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ABSTRACT olivine fast axis parallel to collisional orogens,
Across the Appalachian orogen of New England, the splitting of core-refracted shear wavesconsistent with convergent shortening of the
from a wide range of arrival directions indicates the presence of two nearly uniform horizontal mantle root (Silver, 1996). In contrast, the mantle
layers of anisotropic upper mantle. The anisotropy in the lower layer has a fast axis nearly thinning scenarios in Figure 1 would be indicated
parallel to the absolute motion of the North American plate and thus is attributed to basal shear by a fast axis perpendicular to the orogen.
as the plate plows through asthenospheric mantle. The anisotropy of the upper layer is inferred
to be a fossil fabric, residing in lithospheric mantle. The finite extension direction of the upper SEISMIC EVIDENCE FOR COHERENT
fabric is subhorizontal and oriented normal to the local trend of the Appalachian orogen. The PALEOZOIC STRAIN IN THE NEW
upper fabric is consistent over a broad region beneath and west of the New England Appa-ENGLAND LITHOSPHERE
lachians, which indicates that it formed after Devonian closure of the lapetus ocean, probably Early observations of shear-wave splitting
during or after the Paleozoic Acadian and Alleghany orogenies. Tectonic scenarios for synfrom the northeastern United States were attrib-
convergent or postconvergent extension, developed for Tibet, predict rapid surface uplift and uted to either present-day strain associated with
increased heat flow due to lithospheric thinning, consistent with coeval late orogenic mantle-absolute plate motion (Fischer et al., 1996) or
derived magmatism in both the northern Appalachians and Morocco. fossil strain acquired during the Appalachian
orogenies (Barruol et al., 1997). When split
shear waves from a larger set of earthquakes are
analyzed, the apparent fast axes of individual
INTRODUCTION the mineral fast axes of which tend to align wittshear waves vary with their back azimuth in a
There is a controversy about what happens the axis of maximum extension (Ribe, 1992)pattern diagnostic of two layers of anisotropic
the excess mantle lithosphere in continent-contAnisotropy estimated for orogenic zones frontock (Levin et al., 1999a; Fouch et al., 1999; see
nent collision zones. Does the continental mantkie birefringence, or splitting, of seismic sheaFig. 2). To study the lateral variation of this
lithosphere subduct like oceanic lithosphere avaves has often, but not universally, indicated aanisotropy, we combined data from two long-
does it deform with the rest of the orogen, form- running permanent seismic observatories with
ing a combined mantle and crust root? If tf observations from a temporary seismic network
mantle lithosphere is subducted, slab rollback ¢ (Fig. 3). We find that variations in apparent fast-
cause widespread horizontal extension in both axis strike at all stations are consistent with
asthenosphere and mantle lithosphere (Willett & the two-layer anisotropic model derived by
Beaumont, 1994). If mantle lithosphere does n Levin et al. (1999a) for station HRV alone
subduct, modeling studies suggest that, after 1 o (Fig. 4). Estimates of splitting delay times
50 m.y., it may founder, detach, and sink throug -ofasthenospheric from individual seismograms are more variable,
the asthenosphere (Molnar et al., 1993; Hous ™ante but are less robust than estimateg,diecause
man and Molnar, 1997). Detachment might occ the former depend more on frequency bandpass
via ductile necking, or by delamination (Bird and pulse duration.
1979; Schott and Schmeling, 1998). All scenari
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Mantle delamination has been proposed to ¢ lithospheric mantle
plain the regional geology of the New Englan
Appalachians (Robinson, 1993), and simile
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Appalachians (Lynch and Giles, 1995; Murph
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Figure 1. End-member models for thinning of
upper mantle beneath convergent orogen.
Thin lines in upper mantle represent deforma-
tion of originally horizontal set of material
lines. Convergence of lines indicates compo-
nent of extension parallel to lines. A: Rollback.
After initial collision, lithospheric mantle con-
tinues to subduct due to its greater density.
Rollback of mantle slab away from orogen in-
duces horizontal extension in asthenosphere
as it flows to fill gap. B: Detachment. Subduc-
tion halts following collision, and continental
lithospheric mantle forms negatively buoyant
orogenic root. Root detaches from lithosphere
via thermal softening and viscous flow. C:
Detachment is shown as ductile necking in-
stability, but delamination near surface, e.g.,
within lower crust, is also possible. Both resid-
ual mantle lithosphere and inflowing astheno-
sphere develop deformation fabric that would
be characterized, at regional scale, by nearly
horizontal extension direction.
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Shear-wave splitting at HRV Figure 3. Map of station
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dicted (shaded) shear-wave splitting
data for station HRV. S phases from
South American earthquakes with L L
hypocenters deeper than 500 km are in- 180 - HRV data and model prediction _ Array data and model prediction
cluded to provide coverage from south. ¥
Splitting values are shown as bars cen- + | 4
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angle (angle raypath of phase makes $ 140 1 @
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crust-mantle boundary on basis of 5120 | 4 g
IASPEI91 velocity model. Bar orienta- % 4
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Near-zero splitting delays are plotted .g 4
with shaded circles. O 80 1 1
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Aside from distinguishing upper from Iowe|§
anisotropic layers, splitting observations offer r 40 b
direct constraint on layer thickness and placem:« 20 - + 1 e ﬁ
within the crust-mantle seismic profile. Examine .
tion of P to S converted waves from the Moho di 0 . .
continuity at HRV precludes the upper anisotrop 0 60 120 180 240 300 360 O 60 120 180 240 300 360
layer from residing in the crust (Levin et al. back azimuth, (degrees) back azimuth, (degrees)

1999a). We model the anisotropic mantle as 3(’Tfi‘gure 4. Observed and predicted variation of apparent fast direction. Some of visual mismatch

orthorhombic olivine and 70% isotropic olivine, apetween observed and predicted patterns stems from variety of incidence angles for incoming

mixture that gives ~6% anisotropy. For this choiceS waves; data-fitting algorithm compensates for this. Left: Data for station HRV, covering

the upper and lower layers are 60 and 00 K ic e S 5. Clear.abust and poor daa points fllow same patter

re_s pectively. Weaker anisotropy Woyld 'mplyggcsge)s show values of fast-axis a;imuth' (prgi)orted for ngv by BarrFLoI etal. (1997). Right: Déta

thicker layers. The array data has regional variior 4 stations (see Fig. 1) observed during spring and summer of 1995. Crosses show all

tion, in the form of an overlap of two data branchemeasurements; circles identify measurements with O, < T/3. All stations in region follow same

near back azimuth 290°. This can be modeled sigeneral pattern. Solid lines on both plots show pattern of fast direction values predicted by our

cessfully with small (~10 km) variations in |ayermodel of seismic anisotropy (Levin et al., 1999a, Table 2), for one value of phase velocity.

thicknesses: a thinner upper layer under tt

Adirondacks and Grenville areas, and a thicke

upper layer under other inland stations. Small990). If axial symmetry, simpler than ortho-within an actively deforming asthenosphere, with

regional trends in layer anisotropies (~1%) coulcthombic, is prescribed, the fast axis in the loweanisotropic rock fabric maintained by plate

also cause these variations in splitting pattern. layer must dip 40° below the horizontal to fit themotion. We interpret the upper layer to reside in
Our orthorhombic anisotropy model shows ammbservations (Levin et al., 1999a). the stable part of the continental lithosphere, with

interesting correspondence to the structure andWe interpret both anisotropic layers to reside fossil fabric.

dynamics of the lithosphere in this region. Thén the upper mantle. Deeper layers would imply Near-uniform anisotropic properties beneath

fast axes are horizontal in both layers. In thbroader regions of uniform anisotropy, e.g., a cdhe northeastern United States contrast with re-

upper layer the fast axis is nearly perpendicular teerent anisotropic layer near the core-mantigional variations of geology within the Appa-

the local trend of the Appalachian orogen. In thboundary would need to span a ~30° arc. We di&chian orogenic belt, as well as with significant

lower layer the fast axis azimuth (233°) is subeard the idea that both anisotropic layers refleshort-scale variations in isotropic seismic velocity

parallel to the absolute plate motion of Northan ongoing corkscrew-spiral shear in the asthen@-evin et al., 1999b). The contrast between rough

America (~245° azimuth; see Gripp and Gordorsphere. Instead, we interpret the lower layer to heslocity variations, indicative of rock compo-
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sition, and smooth, weak anisotropy variationanagmatism, and thermal metamorphic activity imear-uniformity in anisotropy suggests strongly
indicative of mantle strain, argues that theouthern New England (Permian, 275 Ma)that any fossil strain must postdate the assembly
anisotropy developed after the Paleozoic accr&rustal extension is documented by Getty anof the Appalachian orogen. Vertical layering in the
tion of the Avalon terrane to the ProterozoicGromet (1992). High topography is implied byanisotropy indicates that both modern and fossil
Grenville province. upper crust erosion of 15 km or more (Cardeformation contribute to the signal. The upper
We propose that the upper layer of anisotropsnichael, 1978). Granitic magmatism and thermdayer of deformation, which we interpret as fossil,
beneath the northeastern United States is assnetamorphism indicate high heat flow (Zartmanimplies maximum extension nearly perpendicular
ciated with convergent tectonism in the late Paled-988; Zartman et al., 1988; Lux and Guidottifo the Appalachian orogen. Combined with the
zoic, not with divergent, synrift tectonism in the1985; Sevigny and Hanson, 1993). Studies afature and timing of late Paleozoic plutonism, this
early Mesozoic. Mantle fast axes along midmantle-derived magmatism in late Paleozoic Nesuggests that hot asthenosphere replaced cooler
ocean ridges are both predicted and observedEngland igneous rocks are thus far sparse, but ditbosphere in the northern Appalachians during
align perpendicular to the rift axis (Ribe, 1992consistent with a mantle-thinning scenario. In théhe late Paleozoic, and then cooled to form new
Wolfe and Solomon, 1998), and our upper layeta. 410 Ma Bethlehem Gneiss and Kinsmalithosphere. This process, similar to spackle
fast axis is perpendicular to the general due-norfQuartz Monzonite, Lathrop et al. (1996) foundapplied to repair damaged plaster, may have an
trend of the failed Connecticut Valley rift. How- little evidence of mantle influence. Wiebe et alimportant role in continental dynamics.
ever, the disruption of continental lithospherg1997), Arth and Ayuso (1997), and Hannula
during rifting differs from the steady-state growthet al. (1998) reported evidence for mantle-derivelCKNOWLEDGMENTS
of oceanic lithosphere, typically involving a nar-melts and/or mafic underplating in igneous rocks This work was supported by National Science Foun-
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