Frontiers

Mantle dynamics and seismic anisotropy

Maureen D. Long,⁎, Thorsten W. Becker

⁎ Corresponding author. Tel.: +1 203 432 5031.
E-mail address: maureen.long@yale.edu (M.D. Long).

A R T I C L E I N F O

Article history:
Received 1 April 2010
Received in revised form 26 May 2010
Accepted 23 June 2010
Available online 31 July 2010

Editor: A.W. Hofmann

Keywords:
seismic anisotropy
mantle flow
geodynamic modeling
shear wave splitting
surface wave analysis
mantle convection

A B S T R A C T

Observations of seismic anisotropy yield some of the most direct constraints available on both past and present-day deformation in the Earth's mantle. Insight into the character of mantle flow can also be gained from the geodynamical modeling of mantle processes on both global and regional scales. We highlight recent progress toward understanding mantle flow from both observations and modeling and discuss outstanding problems and avenues for progress, particularly in the integration of seismological and geodynamical constraints to understand seismic anisotropy and the deformation that produces it. To first order, the predictions of upper mantle anisotropy made by global mantle circulation models match seismological observations well beneath the ocean basins, but the fit is poorer in regions of greater tectonic complexity, such as beneath continental interiors and within subduction systems. In many regions of the upper mantle, models of anisotropy derived from surface waves are seemingly inconsistent with shear wave splitting observations, which suggests that our understanding of complex anisotropic regions remains incomplete. Observations of anisotropy in the D" layer hold promise for improving our understanding of dynamic processes in the deep Earth but much progress remains to be made in characterizing anisotropic structure and relating it to the geometry of flow, geochemical heterogeneity, or phase transitions. Major outstanding problems related to understanding mantle anisotropy remain, particularly regarding the deformation and evolution of continents, the nature of the asthenosphere, subduction zone geodynamics, and the thermochemical state of the lowermost mantle. However, we expect that new seismological deployments and closer integration of observations with geodynamical models will yield rapid progress in these areas.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Seismic anisotropy, or the dependence of seismic wave speeds on the propagation direction or polarization of the waves, has been observed in many regions of the Earth's interior, including the crust, the upper mantle, the transition zone, the D" layer, and the inner core. Most of the scientific interest in delineating and interpreting seismic anisotropy is driven by the link between deformational processes and anisotropic structure. Deformation in the Earth often leads to seismic anisotropy, either through the crystallographic or lattice preferred orientation (CPO, LPO) of anisotropic constituent minerals, or through the shape preferred orientation (SPO) of materials with distinct isotropic elastic properties, such as partial melt. Because of this link between deformation and anisotropy, the characterization of anisotropic structure can yield some of the most direct constraints available on dynamic processes in the Earth's interior (Fig. 1). Elastic anisotropy manifests itself in the seismic wavefield in a variety of ways, and a range of seismological tools can be used to characterize anisotropy in the Earth's mantle. Perhaps the most popular technique is measurement of shear wave splitting, a phenomenon that is analogous to optical birefringence under polarized light. Shear wave splitting, often measured using SKS phases, is an unambiguous sign of anisotropy and the measurement procedure itself is relatively straightforward, although the interpretation of splitting measurements (particularly in the context of complex anisotropic structure) is often complicated. Seismic anisotropy in the upper part of the mantle also manifests itself for surface waves. Differences in propagation speed between surface waves that are polarized differently (Rayleigh waves vs. Love waves) contain information about radial anisotropy, while the dependence of Rayleigh (or Love) wave velocities upon propagation direction contains information about azimuthal anisotropy, or the variation of seismic velocities within a horizontal plane. The free oscillations of the Earth excited by large earthquakes also contain information about anisotropy; different normal modes are sensitive to anisotropy in different depth ranges, and normal mode splitting can be measured and inverted to obtain anisotropic models of mantle and core structure.

In addition to the observational constraints obtained from seismological studies, insight into the pattern of mantle flow can be gleaned from geodynamical modeling, both in the laboratory and (more commonly) using numerical techniques. If the equations that govern solid-state flow are solved with appropriate boundary conditions, rheology and internal density anomalies, we can predict mantle circulation. Both global models and those that focus on a particular tectonic setting (e.g., subduction...
Seismic anisotropy is an intrinsic property of elastic materials that gives rise to the directional dependence of seismic wave speeds and particle motion polarizations, as well as the splitting of normal modes. Anisotropy is described mathematically by the elasticity tensor, which relates stress and strain in linearly elastic solids. For the most general form of anisotropy, 21 elastic constants are needed to describe the medium, but the Earth's mantle is often approximated with hexagonal or transversely isotropic symmetry, which requires 5 independent constants and specification of the orientation of the symmetry axis. Special classes of anisotropic geometry relevant for the Earth's mantle include radial anisotropy, which refers to a difference in propagation speed between horizontally and vertically polarized waves, and azimuthal anisotropy, which refers to a directional dependence of wave speed with azimuth. Anisotropy can be probed using body waves that propagate through the Earth's volume or surface waves that propagate along the surface and, in the case of fundamental modes, are sensitive to structure in the top few hundred kilometers of the mantle. Rayleigh waves are surface waves that involve elliptical, retrograde particle motion parallel to the direction of propagation and are mainly sensitive to the velocity of vertically polarized shear waves (V_S). Love waves involve particle motion perpendicular to the propagation direction and are mainly sensitive to the velocity of horizontally polarized shear waves (V_P).

Shear body waves that propagate through an anisotropic medium undergo shear wave splitting into orthogonally polarized fast and slow components. SKS phases are a type of body wave that are commonly used in splitting studies; they are converted from a compressional wave to a shear wave at the core–mantle boundary (CMB) and therefore the polarization of the wave before it undergoes splitting is known. Other shear phases, such as direct S, are also used in splitting studies, and phases such as ScS (a shear wave that reflects off the CMB) and Sth (a shear wave that is diffracted around the CMB) are used to probe anisotropy in D". Anisotropy in the mantle is often a consequence of crystallographic or lattice preferred orientation (CPO or LPO), which refers to non-random distributions of the orientations of individually anisotropic mineral grains in mantle rock and is also referred to as fabric or texture. Olivine, the primary upper mantle mineral constituent, has an intrinsic single-crystal shear wave anisotropy of ~18% and olivine LPO makes the largest contribution to upper mantle anisotropy, with orthopyroxene making a smaller contribution. In the deeper mantle, other minerals may contribute to anisotropy, including perovskite, post-perovskite, and ferropericlase in the lowermost mantle. Anisotropic structure can also be produced by shape preferred orientation (SPO), which is associated with the alignment of material with distinct isotropic elastic properties (contrasting with the surrounding matrix), such as melt pockets, or cracks in the shallowest crust.

3. The tools: seismology, mineral physics, and geodynamics

3.1. Seismological observations

A wide variety of seismological observables exist that can be used to infer anisotropic structure within the Earth. The main methods for characterizing mantle anisotropy are shear wave splitting and (for the upper mantle and transition zone) surface wave analysis, on which we focus here. However, several other seismological methodologies for
Shear wave with an initial linear polarization enters an anisotropic medium; splitting measurements rely on the observation that when a shear wave splits (e.g., Plomerová et al., 1996; Azimuthal variations in Pn wavelengths can also be used to detect uppermost mantle anisotropy (e.g., Smith and Ekström, 1999) and anisotropic receiver function analysis yields information about sharp contrasts in anisotropic structure in the crust and uppermost mantle (Levin and Park, 1998). In addition to these body wave methods, analysis of the Earth’s free oscillations can yield information about anisotropic structure in different regions, as different normal modes are sensitive to anisotropy in different depth ranges. Normal mode observations have been used to infer anisotropy in the inner core (e.g., Woodhouse et al., 1986; Beghein and Trampert, 2003) and, often in combination with surface wave measurements, in the mantle (e.g., Panning and Romanowicz, 2006).

Analysis of the splitting or birefringence of shear waves is perhaps the most popular method for studying anisotropy. Reviews of shear wave splitting methodologies and results can be found in Silver (1996), Savage (1999), and Long and Silver (2009a); here we provide a brief overview. A shear wave splitting measurement relies on the observation that when a shear wave with an initial linear polarization enters an anisotropic medium, it is split into two orthogonal components, one of which is oriented parallel to the fast direction of the anisotropic medium (Fig. 2). As the two quasi-S waves propagate through the anisotropic region at different speeds, they accumulate a time delay. The orientation of the fast polarization direction, δ, and the delay time, ϕ, contain information about the geometry and the strength, respectively, of the anisotropic structure. Splitting measurement methods (e.g., Vinnik et al., 1989; Silver and Chan, 1991; Chevrot, 2000) are applied to a variety of shear phases that propagate through the mantle, including (most commonly) SKS and direct S at both local and teleseismic (that is, epicentral distances greater than ~40°) distances. SKS is particularly well suited to studying upper mantle anisotropy, as its initial polarization (before encountering the upper mantle on the receiver side) is controlled by the P-to-S conversion at the core–mantle boundary and is well known. Phases such as SKS and direct teleseismic S propagate nearly vertically through the upper mantle, and the measured fast direction δ reflects (approximately) the azimuth of fast wave propagation in the horizontal plane (azimuthal anisotropy).

Shear wave splitting has the advantage over other methods for characterizing anisotropy in that it is unaffected by isotropic wave speed heterogeneity and is therefore an unambiguous indicator of anisotropy. Splitting measurements also feature excellent lateral (on the order of half a Fresnel zone width, ~50 km) resolution, but because they are path-integrated measurements, the depth resolution of splitting measurements is poor. Arguments based on mineral physics considerations and comparisons between SKS and deep local S phases (e.g., Meade et al., 1995; Fischer and Wiens, 1996) suggest that SKS splitting generally reflects anisotropy in the upper mantle beneath the receiver, but an SKS measurement in isolation cannot place firm constraints on the depth distribution of anisotropy. Shear wave splitting observations often exhibit complexities that are inconsistent with a single homogeneous layer of anisotropy with a horizontal symmetry axis, which complicates the physical interpretation of splitting parameters. An example is the variation in measured splitting parameters with the initial polarization angle of the wave; in the presence of such variations, the measurements are known as “apparent” splitting parameters and cannot be simply related to the geometry of the anisotropy. When complex anisotropy is present, such complications in the splitting patterns must be accounted for, or the interpretation in terms of mantle flow may be misleading.

The analysis of surface wave propagation is a powerful complement to shear wave splitting (e.g., Montagner, 2007). Differences in propagation speed between horizontally and vertically polarized surface waves shed light on radial anisotropy in the upper mantle; this type of anisotropy can be probed by comparing the propagation of Love waves, which are primarily sensitive to Vs(H), with that of Rayleigh waves, which are primarily sensitive to Vp(H). Surface waves are dispersive, and different period phase velocities have peak sensitivities at different depths. This can be exploited to construct 3D models of anisotropy. Fundamental mode surface waves are sensitive to anisotropy in the uppermost few hundred kilometers of the mantle (e.g., Montagner and Natal, 1986), while measurements of surface wave overtones are sensitive to structure as deep as the transition zone and the upper part of the lower mantle (e.g., Visser et al., 2008). Radial anisotropy deduced from surface waves is incorporated into both one-dimensional reference Earth models (e.g., Dziewonski and Anderson, 1981) and into 3D seismic tomography (e.g., Natal et al., 1984; Panning and Romanowicz, 2006; Kustowski et al., 2008). Information about azimuthal anisotropy can also be extracted from the variation in Rayleigh wave speed on global (e.g., Montagner and Tanimoto, 1991; Debayle et al., 2005; Lebedev and van der Hilst, 2008) and regional (e.g., Forsyth, 1975; Simons et al., 2002; Deschamps et al., 2008) scales. Lateral gradients in anisotropy can give rise to Love-to-Rayleigh scattering, and the observation of so-called quasi-Love waves that have undergone this scattering can also yield constraints on upper mantle anisotropy (e.g., Rieger and Park, 2010). The signature of anisotropy in surface wave measurements can trade off with that of isotropic heterogeneity. However, the constraints on the depth dependence of anisotropy from surface waves provide an enormous...
3.2. Mineral physics constraints

In order to relate anisotropic structure to flow geometry and processes in the mantle, it is crucial to understand the causative link between deformation and anisotropy. In most parts of the mantle, it is thought that LPO of intrinsically anisotropic minerals is the primary source of anisotropy, although SPO of melt or other materials may contribute to anisotropy in parts of the shallowest mantle (e.g., Greve and Savage, 2009) or in the D^* region (e.g., Moore et al., 2004). Constraints on the relationship between deformation and LPO come mainly from laboratory experiments (e.g., Zhang and Karato, 1995; Bystricky et al., 2000; Jung et al., 2006) and, for the upper mantle, from the petrographic examination of mantle-derived rocks (e.g., Nicolas et al., 1971; Ben Ismail and Mainprice, 1998; Mehl et al., 2003; Mizukami et al., 2004; Skemer et al., 2006; Warren et al., 2008). Mineral and rock physics investigations into the formation of LPO form a large body of ongoing research, and we refer the reader to recent reviews by Mainprice (2007) and Karato et al. (2008).

In the upper mantle, olivine is volumetrically the most important mineral and because it has a large single-crystal anisotropy (~18% for shear waves; e.g., Mainprice, 2007), it is thought to make the primary contribution to the observed anisotropy. When an aggregate of olivine is deformed in simple shear in the dislocation creep regime, it will develop an LPO, with the strength of LPO increasing with increasing strain until it saturates at a relatively modest amount of strain (~100–150%, e.g., Karato et al., 2008). LPO patterns measured from most natural peridotites and in many laboratory experiments tend to suggest a fairly simple relationship: the maximum concentration of fast axes tends to align with the direction of maximum shear (see Fig. 3), which may be inferred from mantle flow models. As discussed in Section 5.2, when this type of LPO formation is used to relate strain and anisotropy, predictions from global models of mantle flow generally match seismological observations well, particularly in simple tectonic settings such as beneath the ocean basins. However, recent work on both laboratory and natural samples has revealed that the formation of LPO in olivine aggregates is more complicated than previously thought. In addition to the LPO pattern found in early simple shear experiments (e.g., Zhang and Karato, 1995), known as A-type, many other types of olivine fabric have been identified, including B-, C-, D-, and E-type (see Sidebar II for additional details). When olivine is deformed at relatively high stresses and low temperatures in the presence of water, B-type fabric dominates and in this case the fast axes of olivine tend to align 90° away from the maximum shear direction in the shear plane (Jung and Karato, 2001) (Fig. 3). Experimental work has shown that olivine fabric depends strongly on the conditions of deformation, including stress, temperature, and water content (e.g., Jung et al., 2006) and possibly pressure (e.g., Mainprice et al., 2005; Jung et al., 2009), although there has been some debate about the relative roles of pressure, stress, and water content in controlling LPO in some studies that have claimed evidence for a pressure-induced fabric transition (see Karato et al., 2008). While the details of the olivine “fabric diagram” in stress, temperature, water content, and pressure space are still being investigated, the dependence of olivine LPO geometry on deformation conditions presents both a challenge and an opportunity for seismological and modeling studies of upper mantle anisotropy. If anisotropy in the mantle can be illuminated in enough detail, then geodynamical models can be used to infer the olivine fabric type as a function of the prevailing temperature, stress, and water content conditions in the upper mantle (e.g., Karato, 2008; Becker et al., 2008).

While a great deal of work has been done on the olivine fabric diagram, much less is known about LPO formation in lowermost mantle materials; this is mainly due to the difficulties involved in performing deformation experiments at the pressures associated with the deeper

Fig. 3. Schematic diagram of the relationship between horizontal mantle flow and the resulting azimuthal anisotropy for different olivine fabric types. (A) In most regions of the asthenosphere, olivine fabric is expected to be A-, C-, or E-type, which would result in a fast axis of anisotropy that is parallel to the (horizontal) flow direction beneath a seismic station. Typical examples of pole figures for experimentally deformed olivine aggregates for A-type fabric are shown; the statistical distribution of the [100], [010], and [001] crystallographic axes are shown with respect to the deformation geometry (the horizontal line represents the shear plane). (B) If B-type olivine fabric, rather than A-, C-, or E-type, dominates, then the same flow direction would result in an observed fast direction that is different by 90°. Typical pole figures for B-type olivine are shown. All pole figures are from Karato et al. (2008), after Jung et al. (2006).
parts of the mantle (for a recent review, see Yamazaki and Karato, 2007). Most work has focused on understanding LPO development in ferropericlase (Mg,Fe)O, which has very high intrinsic anisotropy at D" pressures but which makes up only ~20–25% of the lowermost mantle by volume, and in the recently discovered post-perovskite phase (e.g., Yamazaki et al., 2006). There is still much debate about the dominant slip system in MgSiO3 post-perovskite at the base of the mantle, as many of the relevant experiments have been carried out on analog materials (e.g., Yamazaki et al., 2006; Merkel et al., 2006) or at ambient temperatures (e.g., Merkel et al., 2007); particularly for low temperature experiments, their applicability to D" conditions is uncertain. It has been argued that predictions of D" anisotropy from experimentally determined LPO patterns match the first-order observations for both ferropericlase (e.g., Long et al., 2006) and post-perovskite (e.g., Wookey and Kendall, 2007), but both phases may play a role in controlling lowermost mantle anisotropy (Yamazaki and Karato, 2007) and D" anisotropy may well be controlled by the SPO of melt or slab graveyard materials (Kendall and Silver, 1998) rather than LPO.

3.3. Geodynamical models

The long-term deformation of the lithosphere and the convective motions of the mantle are governed by highly viscous, creeping flow of rocks in the laminar regime where inertial forces are negligible. The corresponding conservation of momentum (Stokes) equation has an instantaneous solution given mechanical boundary conditions, internal density anomalies, and rock viscosity. If viscosity is assumed to vary only with depth, semi-analytical solutions can be used to compute global circulation models for the mantle in spherical geometry. Surface boundary conditions can be plate motions (e.g., Hager and O'Connell, 1981), internal density anomalies may be estimated by scaling velocity anomalies from seismic tomography (e.g., Hager and Clayton, 1989), and viscosity profiles may be inferred from glacial isostatic adjustment and geoid anomalies (e.g., Hager, 1984). Such global circulation models (e.g., Fig. 4) can successfully explain a range of dynamic observables such as plate motions (e.g., Ricard and Vigny, 1989) and a recent review is given by Forte (2007). Lateral viscosity variations are expected to be of importance particularly for the upper mantle, and those require either iterative, spectral solutions (e.g., Zhang and Christensen, 1993) or fully numerical approaches (e.g., Zhong et al., 2000, 2007).

Assuming that surface boundary conditions are given by plate motions, the contribution to the deep mantle fluid flow field that is not associated with return flow is proportional to the density anomalies, and inversely proportional to viscosity. Mineral physics provides some guidance on how to infer temperature from tomography, and flow models that use a simplified scaling relationship are successful in matching first-order observations of azimuthal and radial anisotropy (e.g., Gaboret et al., 2003; Becker et al., 2003, 2008; Bahn et al., 2004; Conrad et al., 2007). However, there is always a complicating trade-off between temperature and composition as inferred from seismic velocity anomalies, particularly in cratonic regions and in the deep mantle (e.g., Simmons et al., 2009). From laboratory experiments, mantle viscosity is expected to depend not only on pressure, temperature, and composition but also on deviatoric stress, grain size, volatiles (e.g., water) and melt fraction (e.g., Kohnstedt, 2002), and flow will also depend on the deformation history in the case of mechanical anisotropy (e.g., Christensen, 1987; Chastel et al., 1993). Water, melt, grain size (via the partitioning between diffusion and dislocation creep) and stress level are all expected to affect LPO development, which will in turn control mechanical anisotropy, making the flow prediction problem inherently non-linear (e.g., Pouilloux et al., 2007; Lev and Hager, 2008a; Tommasi et al., 2009; Knoll et al., 2009). There are large rheological uncertainties involved, in terms of the appropriate creep law parameters and the distribution of relevant fields, such as volatiles, in the Earth. Such complexities motivate a step-wise approach where simplified geodynamic models that match first-order observations are progressively refined.

Global mantle flow may significantly modify regional velocities as inferred from local driving forces in settings such as subduction zones (e.g., Becker and Facenna, 2009). However, at a given computer resource level, regional models can achieve higher numerical resolution and are better at representing smaller scale features, particularly in 3D. One approach is to “couple” regional, high resolution models with large-scale models (e.g., Tan et al., 2007; Mihalffy et al., 2008); others are to use variable mesh refinement, or to simply run global models at high resolution (~30 km scales can now be routinely resolved).

From mantle flow, LPO formation can be computed, either subsequently, if it is assumed that LPO does not feed back into rheology, or jointly while solving for mantle flow. LPO fabrics may be inferred by following strain-rates along advected particle paths and computing either finite strain orientations (e.g., McKenzie, 1979; Hall et al., 2000) or a more elaborate prediction of texture. Texturing microphysics approaches in use include visco-plastic self consistent theory (e.g., Wenk et al., 1991; Chastel et al., 1993; Blackman et al., 2002) and kinematic approximations (e.g., Kaminski and Ribe, 2001; Kaminski et al., 2004). LPO predictions between these models are broadly consistent with the exception of regions of rapid reworking of fabric (e.g., Castelnau et al., 2009), and outside such regions approximate methods such as the infinite strain axis (Kaminski and Ribe, 2002) may be sufficient to capture anisotropy (e.g., Conrad et al., 2007). Particularly if LPO is computed jointly with mantle flow, simplified methods for treating dynamic LPO generation such as directors may be advantageous and sufficiently precise (Lev and Hager, 2008b), although they may be inadequate when rapid spatial variations in flow geometry or fabric regime are present. Further constraints from the field and laboratory experiments on LPO reworking are required to resolve questions about the appropriate theoretical treatment of LPO. However, the kinematic description of LPO formation is able to capture different types of fabrics (Kaminski, 2002) and produces LPO heterogeneity similar to those seen in field samples.
when employed in global mantle flow models (Becker et al., 2006),
providing some a posteriori justification for the geodynamic models.

4. Sidebar II: olivine fabric types

Both experimental studies and examinations of mantle-derived
rocks have revealed that olivine LPO is quite complex and a variety of
olivine fabric types have been identified both in the laboratory and in
nature, including A-, B-, C-, D-, and E-type fabrics (see, e.g., Mainprice,
2007; Karato et al., 2008). Early simple shear experiments on dry olivine
aggregates done at modest stress and temperature revealed A-type
fabric, which is associated with dominant slip in the [100] direction on
the (010) plane. In this regime, the fast axes of individual olivine crystals
tend to align in the direction of shear; for horizontal mantle flow, this
would imply that the measured fast direction of azimuthal anisotropy
should correspond to the horizontal flow direction. B-type fabric, which
is associated with slip in the [001] direction on the (010) plane and is
favored by high stresses, low temperatures, and some amount of water,
changes this relationship by 90°. At high temperatures and low stresses,
the dominant fabric type is expected to change from A-type to E-type
([100][001] slip dominates) to C-type ([001][100] slip dominates) with
increasing water content. The possible effect of pressure on olivine fabric
is controversial and is still being investigated experimentally. A-type or
D-type fabric is expected to dominate in the mantle lithosphere, while
C-, E-, or A-type fabric likely dominates in the asthenosphere. B-type
fabric may be present in the cold corner of the subduction mantle wedge,
where stresses are high and temperatures are low. For the case of
horizontal flow in the upper mantle, all fabric types except for B-type
would produce fast directions of azimuthal anisotropy that are parallel to
the flow direction; for B-type, the fast direction would be normal to the
flow direction (Fig. 3). For radial anisotropy, predictions for the same
horizontal flow scenario are as follows: A-, B-, and D-type would predict
relatively strong V_{SV}-V_{S2} anisotropy, while E-type would predict weak
V_{SV}-V_{S2} and C-type would predict V_{S2}-V_{SV}. For a more detailed
description of olivine fabrics and their seismological implications, we
refer the reader to Mainprice (2007) and Karato et al. (2008), and
references therein.

5. Anisotropy and mantle flow: global and regional observations
and models

5.1. First-order anisotropic structure of the Earth

Using the methods described in Section 3.1, the first-order
characteristics of anisotropy in the Earth’s interior have been imaged
(Figs. 1 and 5). Although not the subject of this review, we note that
there is significant anisotropy in the crust (e.g., Mainprice and Nicolas,
1989; Weiss et al., 1999; Crampin and Chastin, 2003; Meissner et al.,
2006) and there is also strong anisotropy in the inner core (e.g.,
Beghein and Trampert, 2003; Souriau, 2007). In the upper ~250 km of
the mantle, on average up to ~4% radial anisotropy is present, with
V_{SV}-V_{S2} (that is, horizontally polarized shear waves traveling faster,
in the horizontal plane, than vertically polarized ones). The strength of
radial anisotropy in most models peaks at a depth of ~150 km; this
may correspond to boundary-layer flow type deformation in the low-
viscosity asthenosphere. The presence of radial anisotropy below the
upper mantle is less well constrained (e.g., Boschi and Dziewonski,
2000; Panning and Romanowicz, 2006; Visser et al., 2008), in part due
to the severe trade-offs between radial anisotropy and crustal
structure in global surface wave tomographic inversions (e.g., Ferreira
et al., 2010). There is some evidence for radial and/or azimuthal
anisotropy in the transition zone (e.g., Trampert and van Heijst, 2002;
Wookey and Kendall, 2004), but the bulk of the lower mantle
generally appears to be isotropic (e.g., Meade et al., 1995) with the
exception of the D” layer at the base of the mantle (e.g., Panning and
Romanowicz, 2006; Wookey and Kendall, 2007). The observation of
lower mantle isotropy would suggest that deformation is being
accommodated by a process other than dislocation creep that does not
produce LPO, such as diffusion creep or superplasticity (e.g., Karato
et al., 1995). In contrast, the presence of anisotropy in D” would
suggest either a transition to dislocation creep (e.g., McNamara et al.,
2002) or the presence of SPO of elastically distinct material, such as
partial melt (e.g., Kendall and Silver, 1998).

5.2. Global flow models and comparisons with upper mantle observations

Given the association of LPO anisotropy with plate tectonic
motions (e.g., McKenzie, 1979), the link between global seismological
models of azimuthal anisotropy (cf. Fig. 5A) and mantle flow has been
made in a qualitative fashion early on (e.g., Tanimoto and Anderson,
1984). The simplest comparison is between azimuthal anisotropy and
absolute plate motions in some reference frame (APM hypothesis),
where the idea is that the mantle is being sheared such that fast
velocity orientations of LPO anisotropy are aligned with plate motions.
Global circulation models allow more refined estimates, and the
description depicted in Fig. 4 shows that flow at asthenospheric depths,
and hence relative shearing, will only in simple settings be aligned
with surface velocities, such as in the center of the Pacific plate.
Gaboret et al. (2003) compared azimuthal anisotropy with stretch-
ing-rates from flow model predictions and found a good match for the

![Fig. 5. Global uppermost mantle seismic anisotropy. (A) Radial (background, from Kustowski et al., 2008) and azimuthal (white sticks indicating fast orientation, from Lebedev and van der Hilst, 2008) anisotropies are from surface wave analysis, shown at 150 km depth along with SKS splitting (gray sticks, $5^\circ \times 5^\circ$ averages of the compilation of Fig. 4). (B) Radial anisotropy layer averages (left panel, $\xi = (V_{SV}/V_{S2})^2$) and as predicted from the best-fitting geodynamic model of Becker et al. (2008) (velocities shown in Fig. 4). In the right panel, pattern correlations up to spherical harmonic degree 8 between the same geodynamic model and radial and azimuthal seismological models. Thin and heavy lines denote the global correlations and those for oceanic lithosphere only, respectively. Vertical dashed lines indicate the 95% significance level.]
of the mantle (Karato, 2008). Allowing for small fractions of C-type in addition to A-type LPO in flow models (Becker et al., 2008) improves the match to anisotropy dramatically (as expected from the complementary predictions for A-type vs. C-type fabric); the inferred volatile variations are moderate and similar approaches may eventually allow “imaging” of global water distribution (cf. Lassak et al., 2006). Conrad et al. (2007) explored the role of lateral viscosity variations; allowing for those led to a slight improvement in fit to SKS splitting underneath continental domains. Another inference that is made possible by anisotropy synthetics includes tests for absolute plate motion reference frames. Becker (2008) showed that large net rotations of the lithosphere are incompatible with azimuthal anisotropy from surface waves; the latter impose a net rotation speed limit of ~50% of HS3 (Gripp and Gordon, 2002). Complementary modeling studies by Kreemer (2009) and Conrad and Behn (2010) that employ different approaches for comparisons with anisotropy (mainly utilizing SKS splitting) yield consistent conclusions.

5.3. Subcontinental anisotropy

An important complexity in the interpretation of upper mantle anisotropy arises in the continental lithosphere (Figs. 1 and 6) where dynamic models are less certain, and anisotropy is less consistently imaged than for oceanic domains (e.g., Fouch and Rondenay, 2006). As Fig. 5B shows, anisotropy patterns are less well matched in the continents (Becker et al., 2003; Conrad et al., 2007), and radial anisotropy averages are severely under-predicted. One hypothesis states that the strongest contribution to upper mantle anisotropy underneath continental plates is due to frozen-in structure. In fact, the geography of the regions and the amplitude by which the convective

![Fig. 6. A comparison of the observed anisotropic structure of the North American (a-d) and Australian (e-h) continents. Top panels show SKS splitting observations (cyan sticks) from the compilation of Fig. 4; the location of the cross sections shown in the lower panels is shown as a blue line. The lower panels show the strength of the isotropic shear wave speed anomaly (Voigt average, b and f), radial anisotropy (c and g), and azimuthal anisotropy (d and h, peak to trough). The isotropic and radially anisotropic structures are from Kustowski et al. (2008) and azimuthal anisotropy is from Lebedev and van der Hilst (2008).](image-url)
anisotropy model of Becker et al. (2008) underpredicts radial anisotropy at shallow depths of 50 km are consistent with an origin due to frozen-in structure in cratonic regions, which can be explored by stochastic modeling (e.g., Becker et al., 2007).

It is far from clear, however, what the relative contributions are to the observed anisotropic signal from frozen anisotropic structure in the lithosphere versus contemporary flow in the asthenosphere in all continental regions (e.g., Deschamps et al., 2008). Shear wave splitting data in continental interiors are often complicated, exhibiting significant heterogeneity over short length scales (e.g., Fouch et al., 2004; Heintz and Kennett, 2005). Such heterogeneity would suggest a contribution from complex anisotropy in the shallow lithosphere, but because of the poor depth resolution of splitting measurements, the relative contributions of lithospheric and asthenospheric anisotropy are difficult to quantify. Surface wave analysis can provide depth constraints, but the coarse lateral resolution of surface wave tomography means that small-scale lateral variations in lithospheric anisotropy will not be well resolved. A comparison between North America and Australia (Fig. 6) serves to highlight poorly understood differences between the two cratonic regions: surface wave models of the upper mantle beneath Australia reveal strong azimuthal anisotropy at asthenospheric depths (e.g., Simons et al., 2002; Debayle et al., 2005; Lebedev and van der Hilst, 2008), but the shear wave splitting patterns exhibit little spatial coherence and observed delay times are often small (e.g., Clitheroe and van der Hilst, 1998; Heintz and Kennett, 2005, 2006). Conversely, relatively strong and coherent splitting is observed beneath the interior of the North American continent, which has been interpreted as evidence for shear in the asthenosphere driven by plate motion (Fouch et al., 2000), but global surface wave models (e.g., Lebedev and van der Hilst, 2008) do not show particularly strong azimuthal anisotropy beneath cratonic North America.

5.4. Mantle flow in subduction systems

Plates are mainly driven by slabs, and subduction zones represent some of the most tectonically complex and important settings on Earth. Most of the constraints on subduction zone mantle flow come from shear wave splitting measurements, as surface wave inversions typically lack the required lateral resolution. Because different parts of the subduction system, including the overriding plate, the mantle wedge, the slab, and the sub-slab mantle, likely contribute to the shear wave splitting, it is imperative to properly separate the different effects. This can be accomplished at least in part by considering raypaths that sample different regions of the subduction system, including local S phases from slab earthquakes that mainly sample the mantle wedge (e.g., Fischer and Wiens, 1996; Fischer et al., 2000; Levin et al., 2004; Long and van der Hilst, 2006; Pozgay et al., 2007; Abt et al., 2009) and source-side teleseismic S measurements from slab earthquakes that have been corrected for anisotropy beneath the receiver and mainly reflect sub-slab anisotropy (e.g., Russo and Silver, 1994; Russo, 2009) along with SKS (or teleseismic S) splitting measurements (e.g., Abt et al., 2010).

Fig. 7 shows a cartoon of shear wave splitting behavior observed in subduction zones worldwide, from the compilation of Long and Silver (2008, 2009b). The parts of the signal attributed to wedge and sub-wedge anisotropy (which could be in the slab and/or the sub-slab mantle) are shown separately. Several first-order characteristics are evident: beneath the wedge, fast directions are generally trench-parallel, which could be due to trench-parallel sub-slab mantle flow induced by trench migration (e.g., Russo and Silver, 1994; Long and Silver, 2008, 2009b) or due to serpentinized aligned cracks in the shallow slab (Facenda et al., 2008). In the mantle wedge, fast directions are usually complex and often exhibit a characteristic change in orientation from trench-parallel close to the trench to trench-perpendicular in the backarc in many systems. This change in orientation has variously been interpreted as being due to the presence of B-type olivine or serpentinite fabric in the cold corner of the mantle wedge (e.g., Karato, 1995; Nakajima and Hasegawa, 2004; Lassak et al., 2006; Kneller et al., 2008; Katayama et al., 2009; Bezacier et al., 2010), the dominance of trench-parallel mantle wedge flow (e.g., Hall et al., 2000; Smith et al., 2001; Mehl et al., 2003; Kneller and van Keken, 2008; Hoernle et al., 2008), or complex 3D flow due to lower crustal foundering below the arc (Reh et al., 2007). A wide range of delay times are also observed for both the sub-wedge region and the wedge, with average delay times ranging from near isotropy up to ~1.5 s or more. While ambiguities about the interpretation of shear wave splitting measurements in terms of mantle flow in subduction settings remain, it is clear that the classical flow model for subduction...
zones (two-dimensional corner flow above the slab and two-dimensional entrained flow beneath) fails to explain the diversity of observations in subduction zones globally.

In addition to constraints provided from shear wave splitting observations, insights about the character of mantle flow in subduction systems have been provided by geodynamic modeling (e.g., reviews by Billen, 2008; Becker and Faccenna, 2008). Many studies have explored the effects that two-dimensional corner flow in the wedge has on, for example, the thermal structure of subduction zones (e.g., Peacock, 2003; England and Wilkins, 2004) or the resulting shear wave splitting patterns at the surface (e.g., Fischer et al., 2000), also allowing for along-trench flow in a 2.5D framework (Hall et al., 2000), where there is no variation in the model in the third dimension. In 3D, the effect of complex slab morphology on the mantle flow patterns in the wedge has been explored by Kneller and van Keken (2008). Several have studied the importance of larger-scale 3D flow due to trench migration, both from a laboratory (e.g., Gouillou-Frottier et al., 1995; Kincaid and Griffiths, 2003; Funchiello et al., 2006) and a numerical modeling perspective (e.g., Piromallo et al., 2006; Stegman et al., 2006; Schellart et al., 2007). An example of such a model that highlights the role of 3D flow is shown in Fig. 8; the slab is allowed to retreat freely and this slab rollback induces strongly trench-parallel flow beneath the slab (Becker and Faccenna, 2009), similar to what is suggested by the model of Long and Silver (2009b). Many models that seek to explore subduction zone processes such as the production and migration of melt and volatiles through the mantle wedge use two-dimensional frameworks that do not address the possibility of trench-parallel flow (e.g., Cagnioncle et al., 2007; Grove et al., 2009). Given the likely presence of 3D, trench-parallel and toroidal flow in many (if not all) mantle wedge settings, along-strike flow should be further explored (cf. Hall et al., 2000; Kincaid and Griffiths, 2003; Zandt and Humphreys, 2008).

5.5. The D" region

Compared to the upper mantle, the study of anisotropy in the lowermost mantle is still in its infancy. Because of the insights that anisotropy can yield into dynamics, however, the delineation and interpretation of D" anisotropy hold great promise for increasing our understanding of the dynamics of the deep mantle. There is a large amount of observational evidence for anisotropy in the D" layer at the base of the mantle, in sharp contrast to the generally isotropic lower mantle above it. Several dozen shear wave splitting studies have identified D" anisotropy (e.g., Woolley and Kendall, 2007 and references therein), and global radially anisotropic mantle models also show significant anisotropy at the base of the mantle (e.g., Boschi and Dziewonski, 2000; Panning and Romanowicz, 2006). Most body wave studies utilize shear phases that propagate nearly horizontally through the D" layer, such as S, S$_{an}$, and (at large epicentral distances) ScS (e.g., Ritsema, 2000; Garnero et al., 2004; Wooley et al., 2005; Woolley and Kendall, 2007), although discrepancies between SXS and SKS splitting have also been interpreted in terms of anisotropy in the lowermost mantle (e.g., Long, 2009). D"-associated shear wave splitting is often characterized (after correcting the waveforms for splitting due to anisotropy near the receiver and/or the source) by measuring the traveltime difference between horizontally and vertically polarized shear components, and therefore reflects radial anisotropy, although azimuthal anisotropy has been inferred in some studies (e.g., Garnero et al., 2004; Long, 2009). In most regions, V$_{SV}$ > V$_{SV}$ anisotropy appears to predominate, particularly in regions that are associated with relatively high isotropic S wave speeds (Woolley and Kendall, 2007), which suggests that this style of anisotropy may correspond to the presence of subducted slab material above the CMB (cf. Fig. 1). In some regions, however, such as the central and southeastern Pacific, anisotropy appears to be more variable, with some regions of V$_{SV}$ > V$_{SH}$ and some regions that appear to be isotropic.

Although many regions of D" have not yet been studied with respect to their anisotropic structure, at this point a first-order picture of anisotropy at the base of the mantle has emerged. A framework for the interpretation of this picture in terms of dynamic processes, however, remains elusive. Both LPO- and SPO-based mechanisms have been proposed (e.g., Kendall and Silver, 1998; Karato, 1998), and since both types of mechanisms appear to explain the first-order features of D" anisotropy (e.g., Long et al., 2006), it is difficult to distinguish between the two observationally. Two scenarios for explaining D" anisotropy, one of which invokes LPO in the vicinity of a subducting slab and one of which invokes SPO in a region with partial melt, are shown in Fig. 9. The spatial correspondence between regions of V$_{SH}$ > V$_{SV}$ and relatively high S wave speeds has also led to the suggestion that this anisotropic geometry may be associated with the presence of post-perovskite (e.g., Woolley and Kendall, 2007), or it may be associated with the impingement of slab material upon the CMB, resulting in high stresses and high-strain horizontal deformation accommodated in the dislocation creep regime (McNamara et al., 2002). The picture of LPO development in lowermost mantle minerals remains incomplete (e.g., Yamazaki and Karato, 2007), and this ambiguity also hampers the interpretation of anisotropy measurements in terms of mantle flow, although a few studies have attempted...
to reconcile the predictions from models of downgoing slabs above the CMB with observations of D* anisotropy (e.g., McNamara et al., 2002; Wenk et al., 2006; Merkel et al., 2007).

6. Outstanding problems and avenues for progress

Progress has been made over the past decades in characterizing the first-order anisotropy of the mantle and in understanding how to use those constraints to gain insight into mantle dynamics. Global geodynamic models that take into account density-driven flow and surface plate motions do a good job of matching observations of upper mantle anisotropy in the relatively simple tectonic setting of the ocean basins, suggesting that our basic understanding of the relationship between strain and anisotropy in the sub-oceanic upper mantle is apt. Upper mantle anisotropy in more complicated regions such as beneath continental interiors and in subduction systems has also been imaged. While our understanding of these regions remains incomplete, dense data sets that can be better interrogated for complex dynamics (e.g., the USArray component of the EarthScope project) are increasingly common. Evidence for anisotropy in deeper regions such as the transition zone and D* layer provides a tantalizing target for ongoing studies of the dynamics of the deep mantle. Here, we briefly discuss a few outstanding problems in the study of mantle anisotropy and exciting avenues for progress in the near future.

A longstanding puzzle in the study of upper mantle anisotropy has been the often-conflicting views of anisotropy provided by surface wave observations and shear wave splitting measurements. Surface and body waves sample on different length scales and depth dependence, and coverage is uneven in dissimilar ways. However, many studies have sought to reconcile surface wave models and splitting measurements by, for example, predicting shear wave splitting from surface wave models and comparing them to observations (Montagner et al., 2000). Often, these comparisons are not particularly successful for continental-scale models (e.g., Australia; Simons et al., 2002; Debayle et al., 2005) and while global models fit relatively well, the fit is notably poor in many regions (Wüstefeld et al., 2009). The natural way to address these discrepancies between surface and body wave azimuthal anisotropy is to take layered anisotropy into account (Silver and Savage, 1994; Saltzer et al., 2000) when computing equivalent shear wave splitting, and the incorporation of more accurate theory is likely to improve the fit.

From an observational point of view, a more detailed characterization of shear wave splitting allowing for 3D structure at depth will also be helpful. Recent theoretical advances for shear wave splitting tomography (e.g., Chevrot et al., 2004; Chevrot, 2006; Abt and Fischer, 2008; Long et al., 2008) have made it possible to invert splitting measurements for anisotropy at depth, although such inversions require data from dense arrays. Further developments, both theoretical and practical, are likely to make the tomographic inversion of splitting measurements more common and will also pave the way for the joint inversion of surface wave and splitting data for anisotropic models (e.g., Marone and Romanowicz, 2007). We view progress in the 3D imaging of anisotropic structure, including shear wave splitting tomography and ambient noise tomography of crustal and uppermost mantle anisotropy (e.g., Moschetti et al., 2010), as extremely important for advancing our understanding of complex dynamic processes at depth.

Further progress in 3D imaging of upper mantle anisotropy also will help to resolve outstanding problems related to the dynamics of subduction systems and other complex tectonic settings, the nature of the asthenosphere, and the evolution of continental interiors. A more thorough characterization of anisotropy in subduction systems can be
aided by the deployment of dense arrays in subduction zones, and by thoroughly investigating complex splitting patterns, including, for example, frequency-dependent splitting (e.g., Greve and Savage, 2009). On the modeling side, a better understanding of the relationship between rheological and compositional complexities to slab-related 3D flow is also important. While some models have demonstrated that trench rollback can induce trench-parallel mantle flow beneath the slab (e.g., Fig. 8), the full parameter space for these types of models remains to be explored in more regionally realistic, and dynamically evolving settings. While we have focused on subduction systems in this review, improved characterization of anisotropy in other complex tectonic settings such as mantle upwellings (e.g., Walker et al., 2005), mid-ocean ridges (e.g., Wolfe and Solomon, 1998), continental rifts (e.g., Kendall et al., 2004), and vicinity of faults (e.g., Savage et al., 2004) should also yield powerful insight into the dynamics of these systems.

The nature of the transition between the thermo-chemical lithosphere and the sub-oceanic and sub-continental asthenospheres is another current study area. In oceanic domains, further analysis of a range of seismological data and geodynamic models, in conjunction with other efforts such as electro-magnetic surveying and magnetotelluric studies, will shed light on the distribution of volatiles and melts, as well as the rheology of the asthenosphere. Dynamic questions to be further addressed include the role of small-scale convection and the interactions of plate- and plume- and keel-scale flow. The evolution and dynamics of continental interiors are other issues that are currently being addressed (e.g., Fouch and Rondenay, 2006). A more thorough characterization of anisotropy in the continental upper mantle will increase our understanding of, for example, the vertical coherence of lithospheric deformation, the depth extent of localization along faults, and the formation of cratons by processes such as slab stacking. As with other tectonic settings, a better understanding of the depth distribution of anisotropy is crucial in order to properly separate the signal from frozen lithospheric anisotropy, which records previous tectonic stages, and asthenospheric anisotropy due to contemporary mantle flow. Further improvements in the resolution of surface wave tomographic models that incorporate azimuthal anisotropy, facilitated by the availability of dense array data, is likely to yield additional insight into this depth distribution (e.g., Deschamps et al., 2008; Zhang et al., 2009; Lin et al., in review).

Lastly, anisotropy in the D′′ region is an exciting frontier. We have not yet reached the point of being able to reliably relate the geometry of anisotropy to mantle flow in D′′, as we have for the upper mantle. However, this should be a tractable problem, and we expect future insights into the dynamics of the deep mantle to result from studies of D′′ anisotropy. Progress on understanding the geometry of deep anisotropy will come, again, from array type studies and from combining different types of phases that sample the same region in different geometries, which is a promising but challenging prospect. If a relationship between strain and anisotropy at D′′ conditions can reliably be established in the laboratory and by theoretical simulation, then observations of D′′ anisotropy could be used to map mantle flow. Future comparisons of predictions from global flow models with observations of D′′ anisotropy will likely lead to insights about the rheology of the lowermost mantle, the extent of partial melting, the nature of chemical heterogeneity, and the effect of large-scale structures such as thermo-chemical piles (e.g., Garnero and McNamara, 2008) on lowermost mantle dynamics.

7. Summary

Seismic anisotropy is found throughout the solid Earth and observations of anisotropy in the mantle can provide constraints on a range of dynamical questions. Those include first-order pattern of mantle convection, nature of the lithosphere–asthenosphere transition, slab dynamics, continental evolution, lowermost mantle dynamics, and core–mantle interactions. Quantitative geodynamic studies of upper mantle circulation have been remarkably successful in explaining a range of large-scale azimuthal and radial anisotropy features. This implies that our understanding of the formation of mantle anisotropy in convective flow, and associated forward modeling approaches, may be correct to first order. Anisotropy can then be used to answer more intricate questions by testing deviations from geodynamic “reference” models, for example as to the role of trench rollback, the appropriate mantle rheology, the hydration state of the upper mantle, and the net rotations of the lithosphere.

There are large remaining uncertainties involving geodynamic forward modeling, mineral physics constraints, and seismological imaging, and the resulting non-uniqueness of interpretation becomes more apparent for regional applications. The ongoing debate about the extent of anisotropic variability underneath old continental crust is one example where further progress on the imaging side, along with better constraints from mineral physics, is still needed to arrive at a more complete understanding of continental evolution. We expect to see great progress over the next 10 years thanks to ongoing efforts in the community that include more sophisticated geodynamic forward modeling, array-type seismological deployments such as EarthScope USArray, 3D imaging theory improvements, and expanded laboratory studies on anisotropy formation.

Acknowledgements

We thank Ed Garnero for permission to reproduce Fig. 9, Shun Karato for permission to reproduce the olivine pole figures shown in Fig. 3, and Mark Behn, Clint Conrad, and Shun Karato for helpful comments on a draft of this manuscript. We are grateful for reviews from Karen Fischer and three anonymous reviewers that helped to improve the paper. MDL acknowledges support from NSF grant EAR-0911286 and from Yale University, and TWB acknowledges support from NSF grant EAR-0643365.

We dedicate this paper to the memory of the late Paul Silver, whose contributions to the study of seismic anisotropy were enormous and who was an inspiration to many. It was Paul’s question about “what mantle flow actually looks like beneath western North America” that sent TWB down the anisotropy rabbit hole, and MDL remembers Paul as a wonderful mentor and collaborator who was wildly enthusiastic about his science and tireless in his support of junior colleagues.

References

Maureen Long is an observational seismologist whose primary research interests lie in the domain of understanding the structure and dynamics of the Earth’s mantle through studies of seismic anisotropy, with a focus on subduction systems. She received her Ph.D. from MIT in 2006 and is currently Assistant Professor of Geology and Geophysics at Yale University.

Thorsten Becker is a geophysicist whose main research interests are in geodynamics and seismology with focus on the interactions between mantle convection, geologic surface activity, and Earth evolution. He earned his Ph.D. from Harvard in 2002 and is currently Associate Professor of Earth Sciences at the University of Southern California.