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ABSTRACT

Ocean general circulation models (GCMs), as part of comprehensive climate models, are extensively used

for experimental decadal climate prediction. Understanding the limits of decadal ocean predictability is

critical for making progress in these efforts. However, when forced with observed fields at the surface, ocean

models develop biases in temperature and salinity. Here, the authors ask two complementary questions re-

lated to both decadal prediction and model bias: 1) Can the bias be temporarily reduced and the prediction

improved by perturbing the initial conditions? 2) How fast will such initial perturbations grow? To answer

these questions, the authors use a realistic ocean GCM and compute temperature and salinity perturbations

that reduce the model bias most efficiently during a given time interval. The authors find that to reduce this

bias, especially pronounced in the upper ocean above 1000 m, initial perturbations should be imposed in the

deep ocean (specifically, in the Southern Ocean). Over 14 yr, a 0.1-K perturbation in the deep ocean can

induce a temperature anomaly of several kelvins in the upper ocean, partially reducing the bias. A corollary of

these results is that small initialization errors in the deep ocean can produce large errors in the upper-ocean

temperature on decadal time scales, which can be interpreted as a decadal predictability barrier associated

with ocean dynamics. To study themechanisms of the perturbation growth, the authors formulate an idealized

model describing temperature anomalies in the Southern Ocean. The results indicate that the strong mean

meridional temperature gradient in this region enhances the sensitivity of the upper ocean to deep-ocean

perturbations through nonnormal dynamics generating pronounced stationary-wave patterns.

1. Introduction

Experimental decadal climate prediction [or ‘‘near

term’’ in the language of the Intergovernmental Panel

on Climate Change (IPCC)] is an active area of research

with the issues of decadal predictability being now

thoroughly explored (e.g., Meehl et al. 2009). Ensemble

experiments generating decadal climate hindcasts have

become an important component of the phase 5 of

the Coupled Model Intercomparison Project (CMIP5)

protocol and a part of the upcoming IPCC climate as-

sessment [Fifth Assessment Report (AR5); Taylor et al.

2012]. The present study looks at the problem of decadal

predictability in the context of the transient growth of

temperature and salinity anomalies in the ocean. Spe-

cifically, we will demonstrate that anomalies in the deep

ocean are critical for changes in the upper ocean and

hence for climate prediction on decadal time scales.

Historically, different authors approach the problem

of decadal predictability from several directions. Many

studies focus on the dominant modes of decadal climate

variability. Suchmodes, reflecting a deterministic part of

the system, provide a potential source of predictability.

For example, using a coupled ocean–atmosphere gen-

eral circulation model (GCM), Latif and Barnett (1996)

showed potential predictability on decadal time scales

due to the existence of a natural mode of variability in

the North Pacific. Another study (Griffies and Bryan

1997) demonstrated that the predictability of climate in
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the North Atlantic could reach 10–20 yr in a Geophysical

Fluid Dynamics Laboratory (GFDL) coupled climate

model. The latter authors described three physical mech-

anisms affecting predictability, including the integration of

the synoptic noise in the regions of deep-water formation

[following the original idea of Hasselmann (1976)], the

dynamics of the Atlantic meridional overturning circu-

lation (AMOC) that controls dominant time scales of

decadal climate variability, and the effect of periodic

freshwater pulses from the polar regions. More recently,

Sévellec and Fedorov (2013a) rigorously confirmed the

existence of a damped oscillatory interdecadal mode (an

eigenmode) in the North Atlantic controlled solely by

ocean dynamics.

With more resources available for computations, di-

rect approaches using ensemble experiments are now

broadly used to study decadal predictability. In partic-

ular, these approaches can test the sensitivity of pre-

dictions to the initial conditions in climate models by

looking at the ensemble spread. This follows the ideas of

Lorenz (1963) on the chaotic nature of the atmosphere

dynamics and error growth after initialization (cf. Strogatz

1994). In this context, Grötzner et al. (1999) used en-

semble forecast experiments with a global coupled

ocean–atmosphere general circulation model and showed

that in their model decadal predictability existed for the

processes related to the thermohaline circulation (THC;

a component of the AMOC that depends on large-scale

thermal and haline gradients), whereas predictability of

surface temperatures was marginal in their study (on the

order of a year). Ensemble experiments with a coupled

GCM by Collins and Sinha (2003) also suggested that

the strength of the thermohaline circulation could be pre-

dictable over 1–2 decades. At the same time, Pohlmann

et al. (2004) did observe predictability of sea surface

temperatures (SSTs) in the North Atlantic even on

multidecadal time scales but no predictability of sur-

face air temperatures over land (except in somemaritime

regions of Europe).

In a review paper, Latif et al. (2006) argue that thus

far, on decadal time scales, internal climate variability

has dominated anthropogenic climate change and that a

large fraction of this decadal variability is associated

with AMOC variations, whose predictability could pos-

sibly extend to two decades in the North Atlantic. Nev-

ertheless, the limits of decadal climate predictability have

not been firmly established. In fact, even the AMOC

predictability varies from one model to the next and can

vary between different time intervals even within a single

model (N. S. Keenlyside 2011, personal communication).

A number of studies looked at ways to increase the

accuracy of decadal climate predictions. Assimilating

the observational data to initialize the oceanmodel state

(Smith et al. 2007) showed an improvement in climate

prediction for the next few decades. A crucial step is to

synchronize the internal variability of the model with

that in the observations. For example, Keenlyside et al.

(2008) used an SST relaxation toward observations in

coupled models during the initialization procedure,

which would allow increasing the model prediction skill.

Following the work on error growth by Lorenz (1965),

Palmer (1999) suggested using singular value decom-

position (SVD) to identify the most sensitive regions of

the ocean (in terms of error growth) and enhance data

collection in those regions. The error growth is typically

related to the nonnormal properties of dynamical systems

(e.g., Farrell and Ioannou 1996a). The use of SVD was

also discussed by Tziperman and Ioannou (2002) and

Zanna and Tziperman (2005) in the context of the THC.

Using a linear inverse modeling approach (LIM) based

on comprehensive coupledGCM,Tziperman et al. (2008)

and Hawkins and Sutton (2009a) identified the regions of

the North Atlantic especially important for error growth

in their models. At the same time, Zanna et al. (2011)

stressed the role of the deep ocean in an ocean-only

model using an idealized configuration of the North

Atlantic (a rectangle, symmetric with respect to the

equator basin with a flat bottom).

Considering THC variations, Sévellec et al. (2007)

proposed a different methodology, based on optimiza-

tion approach, which allows for the identification of the

regions of the ocean that are most sensitive to initial

perturbations. The formulation of this method involves

a sensitivity analysis using an adjointmodel (e.g.,Marotzke

et al. 1988) but, unlike SVD, allows more general optimal

initial perturbations. Applying this method to a realistic

ocean GCM, Sévellec and Fedorov (2013b, manuscript

submitted to Prog. Oceanogr.) showed that the region

of the North Atlantic centered south of the Denmark

Strait, east of Greenland, is especially important for ex-

citing decadal variations of the AMOC, which empha-

sizes the need for an enhanced measurement program in

that region.

In a related context, Wunsch (2010) pointed to the

long time scales relevant for climate research extending

beyond the typical human work and even lifespan.

For example, sensitivity analyses of the AMOC reveal

the importance of interannual (Tziperman et al. 2008;

Zanna and Tziperman 2008; Heimbach et al. 2011), in-

terdecadal (Sévellec et al. 2008; Czeschel et al. 2010),

and longer time scales (Sévellec and Fedorov 2013b,

manuscript submitted to Prog. Oceanogr.). Thus, for

a substantial breakthrough in scientific knowledge,

multigenerational efforts are necessary.

The previous IPCC report (AR4) summarized climate

projections for the twenty-first century, obtained by
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integrating coupled GCMs over the period 1950–2100

with different scenarios of future CO2 emissions

(Solomon et al. 2007). Uncertainties in these projections

are related to three major factors: deviations between

different models, internal variability in each model, and

different emission scenarios.Hawkins and Sutton (2009b)

demonstrated that, by the end of the twenty-first century,

uncertainties related to different emission scenarios dom-

inate. However, for projections on shorter time scales and

for decadal climate prediction in particular, the causes of

uncertainty are notably different. Within a particular

climate GCM (Stone 2004) these causes include the

model internal variability, the model bias related to

deficiencies in parameterizations of subgrid processes,

and errors in model initialization. Here, we will focus on

the latter two causes.

The goals of the present study are twofold. First, we

will describe a method for reducing bias in the model

ocean by modifying the initial conditions for numerical

experiments (the bias is defined as the difference be-

tween the oceanic observational data and the model

output at a given time interval in the future). This could

potentially increase the accuracy of decadal forecasting.

Second, we will describe a fundamental physical mech-

anism that explains how small initial perturbations in

the deep ocean are able to induce large changes in the

upper-ocean temperature on decadal time scales. This

is the mechanism that makes it possible to reduce the

model bias efficiently (although temporarily). On the

other hand, the exact same mechanism implies that

small initial errors in the deep ocean can lead to large

errors in the upper ocean within a decade or so of nu-

merical simulations.

When describing this mechanism, we will identify the

regions of the deep ocean especially sensitive to error

growth (specifically, certain regions of the Southern

Ocean). In the Southern Ocean, deep-ocean anomalies

stimulate a large-scale stationary wave pattern in the

upper ocean corresponding to steady meanders of the

Antarctic Circumpolar Current. Such stationary eddies

contribute to meridional eddy heat flux (complementing

transient eddies; e.g., Olbers et al. 2004) and are im-

portant for maintaining the density structure of the

Southern Ocean in a steady state (Gnanadesikan and

Hallberg 2000; Hallberg and Gnanadesikan 2001).

To achieve the objectives of this study, we will use a

generalized stability analysis. Variations of this method

have been applied previously to study different problems

of ocean dynamics, including mesoscale eddies (Rivière

et al. 2001), El Niño–Southern Oscillation (Moore et al.

2003; Sévellec and Fedorov 2010), SST variations in the

tropical Atlantic (Zanna et al. 2010), and stability of

western boundary currents (Farrell and Moore 1992).

This method is particularly useful for predictability

studies. For example, it was used to detect the spring

predictability barrier in the context of ENSO (Sévellec

and Fedorov 2010). Also, this method can be applied for

the data targeting and can help reduce errors in the

forecasts of the tracks of tropical cyclone (Zhou andMu

2011; Qin and Mu 2011).

The structure of this paper is as follows: In section 2

we will describe the ocean model and its climatological

mean state. In section 3, we will explain the method we

use to reduce the model bias in the ocean. We will also

discuss major implications of the method and the limi-

tations of linear and weakly nonlinear approaches. In

section 4, we formulate an idealized two-level model to

elucidate the physical mechanisms relevant to the sen-

sitivity analysis. Section 5 concludes this study.

2. Models and experiments

a. The ocean models and configuration

In this study we employ a broadly used ocean GCM,

the Océan Parallélisé (OPA) 8.2 (Madec et al. 1998) in

its 28 global configuration (ORCA2; Madec and Imbard

1996). The model has 31 levels in the vertical. The

thickness of the model layers varies from 10 m at the

surface to 500 m at depth. The rigid-lid approximation is

used. The model is integrated using an Arakawa C grid

and the z coordinates.

Although some of the models in the next IPCC report

(AR5) use a 0.258 resolution for the ocean, in our study

we use a configuration with a lower resolution of 28. The
main reason for using the relatively coarse resolution in

this study is to avoid baroclinic instability that develops

at smaller scales in eddy-permitting or eddy-resolving

models. In a linear framework, as introduced in the next

sections, such instability could not saturate and would

contaminate our calculations. Note that the Institut

Pierre-Simon Laplace Coupled Model, version 5 (IPSL

CM5), which hasOPAas the oceanic component, uses the

same 28 resolution (Marti et al. 2010).

The present model configuration utilizes the following

parameterizations: convection is parameterized by an

increase in the vertical diffusion when the ocean vertical

stratification is unstable; double diffusion is taken into

account by two different terms for mixing temperature

and salinity; eddy-induced velocities are described by

the Gent and McWilliams (1990) approximation; the

coefficients of eddy viscosity follow the turbulent clo-

sure scheme of Blanke and Delecluse (1993) and are

functions of longitude, latitude, and depth; and tracer

diffusivities for temperature and salinity vary in longi-

tude and latitude (Redi 1982).
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The linear and adjoint models are provided by the

OPATangentAdjointModel (OPATAM) code (Weaver

et al. 2003). The tangent linearmodel is a linearization of

the OPA’s primitive equations of motions with respect

to the seasonally varying basic state of the ocean. The

model and the computational approach generally follow

the previous studies of the same authors (Sévellec and

Fedorov 2010, 2013a, 2013b, manuscript submitted to

Prog. Oceanogr.).

In the present study, we use either the flux boundary

conditions (surface heat and freshwater fluxes are

specified) or mixed boundary conditions (surface heat

fluxes are given by a restoring term with the restoring

coefficient set to 40 W m22 K21, while freshwater fluxes

are specified). The model climatological surface fluxes

are computed by running the full nonlinear GCM forced

with a combination of the observed climatological fluxes

and weak restoring terms (restoring to the observed

climatological seasonal cycle). This approach produces

a realistic seasonal cycle for the linear and adjoint

models while reducing the damping and allowing SST

anomalies to develop more easily for the flux bound-

ary condition (Huck and Vallis 2001; Arzel et al. 2006;

Sévellec et al. 2009); for details, see below.

Several additional approximations have been intro-

duced for the tangent-linear and adjoint models: vis-

cosity coefficients in the momentum equations, tracer

diffusivities, and the eddy-induced advection are calcu-

lated only for the basic ocean state. Further variations in

those coefficients are neglected.

b. The model seasonal cycle

The seasonally varying basic state of the ocean, also

referred to as the annual model ‘‘trajectory,’’ is obtained

by the direct integration of the OPA subject to clima-

tological surface boundary forcing (varying with the

annual cycle). In particular, we used the European Centre

for Medium-Range Weather Forecasts (ECMWF) heat

fluxes averaged in the interval from 1979 to 1993, the

European Remote-Sensing Satellite (ERS) wind stress

blended with the TAO data between 1993 and 1996, and

an estimate of the climatological river runoff. In addi-

tion, we applied a surface temperature restoring to the

Reynolds climatological values averaged from 1982 to

1989, together with a surface salinity restoring to the

Levitus (1989) climatology (we emphasize that the re-

storing term can be switched off in the experiments with

the tangent linear and adjoint models). A mass restoring

term to the Levitus climatological values of temperature

and salinity was applied in the Red and Mediterranean

Seas. Starting with the Levitus climatology as the initial

conditions, the model produces a quasi-stationary annual

cycle of the ocean basic state after 200 yr of integration.

TheAtlantic meridional overturning circulation in the

full ocean GCM (Fig. 1) is characterized by a northward

mass transport above the thermocline, a southward re-

turn flow between 1500 and 3000 m, and a recirculation

cell below 3000 m associated with the Antarctic Bottom

Water (AABW). Themaximum volume transport of the

AMOC is around 14 Sv (1 Sv [ 106 m3 s21), which is

slightly below the mean but still within the error bars of

the observations (e.g., 186 5 Sv; Talley et al. 2003). The

AMOC poleward heat transport reaches 0.8 PW at

258N, whereas estimates from inverse calculations and

hydrographic sections give 1.3 PW at 248N (Ganachaud

and Wunsch 2000).

As expected, the SST field develops a strong merid-

ional gradient in the northern Atlantic, especially

across the North Atlantic Current (NAC); there is a

salinity maximum at about 208N (Fig. 1). The plot of

barotropic streamfunction shows an intense subtrop-

ical gyre and a weaker subpolar gyre centered at about

608N. The two gyres are separated by the Gulf Stream

and the NAC. In the next sections, we will identify

the regions with the strongest discrepancy between

the observed ocean data (Levitus climatology) and the

model output (the model basic state): that is, the model

mean bias.

3. Sensitivity of the data–model discrepancy
to initial perturbations

The prognostic equations that describe the perturbed

trajectory of the model can be rewritten as a general

nonautonomous dynamical system,

dtjVi5N (jVi, t) , (1)

where N is a time-dependent nonlinear operator and

jVi is the state vector consisting of all prognostic var-

iables. We also define hVj through the Euclidian scalar

product hV j Vi. The state vector can be decomposed

as jVi5 jVi1 jvi, where jVi is the nonlinear annual

trajectory of the model and jvi is a perturbation (the

main notations used in this study are summarized in

Table 1).

The time evolution of the perturbation is described by

dtjvi5A(t)jvi, A(t)5
›N
›jVi

����
jVi

, (2)

where A(t) is the Jacobian matrix evaluated for a par-

ticular value of jVi. Integrating this equation from the

initial time ti to the final time tf, we obtain the pertur-

bation jvi as a function of time (Farrell and Ioannou

1996b) as
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jv(tf )i5H(tf , ti)jv(ti)i , (3)

where H(tf, ti) is called the propagator of the linearized

dynamics from ti to tf.

The goal of the subsequent analysis is to assess the

discrepancy between themodel output and the observed

ocean data but only for the temperature and salinity

fields (not velocity); therefore, we will need to reduce

FIG. 1. The mean state of the ocean as reproduced by the full GCM. (top left) Sea surface temperature: contour

intervals (CI) are 28C; the dotted line corresponds to 158C; and the solid and dashed lines correspond to higher and

lower values, respectively. (top right) Sea surface salinity: CI are 0.5 psu; the dotted line corresponds to 35 psu; and

the solid and dashed lines correspond to higher and lower values, respectively. (middle left) Barotropic stream-

function: CI are 5 Sv. (middle right) The global ocean meridional heat transport as a function of latitude. (bottom)

Zonally averaged streamfunction for the Atlantic meridional overturning circulation: CI are 1 Sv. In the two

streamfunction plots, solid, dashed, and dotted lines indicate positive, negative, and zero values. Seasonal variations

are not shown.
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the working parameter space. To do so, we define jUi
such that jVi 5 PjUi, where P is the projector between

the thermohaline (temperature–salinity) subspace, rep-

resented by jUi, and jVi. Then, (3) can be rewritten as

ju(tf )i5M(tf , ti)ju(ti)i, M(tf , ti)5PyH(tf , ti)P , (4)

where jui is a perturbation in the thermohaline subspace

such that jvi 5 Pjui and the dagger indicates an adjoint

operator defined through the Euclidian norm.

In this last relation, there is no approximation in-

volved. In the ocean GCM the prognostic variables are

temperature, salinity, zonal and meridional velocities,

and barotropic pressure (since the rigid-lid approxima-

tion is used). They are 3D fields, except for barotropic

pressure, which is 2D. Together, these variables consti-

tute the full state vector of the ocean. All of these var-

iables are used in time integrations of the models we

consider, including the full nonlinear model as well as its

tangent linear and adjoint versions. However, we restrict

optimal initial perturbations to temperature and salinity

fields. Accordingly, the role of the projector P is to take

the full ocean state vector and reduce it to a vector

having only temperature and salinity fields as the vector

components.

a. Method

In general, the model error is defined as the discrep-

ancy (space and time dependent) between the observed

ocean temperature and salinity fields jUDi given by the

Levitus dataset, for instance (Levitus 1989), and the

temperature and salinity output of the model at a given

time jUi (where jVi5PjUi): error5 jUD 2Ui.
For example, for 31 December, the difference between

our ocean GCM output and the observed climatological

field is characterized by pronounced temperature and

salinity anomalies reaching 658C and 61 psu in the

upper ocean (Fig. 2). The temperature anomalies make

SSTs in the Southern Hemisphere colder and in the

Northern Hemisphere warmer than the observed clima-

tology. If averaged over the top 1200 m, these anomalies

show a strong warming in the Indian Ocean and the Gulf

Stream region and a moderate cooling in the rest of the

Atlantic.

The surface salinity field exhibits a strong bias along

the intertropical convergence zone (ITCZ) and in high

latitudes. At depths around 1000 m, a low-salinity anom-

aly develops in the Atlantic basin, most likely due to

deficiencies in simulating the outflow of Mediterranean

Water. For both temperature and salinity the bias is

weak in the deep ocean (below 1500 m), with the ex-

ception of a moderate cooling in the Southern Ocean.

Tomeasure themodel error, we can use the ‘‘distance’’

between the actual model trajectory and the trajectory

given by the climatological seasonal cycle,

kerrork5 hUD 2UjSjUD 2Ui ,

where S is a density-related, thermohaline norm de-

fined as

hUjSjUi5 r20

ð ð ð
a2T21b2S2

V
dy .

Here, T and S are the temperature and salinity compo-

nents of the full state vector; r0 is a reference density of

seawater; a is the thermal expansion coefficient; b is the

haline contraction coefficient; and V and dy are the full

and unit ocean volumes, respectively.

As will become clear from (7) and (8), in general the

choice of the norm can influence the results, especially if

one chooses to put weights on contributions from par-

ticular regions or depths of the oceans. In other words,

where and how you measure the data–model error will

have an impact on how you reduce the error. Here, our

approach is to select a norm that depends not on the

location of the error but on the overall effect of error on

the density field. Thus, we do not a priori discriminate

against any particular regions of the ocean.

Further, a measure of the model bias is obtained by

averaging kerrork over a chosen time interval,

kbiask5 1

t22 t1

ðt
2

t
1

dthUD 2UjSjUD2Ui , (5)

where t1 and t2 are the limits of the time interval. Note that

k�k in this expression indicates not a norm operator but

an integral of a norm (still positive definite). Hereafter,

TABLE 1. Notations for the main vectors and operators.

jVi Ocean state vector consisting of all prognostic

variables

hV j Vi Norm of jVi based on the Euclidian scalar

product

jVi Nonlinear annual trajectory of jVi
jvi Perturbation of jVi
N Full time-dependent nonlinear operator of the

ocean GCM

A(t) Jacobian matrix of N
H(tf, ti) Linear propagator of jvi from time ti to tf
jUi Temperature and salinity component of jVi
jUi Nonlinear annual trajectory of jUi
jui Perturbation of jUi
P Projector from jUi to jVi
M(tf, ti) Linear propagator of jui from time ti to tf
jUDi Temperature and salinity fields as given by the

Levitus dataset

S Operator of the thermohaline norm
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we will also refer to the full expression in (5) as the

model bias.

Next, we will attempt to reduce the model bias over

the duration of a chosen time interval by slightly

modifying the initial conditions used for model initiali-

zation (Fig. 3). That is, wewill look for the optimal initial

perturbations (applied at time t0) that will reduce the

bias most efficiently over some future time interval (t1 to

t2). This time interval could be the full model trajectory

(t1 5 t0 and t2 / ‘), a single snapshot (t1 / t2), or any

other combination of t1 and t2 such that t1 , t2. The re-

duction of the bias is evaluated by (5).

Obviously, in the limit t0� t1 and t2/ ‘, the bias will
not be affected, since the impact of initial perturbations

is felt only for a limited amount of time if the system

is asymptotically stable (Sévellec and Fedorov 2010,

2013a, 2013b, manuscript submitted to Prog. Ocean-

ogr.). However, as we will demonstrate, for a reasonable

choice of the time interval relevant for climate pre-

diction, the bias can be effectively reduced.

Note that our approach has analogies to those data

assimilation studies using adjoint methods in which the

ocean state is adjusted at each time step of numerical

simulations in order to reduce the difference between the

simulated ocean state and the observations (e.g., Carton

et al. 2000). However, in our study we modify only the

initial conditions and only once, and then we assess the

bias at a time interval one or two decades in the future.

In summary, we will minimize the bias, as measured

by (5), by perturbing the model state vector via optimal

initial perturbations (Fig. 3). Mathematically the prob-

lem can be formulated as

FIG. 2. The bias of the ocean GCM defined as the discrepancy between the observed climatological mean

data (from the Levitus dataset) and the model simulations for (left) temperature and (right) salinity for 31 Dec.

(top)–(bottom) Surface values and values averaged for the upper and deep ocean.
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kbiaspertk/ 05
1

t22 t1

ðt
2

t
1

dthUD 2 (U1 u)jSjUD 2 (U1 u)i/ 0,

5
1

t22 t1

ðt
2

t
1

dthUD 2UjSjUD 2Ui2 2

t2 2 t1

ðt
2

t
1

dthUD 2UjSjui1 1

t2 2 t1

ðt
2

t
1

dthujSjui/ 0,

5kbiask2 2
1

t22 t1

ðt
2

t
1

dthUD 2UjSjui1O(u2)/ 0.

At first, we assume that the last, second-order term in

this expression is negligible and to modify the bias we

will need to vary only hUD 2UjSjui. Therefore, we
obtain

kbiaspertk/ 05max
jui

 
1

t22 t1

ðt
2

t
1

dthUD 2UjSjui
!
.

This last relation implies that reducing the bias requires

adding to the model trajectory a perturbation (Fig. 3)

that would have the largest projection onto the bias.

Thus, we can reformulate the problem as a maximiza-

tion problem; we will search for the initial perturbations

that generate anomalies with the largest projection onto

the bias.

The cost function of this maximization problem is

then

f (t1, t2)5
1

t22 t1

ðt
2

t
1

dthUD 2UjSjui . (6)

We emphasize that, in our study, the cost function

emerges as a direct consequence of the data–model

discrepancy formulation and is not chosen subjectively

or arbitrarily.

We now define a Lagrangian function that will be used

to maximize the cost function with a normalization con-

straint for the initial perturbation hu(t0)jSju(t0)i5 c2,

where c is a normalization constant that gives the in-

tensity of the initial perturbation,

L(t0, t1, t2)5
1

t22 t1

ðt
2

t
1

dthUD 2UjSju(t)i

2 g[hu(t0)jSju(t0)i2 c2] .

Here, g is a Lagrange multiplier and the solution of

the maximization problem is given by the condition

dL(t0, t1, t2) 5 0. Applying this condition, we find that

the initial perturbation juft1,t2gopt (t0)i that maximizesÐ t2
t1
dthUD 2Uju(t)i is given by an explicit formula

juft1,t2gopt (t0)i5
c

ðt
2

t
1

dtS21My(t0, t)SjUD 2Ui
" ð ðt

2

t
1

dt dt0hUD 2UjSM(t0, t)S
21My(t0, t

0)SjUD 2Ui
#1/2 , (7)

where My(t1, t2) is an adjoint operator (defined through the Euclidian scalar product) to the propagator M(t2, t1).

Correspondingly, the bias reduction induced by the optimal initial perturbation can be calculated as

f (t0, t1, t2)5
c

t22 t1

ðt
2

t
1

dthUD 2UjSM(t, t0)juopti,

5
c

t22 t1

" ð ðt
2

t
1

dt dt0hUD 2UjSM(t0, t)S
21My(t0, t

0)SjUD 2Ui
#1/2

. (8)

For simplicity, the subsequent analysis will be con-

fined to the limit t2 / t1. That is, the averaging interval

becomes an instance at a particular time t1, or a snap-

shot. Then, (7) and (8) can be simplified to
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jutopt(t)i5c
S21My(t)SjUD 2Ui

[hUD 2UjSM(2t)S21My(t)SjUD 2Ui]1/2
,

(9)

f (t)5 c[hUD2UjSM(2t)S21My(t)SjUD2Ui]1/2,
(10)

where we set t0 5 t as the time of model initialization

(t is the maximization delay) and t15 0 as the time when

we assess the bias. Note that, although in this simplified

approach we aim to minimize the model bias at t1, ef-

fectively the bias will be reduced for a decade or so

around this time (Fig. 3).

b. Results

Next, wewill analyze in detail the spatial structure and

the ensuing impacts of the initial perturbations given by

(9) and (10). Calculations are conducted for two types of

surface boundary conditions: the mixed boundary con-

ditions (MBC; surface restoring for temperature and

a constant flux for salinity) and the flux boundary con-

ditions (FBC; constant fluxes for both temperature and

salinity).

We have tested different t, ranging from 0 to 100 yr,

and found that the timing of the initial perturbations is

critical for how much the data–model discrepancy is

reduced (Fig. 4). In fact, for both types of the boundary

conditions there exists an optimal delay (topt 5 213.7

and 214.0 yr for FBC and MBC, respectively). The

initial perturbations computed for this particular delay

will cause the strongest possible reduction of the data–

model discrepancy after the delay. The magnitude of

the reduction depends little on the type of the boundary

conditions (with only a 4.5% difference; Fig. 4), which

confirms the robustness of our results. This is because the

damping introduced by the surface restoring term acts

only on the topmodel level (10 m) and is negligible, in the

context of bias reduction, as compared to other processes

integrated over the full ocean depth.

The structure of the optimal initial perturbations is

characterized by temperature and salinity anomalies

especially pronounced at depth in the Southern Ocean.

At intermediate depths, initial temperature anomalies

in the Indian Ocean and salinity anomalies in the At-

lantic are also notable (Fig. 5). Anomalies at the ocean

surface are generally much weaker. Overall, initial

temperature and salinity anomalies have a constructive

effect on density (i.e., warm temperature anomalies

coincide with low salinity anomalies) for both FBC and

MBC experiments. Because we apply a restoring term

for MBC at the surface, near-surface anomalies are

weaker in this case than for FBC. However, since the

optimal initial perturbations occupy a thick layer of the

deep ocean, the FBC andMBC experiments exhibit only

minor differences overall.

FIG. 3. A schematic of our approach. Observed and simulated

trajectories of the ocean state vector are represented by solid (data)

and dashed (model) lines, respectively. A systematic discrepancy

between the model and data trajectories results in the model bias.

An optimal initial perturbation (arrow) is applied at time t0 to the

model trajectory to reduce the bias over a time interval between t1
and t2 (shaded gray). The dashed line that starts from the arrow

represents the perturbed trajectory of themodel. The new, reduced

bias is estimated as the distance between the perturbed model

trajectory and the observational trajectory over the same time in-

terval. Time progression along the horizontal axis corresponds to

decadal changes.

FIG. 4. Maximum increase in the cost function [see (10)] as

a function of the chosen optimization delay. Solid and dashed

lines correspond to calculations with the flux and mixed

boundary conditions, respectively. For both types of experi-

ments, there exists an optimal (most efficient) delay at around

14 yr (indicated by solid and dashed vertical lines). This par-

ticular delay yields the strongest increase in the cost function and

hence the strongest reduction of the model bias (for a fixed

amplitude of initial perturbations).
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As expected, initializing the linear model using the

optimal perturbations leads to a gradual increase of

the cost function (Fig. 6, left) and the corresponding

decrease of the bias. The cost-function increase is

associated with the transient increase of the thermo-

haline norm hu(t)jSju(t)i by factors of 87 and 77 for

the FBC and MBC experiments, respectively (Fig. 6,

right). Such an increase of the thermohaline norm is a

typical consequence of the nonnormality of the tran-

sient change (AAy2AyA 6¼ 0) and indicates the growth

of the initial disturbances.

At the time of the maximum impact, the optimal

perturbations induce temperature and salinity anoma-

lies localized primarily in the top 1000 m of the Southern

Ocean and, to a lesser degree, the Atlantic Ocean (Fig. 7

for FBC; not shown for MBC). The anomalies are now

temperature dominated with a partial compensation

from salinity. This is different from the initial pertur-

bations having constructive effects of temperature and

salinity on density (this difference between the initial

and fully developed anomalies is another signature of

the nonnormality of the transient change).

The main difference between the FBC and MBC ex-

periments is the vanishing of temperature anomalies in

the upper 10 m for the MBC case, caused by the tem-

perature restoring at the surface. Another difference is

weaker anomalies in the North Atlantic forMBC, which

is related to the damping of interdecadal AMOC vari-

ations in the presence of surface restoring (Huck and

Vallis 2001; Arzel et al. 2006; Sévellec et al. 2009;

FIG. 5. The spatial structure of (left) temperature and (right) salinity fields of the optimal initial perturbation in the

experiments with the flux boundary conditions. (top)–(bottom) Surface values and values averaged for the upper and

deep oceans. For the normalization constant in the Lagrangian, we used c 5 7.5 3 1023 kg m23, which would give

a 10% reduction of the bias within the weakly nonlinear approach (see section 3c).
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Sévellec and Fedorov 2013b, manuscript submitted to

Prog. Oceanogr.). However, the overall impacts on the

data–model discrepancy are similar for FBC and MBC

(with only a 4.5% difference in Fig. 6, left).

The intensification of the ocean response in the upper

ocean (14 yr or so after initialization) results from the

efficient projection of the initial perturbations onto the

model bias. Accordingly, although the initial perturba-

tions are largely confined to the deep ocean, the ocean

response is amplified in the upper ocean. An optimal

initial perturbation smaller than 0.1 K in the deep ocean

(Fig. 5, bottom left) can lead to a subsequent anomaly of

several kelvins in the upper ocean (Fig. 7, top left and

middle left).

The aforementioned effects stem from the non-

normality of ocean dynamics and have major impli-

cations for ocean dynamics and predictability that go

beyond our original intent to reduce data–model dis-

crepancy. In fact, a corollary of these results is that

small errors in model initialization in the deep ocean

(especially in the Southern Ocean) can grow signifi-

cantly and induce large anomalies in the upper ocean

after a little more than a decade. While so far we have

chosen initial perturbations specifically to reduce the

data–model discrepancy, similar initial perturbations

could actually increase this discrepancy. In fact, within

the linear approximation, simply taking the same

perturbations but with the opposite sign would do just

that. This result implies a potential predictability

barrier set solely by ocean dynamics [also see Sévellec

and Fedorov (2010)].

c. The role of nonlinearity

As derived previously, the full model bias (after the

initial perturbation was applied) can be computed as

kbiaspertk5 hUD 2UjSjUD 2Ui
2 2hUD 2UjSjui1 hujSjui . (11)

In this section, we will study the role of the intensity of

the initial perturbation, given by the amplitude c in (9)

and (10), and thus assess the role of nonlinearity in (11).

As expected, the bias calculated from the linear ex-

pression [i.e., neglecting the second-order term in (11)]

reduces in proportion to the strength of the initial per-

turbation (Fig. 8, solid line). An initial anomaly of about

1 K would erase the bias completely. However, as the

subsequent analysis shows, nonlinearity becomes im-

portant already for the strength of initial perturbations

on the order of 0.2 K, which limits the applicability of

the linear approach.

To test the importance of nonlinearity in (11), we retain

the second-order term hujSjui and at first estimate it using

(9) obtained in the linear context. As evident from (11), the

second-order term always increases the model–data dis-

crepancy (because hujSjui. 0). As a result, the maximum

reduction of this estimated weakly nonlinear bias does not

exceed 15%,which is achieved for the strength of the initial

perturbation of about 0.3 K (Fig. 8, dashed line). This

corresponds to the optimal value of c in the weakly non-

linear context. This value can be obtained by substituting

(9) into (11) and finding the minimum (›ckbiaspertk 5 0),

FIG. 6. (left) Temporal evolution of the cost function in the GCM calculations after the optimal initial perturbation was applied. The

strongest increase in the cost function corresponds to the strongest reduction in the bias. (right) The relative increase of the thermohaline

(temperature–salinity) norm for the optimal perturbation, defined as hutoptopt (t)jSjutoptopt (t)i/hutoptopt (0)jSjutoptopt (0)i, during the same time in-

tegrations. The spatial structure and amplitude of the initial perturbation were shown in Fig. 5.
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copt5
hUD 2UjSM(2topt)S

21My(topt)SjUD 2Ui3/2

hUD 2UjSM(2topt)S
21My(topt)SM(2topt)S

21My(topt)SjUD 2Ui . (12)

Numerical computations yield copt’ 7.53 1023 kg m23.

Next, to increase the accuracy of calculations we re-

peat our analysis and minimize both the first-order term

in (11) and the second-order correction to the bias (as

described in details in the appendix). This procedure

involves expanding jui while using the magnitude of the

initial anomaly as the expansion parameter. The maxi-

mum reduction of the bias obtained by this approach

(Fig. 8, solid gray line) reaches about 10% for the

strength of the initial anomaly of about 0.18 K, which is

not much different from the reduction that the linear

approach would have given for initial anomalies of the

same magnitude.

On the whole, the expansion procedure suggests that

initial amplitudes of 0.1–0.2 K set the limit of applica-

bility for the linear or weakly nonlinear approaches.

Apparently, for greater amplitudes the expansionmethod

does not converge and, in order to reduce the bias further,

FIG. 7. Anomalies in (left) temperature and (right) salinity induced by the optimal initial perturbation at the

moment of the maximum increase of the cost function (13.7 yr after initialization; see Fig. 6) for the experiments

with the flux boundary conditions. Arrows represent oceanic horizontal velocities. (top)–(bottom) Surface

values and values averaged for the upper and deep oceans. The spatial structure and amplitude of the initial

perturbation are shown in Fig. 5.
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one would need to use a fully nonlinear approach rather

than a perturbation expansion. This could be done, for

example, by computing conditional nonlinear optimal

perturbations (e.g., Mu et al. 2004; Mu and Zhang 2006;

Mu et al. 2007), but this method is not yet extensively

developed for the use with ocean GCMs.

4. Idealized model

a. Main assumptions and equations

Next, we will formulate an idealized ocean model

(Fig. 9) to highlight the fundamental mechanism of the

transient change and its nonnormal characteristics

within the linear approach. The setting of the idealized

model follows that of Sévellec and Fedorov (2013a)

and Sévellec and Fedorov (2013b, manuscript submitted

to Prog. Oceanogr.) and is designed to replicate the

dynamics of the linear tangent and adjoint versions of

the ocean GCM with the flux boundary conditions.

There are several simplifying approximations used in

the idealized model. First, concentrating on the decadal

time scales of the transient change, we treat the system

as autonomous (no seasonal cycle). Second, we will

consider only temperature anomalies (no salinity), since

they dominate the optimal initial perturbations in the

GCM. Finally, the large spatial scale of the problem

allows us to reduce the model momentum equations to

geostrophic balance on an f plane (i.e., the planetary-

geostrophic regime; Colin de Verdière 1988).

The model describes anomalies in temperature T at

two levels: the top level (of depth h, where ocean

stratification is strong) and the deeper level (with weak

or no stratification). These anomalies depend on time t

and the zonal and meridional coordinates x and y, re-

spectively. The configuration of the basin is chosen to

represent the Southern Ocean as a zonal periodic

channel with rigid boundaries at the north and south.

The size of the channel in the zonal and meridional

directions is W by L, respectively; the full ocean depth

is H.

The model is linearized with respect to the mean state

of the ocean. In particular, at the upper level we impose

a mean zonal flow u (the other horizontal flow compo-

nent being neglected) and a mean meridional tempera-

ture gradient ›yT (where T is the mean temperature).

The mean zonal and vertical gradients of temperature

within the upper layer are neglected. In the deeper

layer, all mean temperature gradients and the mean

flow are neglected. In the equations for the upper layer,

FIG. 8. Observation–model discrepancy (model bias) at the time

of the maximum impact of the optimal initial perturbation as

a function of perturbation intensity as estimated by different ap-

proaches, for the experiments with the flux boundary conditions.

The black solid and dashed lines show the discrepancy following

(11), given by the linear and weakly nonlinear approximations,

respectively. The gray line shows the result obtained by the proper

expansion procedure while neglecting third- and higher-order terms

[see (A1)]. The discrepancy is measured as the distance between the

observations and the model output and is given by the thermohaline

norm. The black dot shows this discrepancy in the absence of initial

perturbations. The intensity of the initial perturbations is defined

as the maximum of the corresponding temperature anomaly. The

plot shows that the three methods yield similar results for initial

perturbations with amplitudes below 0.15–0.2 K, resulting in a bias

reduction of 10%–15%. For higher amplitudes, however, these

methods diverge and a fully nonlinear approach is required.

FIG. 9. A schematic of the idealized model. The upper and deep

oceans are represented by two model levels (or layers). Zonal

periodicity is assumed and salinity is neglected. The model prog-

nostic variables are temperatures in the upper and deep oceans

(T 0u andT 0d, respectively). The diagnostic variables aremeridional

velocities, also in the upper and deep oceans (y0u, and y0d, respec-
tively). The main model parameters are the upper-ocean thickness

h; the total ocean depth H; the zonal and meridional extent of the

Southern Ocean basin (W and L, respectively), the mean zonal

velocity in the upper ocean u; and themean temperature field in the

upper ocean T5T(y). The intensity of shading (lighter to darker)

represents meridional variations in the mean temperature (colder

to warmer). In the upper ocean, we assume that the mean temper-

ature is a linear function of y. In the deep ocean, we use a constant

value equal to the temperature at the southern basin boundary in

the upper ocean. The dependency of model variables from spatial

coordinates (zonal x, meridional y, and vertical z) and time t is

shown in parentheses.
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the mean flow and mean temperature gradient are set

to constants.

Temperature anomalies in the upper and deep oceans

(T 0u and T 0d) are two prognostic variables of the model.

They evolve according to linearized advective–diffusive

equations with horizontal diffusivity k,

›tT
0u 52u›xT

0u 2 y0›yT1 ›y(k›yT
0u)1 ›x(k›xT

0d) ,

(13a)

›tT
0d 5 ›y(k›yT

0d)1 ›x(k›xT
0d) . (13b)

The system is closed using a linear equation of state for

seawater and thermal-wind balance for the meridional

velocity y supplemented with a baroclinicity condition,

›zy5
ag

f
›xT with

ð0
2H

dz y5 0, (14)

where f is the Coriolis parameter, g is the acceleration of

gravity, and a is the thermal expansion coefficient (for

the particular values of these and others parameters, see

Table 2). Applied to the two-level idealized model, this

relation yields the upper level velocity y0 as

y0u 5
ag ~h

2Hf
(h›xT

0u 1 ~h›xT
0d) ,

where ~h5H2 h is the thickness of the deep layer. We

also use periodicity in the zonal direction and the zero

heat flux condition at the ocean surface and latitudinal

boundaries (which corresponds to the FBC in the ocean

GCM experiments).

We now apply the Fourier transform in x and y to T 0u

and T 0d, which yields Fourier coefficients T 0u
cnm, T

0u
snm,

T 0d
cnm, and T 0d

snm (where n and m are the zonal and me-

ridional wavenumbers and c and s stand for cosine and

sine),

T 05 �
n,m

T 0
cnm cos

�np
W

x1
mp

L
y
�
1T 0

snm sin
�np
W

x1
mp

L
y
�
.

The resultant equations for these coefficients are

dtT
0u
cnm 52

np

W

"
ag ~h

2Hf
›yT(hT

0u
snm 1 ~hT 0d

snm)1 uT 0u
snm

#

2 k
h�np

W

�2
1
�mp

L

�2i
T 0u
cnm,

dtT
0u
snm51

np

W

"
ag ~h

2Hf
›yT(hT

0u
snm1 ~hT 0d

snm)1 uT 0u
cnm

#

2 k
h�np

W

�2
1
�mp

L

�2i
T 0u
snm,

dtT
0d
cnm 52k

h�np
W

�2
1
�mp

L

�2i
T 0d
cnm,

dtT
0d
snm52k

h�np
W

�2
1
�mp

L

�2i
T 0d
snm .

The zonal periodicity of the basin restricts the zonal

wavenumbers to even numbers. We will restrict our

treatment to the largest scale possible (n 5 2 and

m 5 1; the other modes will be damped by horizontal

diffusion).

In addition, we will make two other simplifying

approximations. The first one is an assumption that

(ag ~hh/2Hf )›yT1 u ’ 0. That is, the mean zonal flow in

the upper layer is determined solely by the mean me-

ridional temperature gradient. Such a cancellation of

these two terms, which would be exact in the 1.5-layer

shallow-water model, is known as the non-Doppler ef-

fect (Rossby 1939; Held 1983; Killworth et al. 1997).

Note that, in a realistic system, the mean flow has baro-

tropic as well as higher-mode baroclinic components,

which can shift this balance significantly. By making this

approximation we neglect the propagation of anomalies

in the zonal direction and concentrate solely on their

growth and interaction between the upper and deep

ocean.

The second assumption is that the aspect ratio of the

Southern Ocean is such that W � L, which allows us to

neglect zonal diffusion for the large-scale mode. These

two assumptions lead to a new, very much simplified

system of equations,

dt

 
T 0
u

T 0
d

!
5

2
666664
2k
�p
L

�2 2p

W

ag ~h
2

2Hf
›yT

0 2k
�p
L

�2

3
777775
 
T 0
u

T 0
d

!
, (15)

where T 0
u and T 0

d are the Fourier amplitudes of the

temperature anomalies in the upper and deep oceans,

respectively. These are the equations we will use in the

subsequent analysis.

TABLE 2. Key parameters of the idealized model.

h 1000 m Upper-ocean thickness

H 5000 m Total ocean depth

W 3608 Zonal size of the basin

L 258 Meridional size of the basin

k 2 3 103 m2 s21 Horizontal tracer diffusivity

g 9.8 m s22 Acceleration of gravity

f 21.25 3 1024 s21 Coriolis parameter

a 2 3 1024 K21 Thermal expansion coefficient

DT 15 K Meridional temperature contrast
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This system is degenerate and has only one eigenvalue

l 5 2k(p/L)2. A reasonable choice of parameters

(Table 2) yields an e-folding decay scale of t 5 1/l 5
212.5 yr for this eigenvalue. The corresponding eigen-

vector is hej5 (1, 0), which indicates that the eigenmode

is confined to the upper ocean.

We can also obtain the biorthogonal heyj5 (0, 1). The

biorthogonal vector is the eigenvector of the adjoint

problem, and as such it controls the sensitivity of the

eigenmode of the forward problem. Although the dy-

namics of the damped eigenmode jei is determined by

the upper ocean, its sensitivity jeyi is determined by the

deep ocean. This is a clear sign of the nonnormality of

the dynamics,AAy2AyA 6¼ 0, whereA is thematrix used

in (15). Next, will use this simple model to understand

the main features of our GCM calculations and the

transient change in particular.

b. Optimal perturbation analysis

As discussed previously, the discrepancy between the

actual oceanic data and the GCM output is greatest in

the upper ocean (the top 1000 m). Therefore, in the

idealized model we assume that all potential bias is

confined to the upper layer. Accordingly, analogously to

(6), we define the cost function as f(t) 5 hFju(t)i, where
hFj 5 (1, 0), and the norm as

hujSjui5 h

H
T 02
u 1

~h

H
T 02
d .

Using (9) and (10), we obtain that the optimal change of

the cost function for this idealized model is

f (t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hFjM(2t)S21My(t)jFi

q
,

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

h
e22k(p/L)2t1

H

~h

0
B@2p
W

ag ~h
2

2Hf
›yTt

1
CA
2

e22k(p/L)2t

vuuuut ,

(16)

where M(2t) 5 exp(2At) is the propagator of the

idealized model and t is the time delay for which we

maximize the cost function. The corresponding initial

perturbation is

jut0i5
e2k(p/L)2t

f (t)

0
BBBB@

H

h

2p

W

ag ~h

2f
›yTt

1
CCCCA . (17)

This result indicates that indeed the optimal initial

perturbations have the strongest signature in the deep

ocean for sufficiently long t (for t sufficiently longer

than the advective time scale of about 1 yr, see the

bottom-left panel of Fig. 10). This agrees well with our

GCM analysis.

Further, we find the optimal (most efficient) delay topt
from the condition dtf jtopt 5 0. This optimal time scale

exists if diffusion is slower than the advection time scale

and is given by the expression

topt 5

16

8>><
>>:12 4

~h

h

k2(p/L)4

[(2p/W)(ag ~h
2
/2Hf )›yT]

2

9>>=
>>;

1/2

2k(p/L)2

’

8>><
>>:

1

k(p/L)2

0

. (18)

For a reasonable choice of diffusivity and the basin

meridional size (Table 2), we obtain topt 5 12.5 yr or

topt 5 17 days. The latter time scale corresponds to the

least efficient delay; however, it is too short to be con-

sidered given the approximations of our analysis. On

the other hand, topt 5 12.5 yr corresponds to the most

efficient delay, as suggested by our numerical results

(Fig. 10, top left) and is very close to the value produced

by the ocean GCM.

Using the propagator matrix, we obtain the time

evolution of the optimal perturbation jutopt0 i as

jutopt0 (t)i5M(t)jutopt0 i5 e2k(p/L)2t
opt

f (topt)

2
66666664
H

h
1

H

~h

0
B@2p

W

ag ~h
2

2Hf
›yT

1
CA

2

toptt

2p

W

ag ~h

2f
›yTtopt

3
77777775
e2k(p/L)2t . (19)
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This expression indicates that temperature in the upper

oceanwill exhibit a transient increase because of a secular

term in the first component of the vector. The increase

peaks at topt (solid line in the right panel of Fig. 10). By

contrast, the temperature anomaly in the deep ocean

decays with an e-folding time scale 2L2/(p2k) set by

diffusion. Eventually, after the transient increase, the

upper-ocean anomaly will decay at the same rate.

Using (16) and (18) we obtain the magnitude of the

optimal transient change as

f (topt) ’
1

pe

~h
2ffiffiffiffiffiffiffi
H ~h

p L2

W

ag

kf
›yT , (20)

where we assumed that the advective time scale is much

faster than the diffusive one. Thus, the magnitude of the

upper-ocean response is proportional to the mean me-

ridional gradient of temperature in the upper ocean,

which confirms that the transient change is related to the

existence of the meridional temperature gradient.

The transient changemechanism involves three main

phases: 1) An optimal temperature anomaly in the

deep ocean induces a geostrophic flow that affects the

upper ocean via thermal wind balance. 2) The resulting

upper-ocean flow interacts with the mean gradient of

temperature, existing in the upper ocean, and induces

a temperature anomaly there. This again emphasizes the

role of the mean meridional temperature gradient in the

upper ocean for the transient change. 3) The diffusion of

the initial anomaly in the deep ocean slows down the

process, and in due time both anomalies dissipate.

This analysis also points to the importance of hori-

zontal diffusivity k for the optimal change time scale [see

(18)] and for the magnitude of the ocean response to the

optimal perturbations [see (20)], which are both pro-

portional to the inverse of k in the simplemodel (Fig. 10,

right). These results are generally consistent with the

GCM computations, in which the optimal delay and the

ocean response also decrease when horizontal diffusion

increases. However, this decrease in the ocean GCM is

not as fast as in the idealized model, probably because

the former incorporates many more relevant dynamical

factors other than diffusion.

5. Conclusions

In this study we have explored the growth of initial

disturbances in an ocean GCM from the point of view of

decadal climate variability and predictability. We ad-

dress several key questions: Is it possible to modify the

initial conditions (slightly) to reduce model bias at

a given time interval in the future? More generally, how

strongly and how fast can initial disturbances in the

ocean grow on decadal time scales? These two questions

FIG. 10. (top left) The maximum transient increase in the cost function [see (16)] as a function of the optimization delay in the idealized

model (cf. Fig. 4 for the oceanGCM). (bottom left) The vertical structure of the optimal initial perturbation, showing temperature anomalies

at the model upper and deep levels, for different optimization delays. For delays longer than 1–2 yr, the optimal perturbation is located

predominantly in the deep ocean. (right) Temporal evolution of the cost function after an optimal initial perturbation (corresponding to the

most efficient delay of 12.5 yr) was applied in the idealized model, for the original and two other different values of horizontal diffusivity k.

The thick solid line describes the result obtained for the samediffusivity as used in the oceanGCM.The strongest increase in the cost function

corresponds to the strongest reduction in themodel bias. Note that in the idealizedmodel the cost function is proportional to the temperature

anomaly in the upper ocean. The vertical solid lines indicate the most optimal (most efficient) delay for the original k.
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are complementary since they both depend on the

characteristics of the transient increase of initial distur-

bances in the ocean.

We show that indeed adding small temperature or

salinity anomalies to the model initial conditions at

depth in the Southern Ocean can reduce the model bias

(discrepancy between the ocean observations and the

model output) 1–2 decades after model initialization.

The suitable initial perturbations are found via an op-

timization technique. We use several approaches, in-

cluding a linear approximation and a more accurate

nonlinear iterative approach assuming weak amplitudes

of the initial disturbances. These methods generate

similar results for anomalies below 0.2 K and allow for

a reduction in the model bias by 10%–15% as evaluated

by an integral measure for the entire ocean (which

computes an average ‘‘distance’’ between the model

output and the observed climatology).

Although the overall bias reduction is relatively mod-

est, in some regions of the upper ocean the reduction is

much larger, exceeding several kelvins and persisting for

over a decade. The impacts are especially noticeable in

the SouthernOcean and in theNorthAtlantic.Moreover,

the 10%–15% limit is reached simply because the linear

and iterative approaches become inapplicable for initial

perturbations greater than 0.2 K, and fully nonlinear

techniques are required. We anticipate that the method

of conditional nonlinear optimal perturbations (e.g., Mu

et al. 2004; Mu and Zhang 2006; Mu et al. 2007) will

allow a much more substantial reduction of the bias.

Even though the initial motivation of this study was

to reducemodel bias over a given time interval, our results

on the increase of initial disturbances have much broader

implications for decadal climate predictability. Specifi-

cally, our findings imply that initial errors in the deep

ocean smaller than 0.1 K can lead to errors of several

kelvins in the upper ocean after about 14 yr. In a linear

framework, an error of about 0.7 K in the initial condi-

tions could nearly double the total discrepancy between

the model output and oceanic data over the same time.

Such an enhanced sensitivity to the initial conditions in the

ocean GCMgives rise to an uncertainty in the ocean state

after 1–2 decades, setting a decadal predictability barrier.

Potentially, our simple expression for the most effi-

cient transient change time scale, topt 5 L2/(kp2) [see

(18)], could be used to estimate the predictability barrier

due to large-scale ocean dynamics in othermodels as well.

This time scale corresponds to the typical damping of

the largest-scale temperature anomalies in the South-

ernOcean by horizontal diffusion (L being themeridional

wavelength of the anomalies). In high-resolution models,

the horizontal diffusivity k should be replaced by an ef-

fective coefficient of diffusion due to resolved eddies.

The strong transient increase of the initial distur-

bances comes from the system’s nonnormality related to

the existence of a strong mean meridional temperature

gradient in the upper ocean (such a gradient is absent in

the deep ocean). This creates a clear asymmetry in the

dynamics; initial perturbations in the deep ocean are

especially effective in generating anomalies in the upper

ocean on decadal time scales. These anomalies include

a large-scale quasi-stationary wave pattern (of sta-

tionary eddies) originating in the Southern Ocean. As

demonstrated by our idealized model, the strength of

this mean thermal gradient sets the magnitude of the

transient changes of the observation–model discrepancy

and thus controls the impact of initial errors. These

conclusions are consistent with the higher sensitivity to

perturbations of the Southern Ocean and the North

Atlantic evident inGCM calculations (these two regions

have the strongest mean meridional temperature gra-

dient in the upper ocean).

When considering the roles of both temperature and

salinity, one finds another nonnormal factor contribut-

ing to the transient change mechanisms. The optimal

initial perturbations show constructive effects of tem-

perature and salinity on density; however, perturba-

tions at the peak of their intensity correspond to density

anomalies dominated by temperature but partially

compensated by salinity. The former effect is explained

by the fact that a stronger density anomaly, with con-

structive contributions of temperature and salinity, can

induce a stronger geostrophic flow and thus stimulate

the transient change more efficiently. The latter effect is

due to the partial compensation (with respect to density)

between the mean meridional gradients of temperature

and salinity that typically occurs in the upper ocean.

Such nonnormal behavior is consistent with the analyses

of Sévellec and Fedorov (2013a) and Sévellec and Fedorov

(2013b, manuscript submitted to Prog. Oceanogr.).

As previously discussed, applying linear or weakly

nonlinear frameworks constitutes one of the limitations

of this study. Nevertheless, all of our main conclusions

hold as long as we consider the transient increase of

small initial disturbances (below 0.2 K). The second

limitation is the use of an ocean-only model, rather than

a fully coupledGCM.However, strong similarities between

calculations with the mixed and flux boundary condi-

tions increase confidence in the robustness of our results.

The strong sensitivity of the upper ocean to small

temperature or salinity disturbances in the deep ocean

apparent on decadal time scales highlights the necessity

for collecting more measurements from larger depths of

the ocean. Even though Argo floats have contributed to

the vast expansion of oceanic data coverage down to

2000 m, our results indicate that the greatest sensitivity
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occurs for disturbances at depths between 3000 and

4000 m. This is evident from Fig. 11, which summarizes

the main results of our study and, in effect, shows the

sensitivity of the upper ocean to disturbances at differ-

ent depths. This figure implies that, in order to facilitate

decadal climate prediction, we will need major invest-

ments in in situ measurements in the deep ocean, lest

decadal prediction will be out of reach.
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APPENDIX

An Expansion Procedure for Optimal Perturbations

In this appendix we consider a perturbation jui of the
trajectory jUi and expand it as

jui5 �
i
�ijuii5 �ju1i1 �2ju2i1⋯ ,

where � is a small nondimensional parameter (pro-

portional to the amplitude of the initial perturbation),

juii are of the same order of magnitude, and jui is

a function of time and space.

Then, the bias of the perturbed state can be written as

kbiaspertk5 hUD2 (U1 u)jSjUD 2 (U1 u)i,
5 hUD2UjSjUD 2Ui2 2�hUD2UjSju1i

1 �2(hu1jSju1i2 2hUD 2UjSju2i)
1 2�3hu1jSju2i1 �4hu2jSju2i1O(�3) .

(A1)

The first-order problem for reducing the bias has been

already solved in section 3 (i.e., we found initial condi-

tions for ju1i that would reduce the term proportional to

� in (A1) at a later time).

Next, we need to solve the second-order problem: we

need to find initial conditions for ju2i that would reduce

the term proportional to �2 in Eq. (A1). Using an ex-

pression similar to (9) we obtain

FIG. 11. The vertical structure and magnitude of the optimal initial perturbation in Fig. 5 as

a function of depth for (left) temperature and (right) salinity. The results are presented as the

model data at each level of the ocean GCM (small crosses) connected by a cubic spline in-

terpolation (black solid line). Gray vertical intervals indicate the thickness of the model levels;

the horizontal dot–dashed line indicates the typical depth limit of Argo floats (2000 m). In effect,

this plot shows the sensitivity of the upper-ocean temperature to disturbances at different depths.

The strongest sensitivity develops for disturbances located at a depth of about 3700 m.
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hUD 2UjSju2(topt)i5
hu1(topt)jSju1(topt)i

2
,

hUD 2UjSM(2topt)ju2(0)i5
1

2

hUD 2UjSM(2topt)S
21My(topt)SM(2topt)S

21My(topt)SjUD2Ui
hUD 2UjSM(2topt)S

21My(topt)SjUD 2Ui ,

ju2(0)i5
1

2

S21My(topt)Sju1(t)i
[hUD 2UjSM(2topt)S

21My(topt)SjUD 2Ui]1/2
.

This procedure can be repeated iteratively to compute

higher-order corrections to the initial perturbations as

long as � is sufficiently small. In the main body of the

paper, in Fig. 8 (gray line), we used (A1) while ne-

glecting terms of the third and higher order in �.
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