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a b s t r a c t

Paleomagnetic data provide one of the few probes available to interrogate early evolution of the core.
Here we apply this probe by examining the latitudinal dependence of paleosecular variation (PSV) data
derived from high-quality paleomagnetic data collected from Proterozoic and Neoarchean rocks. These
data define a Neoarchean geomagnetic field that was more dipolar than that during Proterozoic times,
indicating a change in core conditions. The signals observed may reflect a change in forcing of the
dynamo and an early onset of inner core growth. We propose a model that links evolution of the core,
mantle and crust in three principal phases: (i) Before approximately 3.5 Ga, an entirely liquid core
may not have hosted a geodynamo. If heat transport was sufficient across the core–mantle boundary,
however, a geodynamo could have been generated. If so, sources in the shallow outer core could have
been more important for generating the dynamo relative to deeper convection, resulting in a field that
was less dipolar than that generated in later times. (ii) Cooling of the lower mantle between ca. 2 and
3.5 billion years ago was promoted by deep subduction and possibly coincided with inner core growth.
The geodynamo during this episode was deeply-seated producing a highly dipolar surface magnetic field.
(iii) After ca. 2 billion years ago, continued subduction led to large-scale core–mantle boundary compo-
sitional and heat flux heterogeneity. With these changes, shallow core contributions to the geomagnetic
field grew in importance, resulting in a less dipolar field.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

There is currently much debate over the nature of Earth’s early
core. For example, estimates for the onset of solid inner core nucle-
ation range from times younger than 1 Ga (Aubert et al., 2009) to
3.5 Ga (Gubbins et al., 2004). Paleointensity data indicate the pres-
ence of a geodynamo in Mesoarchean and Paleoarchean times
(3.2–3.45 Ga) (Tarduno et al., 2007, 2010). But some models sug-
gest that strong fields can be generated by an early dynamo with-
out inner core growth (Sakuraba and Kono, 1999). We can gain
insight into early core conditions by examining the morphology
of the ancient geomagnetic field defined by paleomagnetic data.
Specifically, we can track the importance of non-dipole fields in
the past using the angular dispersion (S) of virtual geomagnetic
poles (VGPs) derived from paleomagnetic data:
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where N is the number of VGPs and Di is the angle between the ith
VGP and the mean paleomagnetic pole. McFadden et al. (1991)
modeled S as independent dipole (SD, antisymmetric) and quadru-
pole (SQ, symmetric) families, with the latter dominating at the
equator:

SðkÞ ¼
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where k is paleolatitude, and a and b are constants. Complete inde-
pendence of the two families is unlikely, but this interpretation
(Model G) remains a useful framework to gauge past paleosecular
variation (PSV).

Although lava flow sequences have yielded high resolution PSV
values for the last 5 million years (e.g., Johnson et al., 2008), data
on billion-year time scales are more difficult to obtain. A few ex-
tant lava flow sequences are available, but these must be supple-
mented with data from dike swarms. Any given regional data set
may fortuitously overestimate or underestimate PSV. But if data
sets are available spanning many latitudinal belts from multiple
ancient cratons, a synoptic view of PSV can be derived. Smirnov
and Tarduno (2004) found that such data suggest that the field at
the time of the Proterozoic/Archean boundary (�2.5 Ga) was more
dipolar than the field of the last 5 million years. This result was
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confirmed by an analysis of the same time window by Biggin et al.
(2008a). Here, we expand our initial analysis, to assess any PSV
pattern that might reflect changes in the Precambrian core
conditions.
2. Application and results

We have identified two Precambrian time windows where glo-
bal igneous units allow a new assessment (Table 1; Fig. 1A). We
used the Global Paleomagnetic Database GPMDB4-6 (Pisarevsky,
2005) (www.tsrc.uwa.edu.au/data_bases), supplemented with
recent results for our new data set. We exclude data from sedimen-
tary, metamorphic, plutonic and silicic extrusive rocks. In particu-
lar, the silicic lavas often do not form easily distinguishable lava
flows and may be deposited on slopes, which makes it difficult to
assess the number of independent cooling units and structural
corrections. Therefore, our analysis was confined to mafic and
intermediate extrusive rocks and shallow mafic intrusions that
can record distinct field directions. We further apply the following
criteria: (1) Directions must be from P10 sites each comprising
Table 1
Summary of paleomagnetic studies used for estimating the paleosecular variation.

Unit Age (Ma) B Plat

Bangemall Basin Sillsa 1070 11 27.8
Lake Shore trapsb 1087 30 14.6
Portage Lake Volcanicsc 1095 28 16.9
North Shore Trapsd 1098 34 27.3
Mamainse Point Upper Ne �1100 21 22.4
Umkondo doleritesf 1110 15 6.8
Cleaver dikesg 1740 17 39.1
Taihang dikesh 1769 19 2.6
Flaherty volcanicsi 1870 11 26.2
Mashonaland doleritesj 1880 16 28.8
Fort Frances dikesk,l 2067–2077 12 35.1
Marathon dikes (R)k,l 2101–2106 13 37.0
Marathon dikes (N)k,l 2121–2126 16 39.9
Biscotasing dikesm 2169 12 38.4

Ongeluk lavasn 2200 32 14.1
Dharwar dikeso 2367 25 69.1
Matachewan dikes (N)p 2473–2446 28 14.8
Matachewan dikes (R)p 2473–2446 101 7.7
Karelia dikesq 2440 11 30.0
Allanridge lavasr,s 2664–2709 17 43.2
Upper Fortescue lavast 2715 16 35.0
Fortescue Lower lavast 2746 75 49.5
Fortescue Package 0t >2772 24 58.3

B: number of units; Plat: paleolatitude; S, dS: angular dispersion of VGPs and confidence
difference between observed S and that predicted (Sexp) from Model G fit to all data (a =
age data sources: Global Paleomagnetic Database (GPD) (Pisarevsky, 2005) data identifi
See references cited for more recent works:

a Wingate et al. (2002) (GPD 3455).
b Diehl and Haig (1994) (GPD 2776).
c Hnat et al. (2006).
d Tauxe and Kodama (2009).
e Swanson-Hysell et al. (2009).
f Gose et al. (2006).
g Irving et al. (2004) (GPD 3609).
h Halls et al. (2000) (GPD 3394).
i Schmidt (1980) (GPD 1862).
j Bates and Jones (1996) (GPD 3088).
k Buchan et al. (1996) (GPD 3061).
l Halls et al. (2008).

m Halls and Davis (2004) (GPD 3644).
n Evans et al. (1997) (GPD 3175).
o Halls et al. (2007).
p Evans and Halls (2010).
q Mertanen et al. (1999) (GPD 3296).
r de Kock et al. (2009).
s Strik et al. (2007).
t Biggin et al. (2008a).
P3 samples. (2) Data must be from modern demagnetization
and processing techniques (e.g., principal component analysis).
(3) A primary origin of the magnetization must be convincingly
demonstrated. (4) Data must be consistent with a thermorema-
nent magnetization, without evidence of chemical remanence.
(5) Magnetization age must be reliably constrained. No site selec-
tion criteria based on the precision parameter (k) or maximum
95% confidence area (a95) were applied. However, for most (575
of 585) of the accepted sites, a95 did not exceed 20�.

S values were corrected for within-site dispersion following
Doell (1970). In three studies, published information is insufficient
to correct S, but the large number of samples and site-level statis-
tics lead us to believe that any additional uncertainty is less than a
few degrees. S confidence intervals (1r) were calculated using a
N � 1 jackknife method (Efron, 1982).

As opposed to the small, select Matachewan dike data set used
by Smirnov and Tarduno (2004), we use a new compilation (Evans
and Halls, 2010); directions from the western subprovince of the
Superior craton were rotated using an Euler pole at 51�N, 85�W
and rotation angle of 14�CW. We exclude results from the Derde-
poort basalts (Wingate, 1998) used by Biggin et al. (2008a) because
S ± dS C/UC Sexp Sobs � Sexp Sign

13.9 ± 2.6 C 11.6 2.3 +
13.6 ± 0.8 C 10.6 3.0 +
14.5 ± 1.2 UC 10.7 3.8 +
11.4 ± 2.1 C 11.5 �0.1 �

4.8 ± 3.0 C 11.1 �6.3 �
14.2 ± 3.1 C 10.3 3.9 +
14.4 ± 4.0 C 12.8 1.6 +

8.5 ± 2.6 C 10.2 �1.7 �
11.6 ± 1.7 UC 11.4 0.2 +
14.8 ± 4.0 C 11.7 3.1 +
11.2 ± 3.3 C 12.3 �1.1 �
14.0 ± 2.5 C 12.6 1.4 +
16.0 ± 2.6 C 12.9 3.1 +
12.6 ± 2.3 C 12.7 �0.1 �

7.1 ± 7.5 C 10.5 �3.4 �
15.5 ± 1.1 C 17.1 �1.6 �

6.4 ± 2.9 C 10.6 �4.2 �
8.8 ± 5.1 C 10.3 �1.5 �

10.7 ± 1.3 UC 11.8 �1.1 �
12.1 ± 5.7 C 13.3 �1.2 �
12.9 ± 3.2 C 12.3 0.6 +
12.8 ± 2.0 C 14.2 �1.4 �
16.1 ± 2.8 C 15.4 0.7 +

interval; C/UC: data corrected (uncorrected) for within-site dispersion; Sobs � Sexp:
0.20 ± 0.04, b = 10.17 ± 0.90); Sign: result of Sign Test (see text). Paleomagnetic and
er is listed.

http://www.tsrc.uwa.edu.au/data_bases
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Fig. 1. (A) Latitudinal dependence of angular dispersion S of virtual geomagnetic poles for the Precambrian (solid symbols) intrusive and extrusive units and extrusives of the
last 5 million years (open inverted triangles). See Table 1 for the Precambrian data sources. Gray and black symbols: younger and older than 2.2 Ga, respectively. Solid black,
gray, and thick black lines: Model G fits for the 0–5 Ma (Time-Averaged Field Initiative, TAFI; Johnson et al., 2008; Lawrence et al., 2009; Kent et al., 2010; Opdyke et al., 2010),
1.0–2.2 Ga and 2.2–3.0 Ga data, respectively. The dashed line shows the Model G fit for the 5–195 Ma data (McFadden et al., 1991; Tarduno et al., 2002; note individual data
points are not shown here) (see text). (B) Latitudinal dependence of S only for the Precambrian (solid symbols) intrusive units (see text).
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the large apparent S value (24.3�) probably reflects uncertainties in
bedding corrections for the lavas which are found in faulted basins
(Wingate, pers. comm., 2009). This tectonic uncertainty can mas-
querade as PSV. We exclude magnetizations carried by hematite
as these may record chemical remanences acquired after cooling.

In all selected studies, the maximum deviation of VGPs from the
mean paleopole did not exceed 35�. Therefore the application of a
constant cutoff angle of 45� commonly used to exclude transitional
VGPs (e.g., Johnson et al., 2008) did not modify any of the datasets.
Because of the relatively small scatter of VGPs in our Precambrian
datasets (Supplementary Table 1), we feel that the application of a
variable cutoff (Vandamme, 1994) may remove some scatter re-
lated to the normal secular variation rather than to the transitional
field. Therefore, we chose not to apply the variable cutoff in this
study. However, when used, the variable cutoff affected only three
datasets (Supplementary Table 1) and did not change the overall
conclusions of this study (Supplementary Fig. 1).

We split the Precambrian dataset into two age groups at
�2.2 Ga (specifically, 1.0–2.2 Ga and 2.2–3.0 Ga) and fit the data
in each group using Model G (Eq. (2)). The fitting was done using
the Levenberg–Marquardt least-square iterative algorithm (e.g.,
Björck, 1996). We find Model G parameters a = 0.21 ± 0.09 (1r),
b = 11.10 ± 1.46 and a = 0.22 ± 0.02, b = 7.56 ± 0.84 for the <2.2 Ga
and >2.2 Ga groups, respectively. While the statistically indistin-
guishable values of the parameter a indicate similar shapes of
the fitting curves, their equatorial intercepts (defined by the
parameter b) are different at the 95% confidence level.

Any individual Proterozoic or Neoarchean S value may overesti-
mate or underestimate PSV because of under-sampling, and/or
there may be trends on ten to 100 million year timescales related
to the core–mantle boundary processes (McFadden et al., 1991;
Tarduno et al., 2002); this may account for variability such as
apparently low S observed from the �1.8 Ga Taihang and �1.1 Ga
Mamainse Point lavas (Fig. 1A). We interpret here only the long-
er-term signal. To test for differences between the pre- and post-
2.2 Ga data, we use a non-parametric Sign Test. The combined data
were fit with Model G to produce an expected S curve (Table 1).
When the difference between the observed and fit data is negative
(positive), a minus (plus) is assigned. This comparison versus the
Model G fit to all data suggests that the pre- and post-2.2 Ga data
are different at the 78% confidence level.

Directions from extrusives are usually obtained from spatially
limited stratigraphic sections and these may be particularly prone
to undersampling of the field due to rapid lava emplacement. In
contrast, studies of dikes often represent greater spatial sampling
and are less likely to sample extremely short magmatic pulses.
To further test our conclusions, we fit Model G to the intrusive data
sets only (Fig. 1B), yielding a = 0.21 ± 0.07, b = 11.56 ± 1.43 and
a = 0.20 ± 0.03, b = 7.66 ± 1.13 for the <2.2 Ga and >2.2 Ga groups,
respectively. These values are indistinguishable from those
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obtained from fitting the total data set, supporting the difference in
PSV.

3. Discussion and conclusion

According to the Model G (Eq. (2)), the equatorial intercept
(the parameter b) of a PSV curve reflects the contribution only
from the quadrupole (symmetric) family. Consequently, the lower
values of b indicate a stronger contribution from the dipole (anti-
symmetric) family that includes the axial dipole and octupole. As
noted by the authors of Model G, and emphasized by others (e.g.,
Hulot and Gallet, 1996), the model by itself does not discern the
relative strength of the dipole and higher order components such
as the octupole. However, analyses of the time-averaged 0–5 Ma
field (e.g., Johnson et al., 2008), Cretaceous field (Tarduno et al.,
2002) and Proterozoic field (Evans, 2006) have failed to detect
significant octupole components, and very large contributions
relative to those of the dipole would be needed to influence our
interpretations. Therefore we feel that the interpretation of lower
b values as reflecting higher contribution from the axial dipole is
justified, although we note that sensu stricto some higher octupole
contribution cannot be excluded from the data analyses we
present alone.

When compared with data for the last 5 million years (Johnson
et al., 2008; Lawrence et al., 2009; Kent et al., 2010; Opdyke et al.,
2010; a = 0.25 ± 0.03, b = 13.24 ± 0.81) we find that data from
both time windows suggest a more dipolar field; the further obser-
vation that data from the pre-2.2 Ga window suggest a more dipo-
lar field than that in the post-2.2 Ga interval implies that the
process causing the change of PSV was operating by at least �2.2
billion years ago. The trend is even more expressed when the com-
parison is made versus the data for 5–195 Ma (a = 0.25 ± 0.04,
b = 14.10 ± 1.24; McFadden et al., 1991; Tarduno et al., 2002)
(Fig. 1). We note that Biggin et al. (2008b) claimed that differences
in their analysis of Mid-Cretaceous and Jurassic PSV differed from
those of McFadden et al. (1991) because the latter authors used a
constant value to correct site-level data, which can impart a bias
that is especially apparent for low latitudes. Although it is as yet
unclear whether this explanation is correct (e.g., it may more sim-
ply relate to the use of some more extensive data sets), some bias
does exist with the use of a constant value. Because this affects low
latitude preferentially, lowering the S value, if present this bias
would lead us to conclude that the 5–195 Ma average has a low-
er-than-actual b value. In this sense, our handling of the data is
conservative because it would lead us to believe there was less
of a difference between the 5–195 Ma data and the Proterozoic/
Neoarchean data sets than what actually existed.

There are several processes that could be recorded by the PSV
signal. Forcing of the dynamo could have changed in the absence
of inner core growth (e.g., Olson and Christensen, 2006; Hori
et al., 2010). However, these models predict lower CMB heat flow
during superchrons, something that appears to be inconsistent
with geological observations during the best known superchron,
the Cretaceous Normal Polarity Superchron. Specifically, this inter-
val is marked by extraordinarily high mantle plume activity, during
which the giant oceanic plateaus such as Ontong Java formed (Lar-
son, 1991; Tarduno et al., 1991). Some studies suggest that classi-
cal values of core heat flux (e.g., Sleep, 1990) based on hotspot
topography should be raised by as much as a factor of three (e.g.,
Bunge, 2005). These considerations lead to the prediction of high
values of CMB heat flow during the Cretaceous Normal Polarity
Superchron. Moreover, relying on a change in forcing to explain
the PSV signal requires a change in core–mantle boundary condi-
tions. While this is straightforward to change in a numerical mod-
el, it carries with it several important implications for the ancient
Earth. We outline some of the important issues below.
First, a potential problem with relying on conditions at the
core–mantle boundary alone to account for the signal we have ob-
served relates to the overall dipolarity of the signal. Notwithstand-
ing models which do predict dipolar fields (e.g., Olson and
Christensen, 2006), a range of other experimental results and
numerical simulations suggest that a thin shell dynamo (possible
when core–mantle boundary heat flux alone drives the system)
may produce highly nondipolar fields (e.g., Stanley and Bloxham,
2004, 2006). While the deeper core would probably also convect
in the case of Earth without an inner core and driven by CMB heat
transport alone, the relative importance of the shallow convection
is greater, leading to a more nondipolar field. While we have de-
tected a trend toward more nondipolar fields from Neoarchean to
Proterozoic times, it should be emphasized that overall the field
throughout the entire interval was dipolar. Second, the most typi-
cal way one evokes a change in CMB boundary conditions in the
Mesozoic to Recent Earth is to call upon deep subduction changing
D00 heterogeneity. For the Neoarchean to Proterozoic interval under
consideration, some feel plate tectonics (e.g., Stern, 2005) and
therefore deep subduction as a causal agent in creating CMB
change was not operating. While we favor an early onset of sub-
duction because there is evidence that it acted at least locally in Ar-
chean times (e.g., Mints et al., 2010), we nevertheless recognize
that it is not a trivial matter to dramatically change CMB conditions
in a way that is compatible with the current generation of numer-
ical models (e.g., Hori et al., 2010) for the earlier times represented
in our data set.

In contrast to arbitrarily changing forcing, a simpler way to en-
sure large scale flows consistent with a highly dipolar field is to
have a source of compositionally-driven buoyancy at depth,
namely the onset of inner core growth. We emphasize that the
principal effect of inner core growth we call upon here is buoyancy,
not geometry (Coe and Glatzmaier, 2006).

We outline the following three-stage scenario of core evolution
(Fig. 2) to explain the PSV signal. Prior to the oldest record of the
geodynamo at 3.45 Ga (Tarduno et al., 2010), the core may have
been entirely liquid. A geomagnetic field may not have been gener-
ated if a dense liquid layer existed at the base of the mantle, the
relict of which is now found as layers of ultra-low velocity near
the core–mantle boundary (Labrosse et al., 2007). A null or weak
field at 3.8–3.9 Ga is suggested by a hypothesis seeking to explain
lunar nitrogen values through transport from Earth’s atmosphere
by the solar wind (Ozima et al., 2005). After breakdown of the
dense liquid layer, a geodynamo may have been present. But
sources of field generation in the shallow outer core, related to
convection associated with heat transport across the core–mantle
boundary (Fig. 2A) could have produced a less dipolar field than
that of latter times. Plate tectonics may have started very early
on Earth, but cooling relevant for generation of the geodynamo re-
quires cooling of the lower mantle. We envision this cooling accu-
mulating with the penetration of slabs into the lower mantle,
favoring super-adiabatic conditions and possibly inner core growth
(Fig. 2B). The geodynamo at this time was deeply seated, related to
compositional convection associated with inner core growth. The
resulting field was highly dipolar, and is recorded by the oldest
time window examined here (Fig. 2B). Subsequent subduction re-
sulted in core–mantle boundary compositional and heat flux heter-
ogeneity, resulting in sources for shallow field generation in
addition to deeper sources near the inner core/outer core bound-
ary. While the overall field was still dipolar, it was less so than
prior to ca. 2 Ga (Fig. 2C). These field generation regions are similar
to those of more recent times (Hoffman and Singer, 2008), with the
exception that the inner core was smaller. We note that the de-
crease in the field dipolarity may also be promoted by increase
in the CMB heat flow as suggested by some models (e.g., Hori
et al., 2010), but we caution that these models still need to be
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deeper core, producing a 
less dipolar field than in 
cases (B) and (C) below

deep subduction and develop-
ment of core-mantle boundary 
heterogeneity

limited primordial core-mantle boundary 
heterogeneity

principal geodynamo 
generation region 
deeper in core relative 
to (A) related to inner 
core growth producing 
a highly dipolar field

large-scale core-mantle bound-
ary heterogeneity

principal geodynamo genera-
tion region in deep core, but 
with greater importance of 
shallow sources resulting in a 
less dipolar field than in (B)

Before ca. 3.5 billion years agoA

B

C

Fig. 2. One scenario for core evolution consistent with paleosecular variation and paleointensity data discussed here. Hypothetical equatorial Earth cross sections,
highlighting regions of convective flow within the core most important for the dynamo. (A) Before approximately 3.5 Ga, an entirely liquid core may not have hosted a
geodynamo (e.g., Labrosse et al., 2007; Ozima et al., 2005). However, given sufficient heat transport across the core–mantle boundary, a geodynamo could have been
generated. If so, sources in the shallow outer core may have been more important for generating the dynamo relative to deeper convection, resulting in a field that was less
dipolar than that generated in later times (B–C). (B) Onset of inner core nucleation sometime before approximately 2 Ga is driven by secular cooling of the lower mantle,
possibly related to deep subduction. This results in a geodynamo that is more deeply seated in the core producing a highly dipolar field. (C) With the development of
core–mantle boundary heterogeneity by continued deep subduction, shallow core contributions to the geomagnetic field grow in importance, resulting in a less dipolar field
than in (B).
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rigorously examined against the Mesozoic-Recent interval where
geologic data may be used to infer changes in CMB conditions.

The relatively old inner core age implied by our PSV analysis fa-
vors radioactive heat sources in the core (Buffett, 2002). However,
we note that the inner core nucleation age we call upon is older
than that envisioned in many models (e.g., Aubert et al., 2009,
2010). Resolution of this important question should come as
numerical models improve and are able to accommodate values
representing the real Earth, and PSV data sets become larger. In
particular, the possibility that a change in core cooling explicitly
related to deep subduction as envisioned here led to inner core
formation should be considered in future modeling. Finally, we
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note that the paleomagnetic data (Table 1) were generally col-
lected for paleolatitude (tectonic) studies. The change we have
identified is testable through renewed paleomagnetic studies of
igneous units, with an eye toward dense sampling needed to re-
duce uncertainties in PSV analyses. Additional efforts should also
be made to obtain robust PSV estimates for the time periods for
which such estimates are currently rare or absent (for example,
for the early/mid-Mesoproterozoic).
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Supplementary Table 1. Summary of the data used for estimating the paleosecular variation after
applying the variable cutoff filter (Vandamme, 1994). The three datasets affected by the procedure are
highlighed by bold font.

Unit Age (Ma) B′ ∆max Ac Plat S ± dS C/UC Sexp Sobs-Sexp Sign
Bangemall Basin Sills1 1070 11 24.1 31.1 27.8 13.9 ± 2.6 C 11.3 2.6 +
Lake Shore traps2 1087 30 18.3 29.7 14.6 13.6 ± 0.8 C 10.1 3.5 +
Portage Lake Volcanics3 1095 28 26.2 31.1 16.9 14.5 ± 1.2 UC 10.3 4.2 +
North Shore Traps4 1098 34 23.6 26.1 27.3 11.4 ± 2.1 C 11.2 0.2 +
Mamainse Point Upper N5 ∼1100 21 10.1 14.8 22.4 4.8 ± 3.0 C 10.7 -5.9 −
Umkondo dolerites6 1110 15 28.0 31.3 6.8 14.2 ± 3.1 C 9.7 4.5 +
Cleaver dikes7 1740 17 30.7 33.2 39.1 14.4 ± 4.0 C 12.6 1.8 +
Taihang dikes8 1769 18 11.6 16.2 2.3 5.9 ± 1.5 C 9.6 -3.7 −
Flaherty volcanics9 1870 11 17.4 25.9 26.2 11.6 ± 1.7 UC 11.1 0.5 +
Mashonaland dolerites10 1880 15 21.2 28.5 27.4 11.8 ± 5.1 C 11.2 0.6 +
Fort Frances dikes11,12 2067-2077 12 26.0 26.0 35.1 11.2 ± 3.3 C 12.1 -0.9 −
Marathon dikes (R)11,12 2101-2106 13 21.2 31.1 37.0 14.0 ± 2.5 C 12.4 1.6 +
Marathon dikes (N)11,12 2121-2126 16 26.3 34.8 39.9 16.0 ± 2.6 C 12.8 3.2 +
Biscotasing dikes13 2169 12 20.7 28.2 38.4 12.6 ± 2.3 C 12.6 0 0
Ongeluk lavas14 2200 32 19.5 20.1 14.1 7.1 ± 7.5 C 10.1 -3.0 −
Dharwar dikes15 2367 25 24.7 32.8 69.1 15.5 ± 1.1 C 17.4 -1.9 −
Matachewan dikes (N)16 2473-2446 28 16.7 17.5 14.8 6.4 ± 2.9 C 10.1 -3.7 −
Matachewan dikes (R)16 2473-2446 99 18.3 20.4 7.7 8.0 ± 5.5 C 9.8 -1.8 −
Karelia dikes17 2440 11 16.6 24.2 30.0 10.7 ± 1.3 UC 11.5 -0.8 −
Allanridge lavas18−19 2664-2709 17 25.5 29.0 43.2 12.1 ± 5.7 C 13.2 -1.1 −
Upper Fortescue lavas20 2715 16 21.8 30.0 35.0 12.9 ± 3.2 C 12.1 0.8 +
Fortescue Lower lavas20 2746 75 28.7 30.7 49.5 12.8 ± 2.0 C 14.2 -1.4 −
Fortescue Package 020 >2772 24 26.4 36.5 58.3 16.1 ± 2.8 C 15.6 0.5 +

B′: number of units not rejected by the variable cutoff; ∆max: maximum angular distance of the non-
excluded VGPs from the mean paleopole; Ac: the variable cutoff angle; Plat: paleolatitude; S, dS : angular
dispersion of VGPs and confidence interval; C/UC: data corrected (uncorrected) for within-site disper-
sion; Sobs-Sexp: difference between observed S and that predicted (Sexp) from Model G fit to all data
(a = 0.21± 0.03, b = 9.62± 0.94); Sign: result of Sign Test (see text). Paleomagnetic and age data sources:
Global Paleomagnetic Database (GPD) (Pisarevsky, 2005) data identifier is listed; see references cited for
more recent works: 1Wingate et al., 2002 (GPD 3455), 2Diehl and Haig, 1994 (GPD 2776); 3Hnat et al.
2006; 4Tauxe and Kodama, 2009; 5 Swanson-Hysell et al., 2009; 6Gose et al. 2006; 7Irving et al. 2004 (GPD
3609); 8Halls et al. 2000 (GPD 3394); 9Schmidt 1980 (GPD 1862); 10Bates and Jones, 1996 (GPD 3088);
11Buchan et al. 1996 (GPD 3061); 12Halls et al. 2008; 13Halls and Davis 2004 (GPD 3644); 14 Evans et al.,
1997 (GPD 3175); 15Halls et al. 2007; 16Evans and Halls 2010; 17Mertanen et al. 1999 (GPD 3296); 18 de
Kock et al. 2009; 19 Strik et al. 2007; 20Biggin et al. 2008.
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Supplementary Figure 1. (A) Latitudinal dependence of angular dispersion S of virtual geomagnetic
poles for the Precambrian (solid symbols) intrusive and extrusive units and extrusives of the last five mil-
lion years (open inverted triangles). The Precambrian datasets are filtered using the variable cutoff angle
(Vandamme, 1994). See Supplementary Table 1 for the Precambrian data sources. Grey and black symbols:
younger and older than 2.2 Ga, respectively. Solid black, grey, and thick black lines: Model G fits for the 0-5
Ma (Time-Averaged Field Initiative, TAFI; Johnson et al., 2008; Lawrence et al., 2009; Kent et al., 2010;
Opdyke et al., 2010), 1.0-2.2 Ga and 2.2-3.0 Ga data, respectively. The dashed line shows the model G fit
for the 5-195 Ma data (McFadden et al., 1991; Tarduno et al., 2002; note individual data points are not
shown here) (see text). (B) Latitudinal dependence of S only for the Precambrian (solid symbols) intrusive
units (see text).
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