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Land surface albedo bias in climate models and its association

with tropical rainfall

Xavier J. Levine,1 and William R. Boos1

The influence of land surface albedo on tropical precip-
itation has been widely appreciated for decades, but bias
in the representation of surface albedo in weather and cli-
mate models has been studied much less than bias in sea
surface temperature or soil moisture. This study shows that
CMIP5 simulations of the late 20th century exhibit large
multi-model mean bias and intermodel variability in surface
broadband shortwave albedo. Intermodel variability in sur-
face albedo is coherent on global scales and correlates with
intermodel variability of precipitation over large parts of the
tropics. Although enhanced rainfall would be expected to
reduce soil albedo, evidence is presented in support of the
alternate hypothesis that intermodel albedo variability in-
stead causes intermodel precipitation variability. Further
study is needed to elucidate the cause of surface albedo bias
in individual models, but these results suggest that reducing
that bias will improve simulations of low-latitude precipita-
tion.

1. Introduction

Since the seminal work of Charney [1975], surface albedo
has been recognized as a major influence on climate over a
wide range of timescales, from sub-seasonal to orbital. On
centennial timescales, surface albedo changes in boreal re-
gions may have helped foster global glaciation, as forests
changed to grasslands during the initial cooling of glacial
onset [de Noblet et al., 1996; Schurgers et al., 2007]. Sim-
ilarly, the North African humid period during the mid-
Holocene likely required a substantial surface albedo reduc-
tion in the Sahara [Laval and Picon, 1986; Kutzbach et al.,
1996; de Noblet-Ducoudré et al., 2000; Bonfils et al., 2001;
Vamborg et al., 2011] and perhaps also in boreal regions
[Foley et al., 1994]. These albedo changes, in turn, require
changes in vegetation cover [Xue and Shukla, 1993; Claussen
and Gayler , 1997], soil organic matter content [Knorr and
Schnitzler , 2006], or soil moisture content [Walker and
Rowntree, 1977]. On decadal timescales, regional climate
variability can be amplified by albedo changes, as has been
suggested for multi-decadal Sahel drought [Charney et al.,
1977; Zeng et al., 1999; Vamborg et al., 2014]. Surface albedo
may even influence sub-seasonal variability: the skill of
weather forecasts over India has been shown to be influenced
by model representation of surface albedo [Kumar et al.,
2014]. Anthropogenic tropical deforestation has been argued
to increase surface brightness and thus reduce precipitation
[Dirmeyer and Shukla, 1994], in particular over the Amazon
basin [Costa and Foley , 2000; Berbet and Costa, 2003] and
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West Africa [Kitoh et al., 1988; Zheng and Eltahir , 1998].
Conversely, reforestation and surface darkening might am-
plify global warming [Bonan et al., 1992; Betts, 2000].

Despite the known importance of surface albedo, its rep-
resentation in comprehensive global climate models and its
influence on simulated climate remain poorly characterized.
Some outstanding issues have been recognized: for instance,
large intermodel albedo variability is found in boreal regions
during winter and spring due to variability in snow and veg-
etation cover [Wang et al., 2016; Li et al., 2016]. The repre-
sentation of tropical surface albedo variability in dry zones
has been found to a↵ect simulations of regional climate [Sud
and Fennessy , 1982], especially in North Africa and the Mid-
dle East [Knorr et al., 2001; Samson et al., 2016]. Yet we
lack a global assessment of surface albedo bias in climate
models and an understanding of the influence of this bias on
simulated regional climate. Such an assessment may be par-
ticularly important during boreal summer in regions where
thermal maxima lie over land [Nie et al., 2010] and thus are
highly sensitive to land surface properties. Here, we docu-
ment surface albedo bias and intermodel variability in the
Coupled Model Intercomparison Project Phase 5 (CMIP5),
then present results consistent with the hypothesis that in-
termodel variations in albedo cause intermodel variations in
regional precipitation.

2. Data

Here surface albedo and precipitation are compared
across simulations from 47 CMIP5 models [Taylor et al.,
2012] listed in Supplementary Table S1. All simulations
are single member hindcasts of the historical period (1850-
2005; historical�r1i1p1); here we only use data between 1985
and 2004 to allow comparison with satellite-derived obser-
vational products. We use monthly mean precipitation to-
gether with both upwelling and downwelling surface broad-
band shortwave radiative flux. We define a monthly mean
surface broadband shortwave albedo (hereafter referred to
as “albedo”) as the ratio of monthly mean surface upwelling
to monthly mean surface downwelling shortwave radiative
flux. Monthly means are combined into seasonal means,
e.g. June-Sept. (JJAS) for boreal summer and Dec.-March
(DJFM) for boreal winter. All model output is re-gridded
to 1� ⇥ 1� grid.

Model albedo is compared to that estimated from the
Energy Balanced And Filled (EBAF) output of the Clouds
and the Earth’s Radiant Energy System (CERES) mis-
sion. CERES EBAF-Surface Ed2.8 (hereafter CERES) de-
rives broadband shortwave and longwave fluxes at the sur-
face from a radiative transfer calculation based on top-of-
atmosphere (TOA) shortwave and longwave radiances ob-
tained from three satellite platforms — EOS Terra, EOS
Aqua, and Suomi National Polar-orbiting Partnership (S-
NPP) — as well as cloud properties derived from these
and other platforms (e.g. the Moderate Resolution Imaging
Spectroradiometer [MODIS] and the Visible and Infrared
Sounder [VIRS] missions) [Kato et al., 2013]. CERES pro-
vides monthly-mean outputs on a 1� ⇥ 1� grid from March,
2000 to February 2016. That is, CERES albedo can be an-
alyzed over 16 boreal summers and 15 boreal winters, com-
pared to 20 seasons in CMIP5. To ease comparison with
CMIP5 output, interannual standard deviations and multi-
year means of albedo are computed from CERES outputs
following the same procedures described above for CMIP5.
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3. Results

3.1. CMIP5 bias and intermodel scatter

A well-known aspect of surface albedo is its large spa-
tial variability: during boreal summer the CMIP5 multi-
model mean albedo shows intense contrast between dark
tropical rainforests, where albedo can be as low as 0.1, and
bright subtropical and polar deserts, where albedo often
exceeds 0.4 (Fig. 1a). Although this spatial pattern is
broadly consistent with observations, the multi-model mean
albedo shows significant bias over land when compared with
CERES (Fig. 1b). In some regions the magnitude of the
albedo bias exceeds 0.1, which implies a bias in absorbed
surface shortwave radiation on the order of tens of W m�2

(comparison with MODIS surface albedo yields a highly
similar bias, Supplementary Fig. S1). During boreal sum-
mer, a large negative bias exists over the Sahara and Ara-
bian deserts; smaller negative bias is also found over large
swathes of the eastern U.S., the Amazon basin, and Europe
(Fig. 1b). Positive bias exists over nearly all other land
regions. Oceans show comparatively weak but nonzero bias.

During boreal winter, snow cover causes large surface
brightening in the northern extratropics and in tropical
highlands (Fig. 1c), which are regions of large bias in the
multi-model mean (Fig. 1d). While snow cover bias in mod-
els has been shown to be large and to influence global climate
[e.g. Randall et al., 1994; Qu and Hall , 2006], we henceforth
focus on the less well-known biases found during boreal sum-
mer. Although smaller in magnitude than the wintertime
snow-related albedo bias, the albedo bias over low-latitude
land will influence the land surface enthalpy fluxes that con-
trol the time-mean overturning circulations that organize
tropical precipitation [e.g. Charney , 1975; Xue and Shukla,
1993].

The intermodel spread of boreal summer albedo is sim-
ilar in magnitude to the multi-model mean bias in many
locations (Fig. 2a). To first-order, intermodel variability
increases with albedo, being largest over polar regions, sub-
tropical deserts, and highlands, and smallest over forests
and oceans. The local intermodel standard deviation varies
between 10-25% of the multi-model mean albedo (Fig. 2b);
relative to its local value, albedo variability over snow-free
regions is large over tropical vegetated regions and midlat-
itudes, and lowest over deserts. Relative albedo variability
is substantial over oceans, where the intermodel standard
deviation is 15% of the multi-model mean.

Intermodel variance of boreal summer albedo is much
larger than the multi-model mean interannual variance of
that albedo (Fig. 2a, c, e), with the latter negligible nearly
everywhere except over elevated terrain and polar regions
where variations in snow and ice cover can cause large albedo
variability. The small interannual variability of albedo in
CMIP5 simulations is broadly consistent with the small in-
terannual variability of observed albedo (Fig. 2d). In con-
trast, interannual variability in precipitation is comparable
to intermodel variability in precipitation (Fig. 2f). This is
one piece of evidence supporting the hypothesis that model
albedo bias is not caused by precipitation bias. Specifically,
if a precipitation variation �P caused a surface albedo vari-
ation �↵, we would expect to be able to write the latter as
a function of the former. Since the historical CMIP5 sim-
ulations do not employ dynamic vegetation [see Table 3 in
Taylor et al., 2009], this function will not depend on the
time scale of the variation as long as that time scale is sea-
sonal or longer (i.e. the time needed for adjustment of soil
moisture or leaf area). So unless the function relating �↵ to
�P is strongly nonlinear,

�↵
interannual

�↵
intermodel

⇡ �P
interannual

�P
intermodel

(1)

where the subscript denotes the type of variation. Since the
left-hand side of (1) is much smaller than the right-hand side
in CMIP5 (Fig. 2e, f), this implies that model precipitation
bias does not cause model albedo bias.

To reveal spatial patterns of intermodel albedo variabil-
ity, we perform a principal component analysis (PCA). We
restrict the domain of analysis to land within 60�S-60�N to
exclude polar snow-covered regions. The first and second
modes of variability, PC1 and PC2, explain 35% and 17%
of intermodel variance, respectively, while higher modes ex-
plain less than 7% each. Maps of the empirical orthogo-
nal functions (EOFs) corresponding to the first two modes
highlights geographically distinct patterns. EOF1 repre-
sents albedo variation over most land regions excluding the
Sahara and Middle East (Fig. 3a), while EOF2 primarily
represents variations over the Sahara and Arabian deserts
(Fig. 3b). Broadly, the first and second modes represent
regions with and without vegetation cover, respectively. We
henceforth focus mostly on EOF1 since it accounts for the
larger fraction of intermodel albedo variance, but recognize
that albedo bias over the Sahara may be of great importance
for Sahel rainfall [e.g. Charney , 1975].

3.2. Precipitation-albedo association

The large intermodel variability of albedo and its coher-
ence on planetary scales may have consequences for simu-
lated low-latitude precipitation, given that surface albedo is
known to influence precipitating tropical circulations [e.g.
Charney , 1975; Eltahir , 1996; Zeng and Neelin, 1999]. To
gauge the association between albedo ↵ and precipitation
P , we define a coupling index

I(P,↵) = �(↵)
@P
@↵

, (2)

where �(↵) is the intermodel standard deviation of ↵ and
@↵P is obtained from linear regression of P on ↵. A similar
measure was used to assess the association of soil moisture
with precipitation [Dirmeyer , 2011], and I simply scales the
regression coe�cient by the intermodel variability in ↵.

When the local values of boreal summer P and ↵ are used
to compute I at every location, the strongest local associa-
tion between continental precipitation and albedo is found
over India, the Sahel, and eastern China (Fig. 4a). Over
land, precipitation is almost always anti-correlated with
albedo, consistent with the idea of brighter surfaces disfa-
voring local continental precipitation [e.g., Charney , 1975].

But given the strong spatial correlations in intermodel
albedo variations (e.g. Fig. 3a), a strong local correlation be-
tween variations in precipitation and albedo does not neces-
sarily imply local causation. Indeed, it would be surprising if
local ocean albedo variations in the West Pacific caused the
increase in equatorial central Pacific rainfall seen in Fig. 4a,
given the small magnitude of ocean albedo variations (e.g.
Fig. 2a). So we compare this distribution of I, which was
computed from local values of ↵ and P , to another ver-
sion computed using the intermodel albedo anomaly that
projects on EOF1, I(P, h↵

1

i). Here, h(.)i is an area-weighted
average over all land regions 60�S-60�N, and ↵

1

is the in-
termodel albedo anomaly that projects on the first EOF,
i.e. ↵

1

= PC1(↵) ⇥ EOF1(↵). The association of P with
h↵

1

i) is roughly similar to the local association: e.g., strong
association exists over large parts of South and East Asia
(Fig. 4b). The tropical Pacific association is also similar,
though here more clearly represents a northward shift in the
intertropical convergence zone (ITCZ) over much of the Pa-
cific in models having high albedo of vegetated land. Also,
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I(P, h↵
1

i) is weaker than the local coupling index I(P,↵)
over central India and the Sahel. The di↵erence over the
Sahel is not surprising, because albedo EOF1 has low mag-
nitude over northern Africa, where albedo variations project
more strongly onto EOF2. Similar results are obtained when
the association of P and ↵ is assessed using a maximum co-
variance analysis, as shown in Supplementary Fig. S2.

These associations are generally consistent with the hy-
pothesis that brighter land surfaces cause a reduction in
continental precipitation. Despite large regional shifts in
precipitation, we do not find a significant meridional shift in
precipitation in the zonal mean, due to a large cancellation
in the meridional shift of regional ITCZs. This suggests ei-
ther that vegetated land albedo does not strongly influence
the zonal-mean column-integrated atmospheric energy bud-
get [Chiang and Bitz , 2005; Broccoli et al., 2006; Kang et al.,
2008; Donohoe et al., 2013], or that there are compensating
changes in the zonal-mean gross moist stability or in zonal-
mean feedbacks (e.g. due to clouds). This contrasts with the
precipitation shifts shown to be caused directly by surface
albedo changes in cloud-free regions such as the Sahara [e.g.
Charney , 1975; Boos and Korty , 2016].

The fraction of intermodel precipitation variance that is
associated with intermodel albedo variations is largest in
South Asia, the southern Indian Ocean and Australia, and
the East Pacific ITCZ region, consistent with the strong re-
gression coe�cients seen in those regions (Fig. 4a, b). The
square of the correlation coe�cient nears or reaches 0.5 in in-
dividual grid cells in those regions ( Fig. 3S a), and is about
0.5 when precipitation averaged over Continental South Asia
(60��180�E, 5��45�N; land regions only) and PC1 albedo
are correlated (see Fig. 3S b for details). This confirms
that the coupling indices discussed above describe a large
fraction of intermodel variations in precipitation.

3.3. Precipitation sensitivity to albedo in CESM

Our regression analysis cannot separate the local and re-
mote associations between albedo and precipitation due to
the planetary-scale coherence of intermodel albedo variabil-
ity, nor it can establish causation between albedo and precip-
itation variations. This is problematic since either direction
of causation — increased land rainfall driving lower albedo
or lower albedo modifying rainfall — seems physically plau-
sible. To address this problem, we simulate the precipitation
response to a global albedo anomaly imposed in vegetated
regions.

We use the Community Earth System Model (CESM)
version 1.0.4 from the National Center for Atmospheric Re-
search (NCAR). This model consists of a global atmospheric
model (the Community Atmosphere Model, CAM, version
5) coupled to a dynamical ocean (the Parallel Ocean Pro-
gram, version 2), sea ice (CICE4) and land ice (GLC), as
well as interacting with a comprehensive land model (CLM)
controlling surface properties over ice-free regions. In a con-
trol simulation, we integrate CESM with Earth’s present-
day radiative forcings and boundary conditions (B2000 con-
figuration), with horizontal resolution of 0.9� ⇥ 1.25� and
26 vertical levels for the atmosphere, and a nominal ocean
resolution of 1�. This control is run for 65 years with output
averaged over the last 55 years. In a perturbation simula-
tion we run CESM with modified land albedo: over regions
where the direct beam albedo is lower than 0.15, both direct
and di↵use albedos are set to 0.01. This modifies the CESM
broadband surface albedo, which we refer to as ↵

CESM

, to
be darker in vegetated regions in a spatial pattern broadly
resembling albedo EOF1 (compare Figs. 3a and 4c).

To compare the precipitation response to this CESM
albedo anomaly with the association between intermodel
precipitation and albedo variations in CMIP5, we define a

coupling index

I(P, h↵
CESM

i) = �(h↵
1

i) �P
� h↵

CESM

i (3)

where � signifies a di↵erence between the control and per-
turbation CESM integrations. To facilitate comparison with
the CMIP5 results, we construct (3) by scaling the CESM
sensitivity by the standard deviation of albedo EOF1 ob-
tained from the CMIP5 models, �(h↵

1

i). This coupling
index has many similarities to the coupling index between
precipitation and albedo EOF1 in the CMIP5 simulations,
I(P, h↵

1

i), as seen in Figs. 4d with 4b. In particular,
brighter albedo over vegetated regions decreases precipita-
tion over South Asia and Australia, but increases rainfall
over the equatorial East Indian Ocean; similarity is partic-
ularly strong over the East Pacific, where the ITCZ shifts
poleward as land albedo brightens, and it is remarkable that
the CESM response has a magnitude that is overall similar
to that of the albedo-related precipitation variations seem
in CMIP5. Substantial di↵erences also exist between the
CMIP5 associations and the CESM response, particularly in
the Sahel and Central Africa. Yet the CESM result broadly
supports our hypothesis that intermodel di↵erences in land
albedo cause intermodel precipitation variations in CMIP5.

4. Discussion: causes of albedo bias

Understanding the cause of albedo bias and intermodel
albedo variability is challenging due to both model complex-
ity and lack of detailed output about the radiative properties
of the surface and atmosphere. Nevertheless, the near-global
coherence of intermodel albedo variations over continental
regions and their weak interannual variability suggest that
model albedo variations are unlikely to be driven by a quan-
tity with large spatial or interannual variability, such as pre-
cipitation. Instead, a spatially homogeneous quantity might
cause spatially coherent albedo variability, for instance by
modifying the atmospheric radiative properties. For exam-
ple, tropospheric water vapor, which has higher homogene-
ity across the tropics than precipitation, preferentially ab-
sorbs shortwave flux in the near-infrared (IR) [Pierrehum-
bert , 2010]; since vegetated surfaces have lower albedo in the
visible than in the near-IR [Houldcroft et al., 2009], greater
tropospheric water vapor in a model could reduce broadband
surface albedo. Another potential source of albedo vari-
ability is the illumination angle [Song , 1998], particularly
the relative contribution of di↵use and direct shortwave flux
reaching the surface, because white-sky (i.e. di↵use) albedo
in MODIS is typically 10% to 15% larger than black sky (i.e.
direct local noon) albedo [Houldcroft et al., 2009]. Water
vapor and other species (e.g. aerosols) can thus bias broad-
band surface albedo by absorbing or scattering shortwave
flux. Clouds can amplify these biases, with reflection be-
tween surface and clouds substantially increasing the path
length over which extinction occurs [Ambach, 1974].

We obtained a rough estimate of the influence of
these processes on broadband shortwave albedo through
some idealized calculations conducted with the Fu-
Liou radiative transfer code (available at https://www-
cave.larc.nasa.gov/cgi-bin/fuliou/runfl.cgi as part of the
CERES/ARM Validation Experiment; see Fu and Liou
[1993] for details). Using typical land surfaces (e.g. mixed
forest, woody savannah, grassland) as a lower boundary
and typical tropical conditions (e.g. temperature and atmo-
spheric constituents), we estimated changes in the broad-
band shortwave albedo in a cloud-free atmosphere due to
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changing tropospheric water vapor and solar zenith an-
gle. Land surface albedo typically increased by 5%-20% of
its original value when water vapor was reduced from its
tropical-mean value to near zero, while it increased by up to
20% when solar radiation was changed from direct beam at
noon to isotropic, di↵use illumination. Since the CMIP5 in-
termodel variations in tropical-mean specific humidity and
illumination angle are expected to be much smaller than
these limiting cases, it seems unlikely that these factors
could cause the large intermodel albedo variations found
here (the intermodel standard deviation exceeds 20% over
many land regions, e.g. Fig. 2b). On the other hand, inter-
model variations in shortwave absorption or scattering might
be important in regions where albedo has a lower intermodel
variability relative to its mean (e.g. deserts).

An alternate hypothesis is that intermodel albedo vari-
ability is caused by di↵erent prescriptions of soil and vege-
tation properties among models. Models use di↵erent dis-
tributions of plant functional types (PFTs) when represent-
ing identical land surfaces [e.g., de Noblet-Ducoudré et al.,
2012], and bias in PFT distributions has been shown to pro-
duce surface albedo bias of up to 25% [Matthes et al., 2016].
Models also di↵er in the complexity of how their vegetation
model interacts with radiation; for instance, di↵erences in
canopy shortwave flux absorption could bias surface albedo
even if soil albedo and PFTs are unbiased [e.g. Betts, 2000].
Di↵erences in soil moisture and organic matter may also lead
to albedo bias if organic matter or soil moisture is either set
dynamically or not consistently prescribed among models
[e.g. Levis et al., 2004; Vamborg et al., 2011]. In summary,
while albedo can be influenced by intermodel variations in
climatological mean quantities that alter shortwave scatter-
ing and absorption, we suggest that albedo bias in individ-
ual models is more likely caused by prescription of surface
properties such as PFTs or canopy radiative transfer.

5. Conclusions

The CMIP5 intermodel variations of surface albedo found
here are spatially coherent over large swathes of the subtrop-
ics and midlatitudes, and are not caused by snow cover vari-
ations. These intermodel albedo variations correlate with
intermodel precipitation variability in many low-latitude re-
gions; brighter vegetated surfaces on global scales are asso-
ciated with less precipitation over most tropical land and a
northward shift of the East Pacific ITCZ. While a reduction
in land precipitation is expected to result from brighter land
albedo [e.g. Charney , 1975], the mechanism tying albedo to
remote ITCZ shifts remains unclear. Nevertheless, by simu-
lating the response to reduced albedo over vegetated regions
in a comprehensive climate model, we find evidence that
global-scale albedo variations over vegetated land can cause
precipitation changes of the pattern and magnitude seen in
CMIP5. The precipitation-albedo association is strong in
CMIP5, with these variables having an R2 of 0.6 when first
averaged over low-land South Asia.

We argued that di↵ering representations of vegetation
and soil properties are a likely cause of these albedo varia-
tions, with variations in mean climate variables such as wa-
ter vapor, soil moisture, aerosols, and clouds playing a lesser
role. The lack of spectrally resolved radiative flux output in
the CMIP5 archive unfortunately prevents quantification of
these e↵ects. Although further work is needed to determine
whether remediating albedo bias in individual models will
reduce precipitation bias, this seems a promising approach
for addressing longstanding biases in tropical rainfall, such
as the dry bias that has persisted over continental India
through generations of climate models [e.g. Sperber et al.,
2013].
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Figure 1. (a) CMIP5 ensemble mean of surface broad-
band shortwave albedo, averaged over the June-July-
August-September season (abbrv. as albedo); CMIP5
albedo is averaged over last 2 decades of the historical
run (1985 to 2004). (b) Albedo anomalies in the CMIP5
ensemble mean JJAS albedo (shown on (1a)) with re-
spect to the multi-year mean JJAS albedo retrieved from
CERES product; CERES albedo is averaged over the en-
tire measurement window (2005 to 2015). (c) Same as
(a) but for the December-January-February-March sea-
son (DJFM). (d) Same as (b) but for DJFM.
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Figure 2. (a) Intermodel standard deviation of albedo
in CMIP5 simulations. (b) Normalized intermodel stan-
dard deviation of albedo in CMIP5 simulations. (c) In-
terannual standard deviation of albedo in CMIP5 simula-
tions (1984-2004). (d) Interannual standard deviation of
albedo in CERES (2005-2015). (e) Ratio of interannual
to intermodel standard deviation of albedo in CMIP5 (in
%). (f) Same as in (e) but for precipitation.
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to intermodel standard deviation of albedo in CMIP5 (in
%). (f) Same as in (e) but for precipitation.
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Figure 3. (a) First EOF of JJAS albedo across all
CMIP5 simulations; (b) second EOF of JJAS albedo
across all CMIP5 simulations. EOF1 explains about 35%
of global variance, and EOF2 17%; Higher EOFs explains
at most 7%. Same seasonal and multi-year averaging as
in Fig.1.

Figure 4. (a) Coupling of precipitation with local albedo
anomaly during JJAS season. Areas of high statistical
significance (p < 0.05) are hatched. (b) Coupling of
precipitation in CMIP5 with the global albedo anomaly
explained by its PC1 for JJAS. (c) Coupling of precip-
itation with global albedo anomaly in CESM for JJAS;
here, anomaly is defined relative. (c) Prescribed albedo
anomaly in CESM in JJAS. (d) Coupling of precipitation
with global albedo anomaly in CESM for JJAS; areas of
high statistical significance are hatched. Anomaly is de-
fined relative to the CMIP5 ensemble-mean for panels (a)
and (b), and relative to a CESM control run forced by
present-day climate albedo for panels (c) and (b). Thick
green lines in (b) and (d) show the 6mmday�1 precipi-
tation isopleth for ensemble-mean CMIP5 and in control
CESM simulation respectively.

Figure 3. (a) First EOF of JJAS albedo across all
CMIP5 simulations; (b) second EOF of JJAS albedo
across all CMIP5 simulations. EOF1 explains about 35%
of global variance, and EOF2 17%; Higher EOFs explains
at most 7%. Same seasonal and multi-year averaging as
in Fig.1.
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Introduction

In this supplementary file, we first describe MODIS and SRB as alternate source for

the broadband shortwave surface albedo (abbr.. as albedo); albedo distribution inferred

from MODIS and SRB are compared to CERES, the observational product used in the

main text, and to the CMIP5 ensemble-mean.

We then describe results from a Maximum Covariance Analysis (MCA), a technique that

quantifies both local and remote interaction of albedo with precipitation globally. Spatial

patterns of co-variability for albedo and rainfall are compared to coupling of precipitation

with local albedo and PC1 albedo described in the main text.

At last, we show the local R2 values for the regression of precipitation on PC1 albedo,

to quantify the amount of intermodel variance in precipitation that could be explained po-

tentially from the intermodel variability of PC1 albedo. Similarly, we show the regression

of precipitation averaged over continental South Asia with PC1 albedo, to demonstrate

that this relationship hold on regional scale as well over the Asian monsoon region.

Observational datasets

While a large regional bias in albedo exists between the ensemble-mean CMIP5 histori-

cal simulations and the CERES observational product, we determine whether its regional

pattern is robust when comparing CMIP5 to 2 other observational products, MODIS and

SRB. While MODIS, SRB and CERES are not strictly independent of each other, surface

albedo or shortwave flux outputs are computed using distinct methodologies. We briefly

describe each dataset below, and compare the spatial distribution and interannual vari-
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ability of albedo in MODIS and SRB to CERES and the CMIP5 ensemble-mean.

MODIS: MCD43GF is a gridded dataset of albedo derived from Moderate Resolution

Imaging Spectroradiometer (MODIS) instrument on board of the Terra and Aqua plat-

forms. MCD43GF provides a snow-free estimate of surface albedo at 0.05�⇥ 0.05� spatial

resolution and 8 days temporal resolution, from 2001 to 2015. This data product is

freely available on Prof. Crystal Schaaf’s website at University of Massachusetts, Boston.

Unlike the original MODIS data provided by NASA, MCD43GF uses a gap filling algo-

rithm to obtain surface albedo over regions obstructed by clouds, and thus allowing for

a near global (70�S to 70�N) and continuous coverage of surface albedo over 15 years.

Gap filling is critical for acquiring robust statistics over areas covered by clouds during

extensive periods of time, an issue prevalent over many tropical regions (e.g. South Asia

during boreal summer). MCD43GF provides broadband surface albedo under white-sky

(isotropic, di↵use illumination) and black sky albedo (single beam illumination at local

noon); these broadband values are obtained from measurements of surface reflectance over

7 specific windows in the visible and near-infrared range of the shortwave spectrum by

the MODIS instrument [Schaaf et al., 2011]. Albedo bias between the ensemble-mean

CMIP5 albedo and MODIS white-sky albedo bias are found to be very similar to those

between CMIP5 and CERES (compare Fig. S1a with 1b) during JJAS, with negative

bias over the Sahara and Arabian deserts, and positive biases over most of the other land

regions. Furthermore, the interannual standard deviation in albedo show similar values
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in MODIS and CERES, pointing to the broad consistency among both datasets (Fig. S1c).

SRB-GEWEX: The NASA/GEWEX Surface Radiation Budget (SRB) project pro-

vides a gridded dataset of monthly mean longwave and shortwave fluxes at the top-of-

atmosphere (TOA) and surface, at a horizontal resolution of 1� ⇥ 1� for all years between

1984 and 2007. SRB output values for surface broadband shortwave fluxes are computed

from a radiative transfer algorithm that relies on TOA shortwave fluxes measured by

space-borne observational platforms (NOAA-7, NOAA-9, NOAA-11, NOAA-14, NOAA-

16, NOAA-18), cloud profiles inferred from the International Satellite Cloud Climatology

Project (ISCCP), and various atmospheric variables output from the GMAO reanalysis

dataset (e.g. temperature and moisture profiles) [Pinker and Laszlo, 1992]. We use the

same methodology to compute albedo as for the CERES dataset or the CMIP5 simula-

tions, that is a seasonal mean of albedo is first obtained by computing albedo as the ratio

of monthly-mean broadband shortwave upwelling to downwelling fluxes, before averaging

albedo over the boreal summer season. Despite having a better overlap with the time-

period of the CMIP5 historical simulations, SRB is generally deemed less desirable than

either CERES or MODIS due the large number of platform changes between 1984 and

2007 creating spurious data jumps, as well as its large reliance on reanalysis products. We

find large bias in albedo between CMIP5 and SRB, but its spatial pattern shows important

deviation from that found between CMIP5 and either CERES or MODIS: while the sign

of the anomalies broadly agree over much of the globe, that over Africa is inconsistent:

instead of showing negative anomalies over the Sahara and positive anomalies over the
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rest of the continent, anomalies from SRB are positive over much of the Sahara and neg-

ative over most of the rest of Africa (Fig. S1b). The CMIP5 anomaly from SRB over the

Tibetan Plateau is also substantially stronger than the anomaly from CERES or MODIS.

Further discrepancy is found in the interannual standard deviation, which is substantially

larger in SRB than in MODIS or CERES (Fig. S1d). Some of the discrepancies between

SRB and either CERES or MODIS could be attributed to spurious instrumental bias

in SRB, as evidently shown when comparing the unphysical variation in the interannual

standard deviation of albedo in SRB between the Indian sector and the Atlantic sector of

the Southern Ocean (Fig. S1d).

Maximum Covariance Analysis

A maximum covariance analysis (MCA) is powerful tool to study remote connection

between climatic variables [see Bretherton et al., 1992, for a description of MCA as an

exploratory method]. In particular, it can be used to find the dominant mode of interaction

between land albedo and precipitation globally. This is done by performing a PCA on

the intermodel covariance matrix of albedo with precipitation. The first mode explains

about 49% of the variance in the intermodel covariance; its EOF resembles greatly EOF1

of albedo (S2), confirming our earlier assumption that the vegetated regions identified

on Fig. 3a are indeed the most likely to interact with precipitation on global scales.

Similarly, the PC1 of the covariance matrix, which shows regions where precipitation

variance correlates strongly with regions of largest coherent albedo variance (Fig. S2c),

corresponds broadly to regions where precipitation is found to couple strongly with PC1

albedo (Fig. 4b). The second mode of the intermodel covariance matrix explains only
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21% of its global variance; its EOF resembles EOF2 of albedo (Fig. S2b), consistent with

the desert regions identified on Fig. 3b exerting a smaller but non-negligible influence on

precipitation; PC2 of the covariance matrix shows that precipitations variability associated

with PC2 albedo is qualitatively similar over ocean regions than that associated with

PC1 albedo, i.e. a poleward shift of the ITCZ associated with brighter land albedo (Fig.

S2d); on the other hand, brighter desert albedo appears to be associated with greater

precipitation over some land regions, especially the Indian subcontinent.

R2 analysis

The amount intermodel variance in precipitation that could potentially be explained

from the albedo variability over vegetated regions on a global scale (i.e., EOF1 of albedo,

as shown on Fig. 3a) can be quantified by the R2 value of the regression (Fig. S3a), if

assuming that albedo variability causes precipitation variability, as suggested by our study

Over regions where precipitation is correlated with PC1 albedo (e.g. Western Pacific,

South Asia, Australia, etc), local R2 values suggest that intermodel albedo variability

could explain between 20% and 50% of the total intermodel variance of precipitation

(Fig. S3a). The coupling of precipitation with albedo can be strong on regional scale as

well; this is true when regressing precipitation over the South Asia continent (here, South

Asia is defined as all land areas contained in the 60� � 180�E longitudinal sector and

5�� 45�N latitudinal band) on PC1 albedo (Fig. S3b), where up to half of the intermodel

variance in precipitation could potentially be explained from the global variability of

albedo over vegetated areas (i.e. PC1 albedo) .
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Figure S1. (a) CMIP5 albedo anomalies during JJAS with respect to MODIS. (b) CMIP5

albedo anomalies during JJAS with respect to SRB/GEWEX. MODIS albedo for JJAS is av-

eraged over the 2001 to 2015 period, and SRB over the 1985 to 2004 period. (c) Interannual

standard deviation of albedo in MODIS. (d) Interannual standard deviation of albedo in SRB.
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Figure S2. (a) First EOF of the precipitation-albedo covariance matrix. (b) Second EOF of

the precipitation-albedo covariance matrix. (c) PCs of the First EOF of the precipitation-albedo

covariance matrix. (d) PCs of the Second EOF of the precipitation-albedo covariance matrix.

EOF1 explains about 49% of global variance, and EOF2 21%; Higher EOFs explains at most

8%. Same seasonal and multi-year averaging as in Fig.1.
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Figure S3. (a) R2 value of the regression of local precipitation with PC1 albedo; hatching shows

area where regression is statistically significant (p  0.05). (b) Regression of the precipitation

anomaly (from its ensemble-mean value) averaged continental South Asia with PC1 albedo; solid

blue line shows the mean regression slope, and dashed lines show the 95% confidence interval on

the slope.
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Figure S3. (a) R2 value of the regression of local precipitation with PC1 albedo; hatching

shows area where regression is statistically significant (p  0.05), and green line the 6mmday�1

precipitation isopleth. (b) Regression of the precipitation anomaly (from its ensemble-mean

value) averaged continental South Asia with PC1 albedo; solid blue line shows the mean regression

slope, and dashed lines show the 95% confidence interval on the slope. Continental South Asia

is defined as the land areas contained in the 60� � 180�E longitudinal sector and 5� � 45�N

latitudinal band.
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Table S1. List of GCMs and Observational Products
Index Name Resl albedo rainfall
A CERES 1.0000� ⇥ 1.0000� Y N
B MODIS 0.0500� ⇥ 0.0500� Y N
C SRB 1.0000� ⇥ 1.0000� Y N
1 ACCESS1-0 1.8750� ⇥ 1.2500� Y Y
2 ACCESS1-3 1.8750� ⇥ 1.2500� Y Y
3 BCC-CSM1-1 2.8125� ⇥ 2.7906� Y Y
4 BCC-CSM1-1-m 1.1250� ⇥ 1.1215� Y Y
5 BNU-ESM 2.8125� ⇥ 2.7906� Y Y
6 CanCM4 2.8125� ⇥ 3.1476� Y Y
7 CanESM2 2.8125� ⇥ 3.1476� Y Y
8 CCSM4 1.2500� ⇥ 0.9424� Y Y
9 CESM1-BGC 1.2500� ⇥ 0.9424� Y Y
10 CESM1-CAM5 1.2500� ⇥ 0.9424� Y Y
11 CESM1-FASTCHEM 1.2500� ⇥ 0.9424� Y Y
12 CESM1-WACCM 2.5000� ⇥ 1.8947� Y Y
13 CMCC-CESM 3.7500� ⇥ 4.1746� Y Y
14 CMCC-CM 0.7500� ⇥ 0.8371� Y Y
15 CMCC-CMS 1.8750� ⇥ 2.1037� Y Y
16 CNRM-CM5 1.4062� ⇥ 1.5800� Y Y
17 CNRM-CM5-2 1.4062� ⇥ 1.5800� Y Y
18 CSIRO-Mk3-6-0 1.8750� ⇥ 2.1039� Y Y
19 FGOALS-g2 2.8125� ⇥ 4.8855� Y Y
20 FIO-ESM 2.8125� ⇥ 2.7906� Y Y
21 GFDL-CM2p1 2.5000� ⇥ 2.0225� Y Y
22 GFDL-CM3 2.5000� ⇥ 2.0000� Y Y
23 GFDL-ESM2G 2.5000� ⇥ 2.0225� Y Y
24 GFDL-ESM2M 2.5000� ⇥ 2.0225� Y Y
25 GISS-E2-H 2.5000� ⇥ 2.0000� Y Y
26 GISS-E2-H-CC 2.5000� ⇥ 2.0000� Y Y
27 GISS-E2-R 2.5000� ⇥ 2.0000� Y Y
28 GISS-E2-R-CC 2.5000� ⇥ 2.0000� Y Y
29 HadCM3 3.7500� ⇥ 2.5000� Y Y
30 HadGEM2-AO 1.8750� ⇥ 1.2500� N Y
31 HadGEM2-CC 1.8750� ⇥ 1.2500� Y Y
32 HadGEM2-ES 1.8750� ⇥ 1.2500� Y Y
33 inmcm4 2.0000� ⇥ 1.5000� Y Y
34 IPSL-CM5A-LR 3.7500� ⇥ 1.8947� Y Y
35 IPSL-CM5A-MR 2.5000� ⇥ 1.2676� Y Y
36 IPSL-CM5B-LR 3.7500� ⇥ 1.8947� Y Y
36 MIROC4h 0.5625� ⇥ 0.6282� Y Y
38 MIROC5 1.4062� ⇥ 1.5668� Y Y
39 MIROC-ESM-CHEM 2.8125� ⇥ 3.1215� Y Y
40 MIROC-ESM 2.8125� ⇥ 3.1215� Y Y
41 MPI-ESM-MR 1.8750� ⇥ 2.1039� Y Y
42 MPI-ESM-P 1.8750� ⇥ 2.1039� Y Y
43 MPI-ESM-LR 1.8750� ⇥ 2.1039� Y Y
44 MRI-CGCM3 1.1250� ⇥ 1.2649� Y Y
45 MRI-ESM1 1.1250� ⇥ 1.2649� Y Y
46 NorESM1-ME 2.5000� ⇥ 1.8947� Y Y
47 NorESM1-M 2.5000� ⇥ 1.8947� Y Y
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