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[1] Plate tectonics on Earth involves the bending deformation of plates at subduction
zones, and because plates are generally considered to be stiff owning to the rheology of
mantle minerals, the role of energy dissipation by plate bending in the global energy
balance has been frequently debated in the recent literature. Here we consider how bending
dissipation should scale with slab parameters such as dip angle, plate age, the radius of
curvature, and plate velocity by systematically exploring the parameter space with
instantaneous Stokes flow calculations. We derive the scaling of bending dissipation for a
range of mantle viscosity functions, including pseudoplastic rheology with olivine flow
laws. Our results indicate that, as we move away from the isoviscous case, the scaling
gradually deviates from what has commonly been assumed in previous studies, most
notably for the radius exponent, which exhibits more than threefold reduction and even a
sign reversal in some cases. These modifications in scaling exponents originate in the
complication of the deformation field caused by viscosity variations within the bending
plate. Approximating the lithospheric rheology by a single effective viscosity in the
dynamical models of subduction has been a common practice, but we suggest that such
approximation may limit the geological relevance of modeling studies, in particular when
estimating the significance of bending dissipation.
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1. Introduction

[2] Plate tectonics is the surface expression of a peculiar
mode of thermal convection that is taking place in Earth’s
mantle; the surface of Earth is broken into a dozen plates or
so, and many of these plates are recycled back into the deep
mantle at subduction zones whereas new plates are con-
stantly accreted at mid‐ocean ridges. The combined geo-
logical, geophysical, and geochemical evidence on the
present‐day operation of plate tectonics is overwhelming
[e.g., Schubert et al., 2001], but there remain significant
questions to be answered, including when plate tectonics
started in the Earth history [e.g., Condie and Pease, 2008],
how it evolved in the past [e.g., Korenaga, 2006], and why
it takes place on Earth to begin with [e.g., Bercovici, 2003].
What makes the operation of plate tectonics possible has
long been puzzling because experimental constraints on the
strength of mantle minerals generally suggest that surface
plates may be too strong to bend and subduct [e.g.,
Kohlstedt et al., 1995], and a number of studies have been
conducted to understand the generation of plate tectonics
using theory and observations [e.g., Bercovici et al., 2000;

Tackley, 2000; Gurnis et al., 2000; Solomatov, 2004;
Korenaga, 2007; Landuyt et al., 2008].
[3] One particularly debated topic is the energetics of

subduction. The kinetic energy balance of thermal convec-
tion requires that the rate of potential energy release asso-
ciated with hot upwelling and cold downwelling is balanced
by the rate of viscous dissipation in the convecting system
[Turcotte and Schubert, 1982; Solomatov, 1995], and the
question here is how much of energy is dissipated by the
bending of plate (or equivalently, oceanic lithosphere) at
subduction zones. Some studies suggest that plate bending
could consume a significant fraction of potential energy [e.g.,
Conrad and Hager, 1999; Becker et al., 1999; Bellahsen
et al., 2005], thereby being the most important bottleneck
for the operation of plate tectonics, whereas others suggest
that bending dissipation is only of second order importance
[e.g., Stegman et al., 2006; Wu et al., 2008; Capitanio et al.,
2009]. What is noteworthy in this ongoing debate is that the
interpretation of modeling results in these studies, in which a
variety of mantle rheology is assumed, is often based on the
following scaling for bending dissipation [e.g., Conrad and
Hager, 1999; Buffett, 2006]:

FBD / h

R

� �3

�v2; ð1Þ

where h is plate thickness, R is the radius of curvature for
bending, h is viscosity, and v is plate velocity. This is an
approximate analytic expression for the bending dissipation

1Department of Geology and Geophysics, Yale University, New Haven,
Connecticut, USA.

2Now at Department of Earth and Planetary Science, University of
California, Berkeley, California, USA.

Copyright 2011 by the American Geophysical Union.
0148‐0227/11/2010JB008004

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, B06404, doi:10.1029/2010JB008004, 2011

B06404 1 of 21

http://dx.doi.org/10.1029/2010JB008004


of a plate with uniform viscosity, so its applicability is
unclear when viscosity varies within a plate. The rheology
of mantle minerals is a complex function of temperature,
pressure, stress, grain size, and chemistry [e.g., Karato and
Wu, 1993], and even though we may still be able to define
an ‘effective’ viscosity for the bending part of a plate,
whether the isoviscous scaling of (1) is valid with such
effective viscosity is another issue.
[4] In this paper, we attempt to establish the scaling of

bending dissipation as a function of mantle rheology, by a
series of instantaneous Stokes flow calculations. Our results
suggest that the scaling for realistic mantle rheology is likely
to be very different from equation (1), and previous studies
will be discussed in light of this new finding. The structure
of this paper is the following. After describing our modeling
strategy in section 2, we will present numerical results with
increasingly complex viscosity functions and estimate cor-
responding scaling laws for bending dissipation. Global

bending dissipation in the present‐day Earth will be dis-
cussed, as well as the meaning of effective lithospheric
viscosity in plate tectonic convection. We will then revisit
previous suggestions on the role of bending in plate
tectonics.

2. Theoretical Formulation

2.1. Model Domain, Boundary Conditions,
and Governing Equations

[5] To focus on energy dissipation in plate bending, an
idealistic situation is assumed in which a plate of thickness
h is moving at velocity v and subducting with a dip angle of
� (Figure 1). The radius of curvature for bending is denoted
by R, and the length of a subducted plate by L. We consider
only the deforming part of the plate (Figure 1) and solve for
the internal deformation within the part by applying the free
slip boundary condition to the top and bottom boundaries
and the velocity of v uniformly along the side boundaries.
We use free slip boundaries to exclude possible contribu-
tions from interplate friction at the top boundary and sub-
lithospheric shearing at the bottom boundary; our intention
is to focus on bending dissipation. Note that applying a
constant angular velocity along the slab top does not pro-
duce plate bending. A necessary component of bending is
compression of one side of the plate and extension of the
other. Imposing a constant velocity on the slab top sup-
presses this extension‐compression pairing, resulting in a
purely angular flow field analogous to Couette flow in a
cylinder. Instead, we impose constant incoming and out-
going velocity along the edges of the plates and require the
radial velocity component to be zero along the slab top and
bottom. These boundary conditions may be deemed more
realistic, as the driving force of plate tectonics is the pulling
force from the leading edge of the plate, rather than some
traction on the top surface. Our boundary conditions are still
kinematic, so unlike a fully dynamic model, a given plate
velocity is not necessarily consistent with other slab para-
meters such as dip angle and plate thickness. This lack of
internal consistency does not pose any problem, however,
because our purpose is simply to measure bending dissipa-
tion as a function of given slab parameters. Scaling derived
from this flow calculation can be used to analyze the results
of fully dynamic models (section 4.3).
[6] Because the mantle has a very high Prandtl number,

the inertial terms in the equation of motion are negligible,
and the velocity field, u, can be determined by solving the
following Stokes flow equations consist of the conservation
of mass,

r � u ¼ 0; ð2Þ

and the conservation of momentum,

�rP þr � � ruþruT
� �� � ¼ 0; ð3Þ

where P is dynamic pressure and h is viscosity. All the
differential operators are in a polar coordinate (r, �) system,
which is a natural choice given our model geometry. As we
focus on deformation caused by the applied boundary con-
ditions, we do not consider external force in the momentum
balance.

Figure 1. The geometry of an idealized subduction system
considered in this study. A plate with thickness h moves
with velocity v and bends with dip angle � and the radius
of curvature R. The length of the straight portion of the sub-
ducted plate is denoted by L. We calculate an instantaneous
Stokes flow only for the bending part of the plate, the finite
element discretization of which is illustrated schematically.
In our polar coordinate system, the angular coordinate � is
measured clockwise from the north as shown.
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[7] Assuming half‐space cooling [e.g., Turcotte and
Schubert, 1982], the thermal structure of the bending plate
is given by

T rð Þ ¼ Ts þDTerf
R� r

2
ffiffiffiffiffi
�t

p
� �

; ð4Þ

where Ts is surface temperature, DT is the temperature
contrast difference between the surface and the astheno-
sphere, � is thermal diffusivity, and t is the age of a plate at
the point of subduction. We define the base of the plate with
the temperature of Ts + 0.9DT, so the thickness of the
subducting plate is related to its age as

h ¼ 2 erf �1 0:9ð Þ ffiffiffiffiffi
�t

p � 2:33
ffiffiffiffiffi
�t

p
: ð5Þ

[8] The model is nondimensionalized by introducing
the following characteristic scales (starred variables are
dimensionless),

r ¼ Rr*; T ¼ Ts þDTT*; u ¼ �

R
u*;

� ¼ �r�*; P ¼ �r�

R2
P*;

ð6Þ

where hr is reference viscosity. The governing equations
then become

r � u* ¼ 0; ð7Þ

and

�rP*þr � �* ru*þru*T
� �� � ¼ 0; ð8Þ

with the following boundary conditions,

u�*j�¼0 ¼ u�*j�¼� ¼ v*;

ur*j�¼0 ¼ ur*j�¼� ¼ 0;

�r�*jr*¼1 ¼ �r�*jr*¼rmin* ¼ 0;

ur*jr*¼1 ¼ ur*jr*¼rmin* ¼ 0;

ð9Þ

where tr�* is the shear stress component and rmin* = 1 − h/R.
[9] Viscous dissipation in the bending plate (per unit

length along a trench) is given by

FBD* ¼
Z 1

rmin*

Z �

0
2�* err*ð Þ2þ e��*ð Þ2þ2 er�*ð Þ2

h i
r*dr*d�; ð10Þ

where the dissipation is scaled by hr�
2/R2 and eij* denotes

the dimensionless strain rate tensor defined as

err* ¼ @ur*

@r*
;

e��* ¼ 1

r*

@u�*

@�
þ ur*

r*
;

2er�* ¼ r*
@

@r*

u�*

r*

� �
þ 1

r*

@ur*

@�
:

2.2. Mantle Rheology

[10] We use several different kinds of mantle rheology,
starting from constant viscosity and gradually proceeding to

more elaborate ones. With constant viscosity, h* = 1
everywhere, and this isoviscous case serves as a reference
for more complex ones.
[11] For purely temperature‐dependent viscosity, we use

the following linear exponential form:

�* T*ð Þ ¼ exp � 1� T*ð Þ½ �; ð11Þ

for which reference viscosity is defined at T* = 1. The
degree of temperature dependency is controlled by the
Frank‐Kamenetskii parameter � (not to be confused with
the angular component of the polar coordinates), which can
be related to the activation energy E as [e.g., Solomatov and
Moresi, 2000]

� ¼ EDT

Rg Ts þDTð Þ2 ; ð12Þ

where Rg is the universal gas constant.
[12] For realistic activation energy of few hundreds kJ mol−1,

the coldest part of the plate would be very stiff due to this
temperature‐dependent viscosity, but it can also deform by
brittle failure. Following Moresi and Solomatov [1998], we
assume that this brittle behavior can be modeled by nonlinear
effective viscosity that is adjusted to ensure the stresses
remain bounded by the yield stress envelope. The yield stress
criterion for brittle deformation may be expressed as

�y ¼ c0 þ ��0gz; ð13Þ

where c0 is the cohesive strength, m is the friction coefficient,
r0 is reference density, g is gravitational acceleration, and z is
depth from Earth’s surface. Using the length scale R and the
stress scale hr�/R

2, the criterion may be nondimensionalized
as

�y* ¼ �0*þ �1*z*; ð14Þ

where

�0* ¼ c0R2

��r
; ð15Þ

and

�1* ¼ ��0gR3

��r
¼ 	RaR: ð16Þ

Here g is defined as

	 ¼ �


DT
; ð17Þ

where a is thermal expansivity, and

RaR ¼ 
�gDTR3

��r
; ð18Þ

which may be called as the radius Rayleigh number. The
depth z* is calculated as 1 − r* cos �. We assume the cohesive
strength to be negligibly small compared to the depth‐
dependent component [e.g., Byerlee, 1978] and set t0* to
t1* × 10−5 (t0* is not set to zero to avoid numerical insta-
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bility). The nonlinear effective viscosity for the plastic
deformation is calculated as

�y* ¼ �y*

eII*
; ð19Þ

where eII* is the second invariant of the strain rate tensor.
Finally, pseudoplastic rheology that incorporates both
plastic and ductile deformation is defined as the harmonic
mean of the above effective viscosity and temperature‐
dependent viscosity,

�* T*; z*ð Þ ¼ 1

�y*
þ 1

�T*

� ��1

: ð20Þ

For temperature‐dependent viscosity, we use either the
linear exponential form (equation (11)) or the following
Arrhenius form,

�* T*ð Þ ¼ exp
E*

T*þ Toff*
� E*

1þ Toff*

� �
; ð21Þ

where Toff* is the surface temperature normalized by the
temperature contrast (i.e., Ts/DT), and E* = E/(RDT). Flow
calculations with nonlinear viscosity have to be iterated to
obtain a self‐consistent pair of viscosity and stress fields,
and we typically conduct up to 10–20 iterations so that the
root‐mean‐square (RMS) difference of velocity fields from
successive iterations converges down to less than 0.1%.
[13] We further elaborate pseudoplastic rheology by

incorporating experimental constraints on the rheology of
olivine aggregates, which is commonly thought to represent
the rheology of the upper mantle [Karato and Wu, 1993].
Effective olivine viscosity is first evaluated through the
following composite rheological model:

�ol ¼ �II= ef þ es þ ep
� �

; ð22Þ

where sII denotes the second invariant of the stress tensor,
and ef, es, and ep are strain rates for diffusion, dislocation,
and Peierls creep mechanisms, respectively. The strain rate
for diffusion creep is given by

ef ¼ Af �IId
�p exp �Ef þ pVf

RgTa

	 

; ð23Þ

where Af is a preexponential factor, d is grain size, p is the
grain size exponent, p is pressure, Ta is absolute tempera-
ture, and Ef and Vf are the activation energy and volume for
diffusion creep, respectively. Here pressure is assumed to be
lithostatic (i.e., rogz), and absolute temperature is calculated
by considering the effect of adiabatic compression as Ta =
T + (dT/dz)Sz with the adiabatic gradient of 0.5 K km−1.
Similarly, the strain rate for dislocation creep is given by

es ¼ As�
n
II exp �Es þ pVs

RgTa

	 

; ð24Þ

where n is the stress exponent, and that for Peierls creep is
by

ep ¼ Ap exp � Ep

RgTa
1� �II

�P

� �2
" #

; ð25Þ

where sP is the Peierls stress. This formula is valid only
when sII > 200 MPa, and for stresses below this threshold,
ep is set to zero. For the Peierls creep, we use the fol-
lowing values: Ap = 4.93 × 1011 s−1, Ep = 536 kJ mol−1,
and sP = 4.9 × 103 MPa [Goetze and Evans, 1979] (values
are adjusted in accordance with the second invariants of
stress and strain rate tensors). For diffusion and dislocation
creep parameters, we use either the compilation made by
Korenaga and Karato [2008] (hereinafter referred to as
KK08) or that by Hirth and Kohlstedt [2003] (HK03).
Because oceanic lithosphere is likely to be dehydrated upon
its creation through mantle melting [Hirth and Kohlstedt,
1996; Evans et al., 2005], dry olivine rheology is consid-
ered, and recommended values according to KK08 are: Af =
1.78 × 105 s−1 MPa mmp, p = 2.98, Ef = 261 kJ mol−1, Vf =
6 cm3 mol−1, As = 1.23 × 106 s−1 MPa−n, n = 4.94, Es = 610 kJ
mol−1, and Vs = 13 cm3 mol−1, whereas those by HK03
are: Af = 1.51 × 109 s−1 MPa mmp, p = 3, Ef = 357 kJ mol−1,
Vf = 6 cm3 mol−1, As = 1.01 × 105 s−1 MPa−n, n = 3.5, Es =
530 kJ mol−1, and Vs = 20.5 cm3 mol−1. These preexponential
factors assume that grain size is given in microns and sII in
MPa. Grain size is assumed to be 10 mm [e.g., Ave Lallemant
et al., 1980] for all of our calculations.
[14] For the yield stress criterion accompanying the above

olivine rheology, we slightly modify equation (13) to

�y ¼ 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
� �

�0gz; ð26Þ

which corresponds to optimal thrust faulting [Turcotte and
Schubert, 1982]. Though equation (13) is commonly used
for pseudoplastic rheology, we choose to use the above
equation, which describes a more accurate relation between
the yield stress and the friction coefficient, to be in accord
with the use of realistic mantle rheology. The effective
viscosity for the plastic deformation is calculated by
equation (19). For plate tectonic convection to take place,
the (effective) friction coefficient m need to be much lower
than what laboratory experiments indicate [e.g., Moresi and
Solomatov, 1998], and one way to achieve it is the thermal
cracking of oceanic lithosphere [Korenaga, 2007]. Thermal
cracking, however, cannot fracture the entire lithosphere,
and the numerical modeling constrained by rock mechanical
data indicates that cracking is possible where the tempera-
ture is below ∼700°C [Korenaga, 2007]. Thus, we calculate
the final pseudoplastic viscosity as

�* T*; z*ð Þ ¼ 1

�y*
þ 1

�ol*

� ��1

; ð27Þ

only when T is below a given threshold Tmax, and use hol*
otherwise. Here all viscosities are normalized by hr. Though
we formulate the above rheology on the basis of the thermal
cracking hypothesis, which is currently the only theory that
provides a quantitative estimate on the depth extent of
reduced friction, Stokes flow calculations themselves are not
particularly restricted to this hypothesis, as we will test a
range of Tmax.

3. Numerical Results and Scaling Exponents

[15] Instantaneous Stokes flow is calculated with the 2‐D
finite element code of Korenaga and Jordan [2003], which
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has been modified for the polar coordinate system [cf.
Zhong and Gurnis, 1993]. The model domain is discretized
with 50 × 50 quadrilateral elements, using constant radial
and angular increments. The benchmark test of the code was
done with the analytical solution for Couette flow, and with
this grid resolution, the RMS error of the velocity field is
less than 10−3%. For each type of rheology, we compute
Stokes flow for all combinations of the following slab
parameters: dip angle � of 20°, 40°, 60°, and 80°, plate age t
of 20, 60, 100, and 140 Ma, the radius of curvature R of 200,
300, 400, 500, and 600 km, and plate velocity v of 20, 40,
60, 80, and 100 mm yr−1. For isoviscous and purely tem-
perature dependent viscosity, we sample the parameter
space more finely because the flow calculation does not
require viscosity iteration. Bending dissipation is calculated
as in equation (10) and dimensionalized with � = 10−6 m2 s−1

and hr = 1019 Pa s.

3.1. Isoviscous Case

[16] An example of (residual) flow field is shown in
Figure 2a, which is for the case with � = 60°, t = 100 Ma,

R = 400 km, and v = 50 mm yr−1. Angular velocity with the
magnitude of the given plate velocity is subtracted here to
highlight bending deformation. For the first half of the
subducting plate (0 ≤ � < 30°), the upper and bottom frac-
tions are in extension and compression, respectively, so this
part is bending, whereas an opposite sense of stress is
observed for the second half of the plate (30° ≤ � ≤ 60°),
which is unbending.
[17] Bending dissipation is shown in Figure 3 for some

representative cross sections through the parameter space.
We found that the functionality of bending dissipation can
be described accurately by the following dipwise scaling
relation:

FBD t;R; v; �ð Þ ¼ A �ð Þt
t �ð ÞR
R �ð Þv
v �ð Þ; ð28Þ

where t in Ma, R in km, v in mm yr−1, and the scaling
constant A as well as the exponents at, aR, and av all depend
on �. The results of least squares fit are shown in Figure 4;
misfit between calculated and predicted dissipation is ∼1–3%
for all dip angles (Figure 5a). The velocity exponent av is

Figure 2. Examples of residual flow fields for (a) an isoviscous case, (b) a purely temperature‐dependent
viscosity case with � = 10, (c) a pseudoplastic rheology case (linear exponential) with � = 20 and g = 1, and
(d) a pseudoplastic olivine rheology case with KK08 flow laws, m = 0.1, and Tmax = 700°C. In all cases, the
dip angle is 60°, plate age is 100Ma, the radius of curvature is 400 km, and plate velocity is 50 mm yr−1. The
scale of velocity arrows is the same. The magnitude of these residual fields is about 1/5–1/6 of the give plate
velocity, so the total flow field is dominated by the angular flow field. Gray shading indicates the second
invariant of stress (in the logarithmic scale); lighter shade indicates higher stress. The stress scale for shading
varies for different cases.
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exactly 2 regardless of dip angle (Figure 4g), but other
exponents exhibit interesting dip dependency (Figures 4c
and 4e).
[18] Noting that h / ffiffi

t
p

(equation (5)), the conventional
scaling of equation (1) indicates at = 1.5, aR = −3, and av = 2.
Our results suggest that there exists an important dip
dependence, which is absent in this scaling, and that even at
the limit of � = 90°, the age and radius exponents do not
converge to these conventional values. The origin of the
conventional scaling is simple. It is based on the following
approximation,

FBD ¼
Z
S
�e2ijdS � �

vh

R2

� �2

Rhð Þ; ð29Þ

where vh/R2 is the scale for bending strain rate [Turcotte and
Schubert, 1982] and Rh is the scale for the area of bending
plate. The discrepancy between this dimensional analysis

and numerical results indicates that the (average) bending
strain rate is not exactly proportional to h/R2, which is not
surprising given the details of the deformation field (Figure 2a).
As we will see in the following sections, this discrepancy from
the conventional scaling further aggravates as we depart from
constant viscosity.
[19] Note that models with different ages, dips, or radii

have different domain sizes, and viscous dissipation calcu-
lated using equation (10) depends on the domain size. This
is consistent to what is assumed in the conventional scaling
(equation (29)), which is proportional to the area of bending
plate.

3.2. Temperature‐Dependent Viscosity

[20] The case of purely temperature‐dependent viscosity
was conducted by varying the Frank‐Kamenetskii parameter
� from 2 to 20; the maximum � corresponds to 317 kJ mol−1

with Ts = 273 K and DT = 1300 K. It is known that, for �

Figure 3. Bending dissipation (in W/m) with constant mantle viscosity (hr = 1019 Pa s) is shown for
some representative cross sections: (a) dip vs. plate age, (b) dip vs. the radius of curvature, (c) dip vs.
plate velocity, (d) age vs. the radius of curvature, (e) age vs. plate velocity, and (f) the radius of curvature
vs. plate velocity. Slab parameters are fixed to the following values when they are not shown as coordi-
nates: � = 50°, t = 60 Ma, R = 350 km, and v = 60 mm yr−1.
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greater than ∼10, the viscosity contrast in the system is so
large that the mode of convection becomes stagnant lid
[Solomatov, 1995], so the scaling derived for this rheology
is not expected to be useful for studying bending dissipation
in plate tectonics. Our reason to consider purely temperature‐
dependent viscosity here is merely to provide a point of
reference when discussing more complex rheology, in which
additional weakening mechanism is included.
[21] For each value of �, we conduct dipwise least squares

regression as for the isoviscous case, and results are shown

in Figure 4. The fit between input data and prediction is
again excellent (Figure 5b). As in the isoviscous case, the
velocity exponent av is exactly 2 for all cases considered
(Figure 4h). As � increases, the age exponent at and radius
exponent aR become nearly independent of dip angle and
appear to converge to 1 and −2, respectively (Figures 4d
and 4f). That is, bending dissipation becomes less sensitive
to plate thickness and the radius of curvature as temperature
dependency increases. This is because the top portion of the
plate is so stiff to deform that bending deformation is

Figure 4. Results of dipwise linear regression for dissipation scaling (equation (28)) for the (left) iso-
viscous case and the (right) purely temperature‐dependent case. (a‐b) The natural logarithm of the scaling
constant A, (c‐d) the age exponent at, (e‐f) the radius exponent aR, and (g‐h) the velocity exponent av are
shown as a function of dip angle. In the temperature‐dependent case, darker shading corresponds to
higher �, which varies from 2 to 20. The velocity exponent was exactly 2 for all cases.
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restricted to the lower portion (Figure 2b), effectively
reducing both plate thickness and the radius of curvature.
Also, the upper half of the plate is supposed to move faster
than the median plane (see Figure 2a), but such excess in
velocity is suppressed by the stiff top, which moves with the
given plate velocity. In the first half of the plate (0 ≤ � < 30°),
this suppression is equivalent to the compression of the upper
fraction, which is offset by the extension of the bottom part.
Unlike the isoviscous case, therefore, the subducting plate
experiences unbending first, followed by bending.

3.3. Pseudoplastic Rheology

[22] We first used the linear exponential temperature‐
dependent viscosity (equation (11)) for pseudoplastic
viscosity, and Stokes flow was calculated for all the com-
binations of � = 10, 15, 20, 25, and 30 and g = 0.25, 0.5, 1.0,
1.25, 1.5, and 2.0. With a = 3 × 10−5 K−1 andDT = 1300 K,
for example, g of 1.0 corresponds to the friction coefficient
m of 0.04, so these values for g correspond to very low
effective friction coefficients. To simulate plate tectonic
convection with pseudoplastic rheology and realistically
high �, g has to be in this low regime [Korenaga, 2010].
[23] The results of dipwise linear regression for dissipa-

tion scaling are shown in Figure 6. The fit between input
data and prediction is not as good as in the earlier cases
(Figure 7a), but the overall RMS error is only 1.3%,

meaning that the vast majority of dissipation calculations are
well predicted by the fitted scaling. The effect of varying g is
confined mostly to the scaling constant A; greater g naturally
gives rise to greater dissipation. As in the case of purely
temperature‐dependent viscosity, the scaling exponents are
not very sensitive to dip angle when � ≥ ∼15 (Figures 6c, 6e,
and 6g). The age exponent is ∼1 for all cases, and excluding
the cases with � of 10, the radius exponent is ∼−0.5, and the
velocity exponent is ∼1.2. Compared to the conventional
scaling (equation (1)), therefore, all exponents are reduced,
most notably the radius exponent.
[24] The reduced velocity exponent is most likely due to

stress‐dependent rheology; greater plate velocity would lead
to greater stresses, which in turn reduce viscosity and thus
stresses, and this negative feedback results in a weaker
sensitivity to plate velocity. The origin of other reduced
sensitivities may be found in the residual velocity field
(Figure 2c). Unlike the case of the purely temperature‐
dependent viscosity (Figure 2b), the top fraction of the plate
can deform due to pseudoplasticity, and it experiences first
extension and then compression as in the isoviscous case.
What happens below is, however, more complex than in the
isoviscous case. There exist two neutral planes virtually free
of bending deformation, one above and one below themedian
plane, and the upper half of the plate undergo bending and
then unbending whereas the lower half experiences the
opposite. This is because, with pseudoplastic rheology, the
plate is strongest in the middle, so the the upper and lower
parts resemble, respectively, the isoviscous case and the
purely temperature‐dependent case. This divided flow pattern
reduces the length scale for bending deformation as well as its
velocity scale, so dissipation becomes less sensitive to plate
thickness (i.e., age) and the radius of curvature.
[25] We also use the temperature‐dependent viscosity of

the Arrhenius form (equation (21)) by using the activation
energyE corresponding to � used in the abovewith Ts = 273K
and DT = 1300 K, to facilitate one‐to‐one comparison.
Results for scaling exponents are summarized in Figure 6,
and there is no major difference from the case of linear expo-
nential viscosity. Even the case of � = 10 (E = 158 kJ mol−1)
behaves similarly to those with higher �, because the total
viscosity contrast is greater for the Arrhenius form if compared
at the same �.
[26] In addition to viscous dissipation, the effective vis-

cosity contrast is also calculated as [Parmentier et al., 1976]

D� ¼ �eff
�r

¼
R
S �* eij*

� �2
dSR

S eij*
� �2

dS
; ð30Þ

and the viscosity contrasts for the linear exponential and
Arrhenius cases are compared in Figure 8. The majority of
cases have the difference between these cases less than a
factor of 3. This is expected because pseudoplasticity limits
the difference of total viscosity contrasts [e.g., Solomatov,
2004].

3.4. Pseudoplastic Olivine Rheology

[27] For the pseudoplastic rheology with olivine flow
laws, we used all the combinations of m = 0.05, 0.1, 0.2, 0.4,
and 0.8 and Tmax = 350°C, 700°C, and 1300°C, for both
KK08 and HK03 compilations. The scaling exponents

Figure 5. Comparison in the logarithmic scale of predicted
bending dissipation based on estimated scaling,Ffit, with orig-
inal values, Fdata, for (a) the isoviscous case (section 3.1) and
(b) the purely temperature‐dependent case (section 3.2).
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estimated by linear regression are summarized in Figure 9.
No major difference can be seen between KK08 and HK03,
except that HK03 tends to result in greater effective vis-
cosity up to a factor of ∼10 (Figure 10a). The pattern of the
residual velocity field is similar to the simpler version of
pseudoplastic rheology (Figure 2d). The age and velocity
exponents are also similar to those estimated for simple
pseudoplastic rheology, but the radius exponent exhibits
intriguing dip dependency (Figures 9e and 9f), and it has to
do with the pressure dependency of olivine rheology, which
is probably the most important difference from the simpler

pseudoplastic rheology. For Tmax ≥ 700°C, the radius
component can become positive for larger dip angles; i.e.,
bending dissipation may be greater for the larger radius of
curvature when the subducting slab is steeply dipping. This
counterintuitive behavior takes place only when the friction
coefficient is not too low (≥∼0.4), implying that olivine
rheology is the primary cause. A larger radius of curvature
for a steeply dipping slab means that bending deformation
takes place over a greater depth range, and because of the
pressure‐dependent viscosity (due to nonzero activation

Figure 6. Same as Figure 4, but for pseudoplastic rheology with temperature‐dependent viscosity of the
(left) linear exponential form and the (right) Arrhenius form. Results are shown for the combination of the
following values: � = 10 (triangles), 20 (circles), and 30 (squares), and g = 0.5 (dotted), 1.0 (solid), and
1.5 (dashed).
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volume), deformation at greater depths involves greater
viscous dissipation.
[28] When Tmax = 350°C, viscous dissipation is consid-

erably high regardless of the friction coefficient (Figures 9a
and 9b). Thus, if thermal cracking does not penetrate as
deeply as suggested byKorenaga [2007], it would not be able
to weaken oceanic lithosphere sufficiently. The exponents for
the cases with the low Tmax indeed resemble closely that for
the strongly temperature‐dependent viscosity (e.g., aR ∼ −2).
On the other hand, the cases with Tmax = 700°C are very
similar to those with Tmax = 1300°C, indicating that cracking
down to the isotherm of 700°C is almost as effective as
damaging the entire lithosphere by fracturing.
[29] When Tmax ≥ 700°C, effective lithospheric viscosity

calculated from equation (30) is on the order of 1021 to 1023

for strain rates appropriate for plate bending, i.e., ∼10−14 s−1
(Figure 10b). Because bending dissipation is linearly pro-
portional to the effective viscosity, it may be understood that
bending dissipation can be easily modified by an order of
magnitude by varying the slab parameters within their
plausible ranges, and by greater magnitudes by varying
mantle rheology.

4. Discussion

4.1. Effects of Boundary Conditions

[30] Our modeling strategy in this study is to focus on the
bending deformation of plates at subduction zones, using the

minimum model domain (Figure 1). As for any regional or
local flow models, however, boundary conditions are all
artificial. As described in section 2.1, the slab top is free slip
to approximate low frictional resistance along the slab sur-
face, and the slab bottom is also free slip to approximate low
viscous stresses owing to the weak asthenosphere. Constant

Figure 7. Same as Figure 5, but for pseudoplastic rheology with (a) linear exponential temperature‐
dependent viscosity, (b) Arrhenius temperature‐dependent viscosity, (c) KK08 olivine flow laws, and
(d) HK03 olivine flow laws. Overall RMS errors of prediction (measured in the logarithmic scale) are
1.3% (Figure 7a), 1.5% (Figure 7b), 20.8% (Figure 7c), and 2.9% (Figure 7d).

Figure 8. Effective viscosity contrasts for pseudoplastic
rheology are compared for the two different forms of tem-
perature dependency. The one for the Arrhenius form DhA
is generally higher than that for the linear exponential form
DhL.E., mostly up to a factor of 3.
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angular velocity is used at the inflow and outflow bound-
aries to make the model symmetric, and such simplicity is
important for scaling analysis. Note that this simple situation
is also assumed in the conventional scaling of equation (1)
[e.g., Conrad and Hager, 1999]. In a real bending plate,
however, the outflow velocity does not need to be identical
to the inflow velocity, and there may also be nonzero radial
velocity components if, for example, a slab is retreating.
Taking into account all of these realistic complications in a
systematic manner defies the purpose of our simple scaling
analysis, because it would result in a nontrivial increase in

the dimension of the parameter space, which in turn implies
at least a few orders of magnitude more flow calculations.
Nonetheless, it is still important to examine the effects of the
chosen boundary conditions by relaxing them with a bigger
model domain. To this end, we conducted additional flow
calculations by extending the model domain in both the
along‐ and across‐the‐slab directions (Figure 11).
[31] The original model domain is extended radially by

20%, and the new model domain also contains straight
segments attached to the bending part, each of which is half
as long as the original domain. As the polar coordinate

Figure 9. Same as Figure 4, but for pseudoplastic rheology with olivine flow laws based on (left) KK08
compilation and (right) HK03 compilation. Results are shown for the combination of the following values:
m = 0.8 (triangles), 0.4 (circles), and 0.1 (squares), and Tmax = 350°C (dotted), 700°C (solid), and 1300°C
(dashed).
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system is no longer appropriate, the Cartesian version of the
finite element code was used. The employed boundary
conditions are as follows. The top and bottom boundaries
are assigned zero velocity (i.e., no slip), and the inflow and
outflow boundaries have the constant plate velocity. To
simulate low frictional stresses along the slab top, the model
fraction located above the original model top is assigned
with a low viscosity (h* = 10−5). The temperature field
below this weak zone is prescribed by equation (4), so the
model fraction located below the original model bottom
corresponds to the hotter, asthenospheric mantle. We
repeated instantaneous Stokes flow calculations with this
extended model domain for the cases of pseudoplastic rhe-
ology with linear exponential temperature‐dependent vis-
cosity and with the KK08 olivine flow law. In these cases,
the asthenospheric viscosity (i.e., the viscosity below the
original model bottom) is much lower than the lithospheric
viscosity, so low viscous stresses are expected along the slab
bottom.
[32] An example of the residual velocity field is shown in

Figure 11b for the case of pseudoplastic rheology with the
KK08 flow law. Though details differ most notably by
radial velocity components, the gross characteristics of the

velocity field remain the same in the original model domain
(see Figure 2d); there are two neutral planes with little
bending deformation, one above and one below the median
plane, and the upper half of the plate undergoes bending and
then unbending whereas the lower half experiences the
opposite. As suggested in section 3.3, this is probably
because the strength of plate is greatest in the middle; the
upper plate is weaker because of lower pressure (i.e., lower
frictional resistance), and the lower plate is weaker because
of higher temperature (i.e., lower viscosity). This vertical
stratification of plate strength results in the split pattern of
the bending deformation field. The residual velocity field

Figure 10. (a) Effective viscosity contrasts for pseudoplas-
tic olivine rheology are compared for the cases with KK08
and HK03 compilations. Gray circles are for the cases with
Tmax = 350°C, and solid circles for higher Tmax. (b) Effective
viscosity (for KK08) is shown as a function of average
bending strain rate for the cases of Tmax = 700°C with m = 0.8
(crosses), 0.4 (triangles), and 0.1 (circles).

Figure 11. (a) Finite element discretization of an extended
model domain and (b) residual flow field, for a pseudoplastic
olivine rheology case with KK08 flow laws, m = 0.1, and
Tmax = 700°C. As in Figure 2, the dip angle is 60°, plate age
is 100 Ma, the radius of curvature is 400 km, and plate
velocity is 50 mm yr−1. The region enclosed by dashed line
corresponds to the original model domain. While a flow field
is computed in the extended domain, viscous dissipation is
still integrated only in the original domain to make a
comparison with the original scaling straightforward. In
Figure 11a, shaded elements denote a weak zone with a
prescribed viscosity of h* = 10−5. In Figure 11b, gray shading
indicates the second invariant of stress (in the logarithmic
scale); lighter shade indicates higher stress. The weak zone is
characterized by vanishingly small stresses.
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decays rapidly in the straight portions of the extended
model, suggesting that the essence of bending deformation
is captured reasonably well by the original model. The same
sets of Stokes flow calculations with a range of slab and
rheology parameters (as done in sections 3.3 and 3.4) were
conducted, and viscous dissipation within the original model
domain was calculated. The results of dipwise linear regres-
sion for dissipation scaling are summarized in Figure 12. The

details of dipwise behavior are different from the original
results, but more important is that all of exponents are reduced
compared to their conventional values (at = 1.5, aR = −3, and
av = 2), and the radius exponent is found to be positive in
some cases, thereby substantiating the original finding. Our
original finding is based on the minimum model domain for
bending with the simplest boundary conditions, so it will be

Figure 12. Results of dipwise linear regression for dissipation scaling (equation (28)) using flow cal-
culations with the extended model domain (note that viscous dissipation is still calculated for the original
model domain as indicated by dashed lines in Figure 11), for pseudoplastic rheology with temperature‐
dependent viscosity of the (left) linear exponential form and for (right) pseudoplastic rheology with KK08
olivine flow laws.
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useful as a reference when quantifying the effects of realistic
deviations from the assumed boundary conditions.

4.2. Rate of Viscous Dissipation and Potential Energy
Release

[33] Lallemand et al. [2005] and Wu et al. [2008] have
published tables of all the subduction zones currently active
on Earth and their various geometries. Using the parameters
from these tables and assuming pseudoplastic olivine rhe-
ology, we can estimate the rates of global bending dissipa-
tion and global potential energy release. Some of relevant
entries in their tables were left unfilled due to insufficient
data. For our global estimates, we filled these entries as
follows: (1) if there were adjacent subduction zones with
well constrained parameters, we used those values, and (2) if
there were no such neighbors, we used global average
values. Appendix A lists the full table of results for
worldwide subduction zones.

[34] The rate of gravitational potential energy release for
the slab geometry shown in Figure 1 can easily be derived as
[cf. Turcotte and Schubert, 1982]:

FPE t;R; v; �; Lð Þ ¼ FPE;1 þ FPE;2

¼ 2�0
gDTLv sin�
ffiffiffiffiffi
�t

p Z �

0
erfc uð Þdu ð31Þ

þ 4�0
gDTv 1� cos�ð Þ�t
Z �

0
erfc uð Þ R

2
ffiffiffiffiffi
�t

p � u

� �
du; ð32Þ

where FPE,1 and FPE,2 correspond to the straight and
bending portions of the subducting plate, respectively, and
b = erf−1 (0.9). This is the energy release per unit length, so by
multiplying with the width of a subduction zone, we can
calculate the energy release from each subduction zone.
Contributions from the all subduction zones add up to ∼3.2TW.
To estimate the rate of bending dissipation, we use the
pseudoplastic rheology with the KK08 compilation and cal-
culate Stokes flow for each subduction zone. The global
energy balance requires that bending dissipation must be
smaller than potential energy release, and it is certainly pos-
sible to satisfy this requirement if Tmax ≥ 700°C and m < 0.8
(Figure 13a). With Tmax = 700°C, global bending dissipation
is ∼50% of global energy release for m = 0.4 and ∼30% for
m = 0.1. Corresponding lithospheric viscosity is ∼3 × 1021 Pa s,
which does not depend strongly on m (Figure 13b). These
estimates on bending dissipation bear little significance
because the actual weakening mechanism that compensates
strongly temperature‐dependent viscosity is still very uncer-
tain. It should be clear by now, however, that the role of
bending dissipation in global energy balance depends critically
on the details of mantle rheology. One can always define
effective lithospheric viscosity, but as we saw in the previous
sections, how bending dissipation scales with various slab
parameters is sensitive to the functionality of mantle rheology.

4.3. Parameterization of Effective Lithospheric
Viscosity

[35] This study is based on Stokes flow calculations with
kinematic boundary conditions, in which an imposed plate
velocity is not necessarily consistent with other slab para-
meters; for example, a young plate with a low dip angle
would not subduct quickly. As mentioned in section 2.1,
however, the lack of dynamical consistency is not an issue
for the scaling of bending dissipation, and the derived
scaling is useful when analyzing the results of fully dynamic
models. Such application of the scaling is attempted in this
section.
[36] Based on a series of convection modeling with the

pseudoplastic rheology defined by equations (11) and (20),
Korenaga [2010] derived the following heat flow scaling:

Nu ¼ 2
Rai
Rac

� �1=3

D�
�1=3
L ; ð33Þ

and the velocity scaling:

v

�=D
¼ 4

L

D

� �
Rai
Rac

� �2=3

D�
�2=3
L ; ð34Þ

Figure 13. Estimates on global bending dissipation using
pseudoplastic olivine rheology with KK08 flow laws. (a) The
ratio of bending dissipation over potential energy release,
(b) effective lithospheric viscosity, and (c) average bending
strain rate are shown as a function of m, for the cases of
Tmax = 350°C (dotted), 700°C (solid), and 1300°C (dashed).
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where Nu is the Nusselt number, Rai is the internal Rayleigh
number, Rac is the critical Rayleigh number (set to 103), D is
the depth of the convection system, L/D is the average
aspect ratio of convection cells, and DhL is the effective
lithospheric viscosity contrast. Using the notation in this
paper, the internal Rayleigh number may be defined as

Rai ¼ 
�gDTD3

��r
¼ RaR

D

R

� �3

: ð35Þ

The effective viscosity contrast was found to have the fol-
lowing functionality:

D�L 	; �ð Þ � exp 0:327	0:647�
� �

; ð36Þ

that is, the viscosity contrast is determined entirely by the
two rheological parameters.
[37] Effective viscosity contrasts from our plate bending

calculation with exactly the same formulation of pseudo-
plastic rheology (section 3.3), however, depend also on slab

parameters, and these two types of viscosity contrasts do not
agree well (Figure 14a); equation (36) overpredicts the
viscosity contrast for many cases. This discrepancy itself is
not surprising; our Stokes flow calculations are driven by
kinematic boundary conditions whereas the convection
model of Korenaga [2010] is dynamically self‐consistent so
that the effective lithospheric viscosity is internally regu-
lated. Our intent here is to make use of both studies to better
understand the origin of the empirical viscosity scaling of
equation (36). In this section, we limit ourselves to numer-
ical results for the maximum dip angle used (� = 80°),
because convection simulation usually exhibits � ∼ 90°.
[38] Using the following approximate relation between the

Nusselt number and plate thickness at a subduction zone
(i.e., maximum plate thickness),

2Nu�1 � h

D
¼ h

R

� �
R

D

� �
; ð37Þ

the heat flow scaling of equation (33) may be rearranged as

RaR ¼ R

h

� �3

D�L 	; �ð ÞRac: ð38Þ

Similarly, the velocity scaling (equation (34)) can be used to
derive

R

D

� �
¼ 4D�L 	; �ð Þ�1=2 RaR

Rac

� �2=3 �

vR

� �
; ð39Þ

for which we assume L/D ∼ DhL
1/6 [Korenaga, 2010]. The

internal Rayleigh number Rai can then be calculated from
RaR and R/D (equation (35)). For all combinations of plate
thickness, the radius of curvature, and plate velocity, we can
derive the corresponding pairs of R/D and Rai (Figure 14b),
and the condition that Dheff ≈ DhL(g, �) delineates the
following trend,

R

D

� �
/ Ra�1=2

i : ð40Þ

We thus suggest that the viscosity scaling of equation (36) is
likely a consequence of this self‐regulation of the convective
flow field.
[39] The above scaling for the radius of curvature is,

however, different from what suggested by Korenaga
[2010], in which the exponent is −1/6 instead of −1/2.
There are at least two reasons for this discrepancy. First, the
derivation of Korenaga [2010] is based on stress balance
regarding the transition from plate tectonic convection to
stagnant lid convection, so convection away from this
transition may exhibit different scaling. Second, his deri-
vation assumes the conventional scaling of bending strain
rate (section 3.1), which is clearly invalid for pseudoplastic
rheology as suggested by the previous sections. The self‐
organization of thermal convection with highly nonlinear
rheology is an interesting subject that warrants future
research efforts.

4.4. Some Remarks on Previous Studies

[40] Most of recent studies that concern bending dissipa-
tion are based on free subduction models [e.g., Bellahsen

Figure 14. (a) Comparison of effective viscosity contrast
based on Stokes flow calculations with pseudoplastic rhe-
ology, Dheff, with prediction from the parameterization
of Korenaga [2010], DhL(g, �). (b) Covariation of non-
dimensionalized radius of curvature, R/D, and the internal
Rayleigh number, Rai. Dashed line represents R/D / Rai

−1/2.
Different symbols denote the following three cases:
DhL(g, �)/Dheff < 0.5 (triangles), 0.5 ≤ DhL(g, �)/Dheff ≤ 2
(circles), and DhL(g, �)/Dheff > 2 (crosses).
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et al., 2005; Stegman et al., 2006; Capitanio et al., 2007,
2009; Schellart, 2009], in which a plate is let fall down by its
own negative buoyancy, and the viscosity of plate is usually
set to be constant or Newtonian. Although studying a simple
dynamical system has its own merit, our finding on the
scaling of plate bending indicates that the use of Newtonian
rheology limits the applicability of their studies to actual
subduction zones on Earth. Notable exceptions are the models
of Stegman et al. [2006] and Di Giuseppe et al. [2008], in
which pseudoplastic rheologywas employed, but these studies
combined constant lithospheric viscosity with yield stress‐
based viscosity, and the strong temperature dependency of
mantle rheology was not considered.
[41] The work of Krien and Fleitout [2008] is based on

calculating instantaneous Stokes flow with an elaborate
rheological model, which contains both lateral and vertical
viscosity variations in the sublithospheric mantle, but the
rheology of oceanic lithosphere is either constant viscosity
or power law rheology with a high stress exponent (n = 10).
Our study suggests that the former is inadequate whereas the
validity of the latter remains unclear. They tried to dis-
criminate different models by comparing with geoid and
gravity signatures over subduction zones, but inference on
mantle rheology from surface observables is generally
highly nonunique. Nonuniqueness may be reduced by lim-
iting the functionality of rheology, but when doing so, care
must be taken so that the realistic behavior of mantle rhe-
ology can still be captured by such limited functionality. Wu
et al. [2008] estimated the viscosity of bending plate by
comparing predicted global plate motion with the observed
one, but their calculation of global plate motion is based on
the conventional scaling of bending dissipation (equation
(1)). More recently, Leng and Zhong [2010] argued that
the bending dissipation accounts for only 10–20% of the
total dissipation based on compressible convection models
with temperature‐dependent viscosity, but the temperature
dependency they used is too weak (� ∼ 11) to approximate
mantle rheology. It is known that such convection does not
exhibit plate‐like behaviors [e.g., Bercovici et al., 2000]. To
simulate more plate‐like surface motions, therefore, they
also tried models that includes prescribed weak zones, and
what they were able to achieve is essentially the same as
what we have done with purely temperature‐dependent
viscosity with low � (section 3.2 and Figure 4). Though the
‘effective’ activation energy of temperature‐dependent vis-
cosity may be lower than what high‐temperature creep
mechanisms indicate if other low‐temperature deformation
mechanisms are taken into account, our results suggest that
one cannot emulate such effect by simply using weakly
temperature‐dependent viscosity, as far as the scaling of
bending dissipation is concerned (compare, for example,
Figures 4b, 4d, 4f, and 4h with Figures 9a, 9c, 9e, and 9g).
[42] The use of the effective viscosity (as defined in

equation (30)) when evaluating bending dissipation may be
traced back to the work of Conrad and Hager [1999]. In
their numerical experiments, both temperature‐dependent
and stress‐dependent rheology were used (though yielding
was not included), and their results were found to be
insensitive to the particular form of rheology if parameter-
ized in terms of the effective viscosity. The temperature‐
dependent viscosity they used is of the Arrhenius form

(equation (21)), but the viscosity was cut off at the maxi-
mum contrast of 104. This is close to the case of purely
temperature‐dependent viscosity with low �, and in this
case, our results suggest that the velocity exponent takes a
conventional value of 2.0, and the age exponent is also
similar to its conventional value (Figures 4d and 4h). Fur-
thermore, the radius curvature and the dip angle were fixed
to 240 km and 90°, respectively, in their model. The range
of rheology functions and slab parameters explored by
Conrad andHager [1999] is therefore too limited to support the
general applicability of the isoviscous scaling (equation (1)).
The concept of effective viscosity is useful as it quantifies the
relation between the average strain rate and the average stress,
but the scaling of bending dissipation, e.g., how dissipation
varies with the bending curvature, requires more than this
zeroth‐order parameterization.
[43] Inferring mantle dynamics from observational con-

straints tends to suffer from nonuniqueness. The radius of
curvature, for example, is inversely correlated with dip angle
in the real subduction zones (i.e., more steeply dipping slabs
tend to have smaller radii), and a similar behavior observed
in free subduction models may seem to support those
models [e.g., Capitanio et al., 2009]. Such inverse relation,
instead, may simply imply that real plates lose their strength
at greater depths so bending happens only at relatively
shallow depths. The combination of a large curvature (e.g.,
600 km) and a large dip (e.g., 90°) means bending defor-
mation over a considerable depth range (e.g., 0–600 km),
and expecting a subducted plate to maintain its full strength
down to the transition zone is probably unrealistic. Sub-
ducted slabs are gradually warmed up by the surrounding
mantle, so because of temperature‐dependent viscosity, this
warming results in the gradual loss of plate strength. It is
noted that heat transfer is usually neglected in free subduc-
tion models. Alternatively, the inverse correlation between
radius and dip angle may be explained by the radius expo-
nent varying from negative to positive as dip angle increases,
as shown for some cases with pseudoplastic olivine rheology
(Figures 9e and 9f).
[44] Korenaga [2010] conducted a total of 280 cases of

self‐consistent simulation of plate tectonic convection using
pseudoplastic rheology, with a range of rheological para-
meters (∼10 < � < ∼30 and 0.1 ≤ g ≤ 1, corresponding to
DhL of up to ∼104) and the internal Rayleigh number (from
∼105 to 1010). The ratio of viscous dissipation within the top
thermal boundary (mostly due to bending) over the total
dissipation varies considerably among different cases,
ranging from ∼0.1 to ∼0.9. Bending dissipation can be either
significant or trivial, and the self‐consistent generation of
plate tectonics by itself does not seem to demand either way.
Previous suggestions based on modeling with a limited
exploration of rheological function may thus be viewed with
caution. To understand a likely role of bending dissipation
in plate tectonics, it is imperative to better understand the
physics of lithospheric damage [e.g., Korenaga, 2007] as
well as to explore extensively the plausible parameter space
of mantle rheology [Korenaga and Karato, 2008]. The
nonuniqueness of geodynamical inference is enhanced quite
considerably by the uncertainty of mantle rheology, but
unfortunately, this issue tends to be underestimated in the
studies of global mantle flow, in which a primary focus is to
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Table A1. Slab Parameters and Energy Balance for Global Subduction Zones

ID � (°) R (km) v (mm/yr) t (Ma) W (km) L (km) FPE (GW) FPE,2/FPE FBE
strong (GW) FBE

weak (GW)

ANDA6 70 340 2.0 85.5 236.7 600 0.80 0.26 0.97 0.09
ANDA5 70 350 11.8 82.0 225.8 600 4.45 0.27 5.71 0.63
ANDA4 70 360 8.1 77.8 225.8 600 3.01 0.27 3.70 0.36
ANDA3 70 380 14.2 73.7 230.2 670 5.77 0.26 6.68 0.69
ANDA2 70 400 22.9 69.2 205.7 670 8.18 0.28 9.04 0.86
ANDA1 56 530 20.4 61.1 226.6 670 6.72 0.28 5.59 0.60
SUM6 40 530 38.6 51.8 366.8 1200 21.74 0.13 7.42 1.52
SUM5 40 540 25.2 46.2 314.5 1200 11.53 0.13 4.09 0.77
SUM4 49 540 31.8 47.1 265.2 1200 15.03 0.16 6.41 0.81
SUM3 49 550 33.7 60.0 290.3 1200 19.72 0.16 9.37 1.24
SUM2 61 580 34.9 69.0 239.4 1200 22.17 0.21 12.74 1.14
SUM1 63 600 46.3 72.0 348.9 1200 45.34 0.22 26.66 2.36
JAVA7 71 540 49.2 75.0 228.2 1200 34.42 0.23 23.87 1.78
JAVA6 68 540 55.1 78.0 219.0 1200 36.52 0.22 26.10 2.10
JAVA5 68 540 59.0 80.0 198.3 1200 35.85 0.22 27.41 5.38
JAVA4 69 530 60.9 81.0 222.1 1200 41.98 0.22 32.77 6.60
JAVA3 68 520 62.0 82.0 219.3 1200 41.81 0.21 31.36 4.69
JAVA2 68 500 63.8 83.0 199.7 1200 39.06 0.21 30.93 4.57
JAVA1 70 480 65.8 84.0 196.6 1200 40.37 0.20 34.64 3.74
TIM1 56 460 39.1 141.0 219.3 670 17.99 0.24 22.37 2.46
TIM2 56 600 31.3 141.0 220.9 670 15.72 0.30 17.37 1.44
TIM3 56 500 25.3 141.0 232.2 670 12.62 0.26 15.13 1.49
TIM4 56 360 25.1 141.0 232.9 670 11.53 0.20 15.65 2.20
TIM5 56 260 25.4 141.0 222.7 670 10.45 0.14 4.31 3.53
TAN1 56 260 9.6 54.0 222.9 500 1.95 0.20 0.64 0.40
TAN2 56 400 6.3 54.0 223.2 500 1.43 0.28 1.45 0.17
TAN3 56 500 0.4 54.0 343.3 500 0.15 0.33 0.05 0.01
TAN4 56 386 14.2 54.0 222.3 500 3.18 0.27 3.33 0.43
SER1 56 318 49.8 54.0 314.0 500 14.93 0.23 18.78 3.55
SER2 56 318 11.2 54.0 225.5 500 2.41 0.23 2.60 0.45
SER3 56 318 3.0 54.0 222.2 500 0.64 0.23 0.64 0.10
TOLOe 56 318 103.9 10.0 225.8 559 10.65 0.22 18.92 2.56
HALM2 56 318 18.6 40.0 225.8 400 2.93 0.28 3.33 0.56
HALM1 56 318 0.8 40.0 314.5 400 0.18 0.28 0.09 0.02
SANG3e 56 318 75.6 40.0 290.3 670 22.79 0.19 22.93 5.73
SANG2e 56 318 59.8 40.0 230.2 670 14.30 0.19 12.34 2.51
SANG1e 56 318 58.7 40.0 223.2 670 13.61 0.19 11.35 2.46
SULA2e 56 200 35.0 40.0 230.2 150 2.45 0.38 3.11 2.25
SULA1e 56 200 25.7 40.0 225.8 150 1.77 0.38 1.85 1.25
SULU2e 56 318 32.5 20.0 314.5 100 2.36 0.61 4.18 0.86
SULU1e 56 318 27.2 20.0 346.0 300 3.85 0.35 3.94 0.77
COTOe 56 318 32.2 40.0 223.2 559 6.46 0.22 5.71 1.01
NEG4e 55 318 16.6 20.0 290.3 300 1.93 0.34 1.91 0.37
NEG3e 55 318 22.2 20.0 290.3 300 2.58 0.34 2.75 0.56
NEG2e 55 318 16.8 20.0 225.8 300 1.52 0.34 1.56 0.33
NEG1e 55 318 8.0 20.0 314.5 300 1.01 0.34 1.03 0.16
LUZ4e 75 190 44.8 22.0 290.3 400 7.50 0.25 12.59 3.09
LUZ3 60 200 74.3 18.0 230.2 670 11.70 0.14 4.15 2.81
LUZ2 60 310 89.9 27.0 222.4 670 18.07 0.20 16.06 3.83
LUZ1 65 280 95.6 32.0 271.5 670 26.62 0.20 27.13 6.97
BAT2 75 220 71.8 35.0 256.8 670 20.73 0.18 26.96 6.60
BAT1 75 220 93.1 35.0 256.8 670 26.89 0.18 36.31 8.86
TAIW 56 318 91.6 54.0 256.8 670 28.31 0.18 33.03 8.29
PHIL7 56 160 15.5 50.0 245.4 250 1.71 0.22 1.33 1.09
PHIL6 56 170 18.3 50.0 217.9 250 1.82 0.23 1.43 1.09
PHIL5 56 180 29.5 50.0 223.2 250 3.05 0.24 2.93 2.36
PHIL4 56 180 30.3 50.0 206.7 250 2.91 0.24 2.52 2.26
PHIL3 56 200 45.7 50.0 216.2 250 4.73 0.26 5.79 4.61
PHIL2 56 240 58.8 45.0 236.7 150 4.87 0.43 6.33 4.95
PHIL1 56 240 43.7 40.0 236.7 100 2.78 0.53 2.45 2.44
RYUS 65 340 94.2 35.0 204.2 450 16.11 0.31 21.88 8.06
RYUN1 57 380 86.0 38.0 247.6 450 16.97 0.30 22.70 4.60
RYUN2 58 400 87.3 48.0 231.4 350 15.83 0.37 26.64 9.61
RYUN3 61 360 81.0 50.0 257.6 325 16.09 0.37 29.50 6.69
RYUN4 64 300 78.8 50.0 251.9 300 14.19 0.36 30.96 7.60
NAN3 56 800 46.9 17.0 208.5 100 4.14 0.81 5.90 4.71
NAN2 56 750 41.8 17.0 199.3 100 3.35 0.80 5.72 5.94
NAN1 56 750 37.1 21.0 189.2 100 3.13 0.80 4.42 0.29
SUR 56 318 17.7 54.0 192.6 100 1.26 0.60 3.70 0.59
PAL 56 318 0.9 54.0 312.3 350 0.21 0.30 0.13 0.04
YAP3 56 318 2.5 35.0 220.6 100 0.17 0.61 0.36 0.05
YAP2 56 318 3.3 30.0 342.1 100 0.32 0.61 0.64 0.10
YAP1 56 318 2.9 35.0 256.8 100 0.22 0.61 0.47 0.07
SMAR5 74 180 8.2 155.0 219.2 350 2.30 0.21 8.18 1.49
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Table A1. (continued)

ID � (°) R (km) v (mm/yr) t (Ma) W (km) L (km) FPE (GW) FPE,2/FPE FBE
strong (GW) FBE

weak (GW)

SMAR4 64 200 15.0 155.0 200.3 400 3.97 0.19 3.19 2.51
SMAR3 73 220 55.1 156.0 212.9 500 20.96 0.20 69.83 18.31
SMAR2 74 270 66.0 156.3 291.0 900 58.92 0.15 111.76 25.93
SMAR1 84 280 69.7 153.2 211.8 900 48.18 0.18 100.98 19.98
NMAR4 86 280 62.5 149.6 222.4 900 45.29 0.19 95.19 18.08
NMAR3 86 280 41.2 147.5 236.7 900 31.56 0.19 61.49 10.33
NMAR2 84 300 27.2 146.6 314.5 900 27.78 0.20 46.04 4.52
NMAR1 72 280 17.8 145.3 253.3 900 13.23 0.16 18.73 2.03
IZU5 64 260 43.4 150.0 225.8 670 20.71 0.16 46.12 11.49
IZU4 74 320 49.0 148.0 222.4 670 26.68 0.23 53.93 8.95
IZU3 71 340 44.9 141.0 210.4 670 22.31 0.23 39.05 4.65
IZU2 61 360 51.2 135.0 205.3 670 21.87 0.21 33.53 4.97
IZU1 50 400 55.0 129.0 202.3 670 19.39 0.20 24.44 4.31
JAP4 31 500 92.5 127.0 217.9 670 22.35 0.16 11.47 8.03
JAP3 31 560 91.6 132.0 226.8 670 23.97 0.17 10.10 8.01
JAP2 29 580 85.9 131.0 200.3 670 18.51 0.17 5.57 3.95
JAP1 25 580 90.2 128.0 216.5 670 17.67 0.15 5.45 3.99
SKOUR5 32 500 76.7 128.0 207.3 670 18.31 0.16 6.16 4.19
SKOUR4 33 420 73.5 120.0 191.2 670 15.72 0.14 8.81 6.46
SKOUR3 40 410 77.0 118.0 191.1 670 19.80 0.16 8.93 7.28
SKOUR2 44 380 70.8 118.0 163.9 670 16.92 0.17 21.31 6.55
SKOUR1 47 360 77.5 118.0 195.2 670 23.27 0.17 33.50 10.56
NKOUR3 48 360 79.4 110.0 251.2 900 38.84 0.13 40.86 13.21
NKOUR2 50 360 78.0 110.0 282.5 850 42.39 0.15 52.34 14.83
NKOUR1 51 360 76.8 110.0 237.9 850 35.78 0.15 44.49 12.52
KAM2 56 360 74.9 100.0 222.4 670 27.81 0.20 42.08 9.82
KAM1 64 340 73.8 100.0 256.8 400 23.95 0.32 58.06 12.95
W_ALE1 56 210 21.9 45.0 137.8 300 1.60 0.24 0.70 0.61
W_ALE2 56 220 36.1 45.0 130.3 300 2.52 0.25 1.58 1.29
C_ALE1 56 240 25.4 54.0 137.7 350 2.36 0.24 0.93 0.78
C_ALE2 57 270 41.1 56.0 129.6 400 4.25 0.24 6.44 1.39
C_ALE3 57 270 52.0 58.0 144.3 475 6.95 0.21 10.12 2.42
C_ALE4 58 270 60.2 58.0 128.8 550 8.20 0.19 11.89 3.40
C_ALE5 59 280 61.4 58.0 129.4 550 8.59 0.20 12.91 3.41
C_ALE6 62 280 59.5 63.0 127.6 500 8.28 0.23 14.54 3.66
E_ALE1 61 290 65.3 63.0 130.6 500 9.25 0.23 15.89 3.89
E_ALE2 60 310 65.7 61.0 133.0 450 8.65 0.26 14.80 3.68
E_ALE3 59 310 64.9 59.0 132.3 450 8.24 0.26 13.88 3.44
E_ALE4 56 260 64.3 58.0 132.5 400 6.73 0.23 5.25 3.84
E_ALE5 53 300 63.1 53.0 128.4 400 6.04 0.25 10.11 2.78
W_ALA1 48 400 61.4 52.0 124.5 400 5.55 0.29 6.57 1.30
W_ALA2 47 400 60.5 52.0 124.0 400 5.33 0.29 6.37 1.17
W_ALA3 47 520 59.4 52.0 123.5 300 4.76 0.41 5.79 1.07
W_ALA4 47 550 58.0 52.0 138.9 300 5.36 0.43 6.55 0.99
W_ALA5 45 600 58.0 49.0 127.1 300 4.70 0.44 6.41 2.00
E_ALA1 43 660 56.6 46.0 123.7 300 4.27 0.45 5.37 1.27
E_ALA2 40 880 51.4 45.0 146.1 300 4.74 0.51 3.70 1.53
E_ALA3 38 930 48.0 40.0 150.6 300 4.13 0.51 3.04 1.19
E_ALA4 40 1120 42.9 39.0 159.0 200 3.93 0.67 5.01 1.53
E_ALA5 40 1200 52.0 39.0 117.9 200 3.71 0.68 4.61 1.27
CASC1 45 500 43.8 5.0 256.8 400 2.58 0.34 1.62 0.26
CASC2 45 840 36.2 10.0 245.4 300 3.07 0.53 2.90 0.42
CASC3 45 767 30.3 11.0 225.8 300 2.36 0.51 1.88 0.17
CASC4 45 767 24.3 11.0 223.2 300 1.87 0.51 1.52 0.16
CASC5 45 960 26.6 10.0 222.4 300 2.20 0.57 2.05 0.21
MEX1 56 280 39.7 8.0 328.2 300 3.25 0.32 0.79 0.54
MEX2 56 310 47.5 8.0 232.7 300 2.85 0.35 2.15 0.45
MEX3 56 440 51.5 15.0 212.8 300 4.44 0.43 4.40 0.74
MEX4 56 340 55.7 15.0 204.9 300 4.15 0.36 3.66 0.71
MEX5 56 400 59.5 15.0 202.1 300 4.67 0.40 4.37 0.70
MEX6 56 440 60.6 15.0 196.5 300 4.82 0.43 4.79 0.65
COST1 55 340 63.6 18.0 225.4 300 5.59 0.36 5.47 1.15
COST2 54 280 68.6 22.0 219.5 400 7.31 0.25 8.32 2.22
COST3 64 260 73.0 24.0 211.1 400 8.95 0.27 12.11 3.02
COST4 66 240 77.6 28.0 233.8 400 11.40 0.26 17.82 4.37
COST5 57 260 83.6 26.0 219.4 400 9.97 0.24 6.37 3.47
COST6 59 540 77.6 16.0 220.0 100 5.56 0.75 11.01 10.93
COL1 50 380 42.3 19.0 256.8 670 7.31 0.20 3.46 0.69
COL2 45 400 46.6 15.0 314.5 670 7.99 0.19 1.05 0.72
COL3 45 420 41.3 12.0 290.3 670 5.91 0.20 1.78 0.51
COL4 47 500 39.2 15.0 245.4 670 5.76 0.24 2.30 0.47
COL5 47 520 36.0 16.0 230.2 670 5.18 0.25 2.30 0.46
PER1 45 520 69.1 30.0 200.5 1200 18.12 0.15 7.40 1.64
PER2 46 520 70.9 30.0 200.0 1200 18.94 0.15 7.75 2.49
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Table A1. (continued)

ID � (°) R (km) v (mm/yr) t (Ma) W (km) L (km) FPE (GW) FPE,2/FPE FBE
strong (GW) FBE

weak (GW)

PER3 47 520 70.7 31.0 208.2 1200 20.39 0.15 7.68 3.48
PER4 49 540 70.2 31.0 224.2 1200 22.80 0.16 10.92 6.14
PER5 49 490 69.3 46.0 233.3 1200 28.03 0.15 15.59 4.97
PER6 52 400 68.6 46.0 248.4 1200 30.21 0.13 15.40 2.72
PER7 49 340 66.6 46.0 222.4 1200 24.44 0.11 3.44 2.86
NCHI1 50 360 58.1 52.0 330.9 1200 34.53 0.11 17.68 3.60
NCHI2 41 520 63.5 54.0 240.0 1200 24.41 0.13 10.33 2.82
NCHI3 40 620 72.2 55.0 201.0 1100 21.84 0.16 9.85 2.92
NCHI4 45 700 71.3 54.0 201.2 1000 22.87 0.22 11.90 2.97
NCHI5 47 700 70.8 53.0 201.5 900 21.73 0.24 12.79 3.69
NCHI6 49 400 68.5 52.0 201.2 800 17.44 0.17 12.00 2.47
JUAN1 56 300 68.7 49.0 204.5 670 15.93 0.18 18.01 4.62
JUAN2 56 240 70.8 48.0 198.4 670 15.15 0.14 7.65 5.51
JUAN3 56 280 70.6 48.0 202.2 670 15.82 0.17 17.45 4.86
SCHI1 35 440 65.6 42.0 220.0 670 10.31 0.16 1.96 1.45
SCHI2 35 500 61.6 39.0 219.8 559 8.25 0.21 1.46 1.15
SCHI3 35 550 72.6 35.0 208.7 559 8.95 0.23 2.20 1.35
SCHI4 35 540 75.5 33.0 230.2 559 9.93 0.23 5.70 1.61
SCHI5 35 450 76.2 20.0 222.4 559 7.26 0.20 5.82 1.15
TRI1 56 410 76.0 12.0 222.4 559 8.97 0.27 8.44 2.66
TRI2 56 410 76.1 5.0 222.4 559 5.82 0.28 4.09 7.18
TRI3 56 410 20.8 10.0 223.2 559 2.25 0.27 1.44 0.30
TRI4 56 410 20.9 18.0 222.4 559 3.01 0.27 1.84 0.34
PAT1 56 318 19.3 18.0 236.7 559 2.77 0.22 1.73 0.35
PAT2 56 318 18.8 20.0 230.2 559 2.77 0.22 1.80 0.38
PAT3 56 318 12.0 20.0 314.5 559 2.41 0.22 1.59 0.33
BARB1 55 580 12.7 117.0 225.8 670 5.78 0.29 5.78 0.49
BARB2 55 460 11.9 110.0 223.2 670 4.86 0.24 5.15 0.54
ANTI1 56 450 10.8 98.0 230.2 670 4.35 0.24 4.43 0.48
ANTI2 56 420 9.6 90.0 314.5 670 4.97 0.23 5.06 0.53
ANTI3 56 400 5.9 84.0 223.4 500 1.66 0.28 2.02 0.22
PORTO1 56 300 8.1 92.0 210.0 500 2.07 0.22 2.77 0.47
PORTO2 56 230 7.2 100.0 210.0 500 1.80 0.17 0.61 0.56
PORTO3 56 180 7.2 110.0 209.4 500 1.80 0.12 0.72 0.76
FRAN 56 318 2.6 117.0 216.4 500 0.78 0.22 1.16 0.17
SAND1 72 240 35.7 33.0 271.5 670 10.51 0.19 11.20 1.75
SAND2 83 240 78.0 36.0 223.2 670 21.40 0.22 29.61 6.22
SAND3 84 220 72.4 40.0 290.3 670 26.79 0.21 41.68 9.20
SAND4 86 160 35.1 40.0 140.2 670 5.92 0.16 9.75 2.57
SAND5 80 160 15.1 40.0 128.3 670 2.26 0.14 2.66 0.48
SAND6 81 204 3.6 40.0 132.8 670 0.59 0.18 0.66 0.08
PUY 56 318 23.8 33.0 271.5 150 2.26 0.51 4.50 0.77
HIKS1 56 320 17.7 54.0 314.5 670 6.71 0.19 5.84 0.94
HIKS2 56 480 13.3 54.0 314.5 670 5.56 0.26 4.44 0.50
HIKS3 56 460 38.0 54.0 225.8 670 11.27 0.25 9.13 1.09
HIKN1 56 310 40.8 54.0 225.8 670 11.03 0.18 10.42 1.77
HIKN2 56 280 43.8 45.0 230.2 670 10.82 0.17 9.85 2.19
KER1 70 260 46.6 95.0 200.5 900 21.64 0.14 29.75 6.34
KER2 68 220 51.4 97.0 206.4 1000 26.06 0.11 36.49 10.21
KER3 62 260 54.3 99.0 213.9 1100 30.16 0.11 34.35 9.66
KER4 57 270 59.6 101.0 212.0 1200 33.85 0.09 32.25 10.10
KER5 56 280 64.1 103.0 201.9 1300 37.29 0.09 34.42 10.25
TONG1 57 280 71.2 105.0 202.4 670 23.74 0.16 40.01 11.59
TONG2 54 300 103.9 106.0 227.2 670 37.79 0.16 61.03 18.13
TONG3 51 300 153.0 107.0 215.8 670 50.48 0.15 34.54 25.20
TONG4 53 300 182.1 108.0 208.3 670 60.29 0.16 97.68 30.14
TONG5 55 320 205.4 108.0 204.4 670 69.82 0.18 119.62 33.29
TONG6 55 305 223.2 109.0 221.9 670 81.94 0.17 136.96 40.86
SHEB1 66 160 71.4 46.0 291.5 500 18.12 0.14 15.54 11.81
SHEB2 71 160 118.6 45.0 224.2 670 30.93 0.12 20.24 15.79
SHEB3 68 160 99.3 48.0 200.4 670 23.27 0.12 15.10 12.19
ENTR 56 180 38.3 56.0 256.8 670 10.97 0.10 7.34 5.50
NHEB1 82 140 107.6 60.0 230.2 670 34.80 0.12 26.35 23.29
NHEB2 72 120 165.5 60.0 283.8 670 60.91 0.09 61.73 44.07
SALOM4 56 318 141.0 31.0 240.9 500 24.72 0.24 29.29 9.00
SALOM3 56 318 27.0 31.0 241.0 670 5.96 0.19 4.15 0.79
SALOM2 56 318 55.1 31.0 241.3 670 12.18 0.19 8.39 1.88
SALOM1 56 318 65.7 31.0 242.2 500 11.58 0.24 11.14 2.57
BOUG2 56 130 102.3 31.0 254.4 500 16.05 0.10 15.86 9.83
BOUG1 56 140 93.8 31.0 255.2 670 19.42 0.08 13.34 8.71
BRET3 79 180 120.0 31.0 235.3 670 29.60 0.16 41.05 10.99
BRET2 82 260 75.2 31.0 243.6 670 21.23 0.23 26.78 5.50
BRET1 76 220 64.0 31.0 202.6 670 13.85 0.19 17.07 4.13
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find a model that can satisfy given observables and its
uniqueness is rarely discussed.

5. Summary

[45] By designing a fan‐shaped fluid dynamical model
with appropriate kinematic boundary conditions, we were
able to capture the essence of the bending deformation field
associated with subduction. The computational efficiency of
instantaneous Stokes flow calculations allowed us to explore
exhaustively the four‐dimensional slab parameter space
(dip, age, radius of curvature, and velocity), and we esti-
mated the scaling of bending dissipation for a range of
viscosity functions, including one isoviscous case, 10 purely
temperature‐dependent viscosity cases, 60 pseudoplastic
rheology cases, and 30 pseudoplastic olivine rheology
cases.
[46] Our scaling for the isoviscous case is similar to what

is commonly assumed for bending dissipation, but even in
this simplest case, the age and radius exponents exhibit dip
dependency. As we move away from the isoviscous case
toward more mantle‐like rheology, we observe that the
conventional scaling falls down gradually owning to the
increasing complexity of the bending deformation field.
Because there has been no consensus on weakening
mechanisms that compensate the strongly temperature‐
dependent rheology of mantle minerals, it is still unclear
which of our scaling laws would be most relevant to the
subduction zones on Earth. It is probably safe to conclude,
however, that approximating plate rheology with constant
‘effective’ viscosity, which has been common in studies on
subduction dynamics, likely limits the potential relevance of
these studies to the real Earth. It is still premature to con-
clude whether or not bending dissipation would be signifi-
cant on a global scale, because it depends largely on
assumed mantle rheology, and for a better understanding of
the physics of plate tectonics, further theoretical studies that
properly honor the complexity of mantle rheology appear to
be essential.

Appendix A: Numerical Results on Global
Subduction Zones

[47] Table A1 shows slab parameters for all of subduction
zones, based on the compilations of Lallemand et al. [2005]
and Wu et al. [2008] with some adjustments as described in
section 4.2. Listed slab parameters are dip angle �, the
radius of curvature R, plate velocity v, plate age t, the width
of a subduction zoneW, and the length of a subducted plate L.
The rate of gravitational potential energy release FPE is
calculated from these parameters, and the column FPE,2/FPE

lists the ratio of the contribution from the bending part. The
rate of bending dissipation is calculated using pseudoplastic
rheology with KK08 flow laws and Tmax = 700°C, and
FBE
strong is for the case with m = 0.8, and FBE

weak for m = 0.1.
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