	Readu PUBLICATIONS				
1					
2	Journal of Geophysical Research: Solid Earth				
3	Supporting Information for				
4 5	Compression of a multiphase mantle assemblage: Effects of undesirable stress and stress annealing on the iron spin-state crossover in ferropericlase				
6	Konstantin Glazyrin ^{1,2} , Nobuyoshi Miyajima ³ , Jesse S. Smith ⁴ , Kanani K.M. Lee ¹				
7 8 9 10	¹ Department of Geology & Geophysics, Yale University, PO Box 208109, New Haven, CT, 06520-8109 USA; ² FS-PE Group, DES Deutsches Elektronen-Synchrotron Ein Forschungszentrum der Helmholtz-Gemeinschaft, D-22607 Hamburg, Germany; ³ Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany; ⁴ High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington. Argonne National Laboratory, Argonne, IL 60439, USA				
11					
12 13 14 15 16	Contents of this file Figures (S1-S6), Table S1 and additional evidence supporting our discussion given in the manuscript.				
17 Introduction					
18 19	Below we discuss previous literature data describing spin transition in ferropericlase with focus on critical pressure of the transition (Chapter 1).				
20 21	In addition to that we present characterization of the material by various techniques (Chapter 2).				
22	Finally, we present our estimation on Au-Pd alloy equation of state (Chapter 3).				
23					

25

1 FERROPERICLASE (Mg_{1-x}Fe_xO - Fp) IRON SPIN-STATE CROSSOVER

Below we present a comparative analysis of ambient single crystal and powder data for Fp phase with different concentrations of iron. Special attention is dedicated to imposing objective constraints on the observed iron spin-state crossover critical pressures indicating start (P_{SSC}) and end of the crossover (Figure S1).

30 All data, unless specified in a figure caption, is plotted according to original data given in 31 publications or in corresponding Supplementary Information. We increased reported pressure 32 range for data of Antonangeli et al. 2011 after comparing the data with Marquardt et al. 2009 and 33 Crowhurst et al. 2005. From the analysis of C_{44} compression behaviours, we find it clear that 70 34 GPa point from Antonangeli et al 2011 is on the edge of Fp LS state and that the material may 35 have residual contribution from HS state. We changed the originally proposed range for x=0.17 36 [Lin et al., 2005]. The original range for spin-state crossover (60-70 GPa) was proposed relying 37 on conclusions from [Badro et al., 2003], and thus, as we believe the actual transition range was 38 misinterpreted. Indeed, in the original publication Badro et al. [2003] detect changes of the XES 39 spectra from 49 to 75 GPa, which we will use in our analysis. Most of other suggested corrections are based on comparison of literature data and F-f_E plots, modified below into F-P 40 41 plots for clarity. 42 Inconsistencies in the iron spin-state crossover phase diagram can be attributed to low 43 number of points, high scatter of points. However, in our paper we address a major problem, 44 when starting pressures and pressure ranges for spin-state crossover are inconsistent for similar

45 compositions.

Figure S1. Literature data used for construction of Fp iron spin state crossover phase diagram. Unless otherwise stated, the data was taken from tables provided in the publications main text or in the corresponding Supplementary Information. We use the following notations: F – Normalized stress, P – pressure, V - volume, K – bulk modulus, G – shear modulus, C₄₄ – crystal lattice elastic constant and K_D = (Fe/Mg)_{Mg-Bm}/(Fe/Mg)_{Mw} is the iron partitioning coefficient between magnesium silicate perovskite (Bm) and Fp. The data on iron partitioning coefficient K_D was taken from [*Irifune et al.*, 2010]. For data x=0.58 of [*Fei et al.*, 2007a] we feature material phase transition from cubic to rhombohedral phase occurring at lower pressures compared with HS-LS crossover. Labels placed on figures describe iron concentration in Fp. Red shading together with region highlighted by horizontal red bar labeled as 'used' indicates iron spin state crossover used for construction of the phase diagram presented in the manuscript body. Horizontal black bar indicates pressure range originally suggested in the publications. Black lines are the eye guides.

53 **2 SAMPLE PREPARATION AND CHARACTERIZATION**

- 54 Below we show a scanning electron microphotograph of the synthesized K1297 material.
- 55 Image was obtained in the center of the capsule using a backscattered electrons sensor (K.E.
- 56 Developments) installed on XL30 Scanning Electron Microscope (SEM) at Yale University.
- 57 Brighter and darker areas correspond to iron rich magnesium ferropericlase phase (Fp) and
- 58 iron poor magnesium silicate perovskite phases (Bm), respectively.
- 59

Figure S2. SEM image of the prepared material (K1297). High contrast image collected in backscattered electrons mode features two phases quenched from high pressure - high temperature conditions, namely, Bm (dark gray) and Fp (light grey). Higher brightness of Fp grains is a result of higher Fe concentration.

- 61 We present additional information from our TEM EELS study and Mössbauer spectroscopy
- 62 study on sample characterization in the figures and table shown below.
- 63
- 64

Figure S3 Fe $L_{2,3}$ -edge ELNES spectra of Fp grain (a) and Bm grain (b) found in K1297 sample.

Figure S4. Mössbauer spectrum of K1297 sample collected at ambient conditions. Data points are black, and red line passing through the points represents the fit. We highlight the following contributions. Red and yellow shaded area correspond to ferrous iron and ferric iron incorporated into Fp, respectively. Blue, dark blue and light blue areas correspond to two ferrous iron positions and one ferric iron position in Bm, respectively. Black line at the bottom features the fit residuals.

- -

Table S1. Mössbauer parameters for sample K1297. Isomer shift (IS) values are given relative to the iron foil. QS represents quadrupole splitting. Values marked with stars were fixed or constrained during the fit of the spectrum. Area of the yellow subspectrum was constrained to 9% of the red subspectrum area during the fit and is identified by an asterisk. At the same time isomer shift of yellow subspectrum was fixed to 0.13 mm/s. This is a reasonable value for ferric iron in Fp [*Otsuka et al.*, 2010] synthesized in the multianvil at ~1800 K.

Subspectrum	Phase	IS, mm/s	QS, mm/s	Area, %
Red	Fp Fe ²⁺	1.12(1)	0.61(1)	52.8(19)
Yellow	Fp Fe ³⁺	0.13		4.8*
Blue	Bm Fe ²⁺	1.06(1)	2.48(7)	5.7(9)
Dark Blue	Bm Fe ²⁺	1.11(1)	1.63(5)	15.9(18)
Light blue	Bm Fe ³⁺	0.29(1)	0.57(2)	20.8(9)

72 **3 AU-PD EQUATION OF STATE**

In our study we employed (75wt% Au and 25wt% Pd) as capsule material in multianvil
synthesis from glass material. Composition of the material is confirmed by x-ray diffraction and
energy dispersive x-ray spectroscopy mode of scanning electron microscope XL30. Finite
amount of Au-Pd was incorporated into synthesized K1297 material and, respectively, into S2
sample.

78 In order to exploit this material as an X-ray diffraction pressure standard, we need to know

the relations connecting its unit cell volume and pressure, for example, its Birch-Murnaghan

80 equation of state. Assuming an fcc cubic lattice and ideal solid solution [*Okamoto and*

81 Massalski, 1985], we can estimate isothermal bulk modulus of our Au-Pd alloy through Voigt-

82 Reuss-Hill (VRH) and Hashin and Shtrikman bounds (HS) [*Watt et al.*, 1976]. The physical

83 meaning of HS bounds corresponds to a case of 'composite sphere assemblage' justifying our

84 approach. In order to calculate bulk modulus for the alloy, we need end-member ambient

85 temperature parameters, namely, isothermal bulk modulus (K_0), shear modulus (G), volume (V_0)

86 and bulk modulus pressure derivative (K'). We used the following parameters for gold:

87 $K_0^{Au} = 167 \text{ GPa}, V_0^{Au} = 67.85 \text{ Å}^3, K^{Au} = 5.77, G^{Au} = 27 \text{ GPa} [Duffy et al., 1999; Fei et al., 2007b],$

88 and the following for palladium: $K_0^{Pd} = 193$ GPa, $V_0^{Pd} = 58.88$ Å³, $K^{Pd} = 5$, $G^{Pd} = 53.3$ GPa [*Rayne*, 89 1960; *Okamoto and Massalski*, 1985; *Weller et al.*, 1991].

90 In figures below we show values of bulk modulus and variation of crystallographic unit cell
91 for Au-Pd alloys as a function of Pd content at ambient conditions.

We calculate K_0^{Au-Pd} using Hashin and Shtrikman equations and show the corresponding 92 93 values (Figure S5). Volume fractions of Au and Pd end members are calculated according to a 94 linear approximation of Au and Pd contribution to the Au-Pd alloy volume. This approach is 95 justified by very small deviation of Au-Pd unit cell parameters from the Vegard's rule and by 96 insignificant error introduced by using the assumption that volume of the alloy is a linear 97 function of Au and Pd concentrations. For pressure determination using Au-Pd alloy as a standard, we compute the following parameters: $K_0^{Au-Pd} = 176.5$ GPa, $V_0^{Au-Pd} = 64.29$ Å³, 98 99 $K^{Ad-Pd} = 5.5.$

100

Figure S5. Variation of K_0^{Au-Pd} as a function of Pd concentration calculated within VRH, HS approximations. Vertical dashed line corresponds to our 75wt% Au and 25wt% Pd composition. Note similarity of the values calculated using Hashin-Shtrikman (HS) and Voigt-Reuss-Hill (VRH) approaches.

Figure S6. Relative difference of Au-Pd (75wt% Au and 25wt% Pd), Pd and Au unit cell volumes as a function of pressure. We take pure Au as a reference (dashed line).

103**REFERENCES**

104 Badro, J., G. Fiquet, F. Guyot, J.-P. Rueff, V. V. Struzhkin, G. Vankó, and G. Monaco (2003),

Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity, *Science (80).*,
 300(5620), 789–791, doi:10.1126/science.1081311.

Duffy, T. S., G. Shen, J. Shu, H.-K. Mao, R. J. Hemley, and A. K. Singh (1999), Elasticity, shear
strength, and equation of state of molybdenum and gold from x-ray diffraction under
nonhydrostatic compression to 24 GPa, *J. Appl. Phys.*, 86(12), 6729

- Fei, Y., L. Zhang, A. Corgne, H. Watson, A. Ricolleau, Y. Meng, and V. Prakapenka (2007a),
 Spin transition and equations of state of (Mg, Fe)O solid solutions, *Geophys. Res. Lett.*, 34(17)
- Fei, Y., A. Ricolleau, M. Frank, K. Mibe, G. Shen, and V. Prakapenka (2007b), Toward an internally consistent pressure scale, *Proc. Natl. Acad. Sci.*, *104*(22), 9182–9186
- 114 Irifune, T., T. Shinmei, C. A. McCammon, N. Miyajima, D. C. Rubie, and D. J. Frost (2010),
- Iron partitioning and density changes of pyrolite in Earth's lower mantle., *Science*, 327(5962),
 193–5
- Lin, J.-F., V. V. Struzhkin, S. D. Jacobsen, M. Y. Hu, P. Chow, J. Kung, H. Liu, H.-K. Mao, and
 R. J. Hemley (2005), Spin transition of iron in magnesiowüstite in the Earth's lower mantle, *Nature*, 436(7049), 377–380
- Okamoto, H., and T. B. Massalski (1985), The Au–Pd (Gold-Palladium) system, *Bull. Alloy Phase Diagrams*, 6(3), 229–235

- 122 Otsuka, K., C. a. McCammon, and S. Karato (2010), Tetrahedral occupancy of ferric iron in
- 123 (Mg,Fe)O: Implications for point defects in the Earth's lower mantle, Phys. Earth Planet. Inter.,
- 124 *180*(3-4), 179–188
- 125 Rayne, J. (1960), Elastic Constants of Palladium from 4.2-300°K, Phys. Rev., 118(6), 1545–1549
- Watt, J. P., G. F. Davies, and R. J. O'Connell (1976), The elastic properties of composite
- 127 materials, *Rev. Geophys.*, *14*(4), 541
- 128 Weller, M., J. Diehl, and H. E. Schaefer (1991), Shear modulus and internal friction in
- nanometre-sized polycrystalline palladium, *Philos. Mag. A*, 63(3), 527–533