Palaeoproterozoic supercontinents and global evolution: correlations from core to atmosphere

S. M. REDDY1* & D. A. D. EVANS2

1The Institute for Geoscience Research, Department of Applied Geology, Curtin University of Technology, GPO Box U 1987, Perth, WA 6845, Australia
2Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109, USA

*Corresponding author (e-mail: S.Reddy@curtin.edu.au)

Abstract: The Palaeoproterozoic era was a time of profound change in Earth evolution and represented perhaps the first supercontinent cycle, from the amalgamation and dispersal of a possible Neoarchaean supercontinent to the formation of the 1.9–1.8 Ga supercontinent Nuna. This supercontinent cycle, although currently lacking in palaeogeographic detail, can in principle provide a contextual framework to investigate the relationships between deep-Earth and surface processes. In this article, we graphically summarize secular evolution from the Earth’s core to its atmosphere, from the Neoarchaean to the Mesoproterozoic eras (specifically 3.0–1.2 Ga), to reveal intriguing temporal relationships across the various ‘spheres’ of the Earth system. At the broadest level our compilation confirms an important deep-Earth event at c. 2.7 Ga that is manifested in an abrupt increase in geodynamo palaeointensity, a peak in the global record of large igneous provinces, and a broad maximum in several mantle-depletion proxies. Temporal coincidence with juvenile continental crust production and orogenic gold, massive-sulphide and porphyry copper deposits, indicate enhanced mantle convection linked to a series of mantle plumes and/or slab avalanches. The subsequent stabilization of cratonic lithosphere, the possible development of Earth’s first supercontinent and the emergence of the continents led to a changing surface environment in which voluminous banded iron- formations could accumulate on the continental margins and photosynthetic life could flourish. This in turn led to irreversible atmospheric oxidation at 2.4–2.3 Ga, extreme events in global carbon cycling, and the possible dissipation of a former methane greenhouse atmosphere that resulted in extensive Palaeoproterozoic ice ages. Following the great oxidation event, shallow marine sulphate levels rose, sediment-hosted and iron-oxide-rich metal deposits became abundant, and the transition to sulphide-stratified oceans provided the environment for early eukaryotic evolution. Recent advances in the geochronology of the global stratigraphic record have made these inferences possible. Frontiers for future research include more refined modelling of Earth’s thermal and geodynamic evolution, palaeomagnetic studies of geodynamo intensity and continental motions, further geochronology and tectonic syntheses at regional levels, development of new isotopic systems to constrain geochemical cycles, and continued innovation in the search for records of early life in relation to changing palaeoenvironments.

Supercontinents occupy a central position in the long term processes of the Earth system. Their amalgamations result from lateral plate-tectonic motions manifesting mantle convection, and their disaggregation, although thought by some to be externally forced by plume or hotspot activity (e.g. Storey et al. 1999), is widely considered to result from their own thermal or geometric influences upon such convection (Gurnis 1988; Anderson 1994; Lowman & Jarvis 1999; Vaughan & Storey 2007; O’Neill et al. 2009). Continental collisions compress land area and thus are expected to lower sea level; fragmentations involve crustal thinning and generate young seafloor, and therefore should raise sea level (Fischer 1984; Worsley et al. 1984). These eustatic effects can influence global climate by changing global albedo and rates of silicate weathering (a sink for atmospheric carbon dioxide) on exposed versus drowned continental shelves (Nance et al. 1986; Marshall et al. 1988). Chemical weathering of pyrite and organic carbon in mountain belts is a major influence on the atmospheric oxygen budget as is their burial in marine sediments. These processes are in turn dependent on global tectonics (Berner 2006). Climatic changes, plus geographic patterns of ocean circulation, will exert a profound influence on the biosphere (Valentine & Moores 1970). Microbes play an important role in concentrating low-temperature mineral deposits through
near-surface redox reactions (e.g. Dexter-Dyer et al. 1984; Labrenz et al. 2000) and many mineral deposits are associated with specific tectonic environments related to broader supercontinent cycles (Barley & Groves 1992; Groves et al. 2005).

The connections illustrated above are based on concepts or a few well-constrained examples. The actual record of supercontinents on Earth is not yet well enough known to verify or modify the models in deep time. Prior to Pangaea (approximately 0.25–0.15 Ga) and Gondwana-Land (0.52–0.18 Ga), the possible configurations and even existence of Neoproterozoic Rodinia (c. 1.0–0.8 Ga) are intensely debated (Meert & Torsvik 2003; Li et al. 2008; Evans 2009). Prior to Rodinia, an earlier supercontinental assemblage at 1.9–1.8 Ga has been suggested. Although only preliminary and palaeomagnetically untested models of this supercontinent have been published (Rogers & Santosh 2002; Zhao et al. 2002, 2004), its assembly appears to have followed tectonic processes that are remarkably similar to those of the present day (Hoffman 1988, 1989). This supercontinent is referred to by various names (e.g. Columbia, Nuna, Capricornia) but here, and below, we refer to it as Nuna (Hoffman 1997).

It is unclear whether Nuna’s predecessor was a large supercontinent, or whether it was one of several large, but distinct coeval landmasses (Aspler & Chiarenzelli 1998; Bleeker 2003). Nonetheless, numerous large igneous provinces, with ages between 2.45 and 2.2 Ga, perforate the world’s 35 or so Archaean cratons and could represent an episode of globally widespread continental rifting at that time (Heaman 1997; Buchan et al. 1998; Ernst & Buchan 2001).

Given that the Palaeoproterozoic era is defined chronometrically at 2.5–1.6 Ga (Plumb 1991), it thus encompasses one or more episodes, perhaps cycles, of global tectonics. As enumerated by the following examples, these tectonic events coincide with fundamental changes to the Earth as an integrated system of core, mantle, lithosphere, hydrosphere, atmosphere, and biosphere. Understanding these changes requires the integration of seemingly disparate geoscience disciplines. One pioneering review of this sort (Nance et al. 1986) has been followed by an incredible wealth of precise geochronological data constraining ages within the Palaeoproterozoic geological record. In this chapter we have compiled the currently available data from core to atmosphere, from late Archaean to late Mesoproterozoic time (3.0–1.2 Ga), to provide an overview of Earth-system evolution and an up-to-date temporal and spatial framework for hypotheses concerning the global transition through Earth’s ‘middle ages’.

Evolution of the core

Today, the metallic core of the Earth consists of a solid inner part, with radius of about 1200 km, surrounded by a liquid outer part with outer radius of about 3500 km. As such, it occupies about one-sixth of the Earth’s volume, and dominates the planetary concentration of the siderophile elements Fe and Ni. It is generally accepted that the core was originally entirely fluid, and that through time the solid inner core nucleated and grew as the Earth cooled gradually (Jacobs 1953; Stevenson 1981; Jeanloz 1990). However, the rate of this inner-core growth is highly uncertain and depends upon various estimates of radioactive element (mainly K) concentrations in the core versus mantle and crust (Nimmo et al. 2004; Davies 2007).

Recent estimates of the age of inner core nucleation, on a theoretical basis constrained by the geochemical data, are typically about 1 Ga (Labrosse et al. 2001; Nimmo et al. 2004; Butler et al. 2005; Gubbins et al. 2008). Much discussion on this topic is confounded with discussions of the intensity of Earth’s ancient geomagnetic field. This is because two of the primary energy drivers of the geodynamo are thought to be thermal and compositional convection in the outer core due to inner core crystallization (Stevenson et al. 1983). Early attempts to determine the palaeointensity of Earth’s magnetic field, which is among the most laborious and controversial measurements in geophysics, suggested an abrupt increase in moment near the Archaean–Proterozoic boundary (Hale 1987). Subsequent refinements to techniques in palaeointensity (e.g. the single-crystal technique applied by Smirnov et al. 2003) have generated mixed results, but several of the measurements indicate a strong field in the earliest Proterozoic (Fig. 1a). More traditional palaeointensity techniques complete the later Proterozoic time interval with results of generally low palaeointensity (Macouin et al. 2003). There is currently no systematic test among the various palaeointensity techniques, so absolute Precambrian palaeointensity values remain ambiguous. In addition, the large apparent increase in palaeointensity at c. 1.2 Ga (Fig. 1a) is underpinned by sparse data that lack some standard reliability checks (Macouin et al. 2004). However, we tentatively explore the possibility that all the available records provide reliable estimates of ancient geomagnetic field strength.

Given that there is growing consensus that the inner core began to crystallize relatively late in Earth history, we speculate that the increase in palaeointensity at 1.2–1.1 Ga could be due to the inner-core growth-related energy inputs toward geodynamo generation. In that case, the Archaean–Proterozoic interval of strong intensity, if sampled
Fig. 1. Secular variation in Earth characteristics from 3.0–1.2 Ga. Columns (a–t) are ordered to depict a general progression from core (left) to atmosphere (right). (a) Geodynamo strength from data reported by Smirnov (2003), Macouin et al. (2004) and Shcherbakova et al. (2008). (b) Average upper mantle adiabatic temperature curves from Richter (Richter 1988; Abbott et al. 1994; Komiya 2004). Curve by Richter (1988) assumes a bulk Earth composition of 20 ppb U, K/U = 10^4 and Th/U = 3.8. Curve of Abbott et al. (1994) represents lower temperature boundary of calculated mantle potential temperatures for MORB-like rocks. The curve by Komiya (2004) illustrates a high-temperature boundary. (c) Modelled plate velocities using 'conventional' and 'plate tectonic' scaling laws summarized by Korenaga (2008). (d) Temporal distribution of large igneous provinces (LIPs) presented as time series (Abbott & Isley 2002) and number per 100 Ma (from data compiled by Ernst & Buchan 2001). Height axis refers to peak eruption temperatures and age errors (see Abbott & Isley 2002 for details). (e) Mantle depletion inferred from osmium model ages by Pearson et al. (2007) (black lines and axis) and Nb/Th ratio from Collerson & Kamber (1999) (green line and axis). Red lines and axis shows the Nb/Th data of Collerson & Kamber (1999) and 4He/3He data of Parman (2007) recast in terms of relative mantle depletion rate (Silver & Behn 2008a). Note that the age constraints for the 4He/3He peaks of Parman (2007) are derived by assuming that they correlate with the continental crust forming events of Condie (1998) and Kemp et al. (2006). (f) Compilation of δ18O from zircon (Valley et al. 2005) and the Nd and Hf evolution of depleted mantle (Bennett 2003) which are interpreted to reflect growth. The subaerial proportion of LIPS (Kump & Barley 2007) represents crustal emergence. (g) Scaled volume of continental crust from Condie (2005) and the distribution of two metamorphic types that are considered to characterize plate tectonic processes; granulite ultra high temperature (G-UHTM) and medium pressure eclogite ultra high pressure (E-UHPM). (h) The distribution of proposed supercontinents Nuna and Kenorland that mark the supercontinent cycle of the Palaeoproterozoic era (after Williams et al. 1991; Bleeker 2003; Barley et al. 2005). (i) Distribution of different types of ore deposits (following Groves et al. 2005). Dashed line represents approximate cumulative number of minerals on Earth (based on Hazen et al. 2008). (k) Banded iron formations (BIFs) expressed as the number and volume of BIF occurrences for Superior- and Algoma-type deposits (after Huston & Logan 2004). (l) Sr isotope data for seawater, river runoff and mantle input and the normalized 87Sr/86Sr values (taken from Shields 2007). (m) δ13C data expressed as ‰ variation from Vienna PeeDee Belemnite. Data are from Shields & Viezer (2002), Lindsay & Brasier (2002) and Kah et al. (2004). (n) Evaporites and seawater sulphate content expressed in terms of volume and mM respectively. Data from Kah et al. (2004) and Evans (2006). 'H' represents distribution of halite based on Pope & Grotzinger (2003) and other references cited in text. (o) Non-mass dependent fractionation shown by D33S data, summarized by Farquhar et al. (2007). (p) Atmospheric oxygen levels. Black dashed line shows compilation of Campbell & Allen (2008) recalculated to partial pressure (Pa). Coloured blocks show the compilation of Kirchvink & Kopp (2008) along with their interpretations. The grey blocks illustrate the periods of supercontinent stability proposed by Campbell & Allen (2008). (q) Atmocpheric CO2 expressed as log partial pressure reported by Kasting & Yung (1988) and 3.5 Ga distribution from the compilation of Evans (2008) plus the 1.8 Ga example from Williams (2005). (r) Temporal distribution of oceanic impacts (115 km diameter) and impact spherule beds. Data are sourced from Earth Impact Database (2009) and Simonson et al. (2009). (s) Evolution of eukaryotic life (with named macrofossils) and steranes: 1st column: Dutkiewicz et al. (2006) and George et al. (2008); 2nd column: Dutkiewicz et al. (2007); 3rd column: Rasmussen et al. (2008); 4th column: Waldbauer et al. (2009). References for the macrofossils are given in the text.
adequately, could be due to an anomalous episode of geodynamo-driving energy from the top of the core: perhaps, for example, a result of enhanced thermal gradients following a global peak in Neoarchaean subduction (Condie 1998). A more complete dataset of Archaean–Palaeoproterozoic palaeointensity measurements, with better indications of reliability for the obtained values, will be necessary to further our understanding of such ancient core processes.

Mantle evolution

The early Earth was undoubtedly hotter than at present, due to the relative abundance of radioactive isotopes that have since decayed, and the secular cooling of primordial heat from planetary accretion. Because it forms c. 80% of Earth’s volume, the nature of secular cooling of the Earth’s mantle carries fundamental implications for core formation, core cooling and the development of the geodynamo, the development of a modern style of plate tectonics and crustal evolution. Critical to the evolution of the mantle are the total concentrations of radioactive elements in the Earth, their spatial and temporal distribution and residence times in the core, mantle, and crust, and the degree to which layered versus whole-mantle convection can redistribute them. The precise quantification of the mantle’s secular cooling is therefore intimately linked to its structure and geochemistry. These remain a subject of significant debate and have been arguably ‘the most controversial subject in solid Earth sciences for the last few decades’ (Korenaga 2008c). Without doubt, mantle convection is a requirement of a secularly cooling Earth (see Jaupart et al. 2007; Ogawa 2008 for recent reviews) but establishing the nature of modern convection in the modern Earth has proved difficult and is more so in its extrapolation to the geological past (Schubert et al. 2001).

Numerical modelling is one approach that has received considerable attention in attempting to constrain Earth cooling models. Such modelling commonly utilizes the simple relationship between radiogenic heat production, secular cooling and surface heat flux. Critical to these models is the way in which surface heat flux is calculated and how this heat flow is scaled to mantle convection over time. ‘Conventional’ models commonly calculate surface heat flux using scaling laws that assume a strong temperature dependency on viscosity such that hotter mantle convects more vigorously, thereby increasing surface heat flux. As clearly enunciated by Korenaga (2006), applying conventional heat flux scaling from current conditions back through geological time predict unrealistically hot mantle temperatures before 1 Ga and lead to the so-called ‘thermal catastrophe’ (Davies 1980). Several numerical models have therefore addressed different ways of modifying the scaling laws to avoid these unrealistic mantle temperatures. One way of doing this is by assuming a much higher convective Urey ratio (i.e. the measure of internal heat production to mantle heat flux) in the geological past (e.g. Schubert et al. 1980; Geoffrey 1993) than modern day estimates (Korenaga 2008c). Although this assumption overcomes problems of the thermal catastrophe in the Mesoproterozoic, the solution leads to high Archaean mantle temperatures that appear inconsistent with empirical petrological data for mantle temperatures (Abbott et al. 1994; Grove & Parme 2004; Komiya 2004; Berry et al. 2008) (Fig. 1b).

An alternative way of alleviating the problem of a Mesoproterozoic ‘thermal catastrophe’ is to assume layered mantle convection rather than whole-mantle convection (e.g. Richter 1985). A layered mantle has been inferred as a means of maintaining distinct geochemical reservoirs, particularly noble gas compositions measured between mid-ocean ridge basals and plume-related ocean island basals (e.g. Allegre et al. 1983; O’Nions & Oxburgh 1983) and large-ion lithophile elements budgets of the crust and mantle (e.g. Jacobsen & Wasserburg 1979; O’Nions et al. 1979). The nature of this layering differs between different models (c.f. Allegre et al. 1983; Kellogg et al. 1999; Gonnermann et al. 2002). However, critical to this argument is that the modelling of layered versus whole-mantle convection and its affect on present day topography supports the latter (Davies 1988), and seismic tomographic data provide evidence of subducting slabs that penetrate the lower mantle (e.g. van der Hilst et al. 1997). These observations are difficult to reconcile with the classic model of layered convection (see van Keken et al. 2002 for review).

With increasing geochemical data from a range of different sources, geochemical constraints on mantle evolution are becoming more refined, and the two-layer mantle reservoir models have necessarily become more complex (see reviews of Graham 2002; Porcelli & Ballentine 2002; Hilton & Porcelli 2003; Hofmann 2003; Harrison & Ballentine 2005). These data have led to the formulation of models in which some of the chemical heterogeneity is stored in the core or deep mantle (Porcelli & Elliott 2008), or is associated with a unmixed lower mantle ‘magma ocean’ (Labrosse et al. 2007), or is associated with lateral compositional variations (Trampert & van der Hilst 2005), or is explained by filtering of incompatible trace elements associated with water release and melting associated with magnesium silicate phase changes in the mantle transition zone (Bercovici & Karato 2003). However, a recent
development in layered mantle geodynamics and the understanding of core–mantle interaction is the significant discovery of the post-perovskite phase transition (Murakami et al. 2004) and the realization that such a transition seems to account for many of the characteristics of the seismically recognized D" layer of the lower mantle (see Hirose & Lay 2008 for a recent summary). The large positive Clapeyron slope of the perovskite–post-perovskite phase transition means that cold subducting slabs that reach the core–mantle boundary are likely to lead to enhanced post-perovskite formation and form lateral topography on the D" layer (Hernlund et al. 2005). With the addition of slab material to the D" layer, and its potential for enhanced melting (Hirose et al. 1999), it is likely that there will be significant geochemical implications for lower mantle enrichment and melting (see for example Kellogg et al. 1999; Labrosse et al. 2007), in addition to the potential for mantle plume generation (Hirose & Lay 2008), both of which are yet to be resolved. The post-perovskite stability field intersects only the lowermost depths of the present mantle geotherm (Hernlund et al. 2005) and the secular cooling rate of the lowermost mantle is not well enough known to estimate the age at which this post-perovskite phase first appeared in Earth history. However, this is likely to be of importance in the secular evolution of the deep Earth.

To summarize, current geodynamical and geochemical models for the modern mantle are therefore necessarily complex and it seems that the answer may reside in a mixture of whole-mantle and episodic layered convection that is closely linked to large-scale plate tectonic processes and affects chemical heterogeneities preserved at a range of scales (Tackley 2008).

Despite the advances in understanding the geo-dynamics of the present-day mantle, extrapolation to the Palaeoproterozoic mantle remains elusive. In the last few years, developments in the modelling of secular cooling of the mantle have utilized surface heat flux scaled to a ‘plate tectonic’ model involving mantle melting at mid-ocean ridges (Korenaga 2006) or intermittent plate tectonic models in which subduction flux, indicated by geochemical proxies (e.g. the Nb/Th ratios of Collerson & Kamber 1999 Fig. 1e), varies over time (Silver & Behn 2008a). These models overcome the problems of Mesoproterozoic thermal runaway, calculated back from present day conditions via conventional scaling laws, in the first case by taking account of depth-dependent mantle viscosity variations as a function of melting (Hirth & Kohlstedt 1996) and in the second by reducing the amount of heat loss at times of plate tectonic quiescence (Silver & Behn 2008a). Importantly, such models predict significantly reduced plate velocities during the Neoarchaean and Palaeoproterozoic eras than conventional models do (Fig. 1c) because of either the increased difficulty of subducting thicker dehydrated lithosphere (Korenaga 2008b) or the episodic nature of the supercontinent cycle (Silver & Behn 2008a). However, they remain controversial (Korenaga 2008a; Silver & Behn 2008b), particularly in light of recent evidence for a temperature control on lower crustal thermal conductivity (Whittington et al. 2009) and empirical estimates of Archaean mantle temperatures (Berry et al. 2008) that are higher than the model predictions (Fig. 1b). Even so, the development of models that are intimately linked to plate tectonic processes and that involve the formation and subduction of strong, plate-like lithosphere that controls mantle convection (e.g. Tackley 2000; Bercovici 2003), provide predictions from the core to the atmosphere that can be empirically constrained by the extant geological record, for example secular variations in crust and mantle geochemistry (Fig. 1d), the amalgamation and dispersal of supercontinents (Fig. 1i) and chemistry of the oceans and atmosphere (Fig. 1k, q).

Another feature of mantle evolution that has received considerable scientific attention is the formation and secular development of mantle plumes (e.g. Ernst & Buchan 2003 and references therein). One of the expressions of the impingement of mantle plumes on Earth’s lithosphere is the development of large igneous provinces (LIPS) (Ernst & Buchan 2001, 2003) manifest as continental or oceanic flood basalts and oceanic plateaus. The geological record of LIPS (summarized by Ernst & Buchan 2001; Abbott & Isley 2002) recognizes a general decrease of size in younger LIP events, and an episodic distribution in time (Fig. 1d). Time-series analysis of LIPS recognizes a c. 330 Ma cycle in the period from 3.0–1.0 Ga upon which weaker, shorter duration cycles are superimposed (Prokoph et al. 2004). As pointed out by Prokoph et al. (2004), no simple correlation exists between the identified LIP cycles and possible forcing functions, though current global initiatives to date mafic volcanism precisely (e.g. Bleeker & Ernst 2006) should improve the likelihood of establishing such correlations. Currently, the correlations reported in Figure 1 show that LIP activity at c. 2.7–2.8 Ga coincides with global banded iron formation (BIF) and orogenic gold formation, while a second event at 2.45 Ga corresponds with a the major formation of Superior-type BIF. In addition, the major 2.7 Ga peak in LIP activity lies temporally close to the peak in juvenile crust formation (Fig. 1g), a correlation that has led to the suggestion that these features may be geodynamically related (Condie 2004) and which may explain observed gold enrichment (Brimhall 1987; Pirajno 2004).
Crustal growth and emergence

Continental crust represents only a small proportion of Earth’s volume, yet it contains significant proportions of Earth’s incompatible elements recorded in long-lived igneous, sedimentary and metamorphic rocks (e.g. Turekian & Wedepohl 1961; Taylor 1964). Establishing the secular evolution of compositional changes in continental rocks therefore provides fundamental constraints on the growth of the continental crust, the evolution of the mantle from which it was extracted, and the chemical evolution of the oceans and atmosphere. However, establishing the composition of continental crust and how this changes over time is not straightforward (e.g. McLennan 1989) and has been debated intensely (see reviews of Hawkesworth & Kemp 2006a; Rollinson 2006 for recent summaries).

One widely used approach has been the analysis of fine-grained sedimentary rocks, thought to provide a statistical representation of the upper crust, to establish the increase in volume of the continental crust over time (e.g. Allegre & Rousseau 1984; Taylor & McLennan 1985, 1995). Other approaches include the direct analysis of zircon age populations from juvenile continental crust (Condie 1998), or indirect analysis by assessing the chemical evolution of the depleted upper mantle from which continental crust is believed to be ultimately sourced (e.g. Bennett 2003 and references therein) (Fig. 1f). More recent developments include the integration of in situ stable and radiogenic isotope analysis (Valley et al. 2005; Hawkesworth & Kemp 2006b).

Despite the difficulties in constraining the composition of continental crust (Rudnick et al. 2003) and the likely requirement of two-stage differentiation (e.g. Arndt & Goldstein 1989; Rudnick 1995; Kemp et al. 2007), several fundamentally different growth models dominate the literature (for recent summary see Rino et al. 2004): rapid differentiation of the crust early in Earth’s history and subsequent recycling such that there has been little subsequent increase in volume over time (e.g. Armstrong 1981, 1991); growth mainly in the Proterozoic (Hurley & Rand 1969; Veizer & Jansen 1979); high growth rates in the Archaean followed by slower growth in the Proterozoic (Dewey & Windley 1981; Reymer & Schubert 1984; Taylor & McLennan 1995) and growth accommodated by discrete episodes of juvenile crust formation (McCulloch & Bennett 1994; Condie 1998, 2000).

The first of these models (Armstrong 1981, 1991) seems unlikely in the light of relatively constant \(^{18}O \) from Archaean rocks that show little evidence of extensive crustal recycling prior to 2.5 Ga (Valley et al. 2005). These data also point towards significant crustal growth in the Archaean and so are also inconsistent with the models of dominantly Proterozoic growth (Hurley & Rand 1969; Veizer & Jansen 1979). In the case of progressive or episodic crustal growth, mantle depletion events should also mimic continental growth. Despite possible complexities associated with crustal recycling and questions regarding the nature of mantle convection, Re–Os data from peridotites and platinum group alloys indicate mantle depletion events that cluster at 1.2, 1.9 and 2.7 Ga (Pearson et al. 2007) (Fig. 1e). A temporally similar peak at 2.7–2.5 Ga is recorded in Nb/Th data (Collerson & Kamber 1999) following polynomial fitting of the data (Silver & Behn 2008a) and in the \(^{4}He/^{3}He\) ocean island basalt data inferred at 2.7 Ga and 1.9 Ga (Parman 2007) (Fig. 1e). Although the age constraints on the mantle depletion events recorded by the He data are poor, the pattern of Os and Nb/Th data are similar to that documented by the temporal distribution of juvenile continental crust (Fig. 1g) and considered to reflect the formation of supercontinents (Fig. 1i) (Condie 1998; Campbell & Allen 2008), possibly linked to large-scale mantle overturn events (Condie 2000; Rino et al. 2004), and the cessation of, or decrease in, subduction flux (Silver & Behn 2008a). Recent models integrating chemical differentiation with mantle convection also predict the episodicity of juvenile crust formation (Walzer & Hendel 2008), as do large-scale mantle overturn events that are thought to take place on a timescale of several hundred million years (Davies 1995). Despite the above correlations, the pattern of juvenile crust ages has been argued to be a consequence of the preservation potential within the supercontinent cycle, in particular the ability to preserve material inboard of arcs (Hawkesworth et al. 2009). Although this seems a reasonable interpretation based on the crustal record, the temporal link between mantle depletion events (Collerson & Kamber 1999; Parman 2007; Pearson et al. 2007) and juvenile crust (Condie 1998; Campbell & Allen 2008) is less easy to explain by preservational biases and remains a compelling observation for linking these processes. Our current preference is therefore for continental growth models that involve continental crust formation in the Archaean with subsequent reworking, recycling and the addition of juvenile material via episodic processes through the Proterozoic.

The growth of continental crust, its evolving volume and its thickness are intimately related to the evolution of the mantle (e.g. Hynes 2001). These characteristics also play a critical role in continental freeboard, the mean elevation of continental crust above sea level, and the emergence of the continents (e.g. Wise 1974; Eriksson et al. 2006). The emergence of the continental crust above sea
level in turn influences the nature of sedimentation (Eriksson et al. 2005b) and enables weathering that affects ocean and atmospheric compositions. Several lines of evidence point to continental emergence around the Archaean–Proterozoic boundary, primarily in the form of distinctive geochemical trends that require low-temperature alteration and crustal recycling. One such line of evidence comes from a recent compilation of $\delta^{18}O$ data from the zircons of juvenile rocks, which show a clear trend of relatively constant Archaean values with increasing values at c. 2.5 Ga (Valley et al. 2005) (Fig. 1f). This trend mimics those recorded in Hf and Nd isotopic data from juvenile granitic rocks (Fig. 1f), which is thought to represent depletion of the mantle associated with extraction of the continental crust (Bennett 2003). The pattern of oxygen isotopic variation in zircon is explained by complex contributions of various processes (Valley et al. 2005). However, a requirement is for a component of low-temperature fractionation commonly interpreted to be associated with continental weathering, the recycling of supracrustal rocks and subsequent melting.

The most recent data to place temporal constraints on continental emergence comes from an analysis of submarine versus subaerial LIP (Kump & Barley 2007) (Fig 1f), which shows an abrupt increase in the secular variation of subaerial LIPs at c. 2.5 Ga. This is thought to have had significant global repercussions with respect to the increase in atmospheric oxygen levels (Kump & Barley 2007) and is discussed further below. Recent modelling of continental emergence that links continental freeboard with different models for cooling of the Earth indicates that the emergent continental crust was only 2–3% of the Earth’s surface area during the Archaean, a stark contrast to present day values of c. 27% (Flament et al. 2008).

Sedimentary rocks document the physical, chemical, and biological interface between the Earth’s crust and its changing Precambrian surface environments (see Eriksson et al. 2005b for an overview). Palaeoproterozoic sedimentary basins share many of the same features as their modern counterparts, whether in rift settings (Sengor & Natal’ in 2001), passive margins (Bradley 2008), strike-slip basins (e.g. Ritts & Grotzinger 1994), or foreland basins (e.g. Grotzinger et al. 1988). Ironically, Precambrian sedimentary structures can be much easier to decipher than their Phanerozoic counterparts due to the lack of bioturbation in pre-metazoan depositional environments. However, there are some notable differences between Precambrian and modern clastic sedimentation systems. Most notably, sandstones of pre-Devonian river systems are commonly characterized by sheet-braided geometry with greater channel widths ascribed to the lack of vegetative slope stabilization (e.g. Long 2006). The deposits of specific palaeoenvironments such as aeolianites have a temporal distribution modulated by long-term preservational potential and possible relationships to phases of supercontinental cyclicity (Eriksson & Simpson 1998), as is also the case for glaciogenic deposits, which are summarized below. Also discussed below are factors determining the temporal variation in redox-sensitive mineral clasts such as detrital pyrite and uraninite (Fig. 1p), and the abundances and chemical compositions of banded iron-formations (Fig. 1k), evaporites (Fig. 1n), and carbonate chemistry and structure (Grotzinger 1989; Grotzinger & James 2000).

Supercontinents

All supercontinents older than Pangaeas are conjectural in both existence and palaeogeography. The concept of Precambrian episodicity, and hence supercontinental cycles, arises from global peaks in isotopic age determinations, in which the basic result has not changed throughout a half-century of compilation (Gastil 1960; Worsley et al. 1984; Nance et al. 1986, 1988; Condé 1995, 1998, 2000; Campbell & Allen 2008). The most prominent age peaks are at 2.7–2.6 and 1.9–1.8 Ga, with some studies also indicating a peak at 1.2–1.1 Ga. The age peaks are global in distribution, although many regions contain regional signatures, and they are best correlated to collisional accretion of cratons in North America (Hoffman 1988, 1989). This led to the naming of successively older pre-Pangaeas supercontinents Grenvilleland, Hudsonland and Kenorland (Williams et al. 1991). The younger two of these entities are most commonly given alternative names Rodinia (for recent reviews, see Li et al. 2008; Evans 2009), and Nuna or Columbia (Hoffman 1997; Rogers & Santosh 2002); ‘Grenvilleland’ has been forgotten, and ‘Hudsonland’ almost so (cf. Pesonen et al. 2003). Here we favour ‘Nuna’ for the supercontinent that assembled at 1.9–1.8 Ga (see Zhao et al. 2002 for a global review) because it represents a preferred renaming of ‘Hudsonland’ by one of the co-authors of the original study (Hoffman 1997) and has priority over ‘Columbia’ (Rogers & Santosh 2002), the latter of which was also defined by a specified palaeogeography that has been modified in subsequent references (e.g. Meert 2002; Zhao et al. 2002, 2004).

There are additional names for putative Palaeoproterozoic continental assemblages. Capricornia (Krapez 1999) refers to a model for the early amalgamation of Australia and hypothesized adjacent cratons Laurentia, India, Antarctica, and Kalahari. Arctica is defined as the postulated assemblage of Siberia with northern Laurentia, and Atlantica
comprises the proposed long-lived amalgamation of West (and parts of northern) Africa, Amazon, São Francisco—Congo, and Rio de la Plata (Rogers 1996). Of these, a Siberia—northern Laurentia connection, if not directly adjacent then slightly separated, is allowed by numerous independent palaeomagnetic comparisons from 1.5 to 1.0 Ga (Pisarevsky & Natapov 2003; Pisarevsky et al. 2008; Wingate et al. 2009), and lack of tectonic activity after 1860 Ma in southern Siberia would suggest that this position had been established by that time (Poller et al. 2005; Pisarevsky et al. 2008). A long-lived Atlantica continent is difficult to test palaeomagnetically, due to a dearth of reliable results from its constituent cratons (Meert 2002; Pesonen et al. 2003). Minor transcurrent motions between West Africa and Amazon, sometime between original craton assembly at 2.1 Ga (Ledru et al. 1994) and their Gondwanan amalgamation in the Cambrian (e.g. Trindade et al. 2006), are proposed based on limited palaeomagnetic data from those two blocks (Onstott & Hargraves 1981; Onstott et al. 1984; Nomade et al. 2003). Such minor amounts of relative displacement would preserve the proposed tectonic correlations among the Atlantica cratons, but further palaeomagnetic testing is needed.

Nuna, commonly under the guise of ‘Columbia’, is commonly reconstructed with many cratonic juxtapositions taken from inferred models of Rodinia (Rogers & Santosh 2002; Zhao et al. 2002, 2004; Hou et al. 2008a, b). These models lack robust palaeomagnetic constraints, and the reconstructions are commonly distorted by unscaled cut-outs from a Mercator projection of Pangaea. When palaeomagnetic data are incorporated into geometrically accurate reconstructions, the sparsity of reliable results has led authors to conflicting conclusions of either non-existence of a 1.8 Ga supercontinent altogether (Meert 2002), or one that accommodated substantial internal shears (Laurentia–Baltica motions illustrated in Pesonen et al. 2003), or the consideration of at most a few fragments with applicable data from discrete time intervals (Li 2000; Salminen & Pesonen 2007; Bispo-Santos et al. 2008).

The most robust long-lived juxtaposition of Palaeo–Mesoproterozoic cratons is that of Laurentia and Baltica throughout the interval 1.8–1.1 Ga. First proposed on geological grounds and named ‘NENA’ (northern Europe–North America, Gower et al. 1990), this juxtaposition finds palaeomagnetic support from numerous results throughout that interval, defining a common apparent polar wander path when poles are rotated according to the reconstruction (Evans & Pisarevsky 2008; Salminen et al.). The NENA reconstruction is distinct in detail from the commonly depicted juxtaposition of Hoffman (1988) that has been reproduced in Zhao et al. (2002, 2004), which is not supported palaeomagnetically. NENA is a specific reconstruction between two cratons and is distinct from Nuna, the supercontinent proposed to have assembled at 1.9–1.8 Ga without particular palaeogeographic specifications. By coincidence, the two names are similar, and NENA appears to be a robustly constrained component of Nuna. Payne et al. extend the Palaeo–Mesoproterozoic apparent polar wander comparisons to include Siberia, North and West Australia, and the Mawson Continent (Gawler craton with original extensions into Antarctica). The Australian proto-continent is restored in that analysis by the same sense of relative rotations as proposed by Betts & Giles (2006). As more data from other cratons accumulate through the 1.8–1.5 Ga interval, this approach should lead to a successful first-order solution of Nuna’s palaeogeography.

Kenorland is the name given to the palaeogeographically unspecified supercontinent that might have formed in the Neoarchaean era (Williams et al. 1991). Its etymology derives from the Kenoran orogeny (Stockwell 1982) that represents cratonization of the Superior craton at about 2.72–2.68 Ga (Card & Poulsen 1998; Percival et al. 2006) and of that age or younger in the Neoarchaean on other cratons (Bleeker 2003). Breakup of Kenorland would be represented by numerous large igneous provinces starting with a global pulse at 2.45 Ga (Heaman 1997). Subsequently, the meaning of ‘Kenorland’ has varied. Aspler & Chiaranzelli (1998) referred to Kenorland as the specified palaeogeography of ancestral North America, with an interpretation of the Trans-Hudson and related orogens that accommodated at most accordion-like oceanic opening and reclosing, but not extensive reshuffling of cratons. Baltica and Siberia were included in unspecified palaeogeographic configurations. A second proposed supercontinent (‘Zimvaalbara’ comprising Zimbabwe, Kaapvaal, Pilbara and perhaps São Francisco and cratons in India) is proposed to have assembled and begun to break up somewhat earlier than Kenorland, at 2.9 and 2.65 Ga, respectively; yet its final fragmentation was conjectured at 2.45–2.1 Ga, simultaneous with that of Kenorland (Aspler & Chiaranzelli 1998).

Bleeker (2003) chose a different nomenclature that referred to ‘Kenorland’ as a possible solution to Neoarchaean–Palaeoproterozoic palaeogeography whereby all (or most) cratons were joined together; he also proposed an alternative solution of palaeogeographically independent ‘supercratons’ that would each include a cluster of presently preserved cratons. Three supercratons were exemplified and distinguished by age of cratonization: Vaalbara (2.9 Ga), Superia (2.7 Ga), and Sclavia...
et al. (2008) with the most recent tests allowing a direct juxtaposition (Strik et al. 2003; de Kock et al. 2009). Superia has become more completely specified by the geometric constraints of precisely dated, intersecting dyke swarms across Superior, Kola–Karelia, Hearne, and Wyoming cratons through the interval 2.5–2.1 Ga (Bleeker & Ernst 2006). Aside from Slave craton, the additional elements of Sclavia remain unknown. Lastly, a completely different view of Kenorland (Barley et al. 2005) entails inclusion of all (or most) of the world’s cratons, following assembly as late as 2.45 Ga, and breakup at 2.25–2.1 Ga. This definition would be consistent with a global nadir in isotopic ages during the 2.45–2.25 Ga interval, proposed earlier as a time of supercontinent assembly (Condie 1995), or a more recently and radically, a cessation of plate tectonics altogether (Condie et al. 2009).

Palaeogeographic constraints on these proposed Neoarchaean–Palaeoproterozoic supercontinents and supercratons, other than the aforementioned Vaalbara, are limited by a small number of reliable palaeomagnetic data (Evans & Pisarevsky 2008). The best progress has been made in the Superior craton, where a series of precise U–Pb ages on mafic dyke swarms has been closely integrated with palaeomagnetic studies at the same localities, and with particular attention to baked-contact tests to demonstrate primary ages of magnetic remanence (e.g. Buchan et al. 2007; Halls et al. 2008). If a similar strategy is applied to other cratons then the solution of Kenorland or supercraton configurations will be much closer to realization.

Finally, Piper (2003) incorporated the extant Archaean–Palaeoproterozoic cratons into a long-lived supercontinent (duration 2.9–2.2 Ga) named ‘Protopangaea’. This assemblage mirrors Piper’s proposed Meso–Neooproterozoic supercontinent ‘Palaeopangaea’ (Piper 2007). Both are based on broad-brush compilations of the entire database containing a complex mixture of primary and secondary magnetizations rather than on precise palaeomagnetic comparisions of the most reliable data. Meert & Torsvik (2004) point out some of the problems with this approach, and Li et al. (2009) demonstrate specific quantitative refutations of the reconstructions.

Linked to the supercontinent debate is the controversy regarding the timing of initiation of a modern-style of plate tectonics (cf. Stern 2005; Cawood et al. 2006). A range of geological, geodynamic and geochemical constraints (recently summarized by Condie & Kroner 2008; Shirey et al. 2008; van Hunen et al. 2008), suggest the strong likelihood of plate tectonic behaviour in the Palaeoproterozoic and possibly back into the Archaean; an inference also made by Brown (2007) based on the presence of characteristic high pressure–lower temperature and high temperature–lower pressure metamorphic mineral assemblages associated with subduction and arcs respectively (Fig. 1h). Recent numerical models are consistent with this interpretation (e.g. Labrosse & Jaupart 2007). For a recent summary of the different aspects of the ongoing debate the reader is referred to Condie & Pease (2008) and references therein.

In summary, although Rodinia’s configuration remains highly uncertain, a working model of its predecessor Nuna is being assembled rapidly with the acquisition of new geochronological and palaeomagnetic data considered in the context of global tectonic constraints. It remains uncertain whether there was a supercontinent at all during the Archaean–Proterozoic transition, and if so, when it existed and how its internal configuration of cratons was arranged. Figure 1i depicts these uncertainties using the template illustration of Bleeker (2003). Creation of a global stratigraphic database (Eglington et al. 2009) not only illustrates the growing wealth of global age constraints on the Palaeoproterozoic rock record, but also shows which stratigraphic units are in greatest need of dating, and which units are most promising for successful preservation of primary palaeomagnetic remanence directions that will allow further progress in supercontinent reconstruction.

Minerals and mineral deposits

Understanding the secular development of mineral abundances and concentrations has importance for the exploration and exploitation of economic ore deposits. A recent review of the evolution of Earth’s minerals (Hazen et al. 2008) recognizes 10 stages of increasing mineral diversity associated with major global changes. In the timeline of interest here, the largest increase in mineral types has been linked to the development of the oxygenated atmosphere (Hazen et al. 2008). This event, the timing of which is best displayed by changes in the non-mass-dependent fractionation of sulphur isotopes (see below), entailed a significant increase in the number of mineral species (Fig. 1j) and correlates with the timing of the major deposits of Superior-type BIFs (Fig. 1k) and systematic changes in mineral deposits through time (Fig. 1j) (Barley & Groves 1992; Groves et al. 2005). The main peaks of BIF formation and deposition of unconformity-related, sediment-hosted uranium deposits at <1800 Ma are likely to represent the changing environmental conditions
(see below). In contrast, the spike of orogenic gold deposits at c. 2.7 Ga and volcanic-hosted massive sulphide deposits at c. 2.6 Ga and c. 1.7 Ga, which temporally correspond to peaks in juvenile continental crust production (Fig. 1g) and mantle depletion events (Fig. 1e) may represent fundamental differences in the nature of tectonic processes around the Archaean–Proterozoic boundary (Groves et al. 2005). These are speculated to be associated with the development of Earth’s first supercontinent (Barley & Groves 1992) and an increased preservation potential due to thicker subcontinental mantle lithosphere in the geological past (Groves et al. 2005).

The evolving ocean and atmosphere

Proxies for the secular evolution of the Neoarchaean–Proterozoic surface palaeoenvironment are numerous (Fig. 1k–q), commonly contentious, and often deeply interrelated in the development of conceptual models. Nevertheless, profound change is apparent, reflecting a combination of secular and cyclic trends. Here the development of this paper will deviate from its template of discussing the Earth system from its interior to its exterior, because one proxy in particular, the non-mass-dependent sulphur isotope system, is robust enough to provide a conceptual and temporal context for all the others.

Anomalous variation among the four stable sulphur isotope ratios, deviating from purely mass-dependent effects, are common in Archaean and earliest Proterozoic sedimentary pyrites (Farquhar et al. 2000). The deviations are thought to arise from gas-phase sulphur reactions in the upper atmosphere with concomitant mixing into seawater, with further constraints on sulphur speciation provided by increasingly refined datasets (e.g. Ono et al. 2003, 2009a, b). The termination of this non-mass-dependent fractionation signal is now estimated at c. 2.4–2.32 Ga (Bekker et al. 2004). Atmospheric modelling suggests that it was caused by either the rise of O₂ above 10⁻⁵ of present atmospheric levels (Pavlov & Kasting 2002) or loss of CH₄ below a critical threshold of c. 10 ppmv due to a shrinking ecological role of methanogenic producers (Zahnle et al. 2006). The collapse of methane from formerly high levels in the Archaean atmosphere (reviewed by Kasting 2005) probably plays a large role, not only the oxygenation history, but also the occurrence of Palaeoproterozoic ice ages, which will be discussed below. The combined data point to the 2.4–2.3 Ga interval as host to a ‘Great Oxidation Event’ (GOE: Cloud 1968; Holland 2002) during which Earth’s surface environment changed profoundly and irreversibly.

Possible changes in atmospheric oxidation state can be estimated by age variations in the non-mass-dependent signal (Fig. 1o). Many data now exist for the crucial interval of 3.0–2.4 Ga (Ohmoto et al. 2006; Farquhar et al. 2007; Kaufman et al. 2007; Ono et al. 2009a, b) and perhaps the most compelling evidence for a ‘whiff’ of oxygen prior to 2.4 Ga is furnished by Mo and Re concentration peaks in black shales at 2.5 Ga (Anbar et al. 2007; Wille et al. 2007). Much of the inferred global nature of these peaks depends on the correlation of signals between the Pilbara and Kaapvaal cratons, whereas a subsequent palaeomagnetic reconstruction of the blocks places them in direct juxtaposition (de Kock et al. 2009). More records of similar nature are needed from other cratons through this interval, to substantiate the global nature of any hypothesized oxygenation events. Localized, photosynthetically produced ‘oxygen oases’ could attain ppm-level O₂ concentrations within plumes dissipating into the methane-rich Neoarchaean troposphere in a timescale of hours to days (Pavlov et al. 2001).

The causes of the GOE remain unclear. Traditionally attributed to development of photosystem II in cyanobacteria (Cloud 1968; Kirschvink & Kopp 2008) or enhanced burial rates of organic carbon produced by that process (Karhu & Holland 1996), other potential long-term sources of oxidizing agents involve dissociation of atmospheric methane coupled to H₂ escape (Catling et al. 2001; Catling & Claire 2005), or the changing oxidative state of the upper mantle coupled to hydrothermal alteration of seafloor basalts (Kasting et al. 1993; Kump et al. 2001; Holland 2002). Finally, a qualitative empirical relationship between continental collisions and global oxygen increases over the past three billion years (Campbell & Allen 2008), linked to carbon and sulphur burial through enhanced physical weathering and sediment transport in mountain belts, is rendered particularly speculative for the GOE due to the poorly understood history of Palaeoproterozoic supercontinents or supercratons (see above). Widespread consideration of the non-biological alternatives has been motivated primarily by the apparent antiquity of molecular biomarkers for photosynthesizing organisms as old as 2.7 Ga, about 300–400 million years prior to the GOE (Brocks et al. 1999); however, the reliability of those records is currently debated (Eigenbrode et al. 2008; Rasmussen et al. 2008; Waldbauer et al. 2009).

Returning to the ocean, banded iron formations are a prima facie example of non-uniformitarianism in the Earth’s palaeoenvironment. Deposited widely prior to 1.85 Ga (Fig. 1k), they are nearly absent in the subsequent geological record, apart from a few small occurrences or unusual associations with
Neoproterozoic low-latitude glacial deposits of putative Snowball Earth events (Kirschvink 1992; Klein & Beukes 1992). The marked concentration of iron formation in the Palaeoproterozoic era has traditionally been construed as an indication of atmospheric oxidation at about that time (e.g. Cloud 1968) and that element is no doubt part of the story. However, recent research on iron formations using geochemical and isotopic tracers is painting a more refined picture of oceanic evolution.

Iron formations are broadly categorized into two classes, one with close association to volcanic successions (Algoma-type), and one without (Superior-type) (Gross 1965; Gross 1983). The Algoma-type iron formations are distributed throughout the Archaean sedimentary record, whereas Superior-type deposits only become significant at 2.6 Ga and later (Huston & Logan 2004) (Fig. 1k). By 2.5 Ga, Superior-type iron formations predominate, to the extent that ‘Siderian’ was informally proposed as the first period of the Palaeoproterozoic era (Plumb 1991). With refined global geochronology, the global peak in Palaeoproterozoic iron formation (e.g. Klein 2005 and references therein) appears to split into two modes, at c. 2.45 Ga and c. 1.9 Ga (Isley & Abbott 1999; Huston & Logan 2004), although some large deposits remain imprecisely dated (e.g. Krivoy Rog, Ukraine; Simandou, West Africa). The temporal distribution of iron formation is closely matched by the occurrence of thick, massive seafloor calcium carbonate cements (Grotzinger & Kasting 1993), commonly with crystalline microtextures linked to high Fe concentrations in seawater (Sumner & Grotzinger 1996).

Detailed petrological and facies analysis of iron formations has led to models with varying degrees of ocean stratification (e.g. Klein 2005; Beukes & Gutzmer 2008). But of concern to the present compilation are the broader trends in Earth’s palaeoenvironmental evolution. Do the time-varying abundances of iron formations through the Archaean–Proterozoic transition represent fundamental changes in oceanography? At the older end of that age range, the answer is likely to be ‘no’. Trendall (2002) discussed the requirement of tectonic stability to allow accumulation of the giant iron formations, and with the exception of the c. 1.9 Ga deposits, many of the large iron formations appear at the first submergence of each craton following initial amalgamation. If so, the initial peak in iron formations between 2.7 and 2.4 Ga (Fig. 1k) has causative correlation with other records such as continental emergence (Fig. 1f).

The apparently abrupt end of the first pulse of iron formations at c. 2.4 Ga remains to be tested by further geochronology (Krivoy Rog, Simandou), but its close temporal association with the rise of atmospheric oxygen strongly suggests a causal connection. Possible feedbacks involving phosphorus limitation on primary production (Bjerrum & Canfield 2002) have been disputed on quantitative grounds (Konhauser et al. 2007). However, fractionations of Fe isotopes in sedimentary pyrite appear to support the close coincidence between the timing of oxygenation in the atmosphere and the ocean (Rouxel et al. 2005).

Renewal of iron-formation deposition at 2.0–1.8 Ga could also indicate profound changes in the hydrosphere. The so-called ‘Canfield ocean’ model (Canfield 1998, 2005; Anbar & Knoll 2002) is the suggestion that after atmospheric oxidation, the increased weathering of continental sulphide minerals brought reactive sulphate ions into the marine realm, where sulphate-reducing bacteria responded with enhanced pyrite formation, thus stripping seawater of its hydrothermally generated Fe. In this model, the disappearance of iron formations at c. 1.8 Ga reflects the change to more reducing, sulphidic conditions rather than the deep ocean turning oxic. Meanwhile, the upper layer of seawater would remain oxygenated in contact with the post-GOE atmosphere; this first-order stratification is proposed to have persisted until the end of Precambrian time (Canfield et al. 2008). Despite some criticism (e.g. Holland 2006), the model has passed initial tests using depth-dependent iron speciation and sulphur stable isotopic variations in Mesoproterozoic marine sediments (Shen et al. 2002, 2003), patterns of trace metal concentrations (Anbar & Knoll 2002), isotopes (Arnold et al. 2004) and molecular biomarkers (Brocks et al. 2005).

Amid these novel geochemical proxies for hydrospheric and biospheric evolution, more traditionally studied isotopic systems show equally dramatic variations. One of the largest seawater carbon-isotopic anomalies in Earth history is known as the ‘Lomagundi’ or ‘Jatuli’ event respectively after the c. 2.1 Ga strata in Zimbabwe or Karelia where it was first documented (cf. Schidlowski et al. 1975) with typical values as high as +10‰ (Fig. 1m). An elegantly simple model attributed the peak to organic-carbon burial associated with evolution of oxygenic photosynthesis and, consequently, the rise of atmospheric oxygen (Karhu & Holland 1996). As discussed below, however, there is (contested) evidence that the advent of oxygenic photosynthesis could have preceded the isotopic peak by at least several hundred million years. Although the most enriched 13C values were probably generated in restricted, evaporative basins, such enrichments may well have been mere additions to a global peak, as indicated by the global extent of the signal (Melezhik et al. 1999, 2005a, b).
Rather than a single, long-lived Lomagundi-Jatuli event spanning the entire interval of 2.2–2.06 Ga (Karhu & Holland 1996), evidence has now accumulated for multiple positive excursions with intervening non-enriched values through that period (Buick et al. 1998; Bekker et al. 2001, 2006). Recent U–Pb dating on interstratified volcanic rocks in Fennoscandia has constrained the end of the event to c. 2.06 Ga (Melezhik et al. 2007), but the earliest enrichments have been more difficult to date. The oldest strongly 13C-enriched carbonate units, in the Duitschland Formation of South Africa (Bekker et al. 2001), are older than 2316 ± 7 Ma based on Re–Os of diagenetic pyrite from the stratigraphically overlying Timeball Hill shales (Bekker et al. 2004). Those same pyritic shales lack a non-mass-dependent sulphur-isotope fractionation signal (Bekker et al. 2004) and thus the onset of the Lomagundi-Jatuli event(s) coincides exactly, to the best knowledge of available ages, with atmospheric oxidation above 10−5 of present atmospheric levels. These events directly follow the only Palaeoproterozoic ice age with a 13C-depleted cap carbonate, which left a record on two palaeocontinents if the correlations of Bekker et al. (2006) are correct. The relationship between Palaeoproterozoic ice ages and Earth system evolution will be explored further, below.

The strontium isotopic composition of seawater, as recorded in carbonate rocks, involves more difficult analytical methods, and although well established for the Phanerozoic Eon, is relatively poorly constrained for Precambrian time (Shields & Veizer 2002). Data from the Palaeoproterozoic and surrounding intervals are sparse, and subject to uncertainties in age as well as the minimum-altered values. Nonetheless, a noticeable pattern of increasing 87Sr/86Sr, away from the inferred (slowly increasing) mantle value, characterizes the general Palaeoproterozoic trend (‘seawater’ curve in Fig. 11). As Shields & Veizer (2002) noted, this probably indicates greater continental emergence and riverine runoff of radiogenic strontium through the Archaean–Palaeoproterozoic interval. Shields (2007) provided a more sophisticated model of these processes, including rough estimates of carbonate/evaporite dissolution as a contributor to the riverine runoff component, to produce a percentage estimate of the riverine contribution to seawater 87Sr/86Sr ratios through time (dashed curve in Fig. 11). Even with this more detailed model, the first-order interpretation remains valid. However, the critical period for testing the connection with continental emergence (Fig. 1f), that is 2.7–1.9 Ga, is represented by a scant number of data (Shields & Veizer 2002).

Long-term secular evolution of oceanic chemistry can also be measured by compositional and sedimentological trends in carbonates and evaporites. Grotzinger (1989) and Grotzinger & James (2000) noted the abundance of carbonate platforms mirroring the growth of large sedimentary basins due to stable cratonization, much like the pattern observed for iron formations. The latter study also illustrated the successive peaks in ages of: aragonite crystal fans/herringbone calcite, tidal flat tufts, molar tooth structures, giant ooids, and various biogenic features of Archaean–Proterozoic sedimentary history. Not all of these records are well understood, but as noted above, disappearance of aragonite crystal fans and herringbone calcite is best correlated to the end of iron formation deposition and thus broadly to the rise of atmospheric oxygen.

Ocean palaeochemistry can also be inferred from the record of evaporite deposits, which in the Palaeoproterozoic era consist almost entirely of pseudomorphs after the original minerals. Evans (2006) compiled volume estimates for the largest evaporite basins through Earth history, summarized here in Figure 1n. A previous compilation (Grotzinger & Kasting 1993) described sulphate evaporites as old as c. 1.7 Ga and no older, but there is more recent recognition of common sulphate pseudomorphs in sedimentary successions at c. 2.2–2.1 Ga (reviewed by Pope & Grotzinger 2003; Evans 2006). Those gypsum- or anhydrite-bearing strata are usually associated with redbeds and 13C-enriched carbonates of the Lomagundi-Jatuli event (Melezhik et al. 2005b). Evaporite deposits of both younger (Pope & Grotzinger 2003) and older age (Buick 1992; Eriksson et al. 2005a) contain an evaporative sequence from carbonate directly to halite, excluding sulphate. Temporal correlation of halite-dominated evaporites with the peaks in iron-formation (Fig. 1k, n) conforms to the model of Fe-oxide seawater with low sulphate content (pre-2.4 Ga, plus 2.0–1.8 Ga), alternating with Fe-sulphidic deepwater driven by mildly oxidized surface water with higher sulphate content (Anbar & Knoll 2002). A rising oceanic sulphate reservoir through the Proterozoic Eon is also inferred by modelling rates of sulphur isotope excursions through sedimentary sections (Kah et al. 2004; Fig. 1n).

The evolving palaeoclimate and biosphere

Palaeoproterozoic climate changes were as extreme as any in Earth history, with low-latitude ice ages interrupting an otherwise dominantly ice-free record (Evans 2003). Indications of a background state of hot (55–85 °C) Archaean oceans, from 18O records of chert and phosphate (Knauth & Lowe 2003; Knauth 2005), are controversial (cf. contrasting views of Lowe & Tice 2007; Shields
Regardless, basal clades of both eubacteria and archaea were likely thermophilic (Boussau et al. 2008). The early fossil record of life on Earth, especially from ages older than 3.0 Ga, is fragmentary and ardently debated (e.g. Brasier et al. 2002; Rose et al. 2006; Westall 2009). Microbial activity of some sort is evident from the presence of wrinkle mat textures in sedimentary rocks as old as 2.9 and even 3.2 Ga (Noffke et al. 2003, 2006a, b, 2008). Stromatolites of the Tumbiana Formation, Western Australia, show an impressive diversity of forms (Buick 1992) that occupied a varied array of littoral marine environments (Sakurai et al. 2005); they also contain putative nano/microfossils (Lepot et al. 2008). Molecular biomarkers also support the existence of extant late Archaean prokaryotes: although Rasmussen et al. (2008) have reinterpreted the methylhpane (and sterane, see below) record from 2.7 Ga shales in Western Australia (Brocks et al. 1999) as a post-metamorphic feature, additional records from 2.7–2.5 Ga in the same succession show facies-dependent and thus possible palaeo-ecological distributions of 2-alpha and 3-beta methylhphanes (Eigenbrode et al. 2008) that are less likely due to post-metamorphic infiltration. A similar test of varying biomarker proportions among sedimentary and volcanic facies in the Abitibi greenstone belt of southern Canada, indicates possible archaeal and bacterial activity coincident with hydrothermal gold precipitation at 2.67 Ga (Ventura et al. 2007).

The eukaryotic fossil record, prior to 1.2 Ga, is equally controversial. Examples are described here in order of increasing age. At the younger end of the interval covered by this review (Fig. 1t), the record of bangiophyte red algae, in northern Canada, presents the oldest phylogenetically pinpointed eukaryotic body fossils (Butterfield 2000) and a robust starting point for considering older examples. The taxonomic affiliations of such older ‘eukaryotic’ fossils is inferred from their sizes and complexities (Knoll et al. 2006), including many simple and ornamented acritarchs, and various filamentous forms. Within the macroscale, the next older putative eukaryotic fossil is Horodyskia, found in c. 1.5–1.1 Ga strata in Western Australia and North America (reviewed by Fedonkin & Yochelson 2002; Grey et al. 2002; Martin 2004). Informally known as ‘strings of beads’, Horodyskia is difficult to place taxonomically; Knoll et al. (2006) consider it to be ‘a problematic macrofossil whose eukaryotic affinities are probable, but not beyond debate.’

The next two older macrofossils have been purported to preserve the trails of motile, multicellular organisms and are more contentious than the younger taxa outlined above. The first, in the Chorhat sandstone of the lowermost Vindhyan basin in India (Seilacher et al. 1998) attains Palaeoproterozoic antiquity on the merits of two concurrent and independent high-precision U–Pb studies (Rasmussen et al. 2002b; Ray et al. 2002). However, Seilacher (2007) has subsequently introduced a viable alternative hypothesis that the Chorhat traces could represent (biogenic?) gas structures trapped beneath a microbial mat. The second, consisting of discoidal and furrowed impressions in sandstone of the Stirling Ranges in Western Australia (Cruse & Harris 1994; Rasmussen et al. 2002a) has recently been dated to the interval 1960–1800 Ma (Rasmussen et al. 2004). An extensive discussion on these putative trace fossils retains the original interpretation of their being produced by ‘motile, mucus-producing, probably multicellular organisms’, which on the basis of size alone were probably eukaryotic (Bengtson et al. 2007). However, recent discovery of furrowed trails produced by extant Gromia amoebas may provide an adequate explanation for the Stirling biota (Matz et al. 2008); such an explanation needs further testing.

The oldest likely eukaryotic body fossil, Grypania spiralis, is found in the c. 1.88 Ga Negaunee iron-formation (Han & Runnegar 1992; Schneider et al. 2002), coeval with the spectacular palaeontological record of the nearby Gunflint Chert (Tyler & Barghorn 1954; Fralick et al. 2002) and only slightly younger than the equally impressive Belcher Islands microflora (Hofmann 1976) at c. 2.0 Ga (Chandler & Parrish 1989). Classification of Grypania is based on its morphological similarity to Mesoproterozoic occurrences from North China and North America (Walter et al. 1990). A recent report describing a spinose acritarch in amphibolite-grade Archaean metasedimentary rocks of South Australia (Zang 2007) seems less convincing.

Apart from body fossils, evidence for eukaryotic life in the Palaeoproterozoic also includes the molecular biomarker record of steranes. Sterol biosynthesis is largely, although not entirely, limited to the eukaryotic realm (see discussion in Kirschvink & Kopp 2008; Waldbauer et al. 2009). Sensationally old steranes were identified in the 2.7 Ga Jeerinah Formation of Western Australia (Brocks et al. 1999, 2003a, b). However, Rasmussen et al. (2008) attributed these signals to a secondary fluid migration into the boreholes, at some unknown time after c. 2.16 Ga regional metamorphism. There are other Palaeoproterozoic sterane biomarker records. Dutkiewicz et al. (2006) and George et al. (2008) found them in sediments of the basal Huronian Supergroup (c. 2.4 Ga), with a signal that pre-dates c. 1.9 Ga Penokean metamorphism, and Dutkiewicz et al. (2007) discovered them in the
c. 2.1 Ga Francevillian series of Gabon, with a signal
that pre-dates supercriticality of the Oklo natural
nuclear reactor at 1.95 ± 0.04 Ga (Gauthier-Lafaye

Waldbauer et al. (2009) conducted a benchmark
study in attempts to demonstrate the syngeneity of
their observed sterane biomarker signal, obtained
from c. 2.65–2.45 Ga strata in South Africa. The
molecular fossils are described as pre-metamorphic,
and vary according to sedimentary facies in correla-
tive sections from adjacent drillcores. Nonetheless,
the carbonate formations in those drillcores have
been pervasively remagnetized at about 2.2–
2.1 Ga (de Kock et al. 2009), indicating basinwide
low-grade hydrothermal fluid infiltration-at the
same age within error as, and possibly in direct
paleogeographic proximity to, the regional meta-
morphic event on the adjacent Pilbara craton as
described by Rasmussen et al. (2008).

We return to the Palaeoproterozoic glacial
deposits, which are classically used to infer the
palaeoenvironmental conditions in which these bio-
logical innovations occurred. Following an almost
entirely ice-free Archaean history, the Palaeoproter-
ozoic world was exposed to at least three ice ages,
which appear to have penetrated deep into the
tropics (Evans et al. 1997, global constraints
reviewed by Evans 2003). These ice ages, lesser
known but seemingly of equal severity to their
more widely publicized Neoproterozoic ‘snowball
Earth’ counterparts (Hoffman & Schrag 2002), are
generally rather poorly constrained in age to
within the interval 2.45–2.22 Ga. As with the Neo-
proterozoic ice ages, estimating the number of
Palaeoproterozoic glaciations is complicated by
the fact that the diamictites themselves are com-
monly the principal items of correlation among
cratons through this interval (e.g. Aspler &
Chiarenzelli 1998; Bekker et al. 2006).

The end of the second among those three ice ages,
recorded in the Huronian succession and correla-
tive strata in Wyoming, is marked by a 13C-depleted ‘cap
carbonate’ unit that may be broadly comparable to
those better developed after Neoproterozoic ice
ages (Bekker et al. 2005). The South African sections
contain two distinct sequences of diamictite and
overlying 13C-depleted carbonate (Bekker et al. 2001),
unconformably overlain by a third dia-
mictite, the Makganyene Formation, in turn overlain
by flood basal and variably Mn-rich carbonate and
ironstone units (Kirschvink et al. 2000) with near-
zero δ^{13}C values (Bau et al. 1999). Palaeomagnetic
data from the flood basal indicates deep tropical
palaeolatitudes, constituting the best evidence of
its kind for a Palaeoproterozoic snowball Earth
event (Evans et al. 1997; Kirschvink et al. 2000;
Evans 2003). Within the limits of existing age
constraints, the Makganyene ice age could be
correlative with the uppermost Huronian glaciation
at 2.23 Ga (Bekker et al. 2006), or, all three Huron-
ian glaciation levels could be distinctly older (Kopp
et al. 2005). Given that the Lomagundi-Jatuli posi-
tive carbon-isotope excursion(s) began as early as
2.32 Ga, the near-zero δ^{13}C values in the post-
Makganyene carbonate units are anomalously nega-
tive and warrant comparison with other Proterozoic
postglacial cap carbonate sequences. Considering
the high greenhouse forcing required to offset the
Palaeoproterozoic ‘faint young Sun’ (Sagan &
Mullen 1972), escape from any ‘snowball’ climate
regime of that age would have required tens of
millions of years of volcanic outgassing uncompen-
sated by silicate weathering (Tajika 2003). If all of
the Palaeoproterozoic glacial deposits represent
so-called ‘hard’ snowball ice ages, then Earth’s
panglacial climate mode would have occupied a sub-
stantial fraction of time in the 2.45–2.22 Ga interval.

As discussed above, the disappearance of non-mass-dependent sulphur isotope fractionation
and the onset of highly 13C-enriched carbonates
of the Lomagundi isotopic event are both located
stratigraphically within the broad age range of
these glaciations. More precisely, if the Bekker
et al. (2006) correlations between North America
and South Africa are correct, then the oldest
carbonate-capped glacial deposits (Bruce and
Rooihoooge Formations) constitute the stratigraphi-
cal boundary between two fundamentally distinct
states of Earth’s palaeoenvironment. Closely
below this level are the final vestiges of detrital
pyrite/uraninite deposition (Roscoe 1973) and
non-mass-dependent sulphur isotope fractionation
(Papineau et al. 2007). Closely above the level are
the entirely mass-dependent-fractionated pyrites of
the Timeball Hill Formation, dated at 2.32 Ga and
representing the rise of atmospheric oxygen
(Bekker et al. 2004; Hannah et al. 2004) and the
oldest carbonates with strongly enriched 13C
values indicating the onset of the Lomagundi-Jatuli
isotopic excursions (Bekker et al. 2001). Glacial
deposits with cap carbonates thus appear to be
closely related to the rise of atmospheric oxygen.
Collapse of the methane-rich, pre-2.4-Ga green-
house due to atmospheric oxygenation (see above
and Kasting 2005) could well be a trigger for the
low-latitude ice ages, perhaps in addition to the sili-
cate weathering removal of carbon dioxide due to
the widespread and largely subaerial large igneous
provinces at 2.45 Ga (Melezhik 2006; Kump &
Barley 2007). But the ice ages themselves could also
have contributed further to rapid pulses of
oxygen production: Liang and co-workers (Liang
et al. 2006) postulated the mechanism of hydrogen
peroxide trapping in ice throughout the duration of
a ‘hard’ snowball stage, which would be released
suddenly to the oceans upon deglaciation.
This glaciation-oxygenation scenario has been developed further, as reviewed by Kirschvink & Kopp (2008). In that model, the hydrogen peroxide plume into the oceans upon glacial melting would constitute the evolutionary driver of intracellular oxygen-mediated enzymes, which are seen as a necessary precursor to oxygenic photosynthesis. The post-Makganyene sequence, extraordinarily rich in Mn, would represent the final and irreversible oxidation of the deep oceans (Kirschvink et al. 2000). Two outstanding problems with the timing of the model are as follows: (1) the Lomagundi-Jatuli positive isotopic excursion, apparently requiring burial of photosynthetically produced organic carbon, is found in pre-Makganyene strata (Bekker et al. 2001); and (2) increasingly more rigorous biomarker studies provide compelling evidence for photosynthetic organisms as old as 2.7 Ga (e.g. Eigenbrode et al. 2008; Waldbauer et al. 2009).

Following the well known 2.45–2.2 Ga ice ages, the next nearly 1.5 billion years has traditionally been noted as entirely ice-free (Evans 2003). Recent documentation of periglacial features at c. 1.8 Ga (Williams 2005) contests this conclusion. Nonetheless, the dominant climate state was nonglacial throughout most of Palaeoproterozoic–Mesoproterozoic time. Even in a mildly oxygenated, post-GOE atmosphere, methane is increasingly favoured as a minor but powerful greenhouse gas to combat the low luminosity of the Mesoproterozoic Sun (Pavlov et al. 2003; Kasting 2005; Kah & Riding 2007).

Extra-terrestrial influences: bolides and Earth-Moon orbital dynamics

The two largest known bolide impact craters on Earth are Palaeoproterozoic in age, their sizes eclipsing that of the end-Cretaceous Chicxulub structure (Earth-Impact-database 2009). The largest, Vredefort in South Africa, is dated at 2.02 Ga; the second-largest, Sudbury, has an age of 1.85 Ga (Wardle 2002). In addition to these two largest craters, Figure 1s shows three smaller (≥30 km diameter) craters in the 3.0–1.2 Ga time interval: Yarrabubba at an unknown age younger than its c. 2.65 Ga target rocks (Macdonald et al. 2003), Keurusselkä at an unknown age younger than its c. 1.88 Ga target rocks (Hietala et al. 2004) and Shoemaker with a maximum age of 1.63 Ga (Pirajno et al. 2003, 2009).

As there are no older preserved impact craters than c. 2.4 Ga (Earth impact database 2009), all knowledge of prior impact history must be inferred from the lunar record, or determined from ejecta beds containing either spherules (Simonson & Glass 2004) or anomalous concentrations of siderophile elements (Glikson 2005). For the time interval investigated here, the most prominent impact record is found in the sedimentary cover of the Vaalbara supercraton. At least three distinct spherule beds can be recognized; some readily correlated between Australia and South Africa, within the interval 2.63–2.49 Ga (Simonson et al. 2009). It is unknown what effects these impacts, undoubtedly a small subset of the total Archaean–Palaeoproterozoic bolide flux to the Earth, had on the ancient surface environment. Completion of the IGCP509 global stratigraphic database (Eglington et al. 2009) will help identify suitable sedimentary basins for finding ejecta blankets from the large craters described above.

The orbital parameters of Earth and the Moon can be gleaned from the sedimentary record of tidal rhythmites, which are usually in fine-grained mudstones and siltstones (e.g. Williams 2000). They can also be found in sandstone crossbed foresets (Mazumder 2004; Mazumder & Arima 2005), including the oldest rhythmites in the geological record at c. 3.2 Ga (Eriksson & Simpson 2000). The most complete calculation of orbital parameters from tidal rhythmites can be found in Williams (2000), who listed two alternative calculations for the 2.45 Ga Weeli Wolli banded iron formation in the Hamersley Ranges of Western Australia: one assuming that the lamina couplets (microbands) represented annual increments, the other assuming that they represented fortnightly cycles. Trendall (2002) has discussed how the annual microband model is consistent with U–Pb age constraints through the Hamersley succession, and by implication, that the fortnightly alternative is not. The annual microband model predicts 17.1 ± 1.1 hours in the solar (Earth) day, 514 ± 33 solar days per year, and an Earth–Moon distance of 51.9 ± 3.3 Earth radii (compared to 60.27 at present) for the earliest Palaeoproterozoic (Williams 2000).

Discussion

The data summarized above and in Figure 1 provide an overview of secular changes in the Earth system from the Neoarchaean to Mesoproterozoic eras. Many of the relationships illustrated by two or
three strands of data have been noted previously. In this overview, we have attempted to compile the first comprehensive summary of the secular changes from Earth’s core to atmosphere over the Palaeoproterozoic supercontinent cycle, and the data reveal intriguing temporal relationships between changes in deep Earth and its surface environment.

Many of the physical models used to extrapolate modern planetary dynamics back into deep time suffer from the necessary simplifications of tractability, and many of the historical data proxies are incomplete or contentious. However, an emphasis on interdisciplinary Earth-system science has led to multiple working hypotheses for the interrelationships among the various proxy records, and we are particularly inspired by the following 10 recent developments.

1) Analytical and numerical models of Earth’s thermal history and mantle convection are approaching the ability to generate plate tectonics self-consistently and to account for distinct geochemical reservoirs. These have potential to solve several long-troublesome paradoxes of geophysics and geochemistry.

2) Improved laboratory calibration of the perovskite to post-perovskite transition has refined temperature estimates at the core–mantle boundary, which will provide a better ‘initial’ boundary condition for such thermal evolution models (and also constrain core heat loss and thus geodynamo history). The geodynamic and geochemical consequences of the associated D^0 layer are likely to play critical roles in future models of Earth’s thermal history and core–mantle interaction.

3) Resolution of the historical plume flux by a focused and global campaign to date mafic large igneous provinces (LIPs) will provide valuable constraints on mantle evolution, and will facilitate accurate pre-Pangaean continental reconstructions and a record of supercontinent amalgamation and dispersal that will in turn provide templates for mineral deposit belts and the development of new tectonic models.

4) An abrupt increase in the proportion of subaerial versus subaqueous LIP deposits at the Archaean–Proterozoic transition adds another indication of widespread continental emergence at that time; the temporal distribution of various types of iron formations can be understood better in the context of that transition.

5) The termination of non-mass-dependent fractionation of sulphur isotopes is now constrained to between 2.4 and 2.32 Ga, providing a robust stratigraphical marker by which all other proxies can be compared. Prior to this marker event, atmospheric oxygen levels were below 10^{-5} of present atmospheric levels, a largely non-glacial world was kept warm by a substantial methane greenhouse effect, marine sulphate levels were low and halite evaporites followed directly after carbonate precipitation. Hydrothermal iron from the deep oceans upwelled onto the recently stabilized continental shelves to produce the vast Hamersley-type banded iron formations. After the marker event, oxygen levels rose to an unspecified level that generated Earth’s oldest lateritic palaeosols, at least two ice ages occurred (one with cap carbonates and negative 13C excursions, the other demonstrably extending to tropical palaeolatitudes), sulphate evaporites became abundant, and the background state of marine carbon isotopes became highly enriched as the unparalleled Lomagundi–Jatuli positive excursion.

6) The stratified, sulphidic-ocean model for 1.8–0.8 Ga has passed several geochemical and palaeoecological tests. Further recognition of impact spherule beds provides a new strategy for evaluating Earth’s impact history prior to the age of its largest and oldest (well dated) preserved crater (Vredefort, 2.02 Ga).

7) Despite warranted caution concerning both modern and ancient possible contamination of molecular fossils extracted from drillcores, some recent studies provide impressive benchmarks for testing the syngeneity of ancient biomarker records. The two alleged Palaeoproterozoic animal fossil occurrences, uncomfortably more than a billion years older than the most reliable molecular clock studies would indicate, are now both explained by non-metazoan microbial processes.

10) Development of a global stratigraphic database for the Palaeoproterozoic era (Eglington et al. 2009), as a final product of the IGCP Project 509, will allow ready correlation of rock units and tectonic settings across the world’s cratons, which will be useful to researchers across all these proxy records of planetary evolution through Earth’s post-Archaean transition.

Among many of the solid-Earth proxies shown in Figure 1, an important event occurred at c. 2.7 Ga. These include an abrupt increase in geodynamo palaeointensity (Fig. 1a), an unrivalled peak in the global LIP record (Fig. 1c), especially when scaled for preserved continental area by age, a broad maximum in several mantle depletion proxies (Fig. 1d), a strong peak in juvenile continental crust production (Fig. 1g), and a ‘bonanza’ of orogenic gold, massive-sulphide and porphyry copper deposits (Fig. 1j). It is tempting to link these
records together in a model of enhanced mantle convection, perhaps due to a series of mantle plumes (Barley et al. 1998), slab avalanches (Condie 1998), or both. Stabilization of cratonic lithosphere was widespread from 2.7 to 2.5 Ga (Bleeker 2003), and the consequent emergence of continents (Fig. 1f, l) and expansion of sedimentary basins at their margins created accommodation space for the accumulation of voluminous banded iron formations (Fig. 1k) and flourishing of photosynthetic life (Fig. 1l). The latter development, at about 2.3 Ga, led to irreversible atmospheric oxidation (Fig. 1o, p), possibly dissipating a former methane greenhouse atmosphere and ushering in the extensive Palaeoproterozoic ice ages (Fig. 1r).

Extreme events in global carbon cycling appear at this time (Fig. 1m). After the great oxidation event, marine sulphate levels rose (Fig. 1n), sediment-hosted and iron-oxide-rich metal deposits became abundant (Fig. 1j), and the transition to sulphide-stratified oceans (Fig. 1p) cradled early eukaryotic macrofossils (Fig. 1t). Supercontinents may indeed be the centrepiece of the long-term Earth system, but their history is one of the least constrained elements in Figure 1. Nonetheless, there is hope for eventual understanding. New isotopic methods for precise geochronological calibration of deep time have made these comparisons possible. The stratigraphies of most of the world’s Precambrian cratons are now increasingly constrained by acquisition of such precise rock ages, and there is no sign of slowing. Dedicated global working groups such as IGCP projects have fostered frequent, direct communication among researchers around the world. An emphasis on interdisciplinary science has led to multiple working hypotheses for the interrelationships among the various proxy records.

From core to surface, our next major advances will likely arise through determining accurate ways to measure ancient geomagnetic field strength; obtaining more complete records of mantle plume activity; developing novel methods for estimating crustal growth and continental emergence; solving the palaeogeography of supercontinents and supercratons, with consequent ‘ground-truthing’ of proposed tectonic processes and mineral deposit evolution; creating new chemical and isotopic proxies for the evolution of mantle, crust, and surface; dating these records precisely with new analytical techniques; and integrating these strands of data into robust geodynamic models. With these continuing advancements the Archaean–Proterozoic transition is at last coming into focus.

We thank Brendan Murphy and Alan Vaughan for formal manuscript reviews; and Alan Collins, Paul Hoffman, Jim Kasting, Rajat Mazumder, and Bruce Simonson for informal discussions. This work is a contribution to UNESCO’s International Geoscience Programme (IGCP) Project 509 and is TIGeR publication No. 165.

References

KLEIN, C. 2005. Some Precambrian banded iron formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. American Mineralogist, 90, 1473–1499.

evaporites in Fennoscandia: implications for seawater sulphate, the rise of atmospheric oxygen and local amplification of the delta C-13 excursion. Terra Nova, 17, 141–148.

