Ferric iron content of ferropericlase as a function of composition, oxygen fugacity, temperature and pressure: Implications for redox conditions during diamond formation in the lower mantle

Kazuhiro Otsuka a,*, Micaela Longo b, Catherine A. McCammon c, Shun-ichiro Karato a

a Yale University, Department of Geology and Geophysics, 210 Whitney Avenue, New Haven, CT 06511, USA
b University of Padua, Department of Geosciences, Via Giotto 1, 35137 Padua, Italy
c Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

1. Introduction

The oxidation state of iron in (Mg,Fe)O ferropericlase, the second most abundant phase in the lower mantle, has an important influence in controlling the chemical and physical behavior of the material. The variation in its oxidation state affects various transport properties such as atomic diffusion (Mackwell et al., 2005), electrical conductivity (Dobson et al., 1997; Hansen and Cutler, 1966; Wood and Nell, 1991) and rheological properties (Gordon, 1973; Tremper et al., 1974) through its influence of point defect populations. Small amounts of Fe3+ (or the oxygen fugacity) can affect phase relations and element partitioning between ferropericlase and coexisting phases, including melting relationships (Frost and McCammon, 2008; Gessmann et al., 1999; Rohrbach and Schmidt, 2011).

Laboratory studies on Fe3+ solubility in ferropericlase have been conducted at room pressure (Dobson et al., 1998; Hilbrant and Martin, 1998; Katsura and Kimura, 1965; O’Neill et al., 2003; Speidel 1967; Srećec et al., 1987; Wiser and Wood, 1991) and at high pressures (Bolfan-Casanova et al., 2002; Frost and Langenhorst, 2002; McCammon et al., 2004a; Otsuka et al., 2010; Sinmyo et al., 2008a, 2008b). It is generally assumed that Fe3+ is the most dominant positively charged point defect in ferropericlase (e.g., Hazen and Jeanloz, 1984), although ferropericlase dissolves other trivalent cations such as Al3+, Cr3+, and monovalent cations such as Na+, K+, and H+ (Bolfan-Casanova et al., 2002; Irifune et al., 2010; Wood, 2000). In the case where sufficient monovalent cations are not available to maintain charge neutrality conditions, the substitution of trivalent cations is charge compensated by the creation of cation vacancies. In ferropericlase these are predominantly created by chemical impurities in the extrinsic regime, which dominate over thermally activated Schottky defects in the intrinsic regime (e.g., Van Orman et al., 2009). Therefore, vacancy concentrations can be obtained by measuring impurity concentrations, rather than by calculating the free energy of vacancy formation (e.g., de Koker and Stixrude, 2010).

The concentration of Fe3+ in ferropericlase changes by orders of magnitude with variation of thermochemical parameters such as oxygen fugacity, chemical composition, temperature, and pressure (e.g., Otsuka et al., 2010). The precise knowledge of solubility of Fe3+ and other cations is critical to constrain the charge neutrality conditions and the behavior of transport properties. Furthermore, an understanding of Fe3+ solubility provides
an experimental basis for inferring the oxygen fugacity and other thermochemical states in the lower mantle from forsterite inclinations encapsulated in diamond believed to have been derived from the lower mantle (Brenker et al., 2002; Harte, 2010; Hayman et al., 2005; Hutchison et al., 2001; McCammon et al., 1997, 2004b; Stachel et al., 2000).

Several techniques are available to determine the oxidation state of Fe, including the Mössbauer spectroscopy (e.g., McCammon, 2004), electron energy loss spectroscopy (e.g., van Aken and Liebscher, 2002), X-ray absorption near edge structure spectroscopy (e.g., Cottrell et al., 2009), and techniques using an electron probe (e.g., Höfer et al., 1994). As one of the methods involving an electron microprobe, the flank method has several advantages compared with other techniques. The flank method permits simultaneous determination of the oxidation state of Fe and the major element chemistry on the same analytical point, which minimizes systematic biases that might appear between separate measurements. It has relatively high spatial resolution (on the order of 1 μm), large spatial coverage (up to cm-sized samples), and short acquisition time (on the order of a few tens of minutes). These features make it suitable to determine Fe$^{3+}$ contents in heterogeneous samples such as the diffusion couples explored in this study.

The flank method analyzes the variation of Feα and Feβ X-ray emission spectra caused by different valence states of Fe using a hybrid approach that incorporates both the LL_α/Lβ intensity ratios and the peak shift (Höfer et al., 1994). The spectrometer positions of the wavelength dispersive system are set to the positions on the flanks of the Feα and Feβ emission lines where Fe$^{2+}$ and Fe$^{3+}$-bearing samples exhibit the largest difference to each other. Since X-ray emission spectra are sensitive to the crystal structure, it is necessary to construct a calibration curve specific to each mineral species (Höfer and Brey, 2007). So far, the flank method has been successfully applied to sodic amphibole (Enders et al., 2000), garnet (Höfer and Brey, 2007), and ferropericlase (Höfer et al., 2000; Longo et al., 2011).

In this article, we report an investigation of the oxidation state of Fe using the flank method applied to Mg–Fe interdiffusion couples of ferropericlase with a wide range of chemical composition annealed at different pressures, temperatures and oxygen fugacities. Our results enable the derivation of an equation for Fe$^{3+}$ using the flank method applied to Mg–Fe interdiffusion couples with thicknesses from 0.2 to 0.5 mm. Although ferropericlase is isotropic with respect to diffusion in cubic symmetry, the diffusion interface was oriented close to the (100) surface.

2.2. Mg–Fe interdiffusion experiments

The high-P,T Mg–Fe interdiffusion experiments were performed using diffusion couples typically composed of two single crystals of periclase and ferropericlase, and, in some experiments, a single crystal of periclase surrounded by mixtures of periclase and hematite at 5–24 GPa and 1673–1873 K for 2.5–27 h (Table 1). The diffusion couples were loaded into an inner Re, Mo, Ni, or Fe metal capsule in order to control redox state of the experimental charges (Rubie et al., 1993). In addition, ReO$_2$ or MoO$_2$ oxides were added to the Re or Mo inner capsules, respectively, while no oxides were typically added to Ni or Fe capsules since NiO and FeO are miscible in ferropericlase. The sample charge in the inner capsule was enclosed in the Pt outer capsule, which was sealed by welding to minimize water exchange with the surrounding environment.

The Pt capsules containing the sample charges were set into 18/11, 14/8, or 8/3 octahedral assemblies. Each assembly consists of the following ceramic and metal parts: a semi-sintered Cr$_2$O$_3$-doped MgO octahedron or a Mg$_2$O$_3$-spinel injection-molded octahedron (Leinenweber et al., 2006) with an edge length of 18, 14 or 3 mm as a pressure medium, a ZrO$_2$ thermal insulation sleeve, a graphite or LaCrO$_3$ stepped cylindrical furnace, a MgO or BN sleeve which insulates the sample capsule from the furnace, and Mo electrodes. Temperature was monitored using a W$_8$Re–W$_2$Re thermocouple with the thermocouple junction placed in direct contact with one end of the sample capsule. The ceramic parts were fired at approximately 1000 K overnight before assembling.

The octahedral assemblies were loaded into a 1000-ton Kawai-type multi-anvil apparatus installed at Yale University. The confining pressure was exerted on the cell assembly by eight tungsten carbide cubes with an edge length of 26 mm and corner truncations of 11, 8, or 3 mm. Sample pressure was calibrated against hydraulic oil pressure using the following phase transformations: quartz–coesite (Bose and Ganguly, 1995) and coesite–stishovite (Zhang et al., 1996) at 1473 K for the 18/11 assembly, coesite–stishovite and forsterite–wadsleyite in Mg$_2$SiO$_4$ (Katsura et al., 2004) at 1673 K for the 14/8 assembly, and wadsleyite–ringwoodite in Mg$_2$SiO$_4$ (Inoue et al., 2006) and ringwoodite–perovskite–periclase in Mg$_2$SiO$_4$ (Fei et al., 2004) at 1873 K for the 8/3 assembly (see supplementary information). We found that the MgO–spinel injection-molded octahedron exhibited slightly better pressure-constancy than the commonly-used Cr$_2$O$_3$-doped MgO octahedron, probably due to the higher inherent strength of the material as well as its lower porosity.

3. Analytical procedures

3.1. Electron probe microanalysis

We carried out flank method and quantitative elemental analysis on the synthesized Mg–Fe interdiffusion couples using a Jeol JXA-8200 electron microprobe equipped with five wavelength dispersive spectrometers at Bayerisches Geoinstitut (BGI) following the procedures reported previously (Longo et al., 2011). We also analyzed the interdiffusion couples using a field-emission-gun electron probe micro-analyzer (JXA-8530 F) with a wavelength dispersive system and a scanning electron microscope (XL30 ESEM-FEG) at Yale University. The analytical conditions for the flank method and major element chemistry analysis were an acceleration voltage of 15 kV and a beam current of 80 nA with a focused electron beam at BGI, and 10 kV and 10 nA at Yale. For the flank method, we measured the Feα and Feβ X-ray intensities at the peak flank positions of 706.4 and 716.3 eV using...
employed the Fe-rich half of the ferropericlase diffusion couples as at 5 GPa and 1873 K for 2.5 h with a Fe capsule (K1134), at 15 GPa and 1873 K for 3 h with Mo and Re capsules (K1111), and standards were synthesized from periclase–hematite mixtures annealed Additionally, well compacted polycrystalline ferropericlase standards were measured using point source Mössbauer spectroscopy. As in previous studies, 57Fe Mössbauer spectra were recorded at room temperature and pressure with transmission geometry on a constant acceleration spectrometer with a 57Co radioactive γ-ray source in a Rh matrix. The Fe 3+/Fe ratios of the ferropericlase standards were measured using point source Mössbauer spectroscopy. As in previous studies, 57Fe Mössbauer spectra were recorded at room temperature and pressure with transmission geometry on a constant acceleration spectrometer with a 57Co radioactive γ-ray source in a Rh matrix.

The Fe 3+/Fe ratios of the ferropericlase standards were measured using point source Mössbauer spectroscopy. As in previous studies, 57Fe Mössbauer spectra were recorded at room temperature and pressure with transmission geometry on a constant acceleration spectrometer with a 57Co radioactive γ-ray source in a Rh matrix.

3.2. Flank method standards

We prepared synthetic ferropericlase standards to obtain a calibration curve for the flank method (Table S1 in Supplementary Material). The standards cover a wide compositional range of total Fe, from 2 to 49 wt% and ferric iron ratios, Fe 3+/Fe, from 1% to 15%. Some of these standards have been documented previously (Longo et al., 2011; Otsuka et al., 2010). We also employed the Fe-rich half of the ferropericlase diffusion couples as part of our standard set when \sumFe was found to be homogeneous. Additionally, well compacted polycrystalline ferropericlase standards were synthesized from periclase–hematite mixtures annealed at 15 GPa and 1873 K for 3 h with Mo and Re capsules (K1111), and at 5 GPa and 1873 K for 2.5 h with a Fe capsule (K1134).

The Fe 3+/\sumFe ratios of the ferropericlase standards were measured using point source Mössbauer spectroscopy. As in previous studies, 57Fe Mössbauer spectra were recorded at room temperature and pressure with transmission geometry on a constant acceleration spectrometer with a 57Co radioactive γ-ray source in a Rh matrix.

The Fe 3+/\sumFe ratios of the ferropericlase standards were measured using point source Mössbauer spectroscopy. As in previous studies, 57Fe Mössbauer spectra were recorded at room temperature and pressure with transmission geometry on a constant acceleration spectrometer with a 57Co radioactive γ-ray source in a Rh matrix.

The Fe 3+/\sumFe ratios of the ferropericlase standards were measured using point source Mössbauer spectroscopy. As in previous studies, 57Fe Mössbauer spectra were recorded at room temperature and pressure with transmission geometry on a constant acceleration spectrometer with a 57Co radioactive γ-ray source in a Rh matrix.

The Fe 3+/\sumFe ratios of the ferropericlase standards were measured using point source Mössbauer spectroscopy. As in previous studies, 57Fe Mössbauer spectra were recorded at room temperature and pressure with transmission geometry on a constant acceleration spectrometer with a 57Co radioactive γ-ray source in a Rh matrix.

The Fe 3+/\sumFe ratios of the ferropericlase standards were measured using point source Mössbauer spectroscopy. As in previous studies, 57Fe Mössbauer spectra were recorded at room temperature and pressure with transmission geometry on a constant acceleration spectrometer with a 57Co radioactive γ-ray source in a Rh matrix.

The Fe 3+/\sumFe ratios of the ferropericlase standards were measured using point source Mössbauer spectroscopy. As in previous studies, 57Fe Mössbauer spectra were recorded at room temperature and pressure with transmission geometry on a constant acceleration spectrometer with a 57Co radioactive γ-ray source in a Rh matrix.

The Fe 3+/\sumFe ratios of the ferropericlase standards were measured using point source Mössbauer spectroscopy. As in previous studies, 57Fe Mössbauer spectra were recorded at room temperature and pressure with transmission geometry on a constant acceleration spectrometer with a 57Co radioactive γ-ray source in a Rh matrix.
based on the Debye model (McCammon, 2004). The correction for the recoil-free fraction difference was made for the results of Otsuka et al. (2010), which reduces the Fe\(^{3+}\) estimate by approximately 11% of the original value.

3.3. Flank method calibration

We followed the procedures of H"ofer and Brey (2007) to establish the flank-method calibration. We first collected the Fe\(\alpha\) and Fe\(\beta\) emission lines of ferropericlase standards whose Fe\(^{3+}\)/\(\Sigma\text{Fe}\) ratios were already determined by M"ossbauer spectroscopy. We typically measured the Fe\(\alpha\) and Fe\(\beta\) intensities at a minimum of 10 different locations in order to achieve better statistics. The uncertainties of \(\Sigma\text{Fe}/\Sigma\text{Fe}\) intensity ratios were estimated by accumulating Fe\(\alpha\) and Fe\(\beta\) intensities of all measurements. The minimum uncertainly in \(\Sigma\text{Fe}/\Sigma\text{Fe}\) values were found to be 0.01. Flank method measurements were performed in two different sessions. \(\Sigma\text{Fe}/\Sigma\text{Fe}\) intensity ratios measured in different sessions should normally be the same for each sample, but in this case there were systematic differences likely due to a change in the software which slightly altered the energies at which Fe\(\alpha\) and Fe\(\beta\) were measured. Thus we treated each data set from the two sessions separately by constructing two different calibration curves. Results obtained on the same standards are consistent within the two separate sessions and are summarized in Table S1 in Supplementary Material. In Fig. 2 the \(\Sigma\text{Fe}/\Sigma\text{Fe}\) intensity ratios of the standards are plotted against total Fe, \(\Sigma\text{Fe}\), obtained from electron probe data. The \(\Sigma\text{Fe}/\Sigma\text{Fe}\) intensity ratios increase with \(\Sigma\text{Fe}\) and decrease with Fe\(^{3+}\) concentration.

The relative uncertainty in \(\Sigma\text{Fe}/\Sigma\text{Fe}\) values at low \(\Sigma\text{Fe}\) is due to the lower count rate at such concentrations.

To quantify Fe\(^{3+}\) concentration, we constructed flank method calibration curves by applying a regression model which takes into account the selective self-absorption of the generated Fe\(\alpha\) X-ray emission by the Fe atoms in the sample (e.g., H"ofer et al., 1994). As Longo et al. (2011) reported previously, the relation between \(\Sigma\text{Fe}/\Sigma\text{Fe}\) intensity ratios and \(\Sigma\text{Fe}\) becomes non-linear as \(\Sigma\text{Fe}\) increases (Fig. 2), indicating the non-linear self-absorption of Fe atoms. We thus employed the following calibration formula by taking Fe\(^{3+}\) as the dependent variable:

\[
\text{Fe}^{2+} = A + B \times \text{Fe}^{2+} + C \times (\Sigma\text{Fe})^2 + D \times \frac{(\Sigma\text{Fe}^B)}{\Sigma\text{Fe}^A} + E \times \Sigma\text{Fe} \times \frac{(\Sigma\text{Fe}^B)}{\Sigma\text{Fe}^A},
\]

where Fe\(^{2+}\) and \(\Sigma\text{Fe}\) are ferrous iron and total iron (in wt%), \(\Sigma\text{Fe}\) and \(\Sigma\text{Fe}^B\) are the X-ray emission intensities at the Fe\(\alpha\) and Fe\(\beta\) peak flanks, and \(A, B, C, D,\) and \(E\) are the coefficients. The form of Eq. (1) is similar to the one proposed by Longo et al. (2011), but with more terms which were found necessary to describe adequately the greater range of variation of \(\Sigma\text{Fe}/\Sigma\text{Fe}\) values. Results of least squares regressions of measured values are listed in Table S2 in Supplementary material. To illustrate the effect of Fe\(^{3+}\) contents on the variation of \(\Sigma\text{Fe}/\Sigma\text{Fe}\) ratios, Eq. (1) was solved for 0%, 5%, 15%, and 20% of Fe\(^{3+}\)/\(\Sigma\text{Fe}\) ratios and plotted in Fig. 2. The spacing between the Fe\(^{3+}\) isopleths increases with \(\Sigma\text{Fe}\), indicating that \(\Sigma\text{Fe}\) increases the degree to which \(\Sigma\text{Fe}/\Sigma\text{Fe}\) intensity ratios depend on Fe\(^{3+}\) contents.

Fig. 3 shows the Fe\(^{3+}\) concentration of ferropericlase standards estimated by the flank method compared with M"ossbauer results. Fe\(^{3+}\) determination using those two methods agrees reasonably well, giving a correlation coefficient of 0.96 and 0.97 for the two calibration datasets. The 1\(\sigma\) uncertainties plotted in the figure reflect the inherent nature of the methods. The accuracy in determining Fe\(^{3+}\) concentration by M"ossbauer spectroscopy decreases with \(\Sigma\text{Fe}\) because the M"ossbauer method determines Fe\(^{3+}\)/\(\Sigma\text{Fe}\) ratios with absolute uncertainties typically close to 1–2%. On the other hand, the precision of the flank method increases with \(\Sigma\text{Fe}\) because of two reasons: the variation of the \(\Sigma\text{Fe}/\Sigma\text{Fe}\) intensity ratio with a constant Fe\(^{3+}\) range increases with increasing \(\Sigma\text{Fe}\) (Fig. 2), and the Fe\(\alpha\) and Fe\(\beta\) emission intensities for a given collecting time also increases with \(\Sigma\text{Fe}\). Thus, the Fe\(^{3+}\) concentration determined by the flank method near pure MgO is less reliable than those in the higher Fe part of the composition range (Figs. 2 and 3).

4. Results

4.1. Experimental run products

We examined the run products recovered from Mg–Fe interdiffusion experiments using backscattered electron imaging (BSI). Fig. 4 illustrates the representative experimental charges. Most of the periclase–ferropericlase diffusion couples contain no secondary phases at the scale of electron probe observations (Fig. 4A, B). However, irregularly and round-shaped quenched melt droplets were observed in ferropericlase annealed at 24 GPa and 1873 K.
Fig. 3. Fe^{3+} cation abundance in synthetic ferropericlase standards determined by the flank method for two different sessions (a and b) plotted against Fe^{3+} values obtained using the Mössbauer spectroscopy.

with a Fe capsule (K1126; Fig. 4F) and Mo capsule (K1114), whose chemical composition is explained later in this section. In addition, needle-shaped magnesioferrite was uniformly distributed over the Fe-rich side of the ferropericlase diffusion couple annealed at 24 GPa and 1873 K with a Re capsule (K1123; Fig. 4D and E). Mössbauer analysis confirmed the presence of magnesioferrite in another ferropericlase (K1026, annealed at 5 GPa and 1873 K with a Re capsule). Magnesioferrite probably back transformed from its high-pressure polymorph in the CaMn$_2$O$_4$-type structure on quenching to room pressure and back transformed from its high-pressure polymorph in the 5 GPa and 1873 K with a Re capsule). Magnesioferrite probably was observed along grain boundaries of ferropericlase annealed at 5 GPa and 1873 K (K1027). For experiments with Fe capsules, Fe metal contained some Pt components. Fe–Pt melt was observed within the ferropericlase single crystal annealed at 24 GPa and 1873 K (K1126, Fig. 4F).

Fig. 5 shows representative Mg–Fe interdiffusion profiles obtained at 15 GPa, 1673 K for 27 h in a Mo capsule (K993). The diffusion profile is clearly asymmetric with a long tail on the Fe-rich side, indicating a compositional dependence on diffusivity (e.g., Mackwell et al., 2005). The analysis of diffusion coefficients is part of a separate study and will be published elsewhere.

4.2. Fe^{3+} contents

We determined Fe^{3+} contents of the Mg–Fe interdiffusion couples using the flank method, where Fe^{3+} and Fe^{2+} intensities were typically measured in steps of 1–3 μm over the diffusion profile. In order to achieve better statistics, Fe^{3+} and Fe^{2+} intensities were averaged within the composition window of $\text{Fe}/(\text{Mg}+\text{Fe}+\text{Ni})$ molar ratios of ± 0.02. Fig. 6 shows the obtained Fe^{3+} contents plotted against $\text{Fe}/(\text{Mg}+\text{Fe}+\text{Ni})$ ratios in this study, as well as data from previous studies (Bolfan-Casanova et al., 2002, 2006; Frost and Langenhorst, 2002; McCammon et al., 2004a, 2004b, O’Neill et al., 2003; Otsuka et al., 2010). Our flank-method results for the Re capsule are generally consistent with the results of Mössbauer studies by Bolfan-Casanova et al. (2006) at 25 GPa and 1873 K for $\sum\text{Fe}$ of 7% and Otsuka et al. (2010) at 5 and 15 GPa, 1873 K for $\sum\text{Fe}$ of 20%. Given the relatively larger uncertainty by EELS measurements by Frost and Langenhorst (2002) and McCammon et al. (2004a), the obtained Fe^{3+} concentrations along diffusion profiles are mostly consistent with previous studies at similar conditions.

5. Discussion

5.1. Attainment of chemical equilibrium

We first address the attainment of chemical equilibrium in terms of point defect populations, especially Fe^{3+} concentration. The time scale to equilibrate Mg/(Mg+Fe) by diffusion is a few orders of magnitude longer than that for $\text{Fe}^{3+}/\sum\text{Fe}$, because the equilibration kinetics with respect to Fe^{3+} concentration is rate-limited by diffusion of vacancies and not by the diffusion of atoms (e.g., Rubie et al., 1993). Consequently, there exists an intermediate experimental duration where diffusion flow for $\text{Fe}^{3+}/\sum\text{Fe}$ vanishes while the concentration gradient of Mg/(Mg+Fe) still exists. The length scale of Fe^{3+} diffusion during our experiments is more than the half width of the sample size. This is supported by the fact that flank-method measurements show small variation in L_b/L_x ratios for the Fe-rich end of ferropericlase diffusion couples (K1025, K997, K999, K993, K1118) and also by the fact that magnesioferrite in K1123 is uniformly distributed throughout ferropericlase. Assuming that the chemical potential gradient of Mg and Fe does not cause diffusion flow of vacancies (see Supplementary Material, S3), the concentration of Fe^{3+}...
equilibrates with respect to the local Mg/(Mg+Fe) composition under the externally-controlled oxygen fugacity. The obtained Fe3+ concentration along Mg-Fe interdiffusion profiles determined by the flank method is generally consistent with previous results on Fe3+ solubility by Bolfan-Casanova et al. (2006) and Otsuka et al. (2010), which further supports the conclusion that Fe3+ contents along diffusion profiles represent the Fe3+ solubility under the externally controlled oxygen fugacity conditions.

5.2. Thermodynamic model

In the previous paper (Otsuka et al., 2010), we presented a thermodynamic model of Fe3+ dissolution in \(V^0[Mg, Fe^{3+}, Fe^{2+}, V^0][V, Fe^{3+}]:[O] \) ferropericlase where Fe3+ occupies either octahedrally-coordinated cation sites or tetrahedrally-coordinated interstitial sites. The general charge neutrality condition is then written as

\[
[Fe^{3+}_O] + 6[Fe^{2+}_O] = 2[V^{4+}_V],
\]

where \([Fe^{3+}_O],[Fe^{2+}_O]\) and \([V^{4+}_V]\) denote the concentration in atomic fraction of octahedral and tetrahedral Fe3+ and octahedral cation vacancies, respectively. Assuming Henry’s law, the law of mass action of reactions for Fe3+ incorporation (Eqs. 5 and 6 in Otsuka et al., 2010) is given by

\[
Fe^{3+} = C(Fe^{2+} + f_{Fe}^m)^n \exp\left[-\frac{E^* + PV^*}{nRT}\right],
\]

where \(E^* \) and \(V^* \) are the enthalpy of the reaction and volume change in the reaction for the solid part, respectively, and \(C, l, m, \) and \(n \) are constants. All of the values depend on the charge neutrality conditions (i.e., crystallographic sites of Fe3+). The parameters \(l, m, \) and \(n \) are not independent but satisfy

\[
l = 4m = 2/n,
\]

following the constraint from the mass action equations. In the case where positively-charged defects are dominated by octahedral Fe3+ ([Fe3+\textsubscript{O}]) or tetrahedral Fe3+ in Eq. (2), those parameters are \(l = 2/3, m = 1/6, n = 3 \), while in the case where they are dominated by tetrahedral Fe3+ in Eq. (2), \(l = 2/5, m = 1/10, n = 5 \).

Considering the relatively large uncertainties in Fe3+ concentration of the obtained data, we approximated the thermodynamic model of Fe3+ concentration (Eq. 3) using the single-valued parameters over the entire experimental range of conditions, without distinction between Fe3+ in octahedral and tetrahedral sites. We then assumed that the reaction enthalpy \(E^* \) depends linearly on Mg concentration:

\[
E^* = X_{Mg}E_{Mg}^* + (1 - X_{Mg})E_{Fe}^*,
\]

where \(X_{Mg} = Mg/(Mg + Fe) \) and \(E_{Mg}^* \) and \(E_{Fe}^* \) are the reaction enthalpies for MgO and FeO, respectively. The compositional dependence in \(V^* \) was assumed to be negligible. We further assumed that [Fe2+] was set to be the Fe/(Mg+Fe) ratio, ignoring the contribution of Fe3+, which then according to Eq. 3 gives

\[
Fe^{3+} = C(X_{Fe}^\text{Fe}_O)^n \exp\left[-\frac{(1-X_{Fe})E_{Mg}^* + X_{Fe}E_{Fe}^* + PV^*}{RT}\right].
\]
where $\Delta f_{\text{Mg}}, \Delta f_{\text{Fe}}$ and Δf_{Ni} are the reaction enthalpy for MgO and FeO and volume change of the reaction divided by the parameter n, which satisfies $2m=1/n$ (Eq. (4)).

We determined oxygen fugacity of sample charges using solid-state redox equilibria between the metal capsule and corresponding oxide. Because of the uncertainty in thermodynamic data, the experiments with molten phases in the oxygen fugacity buffer were discarded from the regression of the Fe$^{3+}$ equation. Based on the chemical composition described in the previous section, we considered the following chemical systems for the Re, Ni, Mo, and Fe capsules: Re–ReO$_2$, (Ni,Fe,Pt)–(Mg,Ni,Fe)$_3$O, (Mo,Fe,Pt)–(Mo,Fe,Pt)$_2$O$_2$, and (Fe,Pt)–(Mg,Fe)$_3$O, respectively. The thermodynamic database values of the end member components were taken from Robie et al. (1978). Activity coefficients were calculated using a regular solution model for (Mg,Fe,Ni)$_3$O and an asymmetric solution model for (Ni,Fe,Pt) and (Fe,Pt) alloys. Details regarding the calculation of oxygen fugacity are given in Supplementary Material, S5. Table 1 summarizes the obtained oxygen fugacity relative to the metal M and oxide MO_x buffer:

$$\Delta f_{O_2}[MNO] = \frac{2}{n} (\log a_{MO_x} - \log a_M),$$

(7)

where a is the activity of the relevant species. For each experiment with the Ni capsule, two oxygen fugacities were estimated separately using the redox equilibrium in Ni–NiO and Fe–FeO systems. The two obtained values of oxygen fugacity were averaged in the regression of Fe$^{3+}$ concentration. Since no thermodynamic data were available for Mo$_2$O$_3$ to our knowledge, we treated Mo$_2$O$_3$ as MoO$_2$, which provides an upper bound for the actual oxygen fugacity. We confirmed that uncertainties in the results caused by the uncertainty in the Mo–Mo oxide buffer were small by carrying out the regression with and without the results from the Mo–Mo oxide buffer. This is partly because the number of measured Fe$^{3+}$ values for the Mo–Mo oxide buffer is smaller than other buffers and
partly because the oxygen fugacity for the Mo–MoO₂ buffer is not significantly different from that for Mo–MoO₃O₂ buffers near the phase boundary between Mo–MoO₃O₂ and Mo–MoO₂. MoO₂ is stable at least up to 5 GPa and 1873 K based on separate experiments that we conducted.

We fitted all of the experimental data with solid oxygen fugacity buffers to the model of equilibrium Fe³⁺ concentration (Eq. 6). In addition, in order to cover a wider range of conditions especially at low pressures, we fitted the following literature data combined with our experiments: Bolfan-Casanova et al. (2002, 2006), Dobson et al. (1998), Frost and Langenhorst (2002); McCammon (1994), McCammon et al. (2004b), O’Neill et al. (2003), Otsuka et al. (2010) and Speidel (1967). All of the literature data were selected based on the criterion that Mg/(Mg+Fe) > 0.5 and that the oxygen fugacity was within the stability field of ferropericlase. The results of the least squares fitting are summarized in Table 2. Note that in the case where the fit was made for data obtained in this study only, one of the reaction enthalpies, E₀ is not listed because the experiments were conducted at the single temperature of 1873 K.

The fitting results are generally consistent with the thermodynamic model presented in our previous study (Otsuka et al., 2010). The parameter m, which is indicative of the charge neutrality conditions, was estimated to be 0.09 based on fitting of data obtained in this study and 0.11 for fitting of data including the previous studies. These values suggest that Fe³⁺ occupies tetrahedral sites more than octahedral sites under the experimental conditions. The obtained values of the normalized volume change of reaction \(\Delta V \) were 1.7 [cm³/mol] based on fitting of data obtained in this study and 2.1 [cm³/mol] based on fitting of data including the previous studies. These values are consistent with the thermodynamic model, predicting that the normalized volume change of reaction \(\Delta V \) is 2.1 [cm³/mol] based on fitting of data obtained in this study and 2.1 [cm³/mol] based on fitting of data including the previous studies.

Fig. 6 shows the fitting results using all of the literature data. The general trend of the data is consistent with the Fe³⁺ concentration equation. Fe³⁺ concentration increases with increasing Fe content and oxygen fugacity for a given pressure and temperature. The dependence on pressure is clearly observed at the oxidized conditions imposed by Re and Ni capsules, while it is not as apparent at the reduced conditions imposed by Mo and Fe capsules. This is likely due to the relatively large uncertainties in the obtained Fe³⁺ concentrations at low Fe³⁺ concentration in the case of the Mo capsule. An interesting observation is that the Fe³⁺ concentration obtained in Fe capsules at 24 GPa and 1873 K (K1126) is significantly higher than the model prediction. It seems that the sample charge was significantly oxidized by the presence of molten Fe–Pt alloy. The oxygen fugacity estimated from the Fe³⁺ concentration using Eq. (6) is nearly 3.5 orders of magnitude higher than the Fe–(Mg,Fe)O buffer. In contrast, only a small effect on Fe³⁺ concentration is observed in the presence of molten oxide phases, such as (Mg,Fe,Ni)O at 5 GPa (K1027) and (Mg,Fe,Mo) oxide at 5 and 24 GPa (K1028; K1124).

6. Implications for deep mantle diamond inclusions

We determined the equation of Fe³⁺ concentration as a function of temperature, pressure and Fe contents within a range of oxygen fugacity. We can use the established relationship to estimate the oxygen fugacity of ferropericlase inclusions preserved in natural diamonds from the lower mantle to infer the thermochemical state of diamond formation in the lower mantle. Inclusions of ferropericlase and pyroxene have been reported in a number of diamonds believed to have come from the lower mantle (Brenker et al., 2002; Frost and Langenhorst, 2002; Harte, 2010; Hayman et al., 2005; Hutchison et al., 2001; McCammon et al., 1997; McCammon et al., 2004b; Stachel et al., 2000; Walter et al., 2008, 2011). Since ferropericlase inclusions were encapsulated in diamond, it is reasonable to assume that Fe³⁺ concentration remained constant in a closed system during ascent of the diamonds.

Fig. 7 compares Fe³⁺ concentrations in ferropericlase inclusions measured by previous studies with the model estimates at pressures and temperatures near the top of the lower mantle (23 GPa and 1873–2073 K) with a range of oxygen fugacity. The adiabatic temperature of the top of the mantle is estimated to be 1960 ± 50 K (Katsura et al., 2010). Although the bulk lower mantle is thought to be at relatively reduced conditions due to the presence of (Fe,Ni) metal (e.g., Frost and McCammon, 2008), the majority of reported Fe³⁺ concentrations occur at oxidized conditions, as previously discussed in McCammon et al. (2004b). The redox conditions of ferropericlase were estimated assuming conditions of 23 GPa and 1873–2073 K to be 4.3–3.3 (± 1.2) log units and 3.2–

Table 2

<table>
<thead>
<tr>
<th>C</th>
<th>m</th>
<th>(E₀) (kJ/mol)</th>
<th>(F₀) (kJ/mol)</th>
<th>(V) (cm³/mol)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2(1) x 10⁻²</td>
<td>0.088(3)</td>
<td></td>
<td>-61(2)</td>
<td>1.67(3)</td>
<td>This study</td>
</tr>
<tr>
<td>2.6(1) x 10⁻³</td>
<td>0.114(3)</td>
<td>-35(3)</td>
<td>-98(2)</td>
<td>2.09(3)</td>
<td>This study and previous studies*</td>
</tr>
</tbody>
</table>

() standard deviation of the last digit.

2.6 (± 5.2) log units above the iron wüstite buffer (IW) for Kankan and San Luiz, respectively. The errors are 2σ standard deviations from the mean oxygen fugacity relative to IW weighted by errors propagated from Fe^{2+} concentration. Given the positive temperature dependence of Fe^{3+} concentration in ferropericlase in equilibrium with a metal-oxide buffer, deviation from the IW buffer decreases as temperature increases. Interestingly, such redox conditions coincide almost exactly with the upper stability limit of diamond in mantle peridotite at adiabatic or slightly superadiabatic temperature. As oxygen fugacity increases, diamond in peridotite is oxidized to carbonate (< 1950 K) or carbonatite melt (> 1950 K) according to the reaction:

\[
3(\text{Fe,Ni,Mg})\text{O} + 4c = \text{MgCO}_3 + 2(\text{Fe,Ni})^0
\]

at approximately 3 log units above IW with negligible temperature and pressure dependence (Rohrbach and Schmidt, 2011). Consequently, the high Fe^{3+} concentrations preserved in ferropericlase inclusions suggest redox conditions where host diamonds precipitated from the oxidized state of CO_2 near the top of the lower mantle. We note that two of the ferropericlase inclusions reported in McCammon et al. (2004b) occur with FeCO_3 in the same diamond.

Diamond formation through decarbonation reactions in the lower mantle is consistent with the model of redox freezing and melting (Rohrbach and Schmidt, 2011), where redox conditions change dramatically due to the change in the capacity of mantle phases to incorporate Fe^{3+} (Frost and McCammon, 2008). They proposed that upwelling of carbon and oxygen-enriched domains in the vicinity of deep subducted oceanic lithosphere inevitably experiences carbonate-related redox melting near the top of the lower mantle, and that the resulting carbonatite melts are reduced to diamond when infiltrating the ambient mantle saturated with (Fe,Ni)-metal and carbide. We cannot, of course, exclude the possibility that the inclusions equilibrated at greater depths in the lower mantle. At such depths, however, the capacity of mantle phases to incorporate Fe^{3+} remains relatively high (Sinmyo et al., 1950 K) or carbonatite melt (4000 K) or carbonate melt (1950 K) according to the reaction:

\[
(\text{MgFe}_2\text{O}_4 + \text{Fe}_2\text{O}_3 - \text{MgSiO}_3) \rightarrow (5307), 1779–1781.
\]

