12.13 Introduction

Descriptive climate reconstructions of ancient Earth do more than evoke steamy images of geothermal pools and dense tropical forests—they serve to tune our perspectives on the climate system itself and what we can expect from our future. Paleo-climatologists are perpetually looking for ways to quantitatively constrain these images and consider how the edges of climate and life have moved from where we are today. How we quantify depends on our discipline, but some of our best methodologies derive from geochemistry and the influence that environmental conditions exert on the rate and equilibria of chemical reactions. Advocates of geochemical proxies strive to establish precise tools with clean edges that leave no ambiguity, and interpretations are often presented as such. But geochemical signals are rarely unidimensional and biological interactions are always close at hand. For the advancement of new geochemical proxies, it is often convenient to ignore biological interactions because the inevitable influence of organisms is vexing. For some, however, the messiness of life is something to embrace.

Organic geochemists have made it their business to reveal environmental signals buried in the distribution of organic compounds and their chemistries, and it is now apparent that some organic debris has much to say about the environmental conditions in which it formed or decayed, with surprising accuracy. Organic proxies used to determine ancient environmental conditions, such as sea-surface temperatures or carbon dioxide concentration, require a full accounting of associated uncertainties including the range of other physical and chemical parameters impacting the proxy, a detailed accounting of the organisms that produce the organic signal, as well as extensive tests of the proxy across the environmental and temporal bounds that constrain their habitat and evolution. These are large tasks and never fully accomplished, but periodic updates on our accumulated knowledge help determine where we need to go next. In that spirit, this chapter focuses on the stable carbon isotopic composition of alkenones designed to constrain ancient atmospheric carbon dioxide concentrations. These proxies, and others designed to detect similar signals, are becoming increasingly important as we strive to understand Earth’s climate sensitivity to CO2 forcing and how it has changed through time.

12.13.2 The Alkenone CO2 Proxy

12.13.2.1 Roots of the Methodology

Early efforts to explain the stable carbon isotopic character of marine plankton in terms of temperature (Sackett, 1986; Sackett et al., 1965) led to an appreciation of the roles that dissolved CO2 concentration (Calder and Parker, 1973; Degens et al., 1968a,b; Deuser et al., 1968; Pardue et al., 1976; Rau et al., 1982), growth rate (Pardue et al., 1976; Wong and Sackett, 1978), and metabolic pathways (Falkowski, 1991; Wong and Sackett, 1978) play in determining the magnitude of carbon isotopic fractionation during photosynthesis. Arthur et al. (1985) and Dean et al. (1986) were the first to apply these early findings, using δ13C values of kerogen to argue for distinctly higher CO2 concentrations during the Cretaceous – an interpretation consistent with the emerging realization of the time that greenhouse gas forcing likely drove the notable warmth of greenhouse climates (Barron and Washington, 1985; Berner, 1991; see Chapter 6.13). Their interpretation of higher CO2 was founded on isotopic analyses indicating that Cretaceous sediments dominated by well-preserved marine organic carbon were more 13C-depleted than modern or Cretaceous-age terrestrial organic carbon. Similar isotopic relationships were also noted for other warm periods such as the Devonian (Maynard, 1981). These observations of Cretaceous
organic carbon isotopes represented a reversal in relative iso-
topic relationships between terrestrial and marine organic carbon
observed today, where terrestrial carbon is typically more 13C-
depleted than marine carbon – a pattern arguably established by the
Miocene (Arthur et al., 1985; Dean et al., 1986). Continued
application of bulk organic carbon (Corg) δ13C values as a
proxy for surface water CO2 generated closer inspection of
the controls on plankton δ13C values, requiring complimentary
efforts by geologists, geochemists, and plant/algal
physiologists.

Measurements in natural settings that showed an inverse
relationship between 13C/12C composition of freshwater
plankton with the logarithmic concentration of surface
water aqueous CO2 ([CO2aq]) (McCabe, 1985), and an
inverse, but linear relationship between marine algae δ13C
and [CO2aq] in open marine environments (Rau et al.,
1991), set the stage for more quantitative inferences of
ancient CO2 based on sedimentary organic carbon (Rau
et al., 1991). Bulk sedimentary δ13C records were shown to
approximate interglacial/glacial CO2 variability (Rau et al.,
1991), demonstrating the validity of this approach. However,
bulk sedimentary organic matter is a compromised medium
given that it is a diagenetic composite of carbon (e.g., Emerson
et al., 1987) from multiple organisms – marine, bacterial, and
terrestrial. Arthur et al. (1985) and Dean et al. (1986) spent
considerable effort assessing the degree of diagenetic alteration
and the influence of terrestrial carbon before settling on their
interpretations specific to Cretaceous CO2, and all subsequent
bulk analyses required similar considerations (Rau et al.,
1991; Raymo et al., 1996). These realities and the difficulties of
diagenesis were present in the minds of organic geochemists, and a
more accurate partitioning of sedimentary organic carbon was
increasingly desired.

The new discipline of compound-specific isotope analyses
emerged contemporarily with bulk organic studies (e.g., Des
Marais et al., 1980; Freeman et al., 1990; Hayes et al., 1987;
Matthews and Hayes, 1978; Popp et al., 1989). Specific comp-
ounds exhibited a broad range of isotopic compositions due
to differences in provenance and compound classes (Freeman
et al., 1990), and further cautioned against CO2 estimates
based on bulk organic carbon. In contrast, compound-specific
records held the promise of a diagnostically free isotopic signal
from highly specific sources.

The first long-term, compound-specific isotope record
focused on carbon isotope signatures of geoporphyrins (dia-
genetic derivatives of chlorophyll) from the Cretaceous Western
Interior seaway (Hayes et al., 1989). This work, in conjunction
with a theoretical model of algal isotope fractionation, was
then used to interpret CO2 history (Hayes et al., 1989; Popp
et al., 1989).

12.13.2.2 Models of Algal Carbon Isotope Fractionation
Assuming Diffusive Carbon Transport

Total carbon isotope fractionation between the carbon sub-
strate (dissolved inorganic carbon, DIC) and organic carbon
associated with carbon fixation can be approximated by the
term ΔDIC-org where

\[\Delta_{\text{DIC-org}} = \delta^{13}\text{C}_{\text{DIC}} - \delta^{13}\text{C}_{\text{org}} \]

or explicitly defined as the variable \(\epsilon_p \) in relation to
aqueous carbon dioxide (Freeman and Hayes, 1992; Popp
et al., 1989):

\[\epsilon_p = \left(\frac{\delta^{13}\text{C}_{\text{CO2aq}} + 1000}{\delta^{13}\text{C}_{\text{org}} + 1000} \right) \times 1000 \]

\(\delta^{13}\text{C}_{\text{org}} \) can be directly measured in geologic archives, but
\(\delta^{13}\text{C}_{\text{CO2aq}} \) cannot and requires a proxy such as the \(\delta^{13}\text{C} \) value of
coeval carbonate minerals with an assumption of equilibrium
during the transformation of DIC or aqueous carbon dioxide
to solid carbonate.

The first low-resolution, long-term reconstruction of \(\epsilon_p \) from
gemorphyrins from various marine sediments (Popp et al.,
1989) yielded temporal patterns that confirmed earlier isotopic
observations (Arthur et al., 1985) and ultimately mirror
alkenone-based (Paganì et al., 2005) and bulk organic (Hayes
et al., 1999) studies performed a decade later (Figure 1).

Compound-specific \(\epsilon_p \) values are not directly comparable
with bulk sedimentary \(\epsilon_p \) values because lipids are 13C-depleted
relative to bulk photosynthate (DeNiro and Epstein, 1977; Park
and Epstein, 1961). However, once isotopic corrections are
applied to bulk data (see Hayes et al., 2001), broad trends and
absolute values are in general agreement (Figure 1) even though
bulk signals are subject to diagenetic processes (Hayes, 1993;
Hayes et al., 1999). The broad correspondence among the available
\(\epsilon_p \) records is remarkable (Figure 1) and likely reflects force-
at the global scale given that the data derive from a range of
glacial communities from different regions of the world.

Interpretations of algal \(\epsilon_p \) values are founded on a model that
describes the total carbon isotope fractionation that occurs during
C3 photosynthesis in higher plants (Farquhar et al., 1982, 1989).
This perspective describes fractionation in terms of the flow or
flux of carbon, including the movement of carbon into the cell
and back out to the environment (i.e., leakage), and the flow of
inorganic carbon that is ultimately fixed as organic carbon. Figu-
ratively, carbon fluxes can be described as:

\[\text{CO}_2 \overset{k_f}{\longrightarrow} \text{CO}_2 \overset{k_i}{\longrightarrow} \text{C}_{\text{org}} \]

where \(\text{CO}_2 \) represents the ambient CO2aq concentration
(often represented as C0), CO2(i) is the concentration of CO2aq
inside the cell (often represented as Ci), \(k_f \), \(k_i \) are the rate
constants for the flux of carbon into and out of the cell, and \(k_2 \)
is the rate constant for the flux of carbon fixed as organic carbon.
From this perspective, \(\epsilon_p \) can be expressed in terms of the frac-
tion of the intracellular carbon reservoir fixed as organic matter
or lost due to back diffusion (leakage), and the isotope fraction-
ations occurring during carbon transport and fixation (Farquhar
et al., 1982; Francois et al., 1993) can be expressed as

\[\epsilon_p = \epsilon_i + f(\epsilon_f - \epsilon_i) \]

where the terms \(\epsilon_f \) and \(\epsilon_i \) represent the carbon isotope fraction-
ations associated with carbon fixation and diffusive transport,
and \(f \) is the fraction of intracellular inorganic carbon that
diffuses back into the environment. The term \(f \) can be described
in terms of carbon fluxes:
Hayes et al. (1999) and bulk organic carbon (open symbols; Hayes et al., 1999). Hayes et al. corrected data applies an offset of 8% to calculate lipid ε_p values.

Figure 1 Compilation of long-term ε_p values from alkenones (colored symbols; Pagani et al., 1999, 2005, 2011), geoporphyrins (gray symbols; Popp et al., 1999) and bulk organic carbon (open symbols; Hayes et al., 1999). Hayes et al. corrected data applies an offset of 8% to calculate lipid ε_p values.

\[f = \frac{k_1C_i}{k_1C_i + K} \]

[4]

in which case, eqn [3] can also be described in terms of CO$_2$ concentrations:

\[\varepsilon_p = \varepsilon_i + (\varepsilon_f - \varepsilon_i) \frac{C_i}{C_k} \]

[5]

where k_1 is assumed to equal k_{-1}, and C_i and C_k are the intracellular and environmental concentrations of CO$_2$aq.

The goal, in the context of algal CO$_2$ proxies, is to determine C_k from ε_p. However, the path to interpretation requires a detailed consideration of C_i. Assuming that intracellular concentration of CO$_2$aq arrives by simple diffusion, C_i derives from a diffusion flux (J) of carbon:

\[J = -D \frac{\partial C}{\partial x} \]

[6]

where ∂C is the inorganic carbon gradient across the cell membrane (i.e., C_k-C_i), and D is the diffusion coefficient. The diffusion flux into a volume requires consideration of surface area, which for unicellular photosynthetic organisms is a function of cell geometry. C_i is also modulated by specific growth rate, which consequently ranks as a critical lever on the value of ε_p. In addition, other isotopic complications can arise if limiting levels of C_i trigger other physiological responses (e.g., active carbon transport) that enhance carbon availability in addition to the diffusion flux of CO$_2$aq. Indeed, active transport, or the capacity to actively increase the concentration of C_i (discussed below), is characteristic of the majority of algae studied and complicates assumptions of diffusive carbon flux. However, even if a predominant diffusion model is assumed, it is clear that the extracellular concentration of CO$_2$aq is not the sole determinant of C_i for unicellular organisms.

Efforts to model the impact of carbon demand have explored the physiological variables that influence C_i and the diffusion flux of carbon. Rau et al. (1992) defined carbon demand in terms of $(C_k - C_i)$ and considered the impact of carboxylation rate (i.e., growth rate) by redefining the term C_i/C_k by its algebraic equivalent:

\[\varepsilon_p = \varepsilon_i + (\varepsilon_f - \varepsilon_i) \left(1 - \frac{C_k - C_i}{C_k} \right) \]

[7]

Francois et al. (1993) further defined the rate of carboxylation (G) as:

\[G = k_1C_k - k_{-1}C_i \]

[8]

where k represents the resistance to diffusion across the cell membrane, which is assumed to be the same entering or leaving the cell (k_{-1} = k_1), and relates to the permeability of the cell membrane.

Laws et al. (1995, 1997) expanded on earlier work and expressed specific growth rate (μ) in terms of the flux of CO$_2$aq relative to the carbon content:

\[\mu = \frac{k_1C_k - k_{-1}C_i}{C} \]

[9]

where C is the carbon content of the cell. If, as assumed by Francois et al. (1993), k_1 and k_{-1} are equivalent for diffusion flux, then eqn [7] becomes:

\[\varepsilon_p = \varepsilon_i + (\varepsilon_f - \varepsilon_i) \left(1 - \frac{\mu C}{kC_k} \right) \]

[10]

Here, diffusion flux of CO$_2$aq is assumed proportional to the permeability of the cell membrane (P), which is arguably related to cellular surface area (S) (Laws et al., 1995, 1997), while the carbon content of the cell (C) is proportional to the cellular volume (V) (Verity et al., 1993; Popp et al., 1998a). Therefore, eqn [10] can be recast as:

\[\varepsilon_p = \varepsilon_i + (\varepsilon_f - \varepsilon_i) \left(1 - \frac{\mu C kS}{kC_k S} \right) \]

[11]

or

\[\varepsilon_p = \varepsilon_i + (\varepsilon_f - \varepsilon_i) \left(1 - \frac{\mu V}{C_k S} \right) \]

[12]
The impact of surface area on the carbon isotopic composition of algae was first explored by Riebesell et al. (1993) and then included in an integrated model by Rau et al. (1996) which further explored the role of cell volume and membrane permeability, among other variables. Ultimately, these models demonstrate the potential impact that non-CO2 variables play in the expression of \(\varepsilon_p \) and subsequent calculations of ancient carbon dioxide concentrations.

Equation [5] and subsequent transformations assume diffusive carbon transport to the site of carboxylation. But, as stated above, there is a substantial body of work that demonstrates that carbon transport can be physiologically mediated in order to concentrate intracellular CO2. We address this topic further on, but first consider the assumptions and history that promoted the basis of alkenone-CO2 proxy.

12.13.2.3 Development of the Alkenone-CO2 Proxy

Various theoretical models of carbon fixation provide a framework for interpreting \(\varepsilon_p \) values, but initially, \(\varepsilon_p \) was empirically correlated to solely ambient CO2 concentrations. Empirical relationships between \(\varepsilon_p \) and [CO2aq] (eqn [13]) were based on results from lacustrine settings (Holland and McKenzie, 1991; McCabe, 1985) and took the logarithmic form:

\[
\varepsilon_p = A \log(\text{CO2aq}) + B \tag{13}
\]

Assuming that eqn [13] is generally valid, variables A and B can be estimated for a particular marine setting (e.g., Freeman and Hayes, 1992; Jasper and Hayes, 1990) and interpretations of ancient CO2 levels can be made from both bulk- (Raymo et al., 1996) and biomarker-derived (Freeman and Hayes, 1992) \(\varepsilon_p \) records. Initial efforts to reconstruct ancient CO2 also included the application of \(\varepsilon_p \) values based on the isotopic composition of the alkenone biomarker (Jasper and Hayes, 1990).

The application of alkenones in CO2 reconstruction was recognized as a significant step forward given early recognition that alkenone production is limited to few algae, thus reducing diverse algal influences on the expression of \(\varepsilon_p \). Alkenones are unsaturated ethyl and methyl ketones with 37–39 carbon atoms (C37–C39) primarily synthesized in the ocean’s mixed layer by only some species of haptophyte algae (Conte et al., 1994). Today, alkenones are predominantly produced by *Emiliania huxleyi* (from the Late Pleistocene to the present; Thierstein et al., 1977) and *Gephyrocapsa oceanica* (from the Pliocene to the present; Hay, 1977) and are found in measurable abundances in Neogene to mid-Paleogene marine sediments (Pagani et al., 1999, 2005, 2011; Seki et al., 2010). Alkenones found in sediments that predate the origin of modern species can be estimated for a particular marine setting (e.g., Freeman and Hayes, 1992; Jasper and Hayes, 1990) and took the logarithmic form:

\[
\text{CO2}_{\text{aq}} = A \log(\varepsilon_p) + B \tag{14}
\]

A \(\Delta \delta \) value of 4.2‰ for diunsaturated alkane (C37:2) is commonly applied in paleo-CO2 reconstructions (Bijl et al., 2010; Pagani et al., 2005, 2009, 2011; Seki et al., 2010) following the work of Jasper and Hayes (1990), Jasper et al. (1994), Bidigare et al. (1997), and Popp et al. (1998b). Popp et al. (1998b) found no growth rate effects on \(\Delta \delta \); however, other values for \(\Delta \delta \) have been measured in cultures and range from 3.1‰ to 5.9‰ (Riebesell et al., 2000; Schouten et al., 1998; Van Dongen et al., 2002) and one mesocosm bloom experiment showed \(\Delta \delta \) (between C37:2 and particulate organic carbon) increasing from 7% to 12% during stationary growth (Benthien et al., 2007). Variability in the value of \(\Delta \delta \) of this magnitude can have considerable impact on CO2 calculations, particularly if \(\varepsilon_p \) is high (e.g., approaching values of maximum carbon isotope fractionation). Whether or not significant variability of \(\Delta \delta \) is expressed in natural systems or over geologic time is unknown.

The first application of C37:2 as a CO2 proxy attempted to assess confidence in the methodology by reconstructing Holocene and Pleistocene CO2 glacial/interglacial patterns (Jasper and Hayes, 1990). Alkenone-based \(\varepsilon_p \) records (C37:2) were reconstructed from \(\delta^{13}C_{37:2} \) and surface-dwelling foraminifera from sediments in the northern Gulf of Mexico. CO2 estimates were calculated using eqn [14] by determining the value of constants A and B through comparison of CO2 data from the Vostok ice core. This work was followed by a study of sediments from the central equatorial Pacific Ocean in order to determine patterns of air–sea CO2 disequilibrium during the Pleistocene and to promote a more simplified theoretical model of carbon isotope fractionation (Jasper et al., 1994). Model simplifications of eqn [5] and similar equations were necessary because carbon demand, \(C_0 \), and other physiological factors (eqns [11] and [12]) are unconstrained. Accordingly, Jasper et al. (1994) defined a simplified expression:

\[
\varepsilon_p = \varepsilon_p - \frac{b}{C_0} \tag{15}
\]

The term ‘b’ equivalent to \((C_0 - C_i)(\varepsilon_f - \varepsilon_i) \), integrates all physiological variables affecting the total carbon isotope fractionation during photosynthesis (Bidigare et al., 1997; Jasper et al., 1994). A functional form of eqn [15] was developed by estimating values of \(\varepsilon_f \) and the physiological-dependent term ‘b’ by comparison with published sedimentary alkenone-based
\[e_p \] values (Jasper and Hayes, 1990), water column POC-based \[e_p \] values, and \(\text{CO}_2 \) data (Rau et al., 1992), and then applied assuming invariable membrane permeability and growth rate. Results from \(\text{CO}_2 \) records developed by this approach implicated significant variations in equatorial air–sea disequilibrium over glacial/interglacial cycles, but perhaps more important was the convincing success of this more simplified theoretical model. To date, eqn [15] remains the algebraic form for estimating \(\text{CO}_2 \) from alkenone-based \(e_p \) values.

12.13.2.4 The Calibration of ‘b’ and Estimates of \(e_p \)

Marked advances in paleo-\(\text{CO}_2 \) reconstructions developed from more detailed inspections of the controls on \(\delta^{13} \text{C}_{37:2} \) and \(e_p_{37:2} \) with the specific intent to understand the factors driving carbon isotope fractionation in alkenone-producing algae (Bidigare et al., 1997). Chemostat incubations of \(E. \text{huxleyi} \) – the dominant alkenone-producing haptophyte algae in the modern ocean – performed under constant irradiance, assessed the impact of growth rate (threelfold variation controlled by steady-state nitrate concentrations) and \([\text{CO}_2]_{aq} \) (28-fold range) on \(e_p \) values (Bidigare et al., 1997). This work and other chemostat experiments provided support for the theoretical relationships expressed by eqn [10] for \(E. \text{huxleyi} \), and diatoms \(\text{Phaeodactylum tricornutum} \) (Laws et al., 1997) and \(\text{Porosira glacialis} \) (Popp et al., 1998a), and showed that under specific conditions, \(e_p \) can vary linearly with \(\mu/\text{CO}_2_{aq} \) (eqn [10]). Results also highlight stark differences in the slope of \(e_p \) versus \(\mu/\text{CO}_2_{aq} \) among different algae forced by differences in the proportion of cell volume to surface area (eqn [12]) (Popp et al., 1998a). However, for the eukaryotes studied, \(e_f \) (the maximum fractionation largely attributable to the enzyme Rubisco and other carboxylases) converges on a value of 25\(^\circ\)o.

Isotopic responses measured in natural haptophyte populations (Bidigare et al., 1997, 1999) also helped support the simplified model of isotopic fractionation (eqn [15]) by demonstrating linear relationships between the physiological-dependent term ‘b’ and the concentration of reactive soluble phosphate ([\(\text{PO}_4^{3-} \)]; Figure 2). The role of [\(\text{PO}_4^{3-} \)], or perhaps some other covarying biolimiting trace nutrient (Bidigare et al., 1997), implicates growth rate as a key variable influencing \(e_p_{37:2} \) for natural haptophyte populations, consistent with experimental results.

The results of Bidigare et al. (1997) and other efforts (e.g., Eek et al., 1999; Laws et al., 2001; Popp et al., 1999) allow a calibration of the variable ‘b’ in terms of [\(\text{PO}_4^{3-} \)] (Table 1). The geometric mean regression of ‘b’ versus [\(\text{PO}_4^{3-} \)], where \(b=(e_f - e_p)C_{\text{O}_2} \), requires an assumption regarding the value of \(e_p \), which varies depending on the number and form of enzymes involved. The application of other \(e_p \) values impacts the calculated value of ‘b’ and both the slope and intercept of the \(b/[\text{PO}_4^{3-}] \) regression (Table 1). Understanding isotope fractionations associated with individual enzymes is key to determining a value for \(e_f \).

Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase), the principal carbon-fixing enzyme, has four phylogenetic forms distributed among Eukarya, Archaea, and Bacteria with Forms I and II directly associated with the Calvin–Benson–Bassham reductive pentose phosphate pathway during autotrophic carbon fixation (Badger and Bek, 2008). Form I, the most abundant variant, is found in Eukarya and Bacteria (Tabita et al., 2008). Form I Rubisco is subdivided into four subforms (IA, B, C, and D), with subform ID associated with ‘nongreen’ algae including coccolithophores, diatoms, rhodophytes, and select dinoflagellates (Boller et al., 2011 and references therein). Multiple forms of Rubisco likely evolved in response to environmental stresses related to changes in atmospheric \([\text{CO}_2] \) and \([\text{O}_2] \) throughout Earth history (Badger and Bek, 2008; Young et al., 2012), and subsequently express a broad range of isotopic discrimination related to the form’s

Table 1 \(e_p \) and the geometric mean regression of ‘b’ versus [\(\text{PO}_4^{3-} \)]

<table>
<thead>
<tr>
<th>(e_p) value (%)</th>
<th>Geometric mean regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>(b=(118.52[\text{PO}_4^{3-}]) + 84.07)</td>
</tr>
<tr>
<td>27</td>
<td>(b=(129.00[\text{PO}_4^{3-}]) + 105.58)</td>
</tr>
<tr>
<td>28</td>
<td>(b=(135.66[\text{PO}_4^{3-}]) + 115.45)</td>
</tr>
</tbody>
</table>

Figure 2 Compilation of ‘b’ versus soluble phosphate for natural haptophyte populations calculated using \(e_f = 25\%)o. Solid line represents the geometric mean regression. If different values of \(e_f \) are assumed, the term ‘b’ is recalculated and the equation for the ‘b’ versus [\(\text{PO}_4^{3-} \)] regression is altered (see Table 1). Data from Bidigare et al. (1997), Popp et al. (1999), Eek et al. (1999), and Laws et al. (2001).
CO₂/O₂ specificity (Boller et al., 2011; Tcherkez et al., 2006). For example, Form IB Rubisco associated with terrestrial plants has a fractionation factor (ε) equivalent to 1.029 (ε = ~29%) (Farquhar et al., 1989; Raven and Johnston, 1991; Riebesel and O’Leary, 1984), but in total, Forms IA and IB express an ε range from 22% to 29% (Riebesel and O’Leary, 1984; Scott et al., 2004, 2007), and Form II shows a 18–22% range (Guy et al., 1993; McNeve et al., 2006; Robinson et al., 2003; Riebesel and O’Leary, 1984). In contrast, recent analysis of Form ID – the Rubisco associated with E. huxleyi and other algae – found a maximum fractionation of ~11% (Boller et al., 2011). This surprisingly small 13C discrimination conflicts with long-standing perspectives and data that argue for much higher enzymatic fractionations during algal growth. For example, Goericke et al. (1994) calculated a 1.5–2.5% contribution of 13C-depleted signatures involved in the production of 12C-enriched polysaccharides involved in the production of coccoliths, which is favored under nitrogen limitation (see Benthien et al., 2007) and potentially high irradiance. Still, this mechanism is estimated to raise δ13C values by only ~4% (Boller et al., 2011) and cannot account for higher observed εp values in the ancient record (Figure 1) or naked haptophyte strains (Bidigare et al., 1997). Clearly, additional experimentation is necessary to determine if the controversial result of Boller et al. (2011) is valid.

12.13.3 CO₂ Reconstructions, Uncertainties, and Complications

If the results of Boller et al. (2011) prove to be robust and characteristic of natural haptophyte populations, then it implies that cellular carbon budgets and CO₂ concentration cannot necessarily explain the magnitude and variability of εp expressed in the geologic record (Figure 1). This challenges the application of alkenone-derived CO₂ reconstructions unless the process of 13C-enrichment is somehow linked to CO₂ concentration. However, there remains a long history of algal culture experiments that support CO₂ variability as a principal lever on the expression of εp (e.g., Degens et al., 1968a,b; Hinga et al., 1994; Pardue et al., 1976; Popp et al., 1998a; Riebesel et al., 2000). Chemostat experiments (Bidigare et al., 1997; Laws et al., 1997; Popp et al., 1998a) show clear linear relationships between εp and μ/C0₂aq modulated by cell geometry (Popp et al., 1998a), consistent with theory, and converge on an εp value of ~25% as growth rate approaches zero. On the basis of these results and previous experimental data and considerations (Goericke et al., 1994), alkenone-based paleo-CO₂ reconstructions have assumed εp values in the range of 25–28% (Pagani et al., 1999, 2011; Seki et al., 2010; Figure 3).

Alkenone-CO₂ reconstructions based on eqn [15] assume that (1) the diffusive model of carbon isotope fractionation is appropriate for alkenone-producing algae across time and place, (2) the global ‘b’ versus [PO₄³⁻] relationship (Figure 2) represents a mean approximation of regional conditions over time, and (3) the range of values for εp (i.e., 25–28%) that define the calibration of ‘b’ are reasonably constrained. Conversion of εp values to [CO₂aq] and pCO₂ requires estimates of surface water phosphate concentrations and temperature. In general, ancient [PO₄³⁻] are assumed to be the same as the modern range within the photic zone for a particular ocean locality (Pagani et al., 1999; Seki et al., 2010). These estimates can be further refined by considering differences in paleogeographic conditions, biogeochemical ocean modeling (Pagani et al., 2011), Sr/Ca variations (Stoll and Schrag, 2000), and, in one case, dinocyst assemblages (Bijl et al., 2010). Temperature estimates, necessary to calculate δ³¹CO₂aq from δ³¹CaCO₃ and pCO₂ from [CO₂aq] (e.g., Pagani et al., 1999), rely on other proxies such as carbonate δ¹⁸O values, TEXₘ₆ or U₁³⁷, and come with potentially significant uncertainties. If εp values are low, uncertainties in SST result in relatively small uncertainties in pCO₂ reconstructions, but as εp values approach the assumed value for δp uncertainties in sea-surface temperature and [PO₄³⁻] become increasingly relevant (Figure 4).

Consideration of the sum of uncertainties associated with the methodology suggests a range of CO₂ uncertainty between 20% and 30% for εp values below 20% when CO₂ levels are relatively low and phosphate concentrations are reasonably constrained (Freeman and Pagani, 2005). Uncertainty significantly increases as the value of εp approaches the assumed value of δp, reflecting the decrease in sensitivity at high εp values (Figures 3 and 4).

Efforts to assess the accuracy of the alkenone-CO₂ proxy by reconstructing Pleistocene to Holocene CO₂ have returned positive, but mixed results. Pleistocene εp values from the
equatorial Pacific Ocean (Jasper et al., 1994, discussed above) were later reconsidered by Stoll and Schrag (2000), who corrected for growth rate changes through Sr/Ca analysis of planktonic foraminifera. Reconstructed CO2 was shown to track ice core data, but explained only 30–35% of the variance reflected in the Vostok record for the past 250 000 years (Laws et al., 2002; Stoll and Schrag, 2000). In contrast, Pagani et al. (2002) evaluated the capacity of alkenone data to mimic preindustrial water column \([\text{CO}_2]_{\text{aq}} \) patterns using surface sediments across a central North Pacific Ocean meridional transect and found that the proxy was generally accurate. Depth of alkenone production, determined from temperature-depth profiles and U\(^{14}\)C temperatures, was used to identify phosphate concentrations as well as \(\delta^{13}\text{C} \) of \(\text{CO}_2 \). Alkenone-reconstructed \([\text{CO}_2]_{\text{aq}} \) was lower than modern values, but within 20% of modeled preindustrial water column values (Figure 5).

If the diffusive model of carbon fractionation is assumed valid, offsets between observed and reconstructed records could reflect the importance of other environmental factors that impact \(\varepsilon_p \), including growth rate, irradiance, and cell size. These other factors can potentially dominate \(\varepsilon_p \) variability, especially if \([\text{CO}_2]_{\text{aq}} \) is low with relatively small variability.

Figure 4 Relationships between \(\varepsilon_p \), temperature, and phosphate. Figures assume \(\varepsilon_f = 25\%\). (a) Relationship between \(\varepsilon_p \) and \(p\text{CO}_2 \) for a range of phosphate (0.4–1.4 \(\mu \text{mol kg}^{-1} \)). (b) Relationship between \(\varepsilon_p \) and \(p\text{CO}_2 \) for a range of temperature (10–30 °C).

Figure 5 Cross-plot of modeled preindustrial \([\text{CO}_2]_{\text{aq}} \) versus alkenone-based \([\text{CO}_2]_{\text{aq}} \) using an \(\varepsilon_f = 25\%\), respectively. (a) Autumn production assumed. (b) Spring production assumed. Dashed line represents a 1:1 correlation. Modified from Pagani M, Freeman KH, Ohkouchi K, and Caldeira K (2002) Comparison of water column \([\text{CO}_2]_{\text{aq}} \) with sedimentary alkenone-based estimates: A test of the alkenone-CO\(_2\) proxy. *Paleoceanography* 17: 1069. http://dx.doi.org/10.1029/2002PA000756.
Alternatively, offsets between observed and calculated CO$_2$ could also imply that a model of diffusive carbon uptake is not entirely correct (discussed below).

12.13.3.1 The Influence of Growth Rate and Irradiance

12.13.3.1.1 Dilute cultures and mesocosm experiments

While results of chemostat cultures support a diffusion model for some algae under certain conditions, other experiments and field data have been less supportive. Dilute batch cultures return significantly different results. Burkhardt et al. (1999a) cultured marine diatoms A. glacialis, T. punctigera, C. suecica, P. tricornutum, and the dinoflagellate S. trochoidea under variable irradiance and nutrient-replete conditions with the intent to separate the individual influences of CO$_2$ and growth rate. Results demonstrated that [CO$_2$]$_{aq}$ was still a leading variable influencing ε_p values. However, growth rate and cell size had an equivalent or greater impact on isotopic fractionation relative to CO$_2$ concentration. Irradiance cycle and daylight length, presumably impacting growth rate, was also shown to be as important as [CO$_2$]$_{aq}$ (Burkhardt et al., 1999b). Similar to chemostat incubations, dilute cultures of E. huxleyi show that ε_p is inversely impacted by CO$_2$ and CO$_2$/CO$_2$ (Riebesell et al., 2000), but the ε_p versus CO$_2$/CO$_2$ relationship was nonlinear with substantially lower ε_p values and ε_f estimates (estimated as μ/CO$_2$ approaches zero) compared to results from nutrient-limited, chemostat incubations (Figure 6). In addition, light intensity and light cycle, independent of growth rate, was shown to have a more significant impact on ε_p values for E. huxleyi than either CO$_2$ variability or growth rate, with CO$_2$ showing negligible influence even though [CO$_2$] varied from 5 to 34 μmol l$^{-1}$ (Rost et al., 2002). Interestingly, ε_p increased with increasing μ and μ/CO$_2$, in opposition to the diffusion theory of fractionation (Figure 7). A similar positive correlation between ε_p and μ/CO$_2$ was reported for dilute batch cultures of G. oceanica (also an alkenone-producing cocolithophore; Figure 8), while results for Coccolithus pelagicus ssp. braarudii were more consistent with predictions of eqn [10] (Rickaby et al., 2010).

Mesocosm bloom experiments dominated by populations of E. huxleyi were conducted under a range of CO$_2$ conditions from 180 to 710 ppmv (Benthien et al., 2007) and $\varepsilon_{37:2}$ systematically decreased during the exponential growth phase following patterns of nutrient utilization and presumably increased growth rate. In this work, $\varepsilon_{37:2}$ values were offset (albeit by only 2‰ by the end of the exponential growth phase) between CO$_2$ experiments, but both CO$_2$ and nutrient concentrations decreased during blooms resulting in only an ~200 ppm difference between end member experiments by the end of the exponential growth period. Higher $\varepsilon_{37:2}$ values were associated with higher CO$_2$ content, confirming expectations of the influence of CO$_2$. However, a much larger $\varepsilon_{37:2}$ response was associated with nutrient utilization compared to CO$_2$ (Benthien et al., 2007).

Dilute cultures and mesocosm experiments highlight the importance of growth and physiological effects on the magnitude of ε_p and cast further suspicion on the theoretical basis of the $\varepsilon_{37:2}$-based CO$_2$ reconstructions. However, results of chemostat incubations are supportive (i.e., Popp et al., 1998a) and

![Figure 6](image_url) Comparison of ε_p versus μ/[CO$_2$] from chemostat and dilute batch cultures of E. huxleyi. Chemostat incubation: circles (Bidigare et al., 1997), conducted under nitrate-limited, continuous light conditions. Dilute batch cultures: squares (Riebesell et al., 2000), performed under nitrate-saturated, 16:8 h light:dark regime.

![Figure 7](image_url) Irradiance experiments on E. huxleyi. Modified from Rost et al. (2002).
the sum of experiments indicates that different conditions of growth can trigger different physiological responses to growth rate, nutrient supply, light, and CO2. There is no consensus on which experimental design – if any – best mimics natural conditions.

12.13.3.1.2 Ocean and surface sediment data
The accumulation of sea-surface analyses (Bidigare et al., 1997; Laws et al., 2001) provides evidence for an important role for [PO4\(^{3-}\)] on the isotopic composition of haptophytes, and supports a primary influence for algal growth rate on the expression of \(\varepsilon_{p37:2} \). However, field studies indicate that \(\varepsilon_{p37:2} \) is not strongly correlated with 1/[CO2\(_{aq}\)] (Figure 9(a)) as anticipated by diffusion models (Bidigare et al., 1997; Laws et al., 2001). The available data show a weak correlation of \(\varepsilon_{p37:2} \) versus [PO4\(^{3-}\)]/[CO2\(_{aq}\)] (Figure 9(c)), suggesting either that the dependency of \(\varepsilon_{p} \) on [PO4\(^{3-}\)] is actually driven by an association of [CO2\(_{aq}\)] with [PO4\(^{3-}\)] in surface waters (Figure 9(d)), making [CO2\(_{aq}\)] the primary determinant, or that the ratio \(\mu/[CO2_{aq}] \) is the ultimate variable as predicted by diffusion models. If the latter is valid, other variables that impact growth rate are likely at play given the rather poor fit between \(\varepsilon_{p37:2} \) and [PO4\(^{3-}\)]/[CO2\(_{aq}\)]. For example, Eek et al. (1999) noted that \(\varepsilon_{p} \) is significantly correlated to [PO4\(^{3-}\)]/[CO2\(_{aq}\)] when the concentration of the total concentration of nitrate and nitrite ([N]) is greater than zero, and further implied that metabolic adjustments as nitrogen-bearing, biolimiting nutrients become severely limiting.

Results from surface sediment analyses support the importance of nutrients in determining the value of \(\varepsilon_{p37:2} \) (Figure 10). \(\varepsilon_{p37:2} \) values reconstructed from surface sediments from the equatorial and South Atlantic Ocean (Benthien et al., 2002) and central Pacific (Pagani et al., 2002) are negatively correlated with surface water [PO4\(^{3-}\)], but positively correlated with 1/[CO2\(_{aq}\)] (Schulte et al., 2004). Again, the \(\varepsilon_{p37:2} \) versus 1/[CO2\(_{aq}\)] relationship is contrary to expectations assuming a diffusive-uptake model. On this basis, Schulte et al., 2004 argue that \(\varepsilon_{p37:2} \) values are a better proxy for [PO4\(^{3-}\)] rather than for carbon dioxide. Clearly, growth rate effects dominate the modern sedimentary and water column signal, but a compilation of long-term \(\varepsilon_{p37:2} \) records argues against growth rate or the evolution surface water [PO4\(^{3-}\)] as the primary variable driving changes in magnitude of \(\varepsilon_{p37:2} \).

12.13.3.1.3 The case against growth rate as the dominant influence on \(\varepsilon_{p37:2} \)
Ancient \(\varepsilon_{p37:2} \) values exhibit a much broader range than those measured in the modern ocean (Figure 11). Existing records for the modern ocean indicate that \(\varepsilon_{p37:2} \) values range from 6.5‰ (i.e., eutrophic environments) to 17.8‰ (i.e., oligotrophic environments). [PO4\(^{3-}\)] and [CO2\(_{aq}\)] span from 0 to 2.4 µmol kg\(^{-1}\), and 9.6 to 28.7 µmol, respectively. Thus, ancient \(\varepsilon_{p37:2} \) values that fall within the modern \(\varepsilon_{p37:2} \) range likely reflect similar environmental conditions found in the modern ocean, assuming that the upper and lower bounds of modern \(\varepsilon_{p37:2} \) values are an expression of physiological effects constrained by the modern range of [CO2\(_{aq}\)]. However, paleo-\(\varepsilon_{p37:2} \) values lower or higher than the modern range cannot be reasonably explained by growth effects and more likely reflect the influence of carbon dioxide concentrations that deviate from modern conditions. - Pagani et al. (1999) restricted alkenone analysis for the Miocene (~5–23 Ma) to oligotrophic settings in an effort to minimize variability in growth and further restrict the lower bounds of the \(\varepsilon_{p37:2} \) range (Figure 11). \(\varepsilon_{p37:2} \) values for the Miocene fall within and below the modern oligotrophic range of 10.8–17.8 (where [PO4\(^{3-}\)] ≤ 0.2 µmol kg\(^{-1}\)) and suggest that CO2 conditions were similar to, or lower than, today (assuming no other
confounding effects). In contrast, \(\varepsilon_{\text{p}37:2} \) values older than \(\sim 33 \) Ma derive from both oligotrophic and eutrophic settings. Values higher than the modern range imply even lower growth rates in ancient eutrophic environments relative to those that characterize modern oligotrophic settings, which is unlikely. Viewed from this perspective, whole-ocean changes in nutrients or algal growth rates cannot explain long-term \(\varepsilon_{\text{p}37:2} \) trends, and support an interpretation of higher-than-modern CO\(_2\) concentrations prior to \(\sim 25 \) Ma, and similar-to-lower CO\(_2\) conditions for the past 25 My, consistent with interpretations from the earliest publications related to the methodology (Arthur et al., 1985).

Figure 9 Surface water data associated with \(\varepsilon_{\text{p}37:2} \) values. (a) \(\varepsilon_{\text{p}} \) versus \(1/[\text{CO}_2(\text{aq})] \). (b) \(\varepsilon_{\text{p}} \) versus \(1/[\text{PO}_4^{3-}] \). (c) \(\varepsilon_{\text{p}} \) versus \([\text{PO}_4^{3-}]/[\text{CO}_2(\text{aq})] \). (d) \([\text{CO}_2(\text{aq})] \) versus \([\text{PO}_4^{3-}] \).

12.13.3.2 Consideration of Cell Geometry Changes on Long-Term \(\varepsilon_{\text{p}37:2} \) Records

Given the strong dependency of cell geometry on \(\varepsilon_{\text{p}} \) on both theoretical grounds (eqn [12]) and in culture experiments (Popp et al., 1998a), the possibility that long-term CO\(_2\) interpretations are confounded by the evolution of haptophyte cell size was explored in several publications (Henderiks and Pagani, 2007, 2008; Pagani et al., 2011). Larger cells have a higher volume-to-surface area ratio and should drive \(\varepsilon_{\text{p}} \) values lower (Popp et al., 1998a; eqns [11] and [12]). For example, the long-term decrease in the magnitude of \(\varepsilon_{\text{p}37:2} \)
Figures 1 and 11) could be explained, in part, by temporally increasing cell diameters of alkenone-producing algae and thus, the ratio of cell volume to surface area. One approach to determining cell size changes utilizes coccolith dimensions in relationship to cell diameter (Henderiks and Pagani, 2007). For alkenone-producing coccolithophores belonging to the Noelaerhabdaceae family, maximum diameter of coccoliths was shown to be a robust proxy of cell size in both modern and ancient species (Henderiks and Pagani, 2007, 2008). Temporal trends for cell sizes using species-specific coccoliths were determined for key sites associated with $f_{p37:2}$ reconstructions spanning the Middle Eocene to Early Miocene (Henderiks and Pagani, 2007, 2008) and for six sites across the Eocene–Oligocene climate transition (i.e., the climate shift from an ice-free to a fully glaciated Antarctic continent). These efforts demonstrated that changes in cell size cannot explain the observed long-term trends in Paleogene $f_{p37:2}$. Reticulofenestrids were shown to display high diversity and the largest mean cell sizes during the Late Eocene with extinctions of very large forms and a long-term decrease in maximum cell size beginning in the latest Eocene/Oligocene (Henderiks and Pagani, 2008; Pagani et al., 2011) – precisely opposite of what would be expected if cell geometry was a primary influence on $f_{p37:2}$. In fact, if cell geometry played any role in determining the character of $f_{p37:2}$ values, it did so by minimizing the magnitude of change reflected in $f_{p37:2}$ trends (Figure 11).

Henderiks and Pagani (2008) suggested that the evolution of smaller algal cells reflected a response to declining CO2 levels and carbon limitation because smaller diameters increase cellular surface area relative to cell volume. This would be particularly advantageous for algae that largely depend on a diffusive supply of CO2. A similar interpretation was invoked for regional differences in cell sizes for the Eocene–Oligocene climate transition between Antarctic/Subantarctic sites (characterized by
dehydration both within the cell and the confines of the boundary layer, cell size (i.e., surface area vs. the carbon content), and the permeability of the cell membrane (Wolf-Gladrow and Riebesell, 1997). Thus, for diffusion transport, the concentration of CO$_{2aq}$ at the site of carboxylation is assuredly lower than the ambient concentration outside the cell. This is potentially a problem for sustaining reasonable algal growth rates because the efficiency of carbon fixation by Rubisco is species dependent, but often low. Carbon fixation efficiency is related to the specificity factor of Rubisco – a measure of the selectivity for CO$_2$ versus O$_2$, defined as

\[\tau = \frac{V_{CO_2}}{V_{O_2}} \]

where V is the maximum reaction rates and $K_{1/2}$ is the half-saturation constant (concentration of the substrate where V is half its maximum value). Higher specificity (τ) equates to greater selectivity (affinity) for CO$_2$ and carbon fixation over photorespiration (Tortell, 2000). Algal Rubisco is known to have a relatively high $K_{1/2}$, ranging from ~6 to 60 μM (more specifically, heterokont and haptophyte algae: 31–59 μM; green algae: 12–38 μM; hophodophyte algae: 6–22 μM; Badger et al., 1998; Badger and Bek, 2008), which implies that, for many algal species, Rubisco is below half saturation at modern seawater CO$_{2aq}$ concentrations of 10–30 μM (Giordano et al., 2005). Flux models suggest that unless algae are able to actively transport inorganic carbon, CO$_2$ limitation would be widespread in the modern ocean. This would be particularly true for larger cells with low affinities for CO$_2$ (Riebesell et al., 1993; Reinifelder, 2011).

It is now known that most algae have strategies to actively increase intracellular CO$_2$ concentrations (Coleman et al., 2002), mediated by carbon concentrating mechanisms (CCMs). Intracellular carbon concentrations 80 times ambient levels can be associated with CCMs (Badger et al., 1998), resulting from the release of a carbonic anhydrase that drives the dehydration of HCO$_3^-$ to CO$_{2aq}$ direct uptake of HCO$_3^-$ or CO$_{2aq}$ or some combination of each (Coleman et al., 2002). Uptregulation of a CCM will have isotopic consequences that impact the expression of δ^13C. Aside from altering the magnitude of intracellular CO$_2$ through enhancement of external CO$_{2aq}$ or active transport, the transport of HCO$_3^-$ alters the isotopic composition of the intracellular carbon pool given that the δ^{13}C value of bicarbonate is ~10% more positive relative to CO$_{2aq}$ (at 25 °C). Growth rate also becomes independent of ambient CO$_2$ concentrations because the organism is in physical control of CO$_2$ supply. Isotopic evidence for active uptake was first observed in chemostat experiments of the diatom P. tricornutum (Laws et al., 1997). In this experiment, δ^13C was shown to be nonlinear with respect to μ/CO$_2$ (Figure 13), and argued to reflect the influence of actively transported carbon as [CO$_{2aq}$] became limited by diffusion flux (Cassar et al., 2002; Laws et al., 1997).

Haptophyte species have also been studied for the influence of nondiffusive CO$_2$ flux. Active uptake of carbon has been implicated from cultures that show irradiance effects (Rost et al., 2002), nonlinear behavior between δ^13C and μ/CO$_2$ (Riebesell et al., 2000; Figure 6), and cultures (Rickaby et al., 2010; Figure 8) and field data (Benthien et al., 2002) that...
show a positive correspondence between e_p and 1/CO$_2$ contrary to diffusion theory. Higher-than-ambient intracellular CO$_2$ concentrations have been measured in *E. huxleyi* and *I. galbana* (Burns and Beardall, 1987; Sekino and Shiraiwa, 1994) and bicarbonate appears to be a major source of carbon for photosynthesis (Buitenhuis et al., 1999; Nimer and Merrett, 1992; Nimer and Merrett, 1993; Paasche, 1964; Sekino and Shiraiwa, 1994). Some haptophytes seem to have an inefficient inorganic carbon pump and only little carbonic anhydrase activity (Sekino and Shiraiwa, 1994; Sekino et al., 1996), although Herfort et al. (2002) provide evidence that bicarbonate anion exchange proteins are present and active in *E. huxleyi*. Other studies find inducible external carbonic anhydrase activity and subsequent CO$_2$ diffusion in *P. globosa* and *E. huxleyi* (Elzenga et al., 2000; Herfort et al., 2002). Calcification is also argued to help increase intracellular [CO$_2$]$_{aq}$ through proton production and dehydration of intracellular bicarbonate (Nimer and Merrett, 1993; Sekino and Shiraiwa, 1994).

Use of HCO$_3^-$ through conversion by external carbonic anhydrase or H$^+$ production during calcification is not expected to contribute isotope flux to the cell and should not alter the flux of CO$_2$aq (Laws et al., 2002) and no isotopic differences were found between calcifying and noncalcifying stains of *E. huxleyi* in chemostat incubations (Bidigare et al., 1997).

12.13.4.1 Models for Active Carbon Uptake

CO$_2$aq and the Calvin cycle is the dominant carbon fixation pathway for *E. huxleyi*, although β-carboxylases and reactions are also in operation to some extent (Tsuji et al., 2009) with clear differences in the mode of carbon supply and affinity to CO$_2$ among haptophytes (Badger et al., 1998). How these differences evolved through time and whether or not CCMs were an important aspect of ancient alkenone producers remains speculative. Whereas some organisms, such as diatoms, show highly efficient and active CCMs (Badger et al., 1998; Raven and Johnston, 1991), CCMs in *E. huxleyi* and other coccolithophores appear weakly expressed (Bidigare et al., 1997; Rickaby et al., 2010). *E. huxleyi* originated during the Pleistocene under some of the lowest CO$_2$ levels of the past 50 My. *G. oceanica*, with a distinctly different physiological behavior (Rickaby et al., 2010; Figure 8), originated 2 Ma under similarly low CO$_2$ conditions. Physiological parameters of more ancient alkenone producers are simply unknown. It is possible that ancient haptophytes had inefficient or a lack of CCMs under the much higher CO$_2$ levels of the past (Henderiks and Pagani, 2008). However, if active carbon transport was an important and widespread physiological characteristic, then upregulation of CCMs could have been responsible for the decrease in e_p values near the Oligocene–Eocene boundary in response to low CO$_2$ thresholds, or to simply a decline in atmospheric CO$_2$ (Figures 1 and 11). If that was the case, quantitative reconstructions of pCO$_2$ would be compromised.

Active carbon transport models need to account for both diffusion flux and active CO$_2$aq or HCO$_3^-$ uptake and several models have been developed to describe resulting isotope effects (Burkhardt et al., 1999a; Francois et al., 1993; Keller and Morel, 1999; Laws et al., 1997; Sharkey and Berry, 1985).

Sharkey and Berry (1985) described isotope fractionation in terms of HCO$_3^-$ uptake and carbon leakage (the ratio of the diffusive carbon flux out of the cell to the flux into the cell):

$$e_p = e_{b...} + e_f \frac{F_{out}}{F_{in}}$$

where $e_{b...}$ is the temperature-dependent equilibrium isotope fractionation between CO$_2$aq and HCO$_3^-$. Because Sharkey and Berry (1985) assumed only bicarbonate uptake, Burkhardt et al.
(1999a) expanded the model to include multiple carbon sources (i.e., CO₂ diffusion flux and active HCO₃⁻ influx):

$$\varepsilon_p = \alpha_{\text{HCO}_3^-} + \varepsilon_f \frac{F_{\text{out}}}{F_{\text{in}} + F_{\text{HCO}_3^-}}$$ \[18\]

where α is the fractional component of HCO₃⁻ relative to the total carbon uptake. Here, ε_p decreases with increasing contributions of actively transported HCO₃⁻ and/or as the rate of intracellular carbon leakage decreases. Eqn [18] can also be cast in terms of carbon-specific growth rate (μ_k) or the carboxylation rate (F_3) considering $F_3 = (F_{\text{in}} + F_{\text{HCO}_3^-}) - F_{\text{out}}$. Substitution leads to:

$$\varepsilon_p = \alpha_{\text{HCO}_3^-} + \varepsilon_f - \varepsilon_f \left(\frac{\mu_k}{F_{\text{in}} + F_{\text{HCO}_3^-}} \right)$$ \[19\]

Recasting carbon fluxes in terms of μ defines isotope fractionation in more tangible and measurable variables, but questions persist as to the levels of stress that trigger active bicarbonate (or CO₂aq) uptake. Low membrane permeabilities and the transport of charged anions require upregulation of CCMs to be energy expensive (Raven, 1997). One perspective assumes that active transport occurs when the diffusive flux achieves a minimum threshold of intracellular CO₂ necessary for adequate growth. Minimum diffusive flux estimates depend on ambient [CO₂aq] and constraints imposed by cell geometry. Assuming spherical geometry, minimum [CO₂aq] that provides an adequate carbon flux can be defined as (Burkhardt et al., 1999a,b; Riebesell et al., 1993; Wolf-Gladrow and Riebesell, 1997)

$$[\text{CO}_2]_{\text{min}} = \frac{F_{\text{in}}}{4\pi D(1 + r_x/r)}$$ \[20\]

where D is the diffusion coefficient of CO₂, r_x is the ‘surface area equivalent’ spherical cell radius for spheroids (Wolf-Gladrow and Riebesell, 1997), r_1 is the reacto-diffusive length (i.e., length of the boundary layer where HCO₃⁻ has the opportunity to convert to CO₂aq), and the term $(1 + r_x/r_1)$ represents the contribution of extracellular, uncatalyzed HCO₃⁻ → CO₂aq conversion to the total supply of CO₂ (Burkhardt et al., 1999a,b). Other models of active transport derive from the model of diffusive transport derived for terrestrial photosynthesis (i.e., eqn [3]) and also impose flux constraints determined by cell size and shape. The model proposed by Laws et al. (1997, 2002) assumes transport by both diffusion and active uptake in order to describe the nonlinear culture results of P. tricornutum (Figure 13):

$$\varepsilon_p = \varepsilon_f + \varepsilon_t - \left(\frac{1}{1 + \beta} \right) \left(\frac{\varepsilon_f - \varepsilon_t}{\beta + 1} \right)$$ \[21\]

Here, β is a constant equivalent to the ratio of CO₂ loss (leakage by diffusion) to carbon fixation. As detailed in Laws et al. (2002), the value of ε_p becomes insensitive to μ/CO_2 when

$$\frac{\mu}{C} \geq \frac{P}{C(1 + \beta)}$$ \[22\]

Using reasonable relationships between membrane permeability and carbon content, $P/C = 0.285/r$, where r is the radius of the cell. Minimum [CO₂aq] that would trigger active transport occurs when the term $(1 + \beta)$ approaches unity, or leakage is zero. Laws et al. (2002) calculate that ε_p for E. huxleyi would become a nonlinear function of μ/CO_2 as photoperiod growth rate exceeds 1.1 day⁻¹ for a cell radius of 2.6 μm, dimensions appropriate for modern E. huxleyi (Popp et al., 1998a).

Photoperiod growth rates in the natural environment for E. huxleyi and other alkenone-producing haptophytes are typically below 1 day⁻¹, ranging from 0.1 to 1 day⁻¹ with the highest rates associated with the Peru upwelling zone (Bidigare et al., 1997; Popp et al., 2006). Cell dimensions of alkenone-producing algae for the past ~45 My (Henderiks and Pagani, 2007, 2008), in conjunction with estimates of pCO₂ (assuming changes in cell geometry do not exert significant impact on the magnitude of pCO₂), provide a means to identify geologic intervals when upregulation of CCMs was potentially necessary. For example, cell radii for alkenone producers range from ~4 to 2.4 μm across the Eocene/Oligocene boundary (Henderiks and Pagani, 2008) as [CO₂aq] presumably fell from ~30 to ~20 μm (Pagani et al., 2011), and cell radii were about 50% smaller during the Early Miocene (Henderiks and Pagani, 2007) when [CO₂aq] appears similar to today. Knowledge of cell radius allows calculation of the ratio P/C (Laws et al., 2002) and the ratio μ/C can be estimated from paleo-CO₂ reconstructions and a range of modern haptophyte growth rates, assuming paleo-CO₂ estimates are valid (even if CCMs were active). Figure 14 shows that for low to moderate growth rates, upregulation of CCMs is anticipated during the Miocene, and particularly during the climatic optimum of the Late-Early Miocene, suggesting that the alkenone-CO₂ proxy could be compromised during these times and Zhang et al. (in press) insensitive to changes in atmospheric pCO₂. Therefore, it is possible that relatively invariant alkenone-based pCO₂ records during the Early Miocene (Pagani et al., 1999) reflect the influence of CCMs. Obviously, this result is speculative given the necessary assumptions. For example, CO₂ concentrations used in this exercise are derived from alkenone measurements and if CCMs were active, then these alkenone-based CO₂ values would appear artificially lower than actual concentrations and further exaggerate the potential influence of CCMs. Regardless, determining the activity of CCMs through time will be an important step in better understanding the capacity of the alkenone-CO₂ methodology to accurately determine ancient CO₂ levels, and the approach explored here will need to be more rigorously tested to determine its utility.

12.13.5 Summary

This chapter attempts to frame the capacities and limitations of the alkenone-CO₂ to help advance its progress and utility. The alkenone CO₂ proxy remains one of the few techniques that allows qualitative and potentially quantitative pCO₂ reconstructions over the past ~45 My. The methodology, founded on the carbon isotopic composition of alkenones, requires consideration of growth effects related to nutrients and irradiance, cell size evolution, and the capacity of alkenone producers to deviate from a simple diffusive model of carbon uptake over time and space. Determining the role and activity of active transport mechanisms (CCMs) embedded in alkenone isotopic signals over long-time scales will be a
critical step forward in determining the veracity of reconstructed $p\text{CO}_2$.

Improvements in the alkenone CO_2 proxy as well as temperature and nutrient estimates will help provide us with quantitative estimates of Earth climate sensitivity in the geologic past. Such estimates shape our understanding of Earth’s climate history, as well as our perspective on what we will face in the near future under rising levels of atmospheric carbon dioxide.

References

Biomarker-Based Inferences of Past Climate: The Alkenone pCO2 Proxy

Biomarker-Based Inferences of Past Climate: The Alkenone pCO₂ Proxy