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Abstract

Variations in the strength of the Atlantic meridional overturning circulation (AMOC) are

a major potential source of decadal and longer climate variability in the Atlantic. In this

study, we analyze continuous integrations of tangent linear and adjoint versions of an ocean

General Circulation Model (OPA) and rigorously show the existence of a weakly-damped os-

cillatory eigenmode centered in the North Atlantic and controlled solely by linearized ocean

dynamics. In this particular GCM the mode period is roughly 24 years, its e-folding decay

timescale is 40 years, and the mode is the least damped in the system. Its mechanism is re-

lated to the westward propagation of temperature anomalies in the northern Atlantic in the

latitudinal band between 30 and 60◦N: these temperature anomalies modify density in the

upper 1000 m of the ocean and hence, by geostrophic balance, ocean currents which then af-

fect the temperature field. Salinity variations partially compensate the effect of temperature

on density but, in general, have a smaller role in the oscillation (except during the excitation

of the mode by initial perturbations). The westward propagation of temperature anomalies

results from of a competition between mean eastward zonal advection, equivalent anomalous

westward advection due to the mean meridional temperature gradient, and westward propa-

gation typical of long baroclinic Rossby waves. When a temperature anomaly arrives at the

basin western boundary, the ensuing geostrophic adjusment modifies the AMOC in about

2 years. Further, we show that the system is nonnormal, which implies that the structure

of the eigenmode is different from the least-damped mode of the adjoint model. The latter

mode describes the sensitivity of the system, i.e. which patterns, chosen as initial conditions,

are most efficient for exciting the eigenmode. An idealized model is presented to highlight

the role of the background meridional temperature gradient in the North Atlantic in the

mechanism of the interdecadal mode and the nonnormality of the system.



1 Introduction

Variability of the Atlantic Meridional Overturning Circulation (AMOC) is believed to be a

major source of climate variability in the Atlantic on timescales from decadal to centennial

and longer. Observational, modeling and theoretical studies suggest a number of potential

mechanisms and climate modes that can lead to temporal variations in the AMOC (for a

recent review see Yoshimori et al., 2010). Similarly, comprehensive climate models show a

broad diversity of the simulated AMOC variability - its amplitude, typical periods, and the

possible mechanisms of the dominant climatic mode vary greatly from one model to the next

(e.g. AR4, IPCC, 2007) and remain a subject of continuing debates. This work focuses on

a robust interdecadal oscillatory mode (an eigenmode) that can exist in the system.

Many studies of climate variability in the Atlantic concentrate on the dynamics of the At-

lantic Multidecadal Oscillation (AMO) – climate variability typically associated with periods

between 50 to 70 yr (Kushnir, 1994; Delworth and Mann, 2000) and variations in the AMOC

intensity of the order of several Sverdrups (Knight et al., 2005). The AMO can exert strong

impacts on climate, affecting hurricane activity over the North Atlantic (Goldenberg et al.,

2001) and precipitation over North America (Sutton and Hodson, 2005). Sutton and Hodson

(2003) linked the climate change over the North Atlantic during the period 1871-1999 to the

AMO.

AMO-like multidecadal variability has been studied in climate models of different com-

plexity (Yoshimori et al., 2010; Latif, 1997). Several physical mechanisms for the AMO

have been proposed, including changes in the subtropical gyre (Dong and Sutton, 2005;

D’Orgeville and Peltier, 2009; Cheng et al., 2004) or changes in the subplolar gyre that alter

the heat budget of the Labrador sea (Danabasoglu, 2008), just to give a few examples.

Recent observational studies show not only the existence of the 50-70 year variability,

but also of variability in the 20-30 year band (Frankcombe et al., 2008). This shorter-period,

interdecadal variability, can be identified by looking at temperature or sea level height (SLH)
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variations in latitudinal bands (instead of using the average sea surface temperature over

the North Atlantic - a classical AMO index). This interdecadal variability is characterized

by a westward propagation of temperature anomaly. Analyzing zonal variations in SLH,

Frankcombe and Dijkstra (2009) found such variability both in observations and climate

models. The authors hypothesize that the AMO might have a strong signature at 20-

30 years in addition to the 50-70 year band more commonly associated with the AMO.

They point out, however, that the relatively short records analyzed in their study may have

overemphasized shorter periods in the data.

Idealized ocean models also show that a westward propagating mode, acting on inter-

decadal time scale, can exist in the system. Several theories have been put forward to explain

this mode: Huck et al. (1999) and Colin de Verdière and Huck (1999) suggest that this mode

is associated with a large-scale Rossby wave propagating westward across the north-south

thermal gradient. In contrast, te Raa and Dijkstra (2002) interpret the mode propagation

as a result of interaction between the ocean stratification and an anomalous vertical flow in-

duced by non-divergent geostrophic flow along the boundary. However, more recently te Raa

et al. (2004) and Dijkstra et al. (2006) have shown that the mode does not change when an

idealized rectangular basin is replaced with the realistic North Atlantic coastline.

Two recent studies suggest that this interdecadal mode can be sustained by atmospheric

noise (Frankcombe et al., 2009; Sévellec et al., 2009), but they do not agree on the properties

of the mode (whether the system is normal or nonnormal, i.e. the eigenmodes form an

orthogonal or a non-orthogonal basis, e.g. Ioannou, 1995). Frankcombe et al. (2009) has

proposed that the decadal timescale is a signature of a damped internal normal mode of

the ocean; however, Sévellec et al. (2009) demonstrated the importance of the nonnormality

for setting the amplitude of decadal variability (as discussed by Farrell and Ioannou, 1996,

climate variability excited in a nonnormal system should be stronger than in an analogous

normal system). In addition, a potential role of freshwater fluxes for the interdecadal mode
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has been discussed, in idealized settings, by Chen and Ghil (1995) and more recently by

te Raa and Dijkstra (2003) and Sévellec et al. (2009).

A fundamental question that has not been rigorously addressed yet is whether an in-

terdecadal natural mode of oscillation controlled by ocean dynamics (an eigenmode rather

than a mode of variability) would exist in realistic ocean conditions. This is the central

question of the present study. Specially, using a tangent linear version of a realistic ocean

GCM, we extract the least-damped eigenmode of the system and explore its underlying

mechanisms and key properties. In our calculations the mode period is close to 24 years and

the damping timescale to 40 years. We show that the westward propagation of temperature

anomalies is critical for this mode and results from the competition between (i) the mean

eastward zonal advection, (ii) the equivalent anomalous westward advection that depends on

the mean meridional thermal gradient in the ocean, and (iii) the westward advection typical

of long baroclinic Rossby waves (related to the β-effect).

Using the tangent linear and adjoint versions of this GCM and an idealized model, we also

examine the role of nonnormality in ocean dynamics. We demonstrate that the structures

of the least-damped mode of the forward model and of its adjoint (i.e. the biorthogonal

mode) are drastically different. We also show that salinity anomalies and changes in the

deep ocean play only a minor part in the oscillatory mechanism of the interdecadal mode;

however, both effects can be important for exciting this mode via a transient nonnormal

growth in the system.

The structure of the paper is as follows: In section 2, we will describe the ocean GCM

and the methodology we use to obtain the least-damped eigenmodes of the tangent linear

model and its adjoint. In section 3, we will discuss the properties of the eigenmode and

the adjoint mode. In section 4, we will formulate an idealized model to further examine the

properties of the oscillation. In section 5, we will summarize the implications of the study.
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2 Methods

a. Ocean models and model configurations

In this study we use the ocean GCM OPA 8.2 (Océan PArallélisé, Madec et al., 1998) in

its 2◦ global configuration (ORCA2, Madec and Imbard, 1996). There are 31 levels in the

vertical - the level thickness varies from 10 m at the surface to 500 m at depth. The model is

integrated using an Arakawa C-grid and the z-coordinates, and the rigid-lid approximation.

The present model configuration makes use of the following parameterizations: convection

is parameterized by an increase in the vertical diffusion when the ocean vertical stratification

is unstable; double diffusion is taken into account by two different terms for mixing tempera-

ture and salinity; eddy-induced velocities are described by the Gent and McWilliams (1990)

approximation; the viscosity coefficient follows the turbulent closure scheme of Blanke and

Delecluse (1993) and are functions of longitude, latitude and depth; and the mixing coeffi-

cient for temperature and salinity vary in longitude and latitude (Redi, 1982).

The tangent linear and adjoint models are provided by the OPATAM code (OPA Tangent

Adjoint Model, Weaver et al., 2003), which is based on the linearization of the OPA’s

primitive equations of motions with respect to the ocean seasonally-varying basic state of

the ocean.

For the present study, we impose surface heat and freshwater fluxes (from the model

climatology) and do not use surface restoring. These fluxes are computed by running the

full nonlinear model in a forced mode. This approach produces a realistic seasonal cycle for

the linear and adjoint models, but reduces the damping and allows SST anomalies to develop

more easily (Huck and Vallis, 2001; Arzel et al., 2006; Sévellec et al., 2009), for details see

below.

Several additional approximations have been introduced for the tangent linear and adjoint

models: the viscosity coefficients, the tracer mixing coefficients, and the eddy-induced ad-
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vection, are calculated only for the basic ocean state - further variations in those coefficients

are neglected.

b. Ocean basic state and linearization

The ocean basic state. The seasonally-varying basic state of the ocean, here also referred

to as the annual model ”trajectory”, is obtained by a direct integration of the OPA model

subject to the climatological surface boundary forcing (varying with the annual cycle). For

the forcing, we use ECMWF heat fluxes averaged for the interval 1979 - 1993, the ERS wind

stress blended with the TAO data between 1993 - 1996, and an estimate of the climato-

logical river runoff. In addition, we apply a surface temperature restoring to the Reynolds

climatological SSTs averaged from 1982 to 1989, together with a surface salinity restoring

to the Levitus (1989) climatology. A restoring term to the Levitus climatological values of

temperature and salinity is applied in the Red and Mediterranean Seas (we emphasize that

no restoring is used in the linear models). Starting with the Levitus climatology as the initial

conditions, the model produces a quasi-stationary annual cycle of the ocean basic state after

200 years of integration.

The Atlantic meridional overturning circulation (AMOC) in the full GCM (Fig. 1) is

characterized by the northward mass transport above the thermocline, a southward return

flow between 1500-3000 m, and a recirculation cell below 3000 m associated with the Antarc-

tic Bottom Water. The maximum volume transport of the AMOC is around 14 Sv, which

is slightly below but still within the errorbars of the observations (18±5 Sv, Talley et al.,

2003). The AMOC poleward heat transport reaches 0.8 PW at 25◦N, whereas estimations

from inverse calculations and hydrographic sections give 1.3 PW at 24◦N (Ganachaud and

Wunsch, 2000).

As expected, the SST field develops a strong meridional gradient in the northern Atlantic,

especially across the North Atlantic Current (NAC), and a salinity maximum at about 20◦N
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(Fig. 1). The barotropic streamfunction shows an intense subtropical gyre and a weaker

subpolar gyre centered at about 60◦N. The two gyres are separated by the NAC.

Overall, the full nonlinear model produces a realistic (seasonally-varying) basic state of

the ocean. Next, we will conduct a linear stability analysis of this ocean state.

Linear experiments. The goal of these experiments is to identify the least-damped eigen-

modes of the tangent linear and adjoint models (linearized with respect to the seasonally

varying basic state) by condicting long continuous integrations and applying a Poincaré

section (Strogatz, 1994). Alternatively, we could use the Floquet theorem and transform

the periodic system to a traditional linear system with constant coefficients. However, in

our case, obtaining the eigenmodes requires the diagonalization of a matrix of the size

3,400,011×3,400,011. This task goes beyond the limits of our computational capabilities;

consequently, we apply a different approach.

A non-autonomous dynamical system, such as that of a GCM, can be written as

dt |U〉 = N (|U〉 , t) , (1)

where t is time, |U〉 - the state vector of all prognostic variables and N - a time-dependent

nonlinear operator. We also define the notation 〈U | through the Euclidian norm 〈U |U〉,

defined through the scalar product (often called the dot product). After we decompose the

state vector as |U〉=|Ū〉+|u〉, where |Ū〉 is the nonlinear annual trajectory and |u〉 is a

perturbation, the time evolution of the perturbation can be described by a linear equation

dt |u〉 =
∂N
∂ |u〉

∣

∣

∣

∣

|
¯
U 〉

(2)

We rewrite this latter equation using a non-autonomous propagator M that connects per-

turbations at time t1 to those at time t2 as:

|u(t2)〉 = M (t2, t1) |u(t1)〉 (3)

In a discretized system M is a matrix.
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Further, we can simplify (3) by eliminating the seasonal cycle from consideration and

using the first recurrence map analysis (also called a Poincaré section). This procedure

removes one codimension, allowing us to study the stability of a fixed point instead of a

limit cycle (Strogatz, 1994). Specifically, we extract from the matrix M all points that

occur at the same time of the seasonal cycle every year (∆t=1 yr) – for example, the points

that occur on the 31th December (t∗). Because the only time dependency in the linearized

operator comes from the climatological seasonal cycle, by this procedure, we obtain a new

autonomous dynamical system (denotes by˜).

M̃ (t = n∆t) = M (t∗ + n∆t, t∗) , (4)

where n and t are integers representing the number of seasonal cycle number and the new

time, respectively.

The linear and adjoint models of this system can be rewritten in term of their eigenvectors

as:

M̃(t) =
∑

j

|uj〉 eλjt 〈u†
j| , (5a)

M̃
†
(t) =

∑

j

|u†
j〉 eλ∗

j t 〈uj | , (5b)

where M̃
†

the adjoint propagator matrix (defined through the Euclidian norm), |u(†)
j 〉 and

λ
(∗)
j are the eigenvectors and eigenvalues of M̃

(†)
(where ∗ denotes the complex conjugate),

and the sum over j represents summation over all eigenvectors (corresponding to the number

of degrees of freedom in the discretized model).

Because e-folding decay scales of the eigenmodes differ from each other (1/ℜ(λj), where

ℜ denotes the real part), on long time scales (t→∞) only the least-damped eigenmode will

persist: that is, the eigenmode with the minimum value of ℜ(λj). We will denote this mode
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by index j=1. Then, the tangent linear and adjoint models yield:

lim
t→∞

M̃(t) = lim
t→∞

|u1〉 eλ1t 〈u†
1| , (6a)

lim
t→∞

M̃
†
(t) = lim

t→∞
|u†

1〉 eλ∗

1
t 〈u1| , (6b)

Thus, if |u(0)〉 is an arbitrary initial condition, on long time scale the outputs, |u(t)〉, of the

tangent linear and adjoint models are controlled by their least-damped eigenmodes:

|u(∞)〉 = lim
t→∞

M̃(t) |u(0)〉 = lim
t→∞

|u1〉 eλ1t 〈u†
1|u(0)〉 ∝ |u1〉 , (7a)

|u(∞)〉 = lim
t→∞

M̃
†
(t) |u(0)〉 = lim

t→∞
|u†

1〉 eλ∗

1
t 〈u1|u(0)〉 ∝ |u†

1〉 , (7b)

Accordingly, to obtain the least-damped eigenmodes for these two cases, we have con-

ducted several long-time integrations of the tangent linear model and its adjoint, with du-

rations exceeding 500 yr. For the forward model we used four different initial conditions,

|u(0)〉, to check the convergence of the asymptotic output, |u(∞)〉, to the same eigenvector

|u1〉. For the adjoint model we used three different initial conditions to check the conver-

gence to |u†
1〉. Note that in the latter case, the integration was conducted from the initial

conditions but backward in time.

3 Results

a. The least-damped linear mode of the system

Analyzing the output of the tangent linear model reveals the existence in the system of a

damped oscillatory eigenmode centered in the North Atlantic with a period of about 24 yr

and an e-folding decay time scale of 40 yr (Fig. 2). This interdecadal mode exhibits a nearly

quadrature phase relationship between variations in the AMOC strength and the upper

ocean temperature averaged over the northern Atlantic (Fig. 2, top). The heat content of

the Labrador sea appears to be a good precursor, by roughly 2 yr, of the AMOC changes

(Fig. 2, bottom). Similar phased changes in the ocean heat content, the Labrador sea
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heat content, and the AMOC transport on multidecadal timescales have been discussed by

Danabasoglu (2008).

Temperature variations associated with the interdecadal mode in our model are most

pronounced in the upper 500 m of the northern Atlantic Ocean between 30◦N and 60◦N

(Fig. 3, top). The temporal evolution of the mode exhibits two distinct (quadrature) phases

– phases A and B (Fig. 2, top). Phase (A) is characterized by a strong anomaly of the

zonally-averaged temperature in the upper ocean but almost no anomaly in the ocean large-

scale meridional overturning, whereas phase (B) has very weak anomaly in zonally-averaged

temperature but a strong anomaly in the overturning streamfunction (Fig. 3).

During the first phase of the oscillation (A), a cooling of the upper ocean induces anoma-

lous horizontal velocity around the temperature or, more accurately, density anomaly (Fig. 3,

top left). The anomalous geostrophic flow (cyclonic for a cold anomaly) modifies both the

subtropical and subpolar gyre circulation. In the upper ocean, this flow acts on the back-

ground meridional temperature gradient, bringing warm waters from the South into eastern

part of the basin and cold waters from the North into the western part. This mechanism,

together with the β-effect, effectively leads to the westward propagation of the initial tem-

perature anomaly. At depth, in the absence of a mean temperature gradient comparable to

that in the upper ocean, the anomalous velocity has little effect on temperature changes.

Also, since the anomalous circulation occurs around a temperature anomaly of the same sign

(versus a dipole), the southward and northward velocities largely compensate each other and

contribute little to the meridional overturning (Fig. 3, bottom left).

The westward propagation of the cold temperature anomaly and the anomalous flow from

the South causes the development of a new, warm temperature anomaly on the right flank

of the initial anomaly (Fig. 5). This dipole pattern of temperature (cold-warm) becomes

most pronounced by the second phase of the oscillation (phase B in Fig. 3, right panels). In

turn, the zonal temperature gradient within the temperature dipole generates a northward
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geostrophic velocity anomaly in the upper ocean and a positive anomaly in the meridional

overturning. The westward propagation of alternating temperature anomalies is evident

from the Hovmoller diagrams for the mode with the amplitude decay suppressed (Fig. 6).

In the discussion above, we have implicitly assumed that the background meridional

density gradient is controlled by temperature (|α∂yT |≫|β∂yS|). This assumption holds fairly

well in the Atlantic north of 30◦N (Fig. 7). Therefore, anomalous meridional velocity in this

region acts mostly on the mean temperature rather than salinity gradient when generating

density anomalies. That is why, the dynamics of the mode are predominantly controlled by

temperature variations.

Nevertheless, the oscillatory mode does have a salinity component (Fig. 4). Even though

temperature and salinity anomalies have similar shapes and propagation characteristics,

salinity anomalies act to reduce the effect of temperature anomalies on density (c.f. Figs. 3

and 4). This behavior is a consequence of the opposite effects on density of the mean

meridional gradients of temperature and salinity. That is, anomalous northward advection

extracts from the mean fields positive anomalies in temperature and salinity. The latter

partially compensates the effect of the former on density. In simplified models such compen-

sation has been discussed by Huck et al. (1999), Huck and Vallis (2001), te Raa and Dijkstra

(2002), and Sévellec et al. (2009).

We should also emphasize that the eigenmode we describe is not driven by convection.

In fact, the approximations of the tangent linear and adjoint models assume that tracer

diffusivities are fixed, and so is the ocean mixed layer depth. Consequently all changes in

the vertical flow are determined by divergence or convergence of the horizontal flow associated

with large-scale density anomalies. Thus, our results confirm that AMOC variability can

occur without changes in the mixed layer depth and hence convection. This is not to say,

however, that this mode will not influence deep convection, but rather changes in convection

will be a next-order effect for the dynamics.
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b. The biorthogonal mode

Using a similar mathematical procedure we have computed the least-damped eigenmodes

(|u†
1〉 ) of the propagator of the adjoint model (M̃

†
). This mode is defined as the biorthog-

onal to the least-damped eigenmode of the tangent linear propagator (|u1〉). That is, the

biorthogonal mode is orthogonal to every eigenmode of the tangent linear propagator except

|u1〉 (defining the contravariant projection). If the system is nonnormal (M̃M̃
†
–M̃

†
M̃6=0), the

least-damped mode of the tangent linear model and that of the adjoint will differ from each

other (|u1〉6=|u†
1〉). Because of this nonnormality we can expect a stronger temporal variabil-

ity in the system (Ioannou, 1995) associated with the efficient stimulation of the eigenmodes

of the tangent linear model that occurs through the stimulation of their biorthogonals. This

stems from the fact that |u†
1〉 has the biggest normalized covariant projection on |u1〉.

As expected, the least-damped mode of the adjoint has the same period and decay scale

as that of the tangent linear model. However, the spatial structure of the adjoint mode is

very different. For instance, temperature and salinity anomalies in the adjoint mode have a

constructive effect on density, rather than compensating as in the tangent linear mode (also

discussed previously in a simplified model by Sévellec et al., 2009). The effect of salinity on

density in the adjoint mode slightly dominates that of temperature. The adjoint mode is

most pronounced in the deep ocean below 500 m north-west of the North Atlantic Current.

(Figs. 8 and 9).

As mentioned before, since they are biorthogonal to each other, the least-damped mode

of the adjoint has the maximum covariant projection onto the least-damped mode of the

tangent linear model. Consequently, the former controls the sensitivity of the latter to

initial perturbations. Thus, to understand the spatial structure of the biorthogonal mode,

it is important to understand why specific changes in temperature or salinity in a particular

region can stimulate efficiently the leading eigenmode of the tangent linear model. In our

case, temperature and salinity anomalies of the biorthogonal mode are located predominantly
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in the area where they can avoid propagation or deformation, which allows them to impact

the ocean circulation most efficiently.

In fact, temperature and salinity anomalies of the biorthogonal mode are strongest in the

region where ocean currents are weak (away from the NAC, Fig. 11, left) and at depths where

horizontal density gradients vanish and so does the possibility for westward propagation.

Such anomalies are able to create a persistent anomalous advection, through thermal wind

balance, and hence stimulate the least-damped mode of the tangent linear model. The fact

that the speed of propagation of temperature and salinity anomalies in the biorthogonal

mode is very slow allows an efficient excitation of the interdecadal mode on long time scales,

which principally explains the overall structure of the biorthogonal mode.

The constructive effect of temperature and salinity on density in the biorthogonal mode

can be understood by the same logic. A constructive density anomaly will induce a greater

anomalous velocity which will be more efficient in extracting temperature anomalies from

the background temperature field, and thus more efficient in generating the least-damped

mode of the tangent linear (forward) model.

To summarize, the stimulation of the eigenmode by its biorthogonal can be described by

the following process: together, temperature and salinity anomalies of the biothothogonal

pattern induce a strong geostrophic flow. In turn, this flow extracts from the mean ocean

state new anomalies in temperature and salinity. The new anomalies have opposite effects on

density, but since the ocean mean state is dominated by the meridional temperature gradi-

ent, density anomalies are now controlled largely by temperature. These density anomalies

propagate westward and define the oscillatory eigenmode dominated by temperature and

partially compensated by salinity.
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4 The idealized model

a. Formulation

To better understand the oscillatory mechanism of the mode in the ocean GCM we have

formulated an idealized model that includes the essential linear dynamics of the oscillation

and westward propagation.

The idealized model has only two levels in the vertical (Fig. 10) and invokes several key

approximations. For simplicity, given the decadal time scale of the oscillation, we consider

the system as autonomous (no seasonal cycle). Also, the large, basin scale of the mode

allows us to reduce the momemtum equations to the geostrophic balance on a β-plane (i.e.

the planetary-geostrophic regime, Colin de Verdière, 1988).

Given the dominant effect of temperature on density in the mode (|βS ′|≪|αT ′|, where T ′

and S ′ are temperature and salinity anomalies, respectively), at first we restrict the dynamics

to temperature variations. Accordingly, the model describes anomalies in temperature at two

levels - the top level (of depth h) and the deep level. We define the upper ocean as the part

of the ocean with a strong stratification, and the deep ocean - with weak or no stratification.

To simplify the mathematical procedure of the analysis, meridional variations in T ′ are

neglected (anomalies are considered to be functions of time t and the zonal coordinate x).

The zonal extent of the model ocean is W ; the full ocean depth is H .

In the absence of stratification at the deep level, we choose T ′ - temperature anomalies in

the upper ocean - as prognostic variables of the model (for simplicity we drop the indices of

Fig. 10, in the rest of this section). They evolve according to a linearized advective-diffusion

equations with horizontal diffusivity κ:

∂tT
′ = u∂xT

′ + v′∂xT + w′∂zT + ∂x (κ∂xT
′) , (8)

where v′ and w′ are anomalous meridional and vertical velocities, respectively.

This equation is linearized with respect to the mean state of the ocean. In particular,
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in the upper level we impose a mean zonal flow, u, and mean temperature gradient. This

gradient has meridional and vertical components: ∂yT , and ∂zT , where y and z are the

meridional and vertical coordinates, and T is the mean temperature. The mean zonal gra-

dient of temperature is neglected. The values of the mean fields in (8) are given by simple

constants estimated from the climatologycal run with the ocean GCM.

The system is closed using a linear equation of state for seawater, thermal wind balance for

the meridional velocity with the baroclinicity condition, and the condition of non-divergence

for the anomalous flow.

∂zv
′ =

αg

f
∂xT

′ with

∫ 0

−H

dz v′ = 0, (9a)

∂yv
′ + ∂zw

′ = 0, with w′|z=0 = 0, (9b)

where f is the Coriolis parameter, g - the acceleration of gravity, α - the haline contraction

coefficient (for the typical values of these parameters see Tab 1).

Using thermal wind balance, the baroclinicity condition, and considering ocean dynamics

at the top and deep levels, we obtain a simple expression for the anomalous meridional

velocity in the upper ocean:

v′ =
αgh̃

f
∂xT

′. (10)

where h̃=(H − h)/2. The divergence of this meridional flow will induce anomalous vertical

velocity

w′ =
αgh̃h

f 2
βf∂xT

′, (11)

where βf=∂yf is the meridional gradient of planetary vorticity.

Using (8), (10), and (11), we reduce the dynamics of the idealized model at the upper

level to one equation:

∂tT
′ = −c∂xT

′ + κ∂xxT
′, (12)

where

c = u+ û+ cRo, (13)
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is the full speed of the mode propagation, with û=(αgh̃/f)∂yT and cRo=(αgh̃hβf/f
2)∂zT .

Here û is the equivalent speed of westward propagation of temperature anomalies on the back-

ground meridional temperature gradient (geostrophic self-advection, as sketched in Fig. 5).

cRo represents the phase velocity of long (non-dispersive) baroclinic Rossby waves due to the

β-effect, and u described the mean eastward flow. Simple estimates show that the Rossby

wave propagation speed is significantly slower than the geostrophic self-advection (cRo<û)

in mid- to high latitudes.

Also, using the baroclinicity condition and the equation for v′ in the upper ocean, we

can compute variations in the meridional volume transport associated with temperature

anomalies as

ψ′ =

∫ 0

−h

∫ W

0

v′dxdz = (hW )V ′ =
αgh̃h

f
(T ′

W − T ′
E) , (14)

Where ψ′ is the anomalous transport, V ′ - the zonally-averaged meridional velocity, and

T ′
W and T ′

E are temperature variations at the western and eastern boundaries of the basin,

respectively. We will use this equation in the next sections.

Further, we expand temperature anomaly, T ′, into Fourier harmonics:

T ′ =
∑

n

Tcn cos
(nπ

W
x
)

+ Tsn sin
(nπ

W
x
)

,

where n is the wave number. The Fourier amplitudes Tcn and Tsn obey simple differential

equations:

∂tTcn = c
nπ

W
Tsn − κ

(nπ

W

)2

Tcn, (15a)

∂tTsn = −cnπ
W
Tcn − κ

(nπ

W

)2

Tsn, (15b)

This system’s complex conjugate eigenvalues are

λ±n = λnr ± iλni = −κ
(nπ

W

)2

± i
nπ

W
c. (16)

An estimate using ocean typical values from Tab. 1 gives for the gravest mode (with n=1)

a period of T=2π/λ1i=8.9 yr and an e-folding decay time scale of τ=1/λ1r=–36.1 yr. The
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corresponding eigenvectors are:

|u±
n 〉 =

√
2

2







±i

1






.

We will demonstrate in the next sections that the relatively short period given by (16)

becomes significantly longer and comparable to that in the ocean GCM if the effect of the

meridional salinity gradient on density is taken into account.

b. The mode oscillatory mechanism and nonnormality

The idealized model and its eigenvectors confirm that the system can exhibit a damped

oscillation in which temperature anomalies propagate westward (as long as the meridional

gradient of temperature is strong enough to maintain the westward propagation tendency

against the mean flow). The oscillation goes through two quadrature phases (corresponding

to cosine and sine in the expression for T ′). The first phase is characterized by an anomaly

in the zonally-averaged temperature (proportional to the sine with n=1) and no change in

meridional streamfunction (14), whereas the second phase is characterized by an anomaly in

the zonal temperature gradient (proportional to the cosine with n=1) and a corresponding

anomaly in the meridional overturning (14). Thus, the oscillation undergoes exactly the same

phases as the least-damped mode of the tangent linear GCM – the phases characterized by

variations in the zonally-averaged temperature followed by variations in the AMOC (as in

Fig. 2).

Note that in more idealized settings, where both the mean flow and its perturbations

are described solely by the first vertical baroclinic mode, as in the 1.5-layer shallow-water

equations, the geostrophic self-advection of temperature anomalies and advection by the

mean flow cancel each other, resulting in a westward propagation controlled exclusively by

the β-effect. This cancellation is known as the non-Doppler effect (Rossby et al., 1939; Held,

1983; Killworth et al., 1997).

16



The role of wavenumber. According to expression (16), both the oscillation period and the

e-folding decay timescale of different modes in the idealized model depend on wavenumber.

In fact, the period is given by the inverse of wavenumber, while the e-folding decay timescale

is given by the inverse of wavenumber squared. Therefore, modes with n≥2 are stronger

damped by dissipative processes than the first mode (with n=1). This explains why the

mode with the smallest wave number is the least-damped mode of the system.

The role of mean zonal velocity. To evaluate the importance of the mean eastward advec-

tion (u), we can compare it to the equivalent zonal velocity due to the mean meridional

temperature gradient, û=αgh̃∂yT/f This equivalent zonal velocity is westward as long as

temperature decreases with latitude, and simple estimates (using parameters from Tab. 1)

show that its magnitude far exceeds the eastward tendency of the mean zonal flow (Fig 11).

The β-effect increases the westward tendency even further. Thus, temperature anomalies

will indeed propagate westward in accordance with the mechanism described in Fig. 5 (also

see Tab. 2), i.e. the geostrophic self-advection due to the background meridional temper-

ature gradient. This gradient is strongest in the northern Atlantic, between 30 and 60◦N,

which tentatively explains the predominant location of the least-damped mode. Although

the mean eastward advection is not needed for the oscillatory mechanism, it is still important

in computing the period of the mode accurately (Fig. 12) as described in the next sections.

The role of the deep ocean: Other important effects, not critical for the existence of the

mode but affecting its period and nonnormal dynamics, include salinity and the effect of the

deep ocean. For example, as we showed in section 3b, the biorthogonal to the least-damped

oscillatory mode of the linearized GCM has a stronger signature below 1000 m than at the

surface (Fig. 8 and 9, section 3b).

To include the effect of the deep ocean, we need to modify the previous equations of

idealized model – eqs (15). This can be done by adding to the system two new equations for
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the Fourier amplitudes of the deep ocean temperature T d
cn and T d

sn (Appendix A). A linear

stability analysis of the new system yields four eigenvalues:

λ1,2 = −κ
(nπ

W

)2

± i
nπ

W
c, and λ3,4 = −κ

(nπ

W

)2

, (17)

where still c=u+û+cRo, with û=αgh̃
f
∂yT and cRo=

αgh̃hβf

f2 ∂zT .

The first two (oscillatory) eigenvalues of the system (λ1,2) have not changed and the last

two components of the corresponding eigenvectors are zero, so that in agreement with the

tangent linear GCM (Figs. 3 and 4) the deep ocean does not directly affect the leading mode

of the system.

The new eigenvalues (λ3,4) are degenerate and describe a purely decaying mode with an

e-folding decay timescale of approximately 36 yr. This mode also has a strong signature in

the upper ocean.

We can examine the sensitivity of the eigenvectors (i.e. the best way to excite them)

by computing their biorthogonals, see (22) in Appendix A. It turns out that, although the

dynamics of the two damped modes |u3〉 and |u4〉 are mainly controlled by the upper ocean,

their sensitivity, |u†
3〉 and |u†

4〉, are controlled solely by the deep ocean. The sensitivity of

the oscillatory mode, |u†
1,2〉, is also largely controlled by the deep ocean. Such asymmetry

between the eigenvectors and their biothorgonals is a consequence of the nonnormality of

the system dynamics.

These results are consistent with the analysis of the ocean GCM (section 3). That is,

the deep ocean is a critical region for the sensitivity of the oscillatory mode, even though

the mode itself manifest in the upper ocean. This is because temperature anomalies can

persist longer in the deep ocean (where both mean currents and geostrophic self-advection

are weak), and excite the oscillatory mode more efficiently.

The role of the salinity: Another important factor that can influence the properties of

the leading oscillatory eigenmode and its sensitivity involves salinity variations. Using the
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tangent linear GCM and its adjoint (section 3), we have shown that the oscillation dynamics

are largely controlled by temperature variations in the upper ocean (with salinity having

a compensating effect on density). However, the sensitivity of the oscillation, i.e. the

biorthogonal mode, is controlled more or less equally by temperature and salinity (with

the two having a constructive effect on density). These results are related again to the

nonnormality of the system associated with the different effects on density of the mean

temperature and salinity gradients in the northern Atlantic.

Here, we examine these results by extending the idealized model described by (15) to

include salinity variations (but not the effect of the deep ocean). To that end, we introduce

Scn and Ssn - the Fourier amplitudes for the upper-ocean salinity (similar to Tcn and Tcn),

which will add two more equations to system (15), for details see Appendix B.

A linear stability analysis of the new equations yields four eigenvalues:

λ1,2 = −κ
(nπ

W

)2

± i
nπ

W
c, andλ3,4 = −κ

(nπ

W

)2

± i
nπ

W
u, (18)

where c=u+û+cRo, but now û=
(

α∂yT − β∂yS
)

gh̃/f and cRo=
(

α∂zT − β∂zS
)

gh̃hβf/f
2.

The first two eigenvalues λ1,2 and the corresponding eigenvectors are similar to those in

the temperature-only model, but now the speed of westward propagation should be modified

to include mean salinity variations. The oscillation is still dominated by temperature and

the mode dynamics are described by the westward propagation of density anomalies as long

as |α∂yT |>|β∂yS|, which holds well in the northern Atlantic (Fig 11). However, the speed of

westward geostrophic self-advection decreases because of the reduction of the mean merid-

ional density gradient caused by salinity. Note that in the absence of the mean meridional

temperature gradient the propagation of density anomalies would be eastward.

Estimating the period and the e-folding decay timescale of the leading oscillatory mode

for the typical parameters in Tab. 1 and n=1 gives 2π/ℑ(λ1,2)=22.4 yr for the period and

1/ℜ(λ1,2)=–36 yr for the decay scale, which agrees well with the ocean GCM results.

The other two eigenvalues (λ3,4) and the corresponding eigenvectors represent a mode
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passively advected by the mean currents and damped by diffusion. It is a spiciness mode

with eastward propagation (a spiciness anomaly does not modify density and hence cannot

experience geostrophic self-advection). The period of this mode is 12 yr for the mean current

of 2.5 cm s−1, and its decay timescale is –36 yr.

As previously, differences between the mode dynamics and its sensitivity become apparent

when we compare the eigenmodes and their biorthogonals (26a). The biorthogonals show

that the passively-advected mode, |u3,4〉, is more sensitive to salinity than to temperature

variations, even though the mode itself does not have any preferences between the two

fields in its dynamics (since it is a spiciness mode). For the oscillatory mode, |u1,2〉, the

biothogonals produce a constructive pattern of temperature and salinity without a dominant

term, even though the eigenmode itself is controlled by temperature anomalies partially

compensated by salinity. These results are similar to the GCM analysis (section 3), which

again highlights that the ocean dynamics are nonnormal. The cause of nonnormality is the

asymmetry between mean temperature and salinity fields.

c. The mode oscillation period

We can now return to the question of what controls the period of the interdecadal mode.

Ultimately, this period is inversely proportional to c and thus proportional to the time needed

for a temperature (or density) anomaly to cross the northern Atlantic. Our study points

to several key factors that determine this crossing time, including the meridional gradients

of temperature and salinity, the mean zonal velocity, and the width of the basin (the latter

parameter, along with horizontal diffusivity, also controls the mode decay timescale). As

previously discussed, the meridional salinity gradient and the mean zonal flow, although

not critical for the oscillation, are indeed important for setting the period of the mode. By

slowing down the westward propagation, these two factors lengthens the oscillation period

(Tab. 2).
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To further understand the sensitivity of the period to different processes in the idealized

model, we varied four parameters in (18): the mean zonal velocity (from 0 to 0.1 m s−1),

the meridional temperature contrast (from –30 to 0 K), the prevailing latitude at which

temperature anomalies propagate (from 20 to 80◦N), and the ocean upper layer thickness

(from 200 to 2000 m).

Analyzing the sensitivity of the mode to the mean zonal velocity and the meridional

temperature gradient reveals two different regimes (Fig. 12, left panel) - with westward or

eastward propagation. Which regime is achieved depends on whether the eastward flow is

strong enough to overcome the westward tendency of the geostrophic self-advection and the

β-effect. At the border between the two regimes the mode period goes to infinity (which cor-

responds to a zero propagation speed) and the oscillation degenerates into a purely damped,

trapped mode.

The oscillation period also changes when the upper level thickness, h in (18), is modified.

Increasing this thickness in the idealized model leads to a slower westward propagation speed

and longer periods (before the direction of propagation changes sign), see Fig. 12, right panel.

A similar effect occurs when we increase the prevailing latitude at which density anomalies

propagate (which affects both the Coriolis and β parameters).

Varying the characteristic speed of the mean current also shows two different regimes

(Fig. 12, left panel). For a fixed mean eastward flow, the eastward propagation of density

anomalies becomes possible only in high latitudes and for a large thickness of the upper

layer.

5 Conclusion

Ocean circulation can generate climate variability on a variety of timescales. In this study,

we have conducted a stability analysis of a linearized version of a realistic ocean GCM and

its adjoint and identified the leading (least damped), interdecadal eigenmode of the Atlantic
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meridional overturning circulation. The mode is associated with large-scale westward prop-

agating density anomalies dominated by temperature but partially compensated by salinity.

These temperature anomalies are most pronounced in the upper ocean in the northern At-

lantic in the band between 30 and 60◦N where the mean meridional gradient of temperature

is especially strong. In our particular model the least-damped mode has a period of 24 yr

and an e-folding decay timescale of roughly 40 yr. The damping becomes stronger if the

surface mixed boundary conditions are applied instead of the flux boundary conditions.

The westward propagation of temperature anomalies is largely explained by the geostrophic

self-advection of the anomalies on the background of the mean meridional temperature gra-

dient. Two other factors determining the propagation characteristics are the β-effect (as

in conventional Rossby waves) and the mean eastward flow. Since the meridional salinity

gradient in the North Atlantic mainly opposes that in temperature, the effect of salinity is

to slow down the westward propagation. In general, the propagating temperature anomalies

can be interpreted as planetary waves associated with the background vorticity gradient

(controlled by variations in density and planetary vorticity) and affected by mean currents.

The period of the mode is determined by the time necessary for the temperature anomalies

to cross the northern Atlantic twice.

An idealized two-level model, based on planetary-geostrophic equations for temperature

and salinity anomalies (e.g. Colin de Verdière, 1988), captures the main properties of the

mode and emphasizes the importance of the mean meridional temperature gradient in the

upper ocean for the mode dynamics. The meridional salinity gradient, while not critical

for the mode mechanism, is still important for the oscillation period. The damping of the

eigenmodes, according to the idealized model, is determined by horizontal diffusion. Conse-

quently, the least-damped mode is the one with the smallest wave number and the greatest

horizontal spatial scale. Other modes have shorter decay timescales, so that asymptotically

at long time only the large-scale interdecadal mode survives in the system.
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The eigenmode described in our study can explain the westward propagation of temper-

ature anomalies on decadal timescales as detected in observations (e.g. Kushnir, 1994) as

well as other properties of interdecadal variability highlighted in previous studies with com-

prehensive, intermediate-complexity, and simple climate models. For example, te Raa and

Dijkstra (2002) discussed an oscillation that involved both meridional and Zonal Overturn-

ing Circulations (ZOC) in the Atlantic. In our model the phase of the oscillation associated

with the AMOC intensification corresponds to the thermocline shoaling in the West and

deepening in the East, which is a signature of a strengthening of the ZOC.

Another examples include explanations of AMOC variability that involve modifications of

the subpolar or subtropical gyres and the upper ocean heat content in the northern Atlantic

(e.g. Dong and Sutton, 2005; D’Orgeville and Peltier, 2009; Danabasoglu, 2008; Cheng et al.,

2004). In our model both gyres are affected by anomalous currents associated with large-

scale temperature anomalies (Fig. 3) and hence anomalies in the upper ocean heat content.

Whereas the greatest changes in the gyre circulations occur when the total heat content in

the upper northern Atlantic is either maximal or minimum, AMOC anomalies are strongest

when heat content anomalies are weak (Fig. 2). These results imply that our interdecadal

eigenmode is not only characteristic of the particular GCM we use, but can also account for

previously noted features of interdecadal variability in other ocean and climate models.

To better understand the properties of the system we have also examined the biorthogonal

of the leading eigenmode (i.e., the least-damped eigenmode of the adjoint model). This

”adjoint” mode describes the sensitivity of the leading ”forward” mode; that is, it shows

which regions of the ocean and which variables (temperature or salinity) should be perturbed

to excite the forward mode. In other words, the adjoint mode is more relevant for perturbing

the system, while the forward mode is more important in the asymptotic limit of long time.

Because the system is non-normal, the structure of the adjoint mode (the biorthogonal)

is dramatically different from that of the forward mode. For example, temperature and

23



salinity have opposite effects on density in the eigenmode but constructive in the adjoint

mode. The forward mode has the greatest signature in the upper ocean but the adjoint

mode is more prominent in the deep ocean (where the mean flow and mean temperature and

salinity gradients are minimum). These differences imply that standard statistical analyses

used for studying AMOC variations may have difficulties in elucidating the properties of the

leading eigenmode of the system since asymptotic characteristics of interdecadal variability

can differ from those obtained from assessing short-term correlations.

As outlined by the idealized model, the nonnormality of the system is related to several

factors leading to asymmetry in the linear prognostic equations. These factors include a

significantly stronger stratification in the upper ocean than in the deep ocean, and the

competition between the meridional gradients of temperature and of salinity in setting the

meridional density gradient in the North Atlantic.

Several questions have not been yet addressed by this work. Even though the non-

normal properties of the oscillatory mode have been highlighted, we have not explored how

atmospheric noise can excite this mode. As suggested by Ioannou (1995), the nonnormality

should enhance the response of the AMOC to external perturbations. Another question is

the robustness of the mode to changes in the surface boundary conditions. A new set of

experiments (not shown) reveals that the mode can still exist for different boundary condi-

tions (temperature restoring instead of constant heat fluxes). As expected, the eigenmode

becomes more damped but retains its major properties, including the same oscillation pe-

riod. Also, the sensitivity of the oscillatory mode to surface salinity perturbations becomes

enhanced relatively to temperature perturbations (Sévellec and Fedorov, 2011). This latter

property could be crucial for sustaining the mode by atmospheric synoptic noise.

Another issue not addressed in this study is the role of mesoscale eddies. In ocean models

such as the one we use, turbulent mixing is represented by Gent-McWilliams eddy fluxes

(Gent and McWilliams, 1990) and by diapycnal and isopycnal diffusion. This implies that
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mesoscale eddies (Chelton et al., 2007) as well as the low-frequency variability associated with

the eddying ocean dynamics (e.g. Berloff and McWilliams, 1999) are missing in our model.

Given typical spatial scales of these eddies (∼100 km), naturally they are filtered out from

spatially integrated temperature indices such as the AMO index for example (SSTs averaged

over the North Atlantic). However, they should be considered in future work as a potential

source of oceanic internal noise and a possible contributor to low-frequency variability.

Another important issue is the effect of ocean-atmosphere interactions on the interdecadal

mode. In particular, a series of studies have shown the importance of the thermal feedback

on wind stress for generating (Cessi, 2000; Gallego and Cessi, 2000) and sustaining (Cessi

and Paparella, 2001) decadal variability. Preliminary results from the IPSL coupled climate

model (a model that has OPA as its oceanic component) reveal a robust 20-year interdecadal

variability of the AMOC with dynamics apparently similar to those discussed in this study

(Juliette Mignot, personal communication). Atlantic ocean variability in a coupled model

with a simplified atmosphere and idealized continental geometry (John Marshall, personal

communication) also resembles our mode. The nonnormal excitation of the interdecadal

mode (Sévellec and Fedorov, 2011) and the role of coupled feedbacks are among the topics

of ongoing and future work.
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Appendix A: Idealized model incorporating the deep ocean

In this appendix we describe modifications of eqs (15a, b) necessary to include the effect of

the deep ocean.
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We first rename the Fourier amplitudes for temperature at the upper level as T u
cn and

T u
sn and introduce two new dynamical variables T d

cn and T d
sn for the deep ocean. We neglect

the meridional temperature gradient or mean velocity in the deep ocean because they are

very weak as compared to those at the surface. We also ignore bottom topography and

assume that the deep ocean temperature can be affected only by diffusion. It will be critical,

however, that temperature anomalies in the deep ocean can change vertical shear in the

ocean (because of thermal wind balance) and modify currents and hence temperature in the

upper ocean. This effect will be included in the equations for T u
cn and T u

sn.

The aforementioned assumptions lead to a new system of equations:

∂t





















T u
cn

T u
sn

T d
cn

T d
sn





















=





















−κ
(

nπ
W

)2 nπ
W
c 0 nπ

W
(û+ cRo)

−nπ
W
c −κ

(

nπ
W

)2 −nπ
W

(û+ cRo) 0

0 0 −κ
(

nπ
W

)2
0

0 0 0 −κ
(

nπ
W

)2









































T u
cn

T u
sn

T d
cn

T d
sn





















, (19)

where still c=u+û+cRo, with û=αgh̃
f
∂yT and cRo=

αgh̃hβf

f2 ∂zT .

A linear stability analysis yields four eigenvalues

λ1,2 = −κ
(nπ

W

)2

± i
nπ

W
c, and λ3,4 = −κ

(nπ

W

)2

, (20)

corresponding to four eigenvectors

〈u1,2| = (2c)−
1

2 (±i, 1, 0, 0) , (21a)

〈u3| = c−
1

2 (û+ cRo, 0, c, 0) , and 〈u4| = c−
1

2 (0, û+ cRo, 0, c) . (21b)

The corresponding biorthogonal vectors are

〈u†
1,2| = (2c)−

1

2 [±ic, c,±i (û+ cRo) , û+ cRo] , (22a)

〈u†
3| = c−

1

2 (0, 0, 1, 0) , and 〈u†
4| = c−

1

2 (0, 0, 0, 1) . (22b)
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Appendix B: Idealized model with salinity

In this appendix we derive a new set of equations for the idealized model, similar to eqs

(15a,b), but with salinity variations included. We first introduce Scn and Ssn - the Fourier

amplitudes for the upper-ocean salinity (similar to Tcn and Tsn). Using a linear equation of

state for seawater, we obtain:

∂t





















Tcn

Tsn

Scn

Ssn





















=





















−κ
(

nπ
W

)2
A1,2 0 A1,4

A2,1 −κ
(

nπ
W

)2
A2,3 0

0 A3,2 −κ
(

nπ
W

)2
A3,4

A4,1 0 A4,3 −κ
(

nπ
W

)2









































Tcn

Tsn

Scn

Ssn





















, (23)

with

A1,2 = −A2,1 =
nπ

W

(

αgh̃

f
∂yT +

αgh̃hβf

f 2
∂zT + u

)

,

A2,3 = −A1,4 =
nπ

W

(

βgh̃

f
∂yT +

βgh̃hβf

f 2
∂zT

)

,

A3,2 = −A4,1 =
nπ

W

(

αgh̃

f
∂yS +

αgh̃hβf

f 2
∂zS

)

,

A4,3 = −A3,4 =
nπ

W

(

βgh̃

f
∂yS +

βgh̃hβf

f 2
∂zS − u

)

,

where ∂yS and ∂zS are the background meridional and vertical gradients of salinity, and β

is the haline contraction coefficient.

The eigenvalues of this system are

λ1,2 = −κ
(nπ

W

)2

± i
nπ

W
c, andλ3,4 = −κ

(nπ

W

)2

± i
nπ

W
u, (24)

with the corresponding eigenvectors

|u1,2〉 = [2 (û+ cRo)]
− 1

2





















∓i
(

gh̃
f
∂yT +

gh̃hβf

f2 ∂zT
)

gh̃
f
∂yT +

gh̃hβf

f2 ∂zT

∓i
(

gh̃
f
∂yS +

gh̃hβf

f2 ∂zS
)

gh̃
f
∂yS +

gh̃hβf

f2 ∂zS





















, (25a)
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and

〈u3,4| = [2 (û+ cRo)]
1

2 (±iβ, β,±iα, α) . (25b)

The corresponding biorthogonal vectors are

|u†
1,2〉 = [2 (û+ cRo)]

− 1

2 (∓iα,−α,±iβ, β) , (26a)

and

|u†
3,4〉 = [2 (û+ cRo)]
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. (26b)
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Figure 1: The climatological basic state of the Atlantic ocean as reproduced by the full GCM.
(Top left) Sea surface temperature; contour intervals (CI) are 2◦C, the heavy line corresponds to
20◦C. (Top right) Sea surface salinity; CI are 0.2 psu, the heavy line corresponds to 35 psu. (Middle
left) Barotropic streamfunction; CI are 3 Sv. (Middle right) The ocean meridional heat transport
as a function of latitude. (Bottom) Zonally-averaged streamfunction for the Atlantic meridional
overturning circulation; CI are 1 Sv. In the two plots of streamfunction, plain, dashed and dotted
lines indicate positive, negative and zero values.
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Figure 2: Temporal evolution of the least-damped eigenmode of the tangent linear model. (Top)
Variations in the AMOC volume transport (black line) and temperature in the northern Atlantic
(gray line). The AMOC streamfunction is evaluated between 0-1200 m, 34-62◦N; temperature is
averaged over the total depth of the ocean between 34-62◦N and 85◦W-12◦E. (Bottom) Variations
in the AMOC volume transport (black line) and the Labrador Sea temperature (grey line, LS). The
vertical dashed lines labeled A and B denote two phases of the oscillation. The spatial structure
of the mode for the two phases is shown in Figs. 3 and 4.
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Figure 3: The spatial structure of the least-damped eigenmode of the tangent linear mode: anoma-
lies of (top) upper-ocean temperature and surface currents and of (bottom) meridional streamfuc-
tion and zonally-averaged temperature for phases A and B of the oscillation. During phase A (left)
there exists a strong temperature anomaly in the northern Atlantic with a nonzero zonal mean, but
the AMOC overturning anomaly is nearly zero. During phase B (right) there develops a dipole-like
temperature anomaly (with a zero zonal mean), associated with a strong AMOC anomaly. The
two instances (A and B) are separated by a quarter-phase or roughly 6 years. Temperature is
given in terms of density. The upper-ocean temperature is averaged over the top 240 m. For the
streamfunction plot: plain, dashed and dotted lines indicate positive, negative and zero values,
respectively; contour intervals are 1 Sv. Current velocities reach 6 cm s−1. Note that all variables
can be multiplied by an arbitrary factor since we consider a linear problem.
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Figure 4: As in Fig. 3 but for salinity variations.
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Figure 5: A schematic of the least-damped eigenmode with the mechanism of the westward
propagation of temperature anomalies. Blue and red represent the mean temperature distribution
(light colors) and the temperature anomalies in the upper ocean (heavier colors), respectively. (Top)
The background meridional temperature gradient and the corresponding eastward geostrophic flow
u. (Middle) Phase A of the oscillation with a strong cold temperature anomaly but no change in the
meridional overturning. (Bottom) Phase B of the oscillation with a dipole temperature anomaly
and a strong anomaly in the overturning associated with the anomalous meridional geostrophic flow
v′. The cold temperature anomaly in the middle panel induces cyclonic circulation in the ocean
that transports cold water southward along the western flank of the anomaly and warm water
northward along the eastern flank. This water transport results in the westward propagation of the
original temperature anomaly with the equivalent velocity û (geostrophic self-advection). The net
of two velocities (û + u) is westward, as long as |û|>|u|. The β-effect contributes to the westward
propagation as well.
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Figure 6: A Hovmöller diagram showing westward propagation of temperature anomalies in the
least-damped eigenmode. Temperature has been averaged over the upper 240 m meters in the
latitudinal band 34◦N to 62◦N. Contour intervals are 1◦C.
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Figure 7: Density ratio between the meridional gradients of salinity and temperature averaged
in the upper 500 m for the mean state produced by the full ocean GCM (|β∂yS|/|α∂yT |). The
contour line corresponds to the ratio of 1.
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Figure 8: As in Fig. 3 but for the least-damped eigenmode of the adjoint model. Horizontal
velocities and the meridional streamfunction are not shown.
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Figure 9: As in Fig. 8 but for the salinity component of the least-damped eigenmode of the adjoint
model.
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Figure 10: A schematic of the idealized model. The two levels of the model represent the upper
and deep ocean, respectively. The model four prognostic variables are temperature and salinity in
the upper and deep ocean (T ′

u, S′
u, T ′

d, and S′
d, respectively). The three diagnostic variables are

meridional velocities in the upper and deep ocean (v′u and v′d, respectively), and the vertical velocity
between the two levels (w′). The main model parameters are the upper ocean thickness (h), the
total ocean depth (H), the zonal extent of the Atlantic basin (W ), and the mean meridional flow
(u) and temperature and salinity fields in the upper ocean (T and S, respectively). The intensity
of the shading (lighter to darker) represents the value of the mean temperature and salinity (cooler
to warmer and fresher to saltier). In the upper ocean, we use a linear functions of y. In the deep
ocean, we use a constant values equal to the value at the southern basin boundary of the upper
ocean. The dependency of the model variables from space coordinates (zonal - x, meridional - y,
and vertical - z) and time (t) is shown in brackets.
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Figure 11: (Left) Mean zonal velocity in the upper ocean. (Right) Equivalent zonal velocity
in the upper ocean calculated as gh̃(α∂yT − β∂yS)/f . The β-effect also contributes to westward
propagation. The fields are produced by the full ocean GCM.
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Figure 12: The period of the interdecadal mode in the idealized model, obtained from expression
(18) with n=1. Contour intervals are 5 yr, black and grey lines indicate eastward and westward
propagation, respectively. Along the boundary between black and grey lines the period is infinite.
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Table 1: Typical parameters used in the idealized model.

h 1200 m upper level thickness
H 3500 m total ocean depth
W 60◦ zonal basin size
L 60◦ meridional basin size
κ 2×103 m2 s−1 horizontal tracer diffusivity
g 9.8 m s−2 acceleration due to gravity
f 10−4 s−1 Coriolis parameter
βf 7.5×10−12 m−1 s−1 β-effect

(the gradient of planetary vorticity)
α 2×10−4 K−1 thermal expansion coefficient
β 7×10−4 psu−1 haline contraction coefficient

∆T –15 K mean meridional temperature contrast
∆S –1.5 psu mean meridional salinity contrast
u +2.5×10−2 m s−1 mean zonal in the upper ocean
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Table 2: The period and e-folding decay time scale of the interdecadal oscillation obtained from
expression (18) with n=1 for the idealized model with different combinations of the mean meridional
salinity contrast and zonal velocity. Nonzero values are taken from Tab. 1.

Model Period (Π) decay (τ)
Tangent linear GCM 24.0 yr –40.0 yr
Idealized models: ∂y/zS=0, u=0 5.1 yr –36.1 yr

∂y/zS=0, u6=0 7.8 yr –36.1 yr
∂y/zS 6=0, u=0 8.8 yr –36.1 yr
∂y/zS 6=0, u6=0 22.4 yr –36.1 yr
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