989) and Bercovici 
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Figure 1 Three-dimensional isothermal surfaces for the tetrahedral and cubic patterns at two different 
Rayleigh numbers each. Protrusions represent columnar updwellings; surrounding depressions represent 
downwellings. The isotherms are with respect to nondimensional temperature 0 with O<O< 1 .  

et al. (1989a, 1991); these papers should be referred to for discussion of numerical 
resolution, convergence, etc. 

The three-dimensional isothermal surfaces shown in Figure 1 illustrate the 
planforms of these solutions as well as the influence on boundary layer structure 
(both horizontal and vertical) of increasing Rayleigh number. As Raleigh number 
increases, the vertical boundary layers become narrower, indicating the growth of 
large wavenumber modes; however, the regular polyhedral patterns persist. 

3.  GROWTH OF SPHERICAL HARMONIC MODES 

The spectral energy of spherical harmonic modes is measured in terms of the 
temperature variance for each spherical harmonic degree I and order m. If 
dimensionless temperature 0 (where the imposed temperature drop across the shell 
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is the temperature scale) is expressed in a spherical harmonic series 

(where r is radius, 8 is colatitude, $ is longitude, 0;l are complex coefficients, and xm are appropriately normalized spherical harmonic functions), then the temperature 
variance is 

It is also possible to measure spectral energy in terms of kinetic energy instead of 
temperature variance. The normalized kinetic energies and temperature variances are 
not necessarily equal for a given 1 and m; the small wavelength modes have generally 
smaller relative kinetic energies since the momentum field has broader and smoother 
features than the thermal field when Pr is very large. However, when the solutions 
are steady, the largest kinetic energies coincide with the largest temperature variances 
in I ,  m space; i.e., the kinetic energy has the same dominant modes as the temperature 
variance. This is not necessarily true when the solutions are unsteady, since a large 
thermal anomaly may appear that has not yet gathered enough buoyancy to affect 
the momentum field. 

For the tetrahedral pattern, the dominant mode [i.e., the largest (02);1 apart from 
(02)3 occurs at 1 = 3, m = 2. The cubic pattern has two dominant modes, at 1=4, 
m=O and t=4, m = 4 .  The ratio of the two modes (02)~/ (@2)~-as  predicted by 
perturbation theory (Busse, 1975F i s  always equal to 5/7 for all the Rayleigh numbers 
studied (Bercovici et al., 1989a). 

Figure 2a and Table 1 show temperature variance versus Rayleigh number for the 
second through ninth largest spherical harmonic modes of the tetrahedral pattern; 
the variances are normalized by the variance of the largest (tetrahedral) mode that 
occurs at  I =  3, m = 2. The variances of all modes increase monotonically with Rayleigh 
number. The 1=4, m=O and 1=4, m = 4  modes are always approximately 10% of 
the tetrahedral modes and represent the small, indiscernible signature of a pattern 
with cubic symmetry; the ratio between the variances of these two modes is always 
close to 5/7, typical of the cubic pattern. The combination of the tetrahedral and 
cubic signatures characterizes a mixed mode solution which was predicted by Busse 
and Riahi (1988) and found numerically by Bercovici et al. (1989a). 

The mode that undergoes the most dramatic growth with Ra is at 1 = 9, m = 6. This 
small wavelength mode reflects the narrowing of the upwelling and downwelling 
currents with increasing Rayleigh number. The variance for this mode approximates 
a power law dependence on Rayleigh number similar to the Nusselt number-Rayleigh 
number relationship (where the Nusselt number N u  is the ratio of total heat flow to 
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THREE-D SPHERICAL CONVECTION 153 

0 2 4 6 a 

0 2 4 6 

~ ~ 1 1 0 ~  

Figure 2 The largest nondominant temperature variances versus Rayleigh number for the a )  tetrahedral 
and b) cubic patterns. The variances are normalized by the maximum variances (i.e., (0): and (0): in 
the tetrahedral and cubic cases, respectively) which are not shown on either figure; in addition, the 
1=4, rn = 4 variance is not shown for the cubic solutions since it has aconstant normalized value of 5/7. 
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Table I The largest nondominant temperature variances (0’);l for 
different Rayleigh numbers Ra for the tetrahedral and cubic patterns. 
Values correspond to those plotted in Figure 2; see caption to Figure 2 
for discussion 

Tetrahedral 

1 m Ra = 8000 16000 40000 8OooO 

4 0 
4 4 
6 4 
7 2 
7 6 
9 6 

10 4 
10 8 

12.360 
8.709 
2.547 
2.233 
1.867 
4.092 
1.387 
1.924 

12.560 
8.978 
3.238 
3.522 
2.981 
8.041 
2.539 
3.599 

13.880 
9.925 
4.016 
4.819 
4.093 

1 1.560 
3.678 
5.219 

14.630 
10.460 
4.988 
5.025 
4.269 

1 1.900 
4.040 
5.728 

I m 

Cubic 

Ra = 7000 14000 

6 4 
8 0 
8 8 

10 4 
10 8 
12 0 
12 4 
12 12 
20 0 
20 20 

~ ~ 

4.746 5.053 
4.553 6.416 
2.990 4.212 
1.397 3.009 
1.979 4.263 
4.670 10.050 
1.261 2.720 
3.032 6.528 
0.091 0.586 
0.074 0.444 

3 5000 70000 

5.579 5.474 
7.615 7.328 
5.000 4.81 1 
4.755 4.893 
6.736 6.932 
16.400 18.550 
4.597 5.581 
10.740 12.290 
2.597 4.743 
I .957 3.779 

purely conductive heat flow) 

(02)~/(02)~ - RaJ. 

For the higher Rayleigh numbers,fis 0.25, similar to the value of 0.26 for the power 
law exponent in the N u  - Ra relationship (Bercovici et al., 1989a). This implies that 
the growth of the 1=9, m=6 mode with Rayleigh number is primarily responsible 
for the narrowing of the vertical boundary layers and the enhancement of heat 
transport. 

The 1 = 9, m = 6 mode has the largest possible wavenumber of any of the products 
of a triple nonlinear interaction of the tetrahedral mode with itself. However, the 
conservation equations contain only quadratic nonlinearities, so a direct triple 
interaction is not possible. The 1 = 9, m = 6 mode must arise from an indirect triple 
product, namely the nonlinear interaction of the 1 = 3, m = 2 tetrahedral mode with 
the 1=6, m = 4  mode. The l = 6 ,  m = 4  mode is the largest wavenumber product of 
the quadratic interaction of the tetrahedral mode with itself, and when this mode is 
dominant (as in some compressible convection solutions) the convective pattern has 
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THREE-D SPHERICAL CONVECTION 155 

fourteen upwelling plumes and the solutions are metastable (i.e. they are stable for 
long yet limited periods of time; Bercovici et al., 1991). Finally, it is also noteworthy 
that the I =  15, m= 10 mode has one of the largest growth rates with increasing Ra; 
its temperature variance increases by a factor of 28 between Ra = 8000 and Ra = 80,000. 

Figure 2b and Table 1 show the third through twelfth largest temperature variances 
for the cubic pattern as functions of Ra. The variances are normalized by (0’):. 
Since the two largest variances (0’): and (0’): have a constant ratio of 5/7 for 
all Rayleigh numbers, they are not shown in either Figure 2b or Table 1. The modes 
that grow fastest with increasing Ra, and eventually dominate the other modes shown, 
are the I = 12, m=O and 1 = 12, m = 12 modes. These are triple the wavenumbers of 
the two basic cubic modes, implying again that the cascade of spectral energy to 
higher wavenumbers is most concentrated through the indirect triple nonlinear 
interaction of the modes with themselves. The Rayleigh number dependence of these 
two modes analogous to (3) has exponentsf=0.18 and 0.19 for the I =  12, m=O and 
I =  12, m= 12 modes, respectively. These are significantly less than 0.28 for the 
exponent of the N u  - Ra relationship for the cubic pattern (Bercovici et al., 1989a), 
thus the connection between the growth of these modes and enhancement of heat 
transport is not obvious. The products of interactions of the two cubic (i.e. Z=4, 
rn = 0 and 1 = 4, rn = 4) modes with each other do not grow at nearly the same rate, 
or to the same size as 1=12, m=O and 1=12, m=12 modes; e.g., while the 1=12, 
rn = 4 mode is among the ten largest modes shown in Figure 2b, it has only a moderate 
amount ofenergy, and the 1 = 12, m = 8 mode is not among the ten largest modes shown. 
Although the products of double interactions ( I  = 8, m = O  and I = 8, rn = 8) are some 
of the largest modes, they actually decrease slightly in energy from Ra = 35,000 to 
Ra= 70,000. The two smallest modes shown, at 1=20, rn=O and l=20, rn=20 have 
two of the largest growth rates with increasing Ra; both modes increase by a factor 
of 50 from Ra=7000 to 70,000. These modes represent the quintuple indirect 
interaction of the two dominant modes with themselves. Finally, it is of some interest 
that several modes of like 1 have identical percent growth between Ra=7000 and 
70,000; e.g., modes with Z=8 and r n = O ,  4 and 8 all grow 61% and modes with I =  10 
and rn = 0 , 4  and 8 grow 250%. 

4. DISCUSSION: SYMMETRY CONSIDERATIONS 

That the triple product of the dominant modes of the tetrahedral and cubic patterns 
increase most rapidly with Rayleigh number and the quintuple products have very 
high growth rates with Ra, imply that odd nonlinear products of the dominant modes 
may be the most important modes for modifying convection (e.g., narrowing boundary 
layers, enhancing heat transport) as Ra increases. A partial explanation for this is 
that the modes which grow to modify and narrow the vertical currents must maintain 
the same symmetry as the dominant pattern. Only odd products of the dominant 
mode can have its symmetry since even products are symmetric where the dominant 
pattern is asymmetric and thus destructively interfere with the dominant pattern. For 
example, the mode which modifies the upwelling and downwelling regions of the 
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tetrahedral ( I  = 3 ,  m = 2 )  pattern must have odd symmetry about the equator, as does 
the tetrahedral pattern itself; since the even products of this mode with itself are of even 
spherical harmonic degree and order (and hence are equatorially symmetric), only the 
odd products can maintain the equatorial asymmetry of the dominant pattern. 

Symmetry arguments have been previously used in analytical and numerical studies 
of sphericai shell convection to reduce the number of spectral coefficients of a 
dependent variable. For example, assuming symmetry about the meridional plane 
4 = 0  insures that only the real components of 0 7  in ( 1 )  will be nonzero (e.g. Busse, 
1975); or, in axisymmetric convection the assumption of equatorial symmetry limits 
nonzero modes to those with even I (e.g. Zebib et a[., 1980; 1985). However, the 
above symmetry argument is necessary but not sufficient for explaining the 
predominance of modes whose wavenumbers are odd integer multiples of those of 
the dominant modes. For example, modes that have the same symmetry planes as 
the tetrahedral mode are only required to have m be even, m/2 be odd and I-m be 
odd. This can be seen by taking the spherical harmonic transform of a spherical step 
function that has tetrahedral planes of symmetry 

to yield 

I FP-[ 1 +( -  1)”-2cos(~)]{~PP(coso)d(coso)- J P~(cose)d(coso) , (5) 
0 

- 1  

where the PT are the associated Legendre functions. The term in square brackets is 
only nonzero for rn even and m/2 odd; the term in curly brackets is only nonzero 
for those PI“ which are odd functions of cos 8, i.e., PI“ with l-m odd. There are many 
modes that satisfy these tetrahedral symmetry requirements (e.g. I = 7, m = 6), thus 
symmetry arguments alone do not explain the predominance of the “odd product” 
modes. The apparent predominance of these modes must, therefore, be due to another 
physical mechanism. 

5. CONCLUSION: IMPLICATIONS FOR A MODIFIED MEAN FIELD 
METHOD 

The numerical results presented in this study suggest that for convection with regular 
polyhedral patterns, the nondominant spherical harmonic modes responsible for 
modifying convection (i.e., narrowing boundary layers, enhancing heat transport, 
etc.) as Rayleigh number increases have wavenumbers that are odd integer multiples 
of the wavenumbers of the dominant modes. This implies that the growth of high 
wavenumber modes is indeed systematic and perhaps predictable. However, these 
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THREE-D SPHERICAL CONVECTION 157 

hypotheses are in need of a rigorous mathematical proof beyond symmetry arguments. 
A recently developed approach for analyzing convective patterns using group theory 
(McKemzie, 1988) may offer the best method for providing this proof. Given such 
a proof, it may be possible to study three-dimensional convection in a very cost effective 
manner. Instead of assuming a horizontal convective pattern with only one 
wavenumber as in mean field theory (e.g. Roberts, 1966; Olson, 1981; Quareni and 
Yuen, 1988), or carrying hundreds or thousands of modes as in a full numerical 
analysis, one might only need to keep the terms of a spectral series whose wavenumbers 
are odd products of the wavenumbers of the dominant modes. For a tetrahedral 
pattern, one would only need to carry modes with spherical harmonic degree and 
order (1=3, m=2),  (1=9, m=6), ( I =  15, m= lo), etc.; for a truncated series with 
maximum degree 30, one would keep 5 complex spherical harmonic terms, as opposed 
to almost 500 complex spherical harmonics for a full numerical analysis. This method 
may present an effective way of computing high Rayleigh number three-dimensional 
solutions with orders of magnitude reduction in memory and time requirements as 
compared to a full numerical scheme. 

This method would be, in effect, a multimode mean field method. However, it would 
be significantly different from previous multimode mean field theories. In the study 
of Toomre et al. (1982)-where two and three modes were maintained in a spectral 
representation-the modes were chosen by first assuming a fundamental mode which 
determines the basic convection pattern (e.g. the I = 3, m = 2 mode in the tetrahedral 
pattern) and then determining the second and third “overtone” modes, i.e., the next 
highest wavenumber modes that are nonzero according to the selection rules of the 
interaction coefficients. The interaction coefficients are essentially the nonlinear terms 
of the governing equations in spectral or wavenumber space and involve the integral 
of the triple products of the orthonormal functions; e.g., the interaction coefficients 
in spherical convection are proportional to 

2n + 1  

j S qAy:y* d(cos e)d4. 
0 - 1  

Because of symmetry or orthogonality, these coefficients are zero for many choices 
of wavenumbers. For example, the above integral is zero if 2- + p  # v (because - eiA#) 
or if l+m<n (because KAY: can be expressed as a spherical harmonic series with 
maximum degree 1 + m hence all terms in this series are orthogonal to if n > I + m). 
These are a few examples of the selection rules; for a more complete discussion, see 
Ellsaesser (1 966). 

In this study we find that there are many relatively low wavenumber modes which 
obey the selection rules that are not as significant as higher wavenumber modes. For 
example, the first “overtone” mode to the tetrahedral mode involves the I = 6, rn = 4 
mode which 1) does not coincide with tetrahedral symmetry and 2) is less important 
than the higher wavenumber 1 = 9, m = 6 mode. Therefore, beyond symmetry and 
orthogonality, there are apparently other selection rules inherent in the physics as 
implied here. A multimode mean field method based on the results of this study 
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would employ a more stringent set of selection rules and thus a smaller choice of 
overtone modes with which to construct a solution. 

A few caveats about this proposed multimode mean field method are worth 
enumerating. Like a single mode mean field method, it does not represent rigorous 
convection. The method would assume that the polyhedral pattern is always stable, 
and thus would preclude bifurcations of steady solutions and possibly the onset of 
time dependence. Further, it would be unwise to apply this method to convection 
with internal heating which does not appear to have regular polyhedral patterns 
beyond modest Rayleigh numbers if at all (Bercovici et al., 1989b,c, 1990; Schubert 
et al., 1990; Glatzmaier et al., 1990). Finally, although this method would expand 
dependent variables in odd product modes, it will still be necessary to account for 
intermediary even product modes to allow for the cascade of energy to high 
wavenumbers via nonlinear interactions. This requirement may dilute the usefulness 
of the modified mean field method in a purely Galerkin scheme, but a transform 
method would be unaffected since it accounts for nonlinear interactions in physical 
space. 
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