Correlation of Sturtian diamictite successions in southern Australia and northwestern Tasmania by Re–Os black shale geochronology and the ambiguity of “Sturtian”-type diamictite–cap carbonate pairs as chronostratigraphic marker horizons

Brian Kendalla,b,*, Robert A. Creaserc, Clive R. Calverc, Timothy D. Raubd, David A.D. Evanse

a School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA
b Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
c Mineral Resources Tasmania, P.O. Box 56, Rosny Park, Tasmania 7018 Australia
d Division of Geological and Planetary Sciences, California Institute of Technology 170-25, Pasadena, CA 91125, USA
e Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, USA

\begin{abstract}
Recent geochronological studies have raised concerns regarding the accuracy of regional and global correlations of Neoproterozoic sedimentary successions using relative dating methods such as carbon isotope chemostratigraphy and glaciogenic diamictite–cap carbonate lithological and geochemical characteristics. Precise and accurate radio-isotopic age constraints for Neoproterozoic sedimentary rocks thus remain a high priority for establishing a reliable Neoproterozoic chronostratigraphy. Here, we present a new Re–Os age of 640.7±4.7 Ma from black shales of the upper Black River Dolomite (Togari Group, northwestern Tasmania) that represents a minimum age for deposition of the immediately underlying, diamictite-bearing Julius River Member. The upper Black River Dolomite Re–Os age is statistically identical to a Re–Os age of 643.0±2.4 Ma previously determined for the Sturtian post-glacial Tindelpina Shale Member (Umberatana Group, Adelaide Rift Complex, southern Australia). Consistent with previous lithostratigraphic and stromatolite biostratigraphic evidence, the Re–Os ages suggest broadly coeval deposition of the Julius River Member and Sturtian diamictites and overlying organic-rich marine shales. Consideration of the Neoproterozoic geochronological database suggests that “Sturtian”-type diamictite–cap carbonate pairs cannot be used as chronostratigraphic marker horizons for global correlation of the Neoproterozoic rock record.
\end{abstract}

1. Introduction

Global and regional correlation of the Neoproterozoic rock record is significantly hampered by a sparse paleontological record and a general paucity of suitable igneous material for precise U–Pb zircon age determinations. Consequently, efforts at establishing a Neoproterozoic chronostratigraphy are largely based on chemostratigraphy (primarily 813C and 87Sr/86Sr from carbonates) and identification of distinctive lithological and geochemical characteristics of carbonates capping glaciogenic diamictites (e.g., Kaufman and Knoll, 1995; Kaufman et al., 1997; Kennedy et al., 1998; Jacobsen and Kaufman, 1999; Walter et al., 2000; Halverson et al., 2005, 2007; Halverson, 2006; Hoffman et al., 2007), Neoproterozoic global correlation schemes based on these methods commonly assume global (“Snowball Earth”) or near-global (“Slushball Earth”) glaciations at ca. 700 Ma (“Sturtian”) and ca. 635 Ma (“Marinoan”) and a glaciation of uncertain extent at ca. 580 Ma (“Gaskiers”). However, the number, timing, extent, and duration of Neoproterozoic glaciation remain an ongoing topic of debate (Fairchild and Kennedy, 2007), so the above tripartite division of Neoproterozoic glacial deposits may be erroneous. For example, Kendall et al. (2006) show that the archetypal “Sturtian” glaciation of southern Australia is significantly younger than ca. 685–750 Ma glaciogenic diamictites on other continents previously suggested as correlatives.

Carbon, sulfur, and strontium isotope chemostratigraphy are relative dating tools that do not unambiguously provide chronological information and thus require numerical calibration by independent radio-isotopic and biostratigraphic data to be useful for global correlation schemes (Meert, 2007). Neoproterozoic carbon isotope chemostratigraphic profiles for similar aged rocks can exhibit a sig-

© 2009 Elsevier B.V. All rights reserved.
Low-latitude Ice, Strong seasonality” (HOLIST) hypothesis would of precise radio-isotopic age constraints for some of the diamic-ari Group of northwestern Tasmania is hampered by the absence of Australia, with two diamictite intervals present within the Tog-Formation) glacial deposits of the Adelaide Rift Complex, southern 2008). However, correlation of the “Sturtian” (Yudnamutana Sub- 2001; Direen and Crawford, 2003; Meffre et al., 2004; Berry et al., 2000; Calver and Walter, 2000; Preiss, 2000; Karlstrom et al., records of these two regions (Calver, 1998; Burrett and Berry, 1998) and Calver and Walter (2000) suggest deposition of the Julius River Member in western Tasma- nia (Calver, 1998), and (2) dolomite clasts within the Julius River Member contain the stromatolite Baicalla burra (Griffin and Press, 1976; Calver, 1998), that is also present within the pre-Sturtian Skillogalee Dolomite. Burra Group (Belperio, 1990; Preiss, 1990). Lithological (stromatolitic dolostone and organic-rich chert) and carbon isotope (13C$_{carb}$~+2‰ to +6‰) similarities may suggest correlation of the Skillogalee Dolomite and Black River Dolomite (Schipkowitz et al., 1975; Veizer and Hoefs, 1976; Belperio, 1990; Calver, 1998). In the North Flinders Zone and Baratta Trough of the Adelaide Rift Complex, the Sturtian glacial succession was deposited by sediment gravity flows contemporaneously with two glacial deposi- tional cycles, with evidence of glaciation being preserved in the form of striated clasts and dropstones (e.g., Young and Gostin, 1991; Eyles et al., 2007). However, evidence of a glacial influence in the Julius River Member is not compelling because that diamictic unit comprises sub-rounded, intrabasinal, dolomitic clasts surrounded by a fine-grained, dolomitic mudstone matrix (Calver, 1998). At the type section in Julius River (Julius River, southern Arthur Forest, Tasmania), a ~2 m dolostone clast-framework microbreccia with an organic-rich, dolomitic matrix separates structurally uncomplicated lower Black River dolostone from overlying black shale containing dolostone limestones at the base of the Julius River Member. This unconformable microbreccia-defined contact may represent karst or regolith produced during subaerial exposure. Pyritic, organic-rich shales with subordinate carbonate con- formably overlie the Julius River Member and comprise the top of the Black River Dolomite. The shale-carbonate succession is litho- logically similar to the basal Tindelpina Shale Member of the Tapley Hill Formation that overlies most Sturtian glaciogenic deposits in the Adelaide Rift Complex (Calver, 1998; Calver and Walter, 2000). The Black River Dolomite is succeeded by the 1 km thick Kannunah Subgroup that comprises a basal unit of fine-grained siliciclas- tics and volcaniclastic arenites (Keppel Creek Formation) overlain by rhodacite and diamictite (250 m thick Croles Hill Diamictite) (Calver et al., 2004). The latter contains thin, fine-grained dropstone-bearing intervals that suggest a possible glacial imprint during deposition. The Croles Hill Diamictite is not overlain by a distinctive cap carbonate, but rather by 10–50 m of red mudstone and more than 200 m of tholeiitic basalt (Spinks Creek Volcanics)
This reddening of an otherwise organic-rich, ferrous-dominated succession bears similarity to the hypothesized global changes in sulfur (Fike et al., 2006) and iron (Canfield et al., 2007) cycling that accompanied deep ocean oxygenation after the ca. 580 Ma “Gaskiers” glaciation (Bowring et al., 2003; Calver et al., 2004).

The depositional age of the Togari Group is poorly constrained. Detrital zircons in the Forest Conglomerate yield predominantly Paleoproterozoic U–Pb zircon ages (2.5–1.4 Ga; Berry et al., 2001). The underlying Rocky Cape Group has a maximum depositional age of ca. 1000 Ma based on the youngest U–Pb detrital zircon age (Black et al., 2004). Possible correlatives of the Rocky Cape Group in the highly deformed Arthur Metamorphic Complex are older than granitoids dated at 777 ± 7 Ma (U–Pb SHRIMP zircon) that intrude this complex (Turner et al., 1998). Deformed turbidites of the Oonah Formation, southeast of the Arthur Metamorphic Complex, have a wide range of Paleoproterozoic to Mesoproterozoic detrital U–Pb zircon ages (youngest ages are ca. 1280 Ma; Black et al., 2004), a detrital K–Ar muscovite age of 708 ± 6 Ma (Turner, 1993) and a K–Ar biotite age of 725 ± 35 Ma from the syn-depositional Cooee Dolerite (McDougall and Leggo, 1965; revised by Crook, 1979). However, the K–Ar ages may reflect thermal resetting of isotopic systematics and thus the Oonah Formation may be correlative with the Rocky Cape Group (Black et al., 2004). The most reliable radio-isotopic age determination from the Togari Group is a U–Pb SHRIMP zircon age of 582 ± 4 Ma from rhyodacite underlying the Croles Hill Diamictite (Calver et al., 2004).

3. Samples and analytical methods

In the Forest-1 drill core (145°15.3’E, 40°48.9’S; Department of Mines and Mineral Resources, Tasmania core library, Hobart, Tasmania), the Julius River Member is ~130 m thick and comprises two diamictite horizons separated by ~15 m of limestone and subordinate organic-rich shale (Fig. 3). Fine-grained organic-rich dolostone caps the Julius River Member, and is somewhat similar to dolostone

Fig. 1. Simplified geological map showing the distribution of Neoproterozoic rocks in Tasmania and the location of drill hole Forest-1. Modified from Calver and Walter (2000).
lens-bearing sections of the Tindelpina Shale Member (Calver and Walter, 2000), but dissimilar to low-angle, cross-bedded, peloidal cap carbonates found conformably overlying many Elatina Formation glaciogenic diamictites and in rare instances, Sturtian iron formation in southern Australia (Preiss, 1985; Raub et al., 2007). The succeeding ~40 m of strata comprises pyritic black shale with subordinate carbonate, and is lithologically similar to the basal Tindelpina Shale Member (Calver and Walter, 2000). Overlying the black shales are fine-grained volcaniclastic mudstones that grade up-section into volcaniclastic sandstones (Keppel Creek Formation, Kanunnah Subgroup; Calver, 1998; Calver and Walter, 2000). Ten samples of finely laminated pyritic black shale were obtained from 835.58 to 835.87 m depth in Forest-1 and are located ~1 m above the apparently conformable contact with underlying Julius River Member diamictites.

Neoproterozoic rocks from the Smithton Synclinorium have undergone minimal thermal alteration (Calver, 1998; Turner et al., 1998). X-ray diffraction analysis of sample RC06-FOR-01-E yields the mineral assemblage quartz + feldspar + muscovite + dolomite + kaolinite + pyrite. In Forest-1, organic carbon \(\delta^{13}C \) is between -34‰ and -24‰, and \(\Delta^{13}C_{\text{carbonate-organics}} \) is 28-35 ‰ (Calver, 1998). The latter is similar to the average fractionation of 30‰ for the past 800 Ma (Hayes et al., 1999). Sub-greenschist facies metamorphism is thus inferred for the Neoproterozoic succession in Forest-1 because greenschist facies metamorphism typically results in \(\delta^{13}C_{\text{org}} \) heavier than -20‰, and lower \(\Delta^{13}C_{\text{carbonate-organics}} \) (Hoefs and Frey, 1976; Hayes et al., 1983).

Between 25 g and 50 g of drill core material was ground to remove cutting and drilling marks, broken into small chips without metal contact, and powdered in an agate mill. Preparation of large powder aliquots (i.e., >20 g) is necessary to avoid any small-scale post-depositional diffusion and/or decoupling of Re and Os in otherwise pristine organic-rich sedimentary rocks (Kendall et al., in press). Rhenium–osmium isotope analyses were carried out at the Radiogenic Isotope Facility of the Department of Earth and Atmospheric Sciences, University of Alberta.

Between 0.45 g and 0.55 g of powder and a known quantity of a \(\text{H}^{185}\text{Re} - \text{H}^{190}\text{Os} \) tracer were digested in 8 mL of \(\text{CrVI-H}_2\text{SO}_4 \) solution (containing 0.25 g of \(\text{CrO}_3 \) per 1 mL of \(4\text{N H}_2\text{SO}_4 \)) in sealed Carius tubes for 48 h. This whole-rock digestion protocol minimizes release of detrital Re and Os from the shale silicate matrix by selectively releasing into solution the hydrogenous Re and Os associated with organic matter (Selby and Creaser, 2003; Kendall et al., 2004). In this study, we explored the possibility of using a lower Carius tube digestion temperature (80°C) rather than the standard temperature of 240°C to decrease the risk of Carius tube rupture during sample digestion and further minimize acid attack on detrital silicate material (the \(\text{CrVI-H}_2\text{SO}_4 \) solution does not quantitatively exclude dissolution of silicate minerals; Ravizza et al., 1991; Azmy et al., 2008). Osmium was separated from the \(\text{CrVI-H}_2\text{SO}_4 \) solution by solvent extraction using chloroform, back-extracted into concentrated HBr, and purified by double micro-distillation (Cohen and Waters, 1996; Birck et al., 1997). Rhenium was separated from the \(\text{CrVI-H}_2\text{SO}_4 \) solution by anion exchange chromatography (after first
Fig. 3. Stratigraphic column for drill hole Forest-1, Smithton Synclinorium, NW Tasmania. The sample interval used for determining the Re–Os depositional age for the upper Black River Dolomite is shown by the arrow. Modified from Calver (1998).

bubbling in SO2 gas to reduce Cr6+ to Cr3+), and further purified by single bead anion exchange chemistry (Selby and Creaser, 2003). Rhenium and Os were then loaded onto crimped Ni and Pt filaments, respectively (Kendall et al., 2009). Average procedural blanks for Re and Os were 10.8 ± 1.5 pg (1σ, n = 9) and 0.12 ± 0.05 pg (1σ, n = 8), respectively, with blank 187Os/188Os of 0.24 ± 0.08 (1σ, n = 8).

Rhenium and osmium abundances and isotope compositions were determined by isotope dilution–negative thermal ionization mass spectrometry (ID-NTIMS) on a Micromass Sector 54 mass spectrometer using Faraday collectors in static mode (for Re) and a pulse-counting electron multiplier in single-collector peak hopping mode (for Os). Isobaric interference of 187ReO3− on 187OsO3− at mass 235 was monitored using mass 233 (185ReO3−), but was determined to be negligible (typically <5 cps). Metal isotope ratios were obtained by correcting raw Re and Os oxide isotopic ratios for isobaric oxygen interferences. Further corrections were made for instrumental mass fractionation (using 185Re/187Re = 0.59738 and 185Os/188Os = 3.08261; Nier, 1937; Gramlich et al., 1973), and blank and spike abundances. In-house standard solutions of Re (AB-1) and Os (AB-2) were used to assess long-term instrument reproducibility and yielded values for 185Re/187Re and 187Os/188Os of 0.59889 ± 0.00044 (1σ, n = 43) and 0.1069 ± 0.0001 (1σ, n = 46), respectively, over a seven month interval. Statistically indistinguishable averages for these standard solutions were reported in previous publications by the Radiogenic Isotope Facility at Alberta (e.g., Creaser et al., 2002; Selby and Creaser, 2003; Kendall et al., 2004, 2009; Selby et al., 2005; Azmy et al., 2008). Further, Selby (2007) determined identical values for AB-1 (185Re/187Re = 0.5977 ± 0.0012; 1σ, n = 8) and AB-2 (185Os/188Os = 0.1068 ± 0.0001; 1σ, n = 6) from the Arthur Holmes Isotope Laboratory at Durham University.

Re–Os isochron regressions were performed with Isoplot V.3.0 (Ludwig, 2003) using a value of 1.666 × 10−11 year−1 for λ187Re (Smoliar et al., 1996; Selby et al., 2007), 2σ uncertainties for 187Re/188Os and 187Os/188Os determined by error propagation (Kendall et al., 2004), and the error correlation ρ (‘rho’) (Kendall et al., 2004; Azmy et al., 2008). Use of ρ for black shale Re–Os isochron regressions is recommended because the error correlation between 187Re/188Os and 187Os/188Os is usually significant (0.37–0.52 in this case).

4. Results

Rhenium (19–39 ppb) and Os (328–525 ppt) abundances of organic-rich shales from the upper Black River Dolomite are significantly elevated relative to average upper crust abundances of ~1 ppb and 30–50 ppt, respectively (Esser and Turekian, 1993; Peucker-Ehrenbrink and Jahn, 2001; Hattori et al., 2003; Sun et al., 2003) (Table 1). The 187Re/188Os isotope ratios range between 533 and 832, whereas 187Os/188Os isotope ratios range between 6.74 and 9.95. Regression of all Re–Os isotope data yields a Re–Os age of 640.7 ± 4.7 Ma (2σ, n = 19, Model 1, Mean Square of Weighted Deviates [MSWD] = 0.91, initial 187Os/188Os = 1.00 ± 0.05; Fig. 4). Separate regressions of the Re–Os isotope data derived using 240°C and 80°C Carius tube digestions yields statistically identical Re–Os ages of 642.7 ± 6.9 Ma (2σ, n = 11 [10 samples plus 1 replicate analysis], Model 1, MSWD = 0.69, initial 187Os/188Os = 0.98 ± 0.08) and 639.3 ± 6.4 Ma (2σ, n = 8 [7 samples plus 1 replicate analysis], Model 1, MSWD = 1.3, initial 187Os/188Os = 1.02 ± 0.07), respectively.

Fig. 4. Re–Os isochron diagram for the upper Black River Dolomite, Togari Group, NW Tasmania. Open and shaded error ellipses denote Carius tube CrVI-H2SO4 digestion at 240°C and 80°C, respectively. A Model 1 isochron means the isochron fitting is accomplished by assuming scatter along the regression line is derived only from the input 2σ uncertainties for 187Re/188Os and 187Os/188Os, and ρ.
The excellent agreement in Re–Os abundance and isotope data obtained by 240 °C and 80 °C Carius tube digestions of the same sample powders (RC06-FOR-01-B2, C3, D2, E, and E2) suggests complete equilibration of the spike solution with hydrogenous Re and Os from these shale samples at 80 °C over 48 h. For sample RC06-FOR-01-D, the 240 °C and 80 °C analyses plot on the regression line, but with distinctly different 187Re/188Os and 187Os/188Os ratios, suggesting a non-homogenized powder aliquot after sample processing (Creaser et al., 2002; Kendall et al., 2004). Additional studies on other organic-rich sedimentary rocks are required to determine whether hydrocarbon maturation and/or organic matter composition (Selby and Creaser, 2003) could affect the accuracy and/or precision of Re–Os ages derived using the 80 °C digestion protocol.

5. Discussion

5.1. Correlation of Sturtian and Julius River Member diamictites

A growing body of evidence suggests that the 187Re–187Os radioisotope system represents a precise and accurate deposition-age geochronometer for organic-rich shales that were not subjected to post-depositional alteration by oxidative subaerial and submarine weathering, hydrothermal and diagenetic fluid flow, and metamorphism exceeding the lower greenschist-facies (Kendall et al., in press). Precise depositional ages (better than ±1%, 2σ) have been obtained for a number of Precambrian organic-rich (TOC ≥ 0.5%) sedimentary rocks (Hannah et al., 2004, 2006; Kendall et al., 2004, 2006; Anbar et al., 2007; Creaser and Stasiuk, 2007; Yang et al., 2009). Concordant U–Pb zircon and Re–Os black shale ages obtained for the Devonian–Mississippian Exshaw Formation (Selby and Creaser, 2005) and the Late Archean Mt. McRae Shale (Anbar et al., 2007) demonstrate the accuracy of the Re–Os deposition-age geochronometer (Kendall et al., in press).

Given the excellent linear fit of the regression (MSWD = 0.91), the Re–Os age of 640.7 ± 4.7 Ma is interpreted as a depositional age for the upper Black River Dolomite. The Re–Os age for the upper Black River Dolomite is identical (within 2σ uncertainties) to the Re–Os age of 643.0 ± 2.4 Ma for the Sturtian post-glacial Tindelpina Shale Member of southern Australia (Kendall et al., 2006). The Tindelpina Shale Member Re–Os age was obtained from shales stratigraphically located ~3–8 m (based on two drill core sections; Kendall et al., 2006) above the conformable contact with underlying Sturtian glacigenic diamictites. Notwithstanding major differences in diamictite unit thickness and the general lack of evidence for glaciation in the Julius River Member, the Re–Os shale ages suggest the Julius River Member and Sturtian diamictites and overlying shale units are correlative, consistent with previous lithostratigraphic and stromatolite biostratigraphic evidence (Calver, 1998; Calver and Walter, 2000) (see Fig. 2).

On the basis of carbonate carbon isotope and lithological similarities, the Skillogalee Dolomite (Burra Group) has been correlated with Black River Dolomite carbonates underlying the Julius River Member diamictites (Schidlowski et al., 1975; Veizer and Hoefs, 1976; Belperio, 1990; Calver, 1998). The depositional age of the Skillogalee Dolomite is constrained between 659 ± 6 Ma (U–Pb zircon age from a tuffaceous horizon in the lower Wilyerta Formation; Fanning and Link, 2008) and 777 ± 7 Ma (U–Pb zircon age from volcanics at the base of the Burra Group; Preiss, 2000). Because the Skillogalee Dolomite is separated from the Sturtian glacial deposits by ~2–3 km of sedimentary rocks, a major unconformity is inferred to be present at the base of the Julius River Member and may be time-correlative with the regional erosional unconformity between the upper Burra Group and Sturtian glacial deposits in the Adelaide Rift Complex (Preiss, 1990, 2000; Calver, 1998). The karst/regolith atop lower Black River Dolomite at the type section of the Julius River Member (Julius River, southern Arthur Forest, Tasmania) may mark this unconformity.

The sub-Julius River unconformity complicates attempts at determining the age of vaso-shaped microfossils (VSMs) preserved in chert facies of the lower Black River Dolomite. The VSMs represent the remains of testate amoebae (Porter and Knoll, 2000) and the taphonomic window favouring abundant preservation of these fossils may have occurred during early Neoproterozoic time (Porter, 2006), possibly associated with the appearance and radiation of marine, heterotrophic eukaryotes (Porter and Knoll, 2000). The minimum age for this taphonomic window is poorly constrained, but may be a U–Pb zircon age of 742 ± 6 Ma from an ash bed in the upper Walcott Member of the Kwagunt Forma-
tion, at the top of the Chuar Group in the Grand Canyon, USA (Karlstrom et al., 2000). If deposition of the Black River Dolomite was generally continuous, then the upper Black River Dolomite Re–Os shale age of 640.7 ± 4.7 Ma suggests the lower Black River Dolomite VSMs represent a much younger assemblage relative to other preserved Neoproterozoic VSMs, thus limiting the utility of these fossils for global biostratigraphy. A long-lived unconformity between the lower Black River Dolomite and Julius River Member diamictites, however, permits an early Neoproterozoic age for the lower Black River Dolomite VSMs.

5.2. Os isotope composition of local seawater during Sturtian post-glacial sedimentation

The initial 187Os/188Os isotope composition from a black shale Re–Os isochron regression records the contemporaneous local seawater Os isotope composition at the time of sediment deposition (Ravizza and Turekian, 1992; Cohen, 2004; Ravizza and Paquay, 2008; Kendall et al., in press). The radiogenic Os isotope composition (187Os/188Os = 1.00 ± 0.05 and 0.95 ± 0.01 from the upper Black River Dolomite and Tindelpina Shale Member, respectively) of Sturtian post-glacial seawater in the Adelaide Rift Complex and near the Western Tasmania Terrane are similar to present–day seawater (187Os/188Os = 1.06; Peucker-Ehrenbrink and Ravizza, 2000). Thus, riverine inputs of radiogenic Os from oxidative weathering and erosion of upper continental crust (present–day average 187Os/188Os of ~1.5; Levasseur et al., 1999) dominated over the influx of unradiogenic Os from cosmic dust and hydrothermal alteration of oceanic crust and peridotites (present–day average 187Os/188Os ~0.13; Walker et al., 2002a,b). Post-glacial weathering of crustal material may have resulted in an elevated riverine flux and/or increased riverine 187Os/188Os from the continents into local seawater near the margin of the East Antarctic–Australia block following Sturtian glaciation. Similar explanations have been proposed to explain radiogenic seawater Os isotope compositions observed for Cenozoic post-glacial/inter-glacial intervals (Peucker-Ehrenbrink and Blum, 1998; Ravizza and Peucker-Ehrenbrink, 2003; Williams and Turekian, 2004; Dalai et al., 2005, 2006).

5.3. Croles Hill Diamictite–Elatina Formation—Cottons Breccia correlation?

Because the shales immediately overlying the Sturtian and Julius River Member diamictites are demonstrably time-correlative, it is tempting to also correlate the younger diamictite interval in the upper Togari Group (Croles Hill Diamictite) with the glaciogenic Elatina Formation in the Adelaide Rift Complex (see Fig. 2). The Croles Hill Diamictite has a maximum depositional age of 582 ± 4 Ma based on U–Pb SHRIMP zircon dating of underlying rhodacite, but the Elatina Formation is not geochronologically constrained. In southeastern King Island, sills of the Grimes Intrusive Suite are dated at 575 ± 3 Ma by the U–Pb SHRIMP zircon method, intrude diamictite (Cottons Breccia), and overlying “cap carbonate” (Cumberland Creek Dolostone) and shale (Yarra Creek Shale) (Calver et al., 2004). Correlation of the Cottons Breccia and Elatina Formation is also supported by the similar petrology and carbon isotope chemostratigraphic profiles of the overlying “Marinoan-type” cap carbonates (Cumberland Creek Dolostone and Nuccaleena Formation, respectively), and by post-glacial, organic–rich microbialite facies (Yarra Creek Shale and Brachina Formation, respectively) (Calver, 2000; Calver and Walter, 2000; Preiss, 2000; Corsetti and Lorenz, 2006). Based on their generally similar stratigraphic settings and U–Pb SHRIMP zircon ages, Calver et al. (2004) suggest the Croles Hill Diamictite, Cottons Breccia, and Elatina Formation are correlative with each other and the ca. 580 Ma Gaskiers glacial deposits of eastern Canada (Bowring et al., 2003). However, this correlation scheme remains uncertain for a number of reasons. For example, a glacial origin for the Croles Hill Diamictite is uncertain, and the time interval between deposition of the Cottons Breccia and emplacement of the 575 ± 3 Ma Grimes Intrusive Suite is not known. The Julius River Member itself does not contain compelling evidence for a glacial influence on deposition, though it is most likely correlative with the Sturtian glacial deposits based on identical Re–Os ages from the immediately overlying shale units. The presence or absence of clear glacial indicators in a diamictite unit does not of itself indicate synchronous or diachronous deposition of diamictite units. Similarly, the absence of a “Marinoan”–type cap carbonate above the Croles Hill Diamictite does not preclude correlation with the Cottons Breccia or Elatina Formation (Calver et al., 2004), but the presence of such carbonates need not uniquely indicate synchronous deposition of underlying diamictite intervals (see below for further discussion). It remains possible that the Elatina Formation and the Cottons Breccia could be older than the <582 ± 4 Ma Croles Hill Diamictite, and instead correlative with ca. 635 Ma glacial deposits of the Nantuo Formation, southern China (Condon et al., 2005) and Ghaub Formation, Namibia (Hoffmann et al., 2004). Accepting this correlation requires very rapid basin evolution in southern Australia (where >4 km of inter–glacial strata are preserved between the Elatina Formation and the 643.0 ± 2.4 Ma Sturtian post-glacial Tindelpina Shale Member; Preiss et al., 1998) and a short duration (<10 M.y.) for the “Snowball” or “Slushball” glaciation ending at ca. 635 Ma. Although rapid basin subsidence and sedimentation rates near basin margins have been inferred for the Central Flinders Zone of the Adelaide Rift Complex (Eyles et al., 2007), only precise radio-isotopic age determinations for the Cottons Breccia and Elatina Formation will firmly resolve this debate. New U–Pb zircon ages from ash beds near the base (636.3 ± 4.9 Ma) and below the unconformable contact (654.5 ± 3.8 Ma) of the Nantuo Formation in southern China do permit the possibility of a <10 M.y. global glaciation (Zhang et al., 2008).

5.4. Ambiguity of “Sturtian”–type cap carbonates as global chronostratigraphic marker horizons

Current global correlation schemes for Neoproterozoic glacial deposits depend heavily upon correlation of two distinctive types of diamictite–cap carbonate pairs that were designated “Sturtian”–type and “Marinoan”–type after the archetypal occurrences in southern Australia. “Marinoan”–type cap carbonates are similar to the Nuccaleena Formation overlying the glaciogenic Elatina Formation in southern Australia. These cap carbonates are characterized by a negative and declining upward δ13C chemostratigraphic profile, low–angle cross–bedded, peloidal dolomircite of typically pinkish–cream color, and unusual sedimentary structures such as pseudotepees, aragonite or barite pseudomorph crystal fans, sheet crack–filling isopachous cements, and tubestones (Kennedy et al., 1998; Hoffman and Schrag, 2002; Halverson et al., 2005; Corsetti and Lorenz, 2006).

Recently, Corsetti and Lorenz (2006) tested the hypothesis that “Marinoan” diamictite–cap carbonate pairs are chronostratigraphic marker horizons. “Marinoan”–type cap carbonates with radio–isotopic age control (Table 2) occur above glaciogenic intervals of: (1) the Scout Mountain Member, Pocatello Formation, Idaho, USA (constrained between U–Pb SHRIMP zircon ages of 701 ± 4 Ma and 667 ± 5 Ma; Fanning and Link, 2004, 2008), (2) Ghaub Formation, Namibia (younger than a U–Pb TIMS zircon age of 635.51 ± 0.54 Ma from an ash bed within the diamictite; Hoffmann et al., 2004), (3) Nantuo Formation, South China (U–Pb TIMS zircon age of 635.23 ± 0.57 Ma from an ash bed within the cap carbonate; Condon et al., 2005), and (4) Icebrook Formation, northwestern Canada (older than a Re–Os black shale age of 607.8 ± 4.7 Ma from the post-glacial Old Fort Point Formation, a possible lithostrati-
graphic equivalent to the Icebrook Formation cap carbonate and overlying marine shales; Kendall et al., 2004). The Scout Mountain cap carbonate is apparently older than the other “Marinoan”-type cap carbonates by at least 30 M.y. The cap carbonates above the Nantuo Formation and Ghaub Formation (and perhaps the Icebrook Formation) may have been deposited synchronously as part of a global oceanographic event in the aftermath of a “snowball” or “slushball” Earth ice age, but the exact mode of origin of a global oceanographic event in the aftermath of a “snowball” or “slushball” Earth ice age, but the exact mode of origin for “Marinoan”-type cap carbonates remains contentious (Fairchild and Kennedy, 2007, and references therein).

In their analysis, Corsetti and Lorentz (2006) mention examples of radio-isotopically well-constrained “Sturtian”-type cap carbonates, but do not discuss the time span of deposition for such carbonates nor the Re–Os age for the Sturtian post-glacial Tindelpina Shale Member. We expand upon on their analysis for “Sturtian”-type cap carbonates with accumulating geochronological evidence that the “Sturtian” glaciation was either long-lasting, but diachronous, or there were multiple episodes of glaciation. These radio-isotopic ages could potentially be used to anchor a global oceanographic event in the aftermath of a “snowball” or “slushball” Earth ice age, but the exact mode of origin for “Marinoan”-type cap carbonates remains contentious (Fairchild and Kennedy, 2007, and references therein).

In their analysis, Corsetti and Lorentz (2006) mention examples of radio-isotopically well-constrained “Sturtian”-type cap carbonates, but do not discuss the time span of deposition for such carbonates nor the Re–Os age for the Sturtian post-glacial Tindelpina Shale Member. We expand upon on their analysis for “Sturtian”-type cap carbonates with accumulating geochronological evidence that the “Sturtian” glaciation was either long-lasting, but diachronous, or there were multiple episodes of glaciation between 750 Ma and 643 Ma, of as yet unknown duration and extent (Kendall et al., 2006). Classic “Sturtian”-type cap carbonates are organic-rich and rhythmically laminated, sometimes contain roll-up structures, and have a carbon isotope profile characterized by initially negative δ13C values becoming more positive up-section (Kennedy et al., 1998; Hoffman and Schrag, 2002; Halverson et al., 2005; Corsetti and Lorentz, 2006). In addition to examples above some Sturtian glacial deposits (constrained to be 643.0 ± 2.4 Ma from Re–Os dating of the basal Tindelpina Shale Member; Kendall et al., 2006), such carbonates also occur above glaciogenic deposits of the Ghaub Formation, Oman (younger than a U–Pb TIMS zircon age of 714.2 ± 0.6 Ma from an ash bed within the diamictite; Bowring et al., 2007), the Tiesiao Formation, South China (U–Pb TIMS zircon age of 662.9 ± 4.3 Ma from an ash bed within the cap carbonate; Zhou et al., 2004), and the Areyonga Formation, central Australia (Re–Os black shale age of 657.2 ± 5.4 Ma from the base of the overlying Aralka Formation; Kendall et al., 2006). These examples of “Sturtian”-type cap carbonate deposition span as much as ~70 M.y. of geological time. Even within a single continental block, “Sturtian”-type cap carbonate deposition may be diachronous (e.g., mainland Australia; Kendall et al., 2006). The Sete Lagoas cap carbonate (depositional age of 740 ± 22 Ma based on Pb–Pb dating of well-preserved carbonates) above the Bambuí Group glaciogenic deposits in Brazil has an upward increasing carbon isotope profile (characteristic of “Sturtian”-type caps), but contains argonite pseudomorph crystal fans (characteristic of “Marinoan”-type caps) (Babinski et al., 2007). Finally, in the structural moat of the synsedimentary, “Worumba” salt-withdrawal anticline of South Australia, Waraco Formation dolostone occupies the stratigraphic position of the Tindelpina Shale Member and conformably overlies the Sturtian Holowilen Ironstone (Preiss, 1985). The dolostone is cream-colored and comprises low-angle, cross-bedded peloidal dolomite as is typical of “Marinoan” caps, further undermining the utility of distinctive diamictite–cap carbonate pairs as reliable chronostratigraphic marker horizons.

Given the pitfalls associated with carbon isotope chronostratigraphy and the plausible diachronity of “Sturtian”- and “Marinoan”-type diamictite–cap carbonate pairs, efforts at developing a reliable Neoproterozoic chronostratigraphy should focus on further acquisition of precise and accurate radio-isotopic ages. These radio-isotopic ages could potentially be used to anchor a high-resolution 87Sr/86Sr and 87Sr/86Sr chronostratigraphic curve (e.g., Halverson et al., 2007) and/or a well-established acritarch biostratigraphy (e.g., Willman and Moczydlowska, 2008), although the utility of the latter beyond the Ediacaran Period remains to be established.

6. Conclusions

A new Re–Os depositional age of 640.7 ± 4.7 Ma (Model 1, MSWD = 0.91) is presented for the upper Black River Dolomite (Togari Group, northwestern Tasmania) that provides a close minimum age constraint on deposition of the underlying Julius River Member diamictites. The Re–Os age for the Black River Dolomite is also statistically identical (within 2σ uncertainties) to the Re–Os age of 643.0 ± 2.4 Ma (Model 1, MSWD = 1.1) for the basal Tindelpina Shale Member (Umbertatana Group, Adelaide Rift Complex, southern Australia) that overlies Sturtian glaciogenic deposits. Consistent with previous lithostratigraphic and stromatolite biostratigraphic evidence, the Re–Os ages suggest broadly synchronous deposition of the Julius River Member and Sturtian diamictites and immediately overlying organic-rich marine shale successions. Geochronological constraints do not support the use

Table 2

Summary of cap carbonates with geochronological constraints.

<table>
<thead>
<tr>
<th>Diamictite unit</th>
<th>Location</th>
<th>Method</th>
<th>Cap characteristics</th>
<th>Minimum age (Ma)</th>
<th>Direct age (Ma)</th>
<th>Maximum age (Ma)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macaísbas Group</td>
<td>Brazil</td>
<td>Pb–Pb carbonate (Sete Lagoas Formation)</td>
<td>Sturtian/Marinoan</td>
<td>740 ± 22</td>
<td></td>
<td></td>
<td>Babinski et al. (2007)</td>
</tr>
<tr>
<td>Ghubrah Formation</td>
<td>Oman</td>
<td>U–Pb TIMS zircon (tuffaceous bed in diamictite)</td>
<td>Sturtian</td>
<td></td>
<td>714.2 ± 0.6</td>
<td></td>
<td>Bowring et al. (2007)</td>
</tr>
<tr>
<td>Pocatello Formation, Scout Mountain Member</td>
<td>Idaho, USA</td>
<td>U–Pb SHRIMP zircon (tuffaceous beds)</td>
<td>Marinoan</td>
<td>667 ± 5</td>
<td>701 ± 4</td>
<td></td>
<td>Fanning and Link (2004, 2008)</td>
</tr>
<tr>
<td>Tiesiao Formation</td>
<td>South China</td>
<td>U–Pb TIMS zircon (tuffaceous bed, Datango Formation)</td>
<td>Sturtian</td>
<td>662.9 ± 4.3</td>
<td></td>
<td></td>
<td>Zhou et al. (2004)</td>
</tr>
<tr>
<td>Areyonga Formation</td>
<td>Central Australia</td>
<td>Re–Os black shale (Aralka Formation)</td>
<td>Sturtian/Marinoan</td>
<td>657.2 ± 5.4</td>
<td></td>
<td></td>
<td>Kendall et al. (2006)</td>
</tr>
<tr>
<td>Yudnamutana Subgroup (Tillian)</td>
<td>South Australia</td>
<td>Re–Os black shale (Tindelpina Shale Member)</td>
<td>Sturtian/Marinoan</td>
<td>643.0 ± 2.4</td>
<td></td>
<td></td>
<td>Kendall et al. (2006)</td>
</tr>
<tr>
<td>Ghaub Formation</td>
<td>Namibia</td>
<td>U–Pb TIMS zircon (tuffaceous bed in diamictite)</td>
<td>Marinoan</td>
<td></td>
<td>635.51 ± 0.54</td>
<td></td>
<td>Hoffmann et al. (2004)</td>
</tr>
<tr>
<td>Nantuo Formation</td>
<td>South China</td>
<td>U–Pb TIMS zircon (tuffaceous bed, Doushantu Formation)</td>
<td>Marinoan</td>
<td>635.23 ± 0.57</td>
<td></td>
<td></td>
<td>Condon et al. (2005)</td>
</tr>
<tr>
<td>Ice Brook Formation, Stofflex Member</td>
<td>NW, Canada</td>
<td>Re–Os black shale (correlate Old Fort Point Formation)</td>
<td>Marinoan</td>
<td>607.8 ± 4.7</td>
<td></td>
<td></td>
<td>Kendall et al. (2004)</td>
</tr>
</tbody>
</table>
of "Sturtian-type" diamictite–cap carbonate pairs as chronostratigraphic marker horizons.

Acknowledgements

The manuscript benefited from insightful comments by David Selby and Tony Prave. This research was supported by a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant to Creaser and an Alberta Ingenuity Fund Ph.D. Studentship to Kendall, a David and Lucile Packard Foundation Fellowship to Evans, and by NS-ER 0739105 (Raub). Creaser publishes with the permission of the Director, Mineral Resources Tasmania. The Radiogenic Isotope Facility at the University of Alberta is supported in part by an NSERC Major Resources Support Grant. Jaime Hallowes and Gayle Hatcher are thanked for technical assistance.

References

