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P-SH Conversions in Layered Media with Hexagonally Symmetric
Anisotropy: A CookBook

VADIM LEVIN1 and JEFFREY PARK1

Abstract—Reflectivity synthetic seismograms demonstrate that the type, layering and orientation of
1-D anisotropy influences strongly the coda of teleseismic P waves at periods T\1 sec, particularly
P-SH converted waves. We assume the simplest form of anisotropy described by an elastic tensor with
a symmetry axis ŵ of arbitrary orientation. The resulting phase velocities vary as cos 2j with respect to
that axis. Using three families of simple crustal models, we compare the effects of an anisotropic surface
layer with reverberations caused by both ‘‘thick’’ and ‘‘thin’’ layers of anisotropy at depth. If anisotropy
in the surface layer is significant, the polarization of direct P can be distorted to generate a transverse
component, followed by Ps and a prominent shear reverberation converted from direct P at the free
surface. If the anisotropic layer is buried, the first, and often the most prominent, arrival on the
transverse component is the P-to-SH conversion at its upper surface. If the anisotropic layer is
sufficiently thin, P-to-SH conversions from its boundaries interfere to form a derivative pulse shape on
the transverse component, which could be mistaken as the signature of shear-wave splitting. If ŵ is
horizontal, compressional (P) and shear (S) anisotropy both produce similar waveform perturbations
with four-lobed azimuthal patterns, suggesting that a weighted stack of P coda from different
back-azimuths would improve signal-to-noise. For ŵ tilted between the horizontal and vertical, however,
the effects of P- and S-anisotropy differ greatly. The influence of P-anisotropy on P-to-S conversion is
greatest for a symmetry axis tilted at 45° to the vertical, where its azimuthal pattern has two lobes, rather
than four. Combinations of P- and S-anisotropy typically lead to a composite azimuthal dependence in
the P-coda reverberations.

Key words: Seismic anisotropy, crustal structure, body waves, layered media, scattered waves,
synthetic seismograms.

Introduction

There is a mounting body of evidence suggesting that seismic isotropy—an
important and common assumption in seismological studies—may actually be a
rarity rather than the rule in the shallow earth. The majority of minerals and rocks
that form the crust and upper mantle display seismic anisotropy in laboratory
measurements (BABUSKA and CARA, 1991). Bulk anisotropy in the oceanic crust
and lithosphere was established by marine refraction experiments over two decades
ago (e.g., RAITT et al., 1969). Shear-wave splitting in broad-band seismic data
suggests that the continental lithosphere has significant elastic anisotropy (e.g.,
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VINNIK et al., 1992; SILVER, 1996; BABUSKA et al., 1993; HEARN, 1996; LEVIN et
al., 1996), which can be used to reconstruct both active and fossil bulk strain. The
upper part of the continental crust appears to have particularly strong anisotropic
properties (ZHI et al., 1994; LYNN, 1991).

The variety of mechanisms producing seismic anisotropy in the crust centers on
a handful of scenarios. In the upper crust the strongest influence is believed to be
that of aligned cracks and/or pore spaces (BABUSKA and PROS, 1984), for which
slower velocities are found for waves that propagate normal to the average crack
plane. The aspect ratio of pore/cracks and presence of fluid in them determine the
extent and proportion of anisotropy (HUDSON, 1981; CRAMPIN, 1984, 1991).
Alternating thin isotropic layers of higher and lower velocity can also produce an
overall anisotropic effect (BACKUS, 1962; HELBIG, 1994), with the velocities slower
normal to bedding than along it. In the lower crust and the uppermost mantle,
cracks are assumed to close in response to increasing overburden pressure
(BABUSKA and PROS, 1984; KERN et al., 1993), though field exposures of (formerly)
deep-crustal fluid-filled cracks can be found (AGUE, 1995). In the absence of cracks
and inclusions, the lattice-preferred orientation (LPO) of mineral crystals is taken
as the main cause of seismic anisotropy. Most minerals composing the bulk of the
crust are anisotropic to some degree (BABUSKA and CARA, 1991), while properties
of olivine and, to a lesser extent, orthopyroxene dominate the upper mantle
anisotropy. Different deformation mechanisms can lead to the alignment of either
the slow or the fast crystallographic direction in olivine grains (NICOLAS et al.,
1973; RIBE, 1992), but LPO caused by dislocation creep in the shallow mantle is
commonly believed to lead to preferred alignment of the fast axis (ZHANG and
KARATO, 1995). GAHERTY and JORDAN (1995) argue, on the basis of mantle
shear-wave reverberations, that thin-layering of different rock types also plays a
role in the bulk anisotropy of the continental upper mantle.

Although minerals often exhibit more complex behavior, many instances of
seismic anisotropy in crystalline basement rocks display hexagonal symmetry to the
first order (e.g., MAINPRICE and SILVER, 1993; BURLINI and FOUNTAIN, 1993).
There is no simple relationship between the amount of P velocity anisotropy and
that of S anisotropy, but it is rare for only one type, P or S, to be present in a rock.
Anisotropy in velocity up to 10% is a common feature of crustal and upper mantle
rocks, and exceeds 15% in some lithologies, e.g. metapelites (BURLINI and FOUN-

TAIN, 1993). To influence a teleseismic wave in the frequency range 0.2–2 Hz, crack
and/or mineral alignment must be coherent within substantial volumes of crust, so
the effective anisotropy is often diminished substantially relative to the anisotropy
of either minerals and rock samples.

A common assumption in anisotropy studies is that the symmetry axis is either
vertical (i.e., as in the case of alternating layers) or horizontal (as in cases of
stress-aligned olivine or vertical cracks). On the other hand, a number of studies
indicate that an axis with a tilted orientation is needed to explain observations of
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teleseismic waves (BABUSKA et al., 1993; LEVIN et al., 1996; GRESILLAUD and
CARA, 1996). The possible causes of tilted-axis anisotropy are not exceptional,
though one expects only local or regional coherence in the associated details of
tectonic deformation. BLACKMAN et al. (1996) have modeled tilted alignment of
olivine LPO beneath mid-ocean ridge systems. Crustal overthrusting is another
likely cause of tilted-axis anisotropy.

Anisotropy induces compressional waves to convert to SH-type motion in 1-D
velocity structures with horizontal interfaces. KOSAREV et al. (1984) and VINNIK

and MONTAGNER (1996) invoke this mechanism to explain long-period SH phases
following teleseismic P waves as P-SH conversions in horizontally stratified an-
isotropic upper mantle. P-SH conversion resulting from reverberations of a plane
wave in a stack of flat anisotropic layers can give rise to P coda whose complexity
approaches that of observations (LEVIN and PARK, 1997b). Before P-SH conver-
sions can be useful in studies of crustal structure, certain questions about the effects
of the anisotropic layered medium should be addressed. We need to know which of
the possible converted phases will have sufficient energy to be observable in real
data. Of these, we must identify phases that may be used to distinguish various
types of anisotropic structures, i.e., P vs S anisotropy, fast versus slow velocity
alignment. We also must determine which portions of a layered structure are most
promising in terms of generating large P-SH phases. Back-azimuth dependence
unique to this type of reverberation may distinguish 1-D anisotropic models from
the two explanations typically offered for SH-motion in the teleseismic P wave-
train: a) scattering due to velocity heterogeneities (e.g., VISSER and PAULLSEN,
1993; HU, 1993) and b) inclined interfaces beneath the receiver (e.g., OWENS and
CROSSON, 1988; ZHU et al., 1995). At any seismic station, more than one of these
mechanisms may be important. If the azimuthal pattern of converted phases can be
related confidently to a particular type of crustal model, stacking seismic records
from different back-azimuths may be useful.

In this paper we investigate the influence of 1-D anisotropy, its type, layering and
orientation, on the coda of teleseismic P waves, particularly on P-SH converted
waves. We employ a reflectivity technique to compute the transmission response of
a flat-layered medium with arbitrarily oriented hexagonally symmetric anisotropy,
as developed by PARK (1996) for surface waves and extended by LEVIN and PARK

(1977b) to receiver-function geometry. We describe the main features of synthetic
seismograms for a variety of simple models and discuss how to interpret converted
phases in observations.

Method

The models we consider consist of homogeneous flat layers atop a homoge-
neous halfspace. The halfspace is isotropic. Each layer may possess seismic an-



Vadim Levin and Jeffrey Park672 Pure appl. geophys.,

isotropy with an axis of symmetry ŵ. The velocity profiles have Poisson ratio
:0.27, consistent with a somewhat mafic continental crust (CHRISTENSEN, 1996).
According to the classification by ZANDT and AMMON (1995), velocity values
selected for the crust in our models would place them on the old stable continent.
A compressional wave is assumed to propagate upwards from the halfspace into the
layered part of the model, where it undergoes refraction and conversion. The
combination of pulses arriving at the free surface is the ‘‘transmission response’’ of
the media. Once computed, this transmission response can be convolved with the
pulse of the original compressional wave, yielding a synthetic seismogram.

To compute the interaction of upgoing and downgoing plane waves, we express
the elastic properties as a function of depth as L(z), where Lijkl is the fourth-order
stress-strain tensor. In the case where the axis of symmetry is horizontal, BACKUS

(1965) derived the azimuthal dependence of P and SV velocities for horizontal
propagation, which is appropriate for head waves in marine refraction studies.
Expressed in terms of the angle j from ŵ, these head-wave velocities are

ra2(j)=A+B cos 2j+C cos 4j

rb2
SV (j)=D+E cos 2j. (1)

The SH velocity for horizontal propagation satisfies rb2
SH (j)=D+C(1−

cos 4j)+E.
If density perturbations are neglected, knowledge of A, B, C, D, E is sufficient to

determine the stress-strain tensor (SHEARER and ORCUTT, 1986) for ‘‘weak’’
anisotropy. An expression for this tensor, outlined in the appendix, can be used for
‘‘strong’’ anisotropy as well. In an isotropic medium, B=C=E=0 and A=l+2m

and D=m, where l, m are the Lamé parameters. PARK (1993) showed how these
azimuthal relations generalize to other orientations of ŵ. We assume a flat earth,
z=0 at the free surface, and z increasing downward.

To compute the reverberation response of a crustal model, we prescribe an
upgoing plane-wave of the form U(x, t)=u0 e i(k · x−vt) in the halfspace. A compres-
sional plane wave in an anisotropic 1-D flat-layered structure suffers conversion to
both vertically (SV) and horizontally (SH) polarized shear waves, with two
exceptions: no P-SH conversion occurs if the axis of symmetry is everywhere
vertical, or if the ray and the symmetry axis are contained in the same vertical plane
in each layer.

The phase velocity for P and S waves in hexagonally symmetric media can be
represented by smooth surfaces symmetric about the axis in 3-D-space defined by ŵ
(Fig. 1). If B, E\0, ŵ defines the ‘fast’ axis for wave propagation, leading to
phase-velocity surfaces that resemble tilted melons. If B, EB0, ŵ defines the ‘slow’
axis for wave propagation, leading to phase-velocity surfaces that resemble tilted
pumpkins. The cos 4j coefficient C would distort these ellipsoidal surfaces. As
noted in the appendix, departures from phase-velocity ellipticity can be substantial
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in measurements made from sedimentary rock samples and for special cases in
fine-layering anisotropy. However, the parameter C is small in most seismic
refraction estimates (e.g., SHEARER and ORCUTT, 1986; ANDERSON, 1989). We also
note in the appendix that the formulas of HUDSON (1981), CRAMPIN (1984) for
crack-induced anisotropy imply either C=0 or C
B. Although real-world an-
isotropy can be more complex than such observations and theories suggest, we set
C=0 in order to examine the large model space respresented by media with
elliptical velocity surfaces of varying orientation, parameterized by ŵ, B, and E.
Anisotropy of this simplified type has proven useful in modelling the azimuthal
variation in both shear-wave splitting (BABUSKA et al., 1993) and P-SH conversion
LEVIN and PARK (1997a), so a careful examination of the relative influences of
symmetry axis ŵ, S and P anisotropy is useful for the assessment of seismic data
sets.

In a layer with constant anisotropic elastic properties, one can calculate three
upgoing and three downgoing plane-wave solutions to the equations of motion,
with vertical wavenumbers and polarizations determined by the eigenvectors of a

Figure 1
Schematic diagram illustrating possible shapes of velocity distribution for various choices of anisotropic

parameters.
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Figure 2
Schematic representation of 1-D velocity models used in simulations: a) anisotropic layer over an
isotropic halfspace; b) isotropic layer over an anisotropic halfspace; c) thin anisotropic layer in an

isotropic stack. Dashed lines denote range of velocity variation for 5% anisotropy (B, E=−0.05).

6×6 matrix eigenvalue problem (GARMANY, 1983; FRYER and FRAZER, 1987;
PARK, 1996). Assume K layers over an isotropic halfspace, with interfaces at
z1, z2, . . . zK. We compute the generalized transmission response of the layer stack,
equivalent to a 3-D receiver function (LANGSTON, 1977), to determine the particle
motion at the free surface z0=0. A standard propagator formalism determines the
response of a stack of anisotropic layers to upgoing wave motion with frequency v

and horizontal phase velocity c (slowness p=1/c). We restrict attention to phase
velocities c for which both P and S waves in the halfspace are oscillatory, thus
bypassing the problem of leaky-mode reverberation. The algorithm follows the
development of KENNETT (1983) closely, and is outlined in more detail in LEVIN

and PARK (1997b) and PARK (1996). The transmission response of the medium is
calculated at the evenly-spaced frequency values of the fast Fourier Transform of a
chosen input wavelet. Particle motion at the surface is obtained by an inverse
Fourier Transform. Noncausal ‘wraparound’ effects in this procedure are mini-
mized by padding the initial wavelet with zeros in the time domain, to interpolate
the spectrum.

Models, Ray Geometries and Procedures

We consider three distinct families of velocity models (Fig. 2): (A) an an-
isotropic layer over an isotropic halfspace; (B) an isotropic layer over a ‘‘thick’’
anisotropic layer; and (C) a ‘‘thin’’ anisotropic layer imbedded in an isotropic stack.
In family A, the surface layer is anisotropic. In families B and C, the anisotropic
layer is buried. For each model family we consider cases with P anisotropy only
(coefficient B in (1)), S anisotropy only (coefficient E in (1)), and equal amounts of
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P and S anisotropy. While anisotropy in P or S velocity only is hardly representa-
tive of physical reality, simulations with such an assumption provide insight into
the relative contributions within ‘‘mixed’’ P and S anisotropy. The velocity models
in family B place anisotropy in a layer below the Moho in the upper mantle, but the
general behavior of these synthetic seismograms should carry over to the case of an
anisotropic crustal layer overlain by a shallow low-velocity isotropic layer, e.g., a
granite pluton atop anisotropic basement gneisses.

All waveforms analyzed in this work arise (through conversion and/or reverber-
tion) from the original compressional plane wave that ascends from the isotropic
halfspace beneath the layers. Its pulse shape is prescribed at the bottom of the
model, with all converted phases being scaled and/or distorted versions of it. No
knowledge of the source of the pulse, or of the propagation effects in the medium
outside our model is required for this exercise. In practice, effects of the source and
the path outside the receiver region are routinely removed via ‘‘source normaliza-
tion’’ techniques typical of receiver function analysis (e.g., LANGSTON, 1977).

Most synthetics are computed for 5% peak-to-peak velocity anisotropy (e.g.,
B=0.05), with systematic variation in the tilt of the symmetry axis ŵ and the
back-azimuth of the arriving P wave. The effects of anisotropy magnitude and
velocity contrast across the interface are studied in separate experiments. Both
positive (fast symmetry axis—‘‘melon’’) and negative (slow symmetry axis—
‘‘pumpkin’’) anisotropy are investigated, bringing the number of models examined
within each family to 6. In all models the symmetry axis ŵ is tilted at an angle h

from the vertical towards the north, in 15° increments between 15° and 90°. (At
h=0° the axis of symmetry is vertical and the P-SV and SH equations of motion
are uncoupled.) We propagated upgoing plane waves through each of the an-
isotropic velocity models using a range of back-azimuths, measured clockwise from
the north, and incidence angles. Incidence angles vary form 5° to 60° in 5°
increments, and back-azimuths vary from 0° to 360° in 15° increments. Computa-
tions for 1800 plane waves were performed for each combination of the model
family (A, B or C), anisotropy type (P, S or both) and the anisotropy sign (B, E\0
or B, EB0). In each simulation, the time-domain waveforms were computed and
parameters (timing, amplitude, polarity) of the chosen phases were measured by a
guided auto-picking routine.

An identical one-sided pulse waveform was used for the incoming P wave in all
simulations. Sample synthetic seismograms for models from different families are
shown on Figure 3. The converted phases most often have pulse shapes on the
horizontal components that resemble either (1) a scaled version of the original pulse
(e.g., the direct P in model-family A, and most radial phases) or (2) a derivative of
the original pulse (e.g., the Psms phase in model-family A). In the first case the
polarity of a converted phase is defined as ‘‘positive’’ if the pulse is ‘‘up,’’ and the
amplitude is defined as the maximum absolute value in a chosen time window. In
the second case the phase polarity is considered ‘‘positive’’ if the first swing of the
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pulse is ‘‘up.’’ The amplitude of a waveform is then defined as a ‘‘peak-to-peak’’
difference between the smallest and the largest values within a chosen time window.
These amplitude and polarity definitions, while not unique, are very helpful for
describing how P-SH converted phases vary with the back-azimuth of the incident
wave. Care was taken to design test models that would prevent an overlap of two
phases in time. In real data overlapping phases may be unavoidable, and should be
anticipated.

In the following sections we describe general properties of P-SH conversion in
layered anisotropic media, present results of simulations for each model family and
summarize common features. For each synthetic sweep the amplitudes of horizontal
components are normalized by the maximum amplitude of corresponding vertical

Figure 3
Sample waveforms generated in three velocity structures: a) anisotropic layer over an isotropic halfspace;
b) isotropic layer over an anisotropic halfspace; c) thin anisotropic layer in an isotropic stack. Traces are
scaled individually, with relative scale within each 3-component seismogram indicated by a number in
percent at the beginning of each trace. Parameters of anisotropy used in simulations are: ‘‘melon’’
(positive) anisotropy of 5% in both P and S velocity, ray incidence angle 25%, back-azimuth 300°, axis

tilt 60° from vertical. Converted phases analyzed in this paper are indicated for each model family.
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Figure 4
Azimuthal variation in the radial component of the direct P wave, model family A, pure P anisotropy.
Incidence angle 30°, axis tilt 45° from vertical (maximal effect). Positive (melon) anisotropy imposes the
pattern shown by open symbols, negative (pumpkin) anisotropy—solid symbols. Patterns are mirror-

symmetric and vary as sin j with ray back-azimuth.

traces, and expressed in percent. For some converted phases, these amplitude ratios
can vary with the period of the initial P pulse, especially if the phase is generated
by two interfering pulses, as for the transverse component of shear-wave splitting.
Therefore the amplitude ratios should be taken as guides to, rather than absolute
predictions of, data behavior.

General Obser6ations

The radial amplitudes of converted phases in anisotropic structures vary with
incident back-azimuth, with unchanged polarity. The azimuthal pattern of the
radial component is controlled by the tilt of the anisotropic symmetry axis, the
incidence angle and the velocity contrast. The axis tilt angle h defines the shape of
the pattern, whether two-lobed, four-lobed, or a composite. The incidence angle
and the velocity contrast affect primarily the amplitude of the converted phase, and
less so its azimuthal dependence. Figure 4 shows an amplitude pattern for one
incidence angle and a sweep of back-azimuth that is representative of the phase
behavior for the combination of model family and anisotropy type. The azimuthal
patterns of radial-component converted phases are symmetric about the axis of
symmetry ŵ.

Variations of transverse components with incident back-azimuth are more
complex, involving changes in both amplitude and polarity. Variations in incidence
angle can lead to different azimuthal patterns independent of changes in other
parameters. To describe fully the azimuthal pattern of the transverse-component of
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the crustal phases, an area plot (Fig. 5) is required, similar in appearance to an
earthquake focal mechanism. The azimuthal patterns of transverse-component
converted phases are antisymmetric about the axis of symmetry ŵ. In addition to
this polarity switch, azimuthal patterns of transverse phases often have a second set
of polarity transitions, leading to a four-lobed pattern. The precise nature of these
transitions depends on the anisotropic parameters and incidence angle. While it is
usually marked by a moderate depression in amplitude values, pulse amplitude does
not typically vanish at the secondary transition. Rather, a polarity transition occurs
through a gradual evolution of the pulse shape (Fig. 6). For back-azimuth aligned
with ŵ there is no P-SH conversion, and the transverse component vanishes.

Systematic changes with back-azimuth j of amplitude, polarity and timing of
converted phases have some 2-lobed dependence on sin j or cos j in all but special
cases. However, secondary polarity and amplitude changes lead typically to asym-
metric patterns, depending on the model parameters. Nevertheless, it is usually
helpful to describe the azimuthal pattern by the number of lobes (2 or 4) in the
complete 360°. For instance, the pattern in Figure 4 is two-lobed, while that in
Figure 5 is asymmetrically four-lobed. In the special case of a horizontal symmetry

Figure 5
A diagram illustrating the azimuthal variation in amplitude and polarity of the transverse component of
the direct P wave. Model family A, positive (melon) P and S anisotropy of 5%, axis tilt 75° from
vertical. Right side of the plot illustrates variation of the amplitude (in percent of vertical P) as the
function of back-azimuth and incidence angle. Back-azimuth varies clockwise from 0° to 180°. Incidence
angle increases uniformly from 5° in the center to 60° at the rim. The left side of the plot illustrates
polarity (shaded—negative) of the converted pulse for back-azimuths 180°–360°. Two sides of the plot
are antisymmetric, since this is the transverse amplitude. In this example, pulses amplitudes for

back-azimuths 180°–280° are positive, and for 80°–180° are negative.
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Figure 6
Pulse shape of a transverse Ps phase as a function of back-azimuth. Family A model with negative P and
S anisotropy, h=60°. Phane wave incidence angle 30°. Traces are plotted on a common scale, and
labeled with ray back-azimuth. Change of polarity around BAZ 75° occurs via a gradual evolution of

the waveform, while at 180° (ŵ direction) the transverse component vanishes.

axis ŵ, all patterns are four-lobed and symmetric, and may by described by sin 2j

or cos 2j.
The transverse components of converted phases for opposite signs of anisotropy

(‘‘melon’’ vs. ‘‘pumpkin’’) always have opposite polarity, leading to mirror-image
azimuthal patterns. In most cases the radial components of converted phases also
display mirror symmetry in models with opposite anisotropy sign. Exceptions from
this rule are discussed in following sections.

The effects of P and S anisotropy differ substantially. The effect of pure P
anisotropy is typically two-lobed, and is maximized when the symmetry axis ŵ is
tilted at h=45°. The effect of pure S anisotropy is more four-lobed, and is
strongest for subhorizontal ŵ. If the anisotropy types are mixed, the azimuthal
patterns follow the stronger influence.
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Model Family A: Anisotropic Layer o6er an Isotropic Halfspace

Because the polarization of seismic waves is distorted within the surface layer by
its anisotropy, each phase for this family of models typically has a transverse
component. Polarization distortion also affects the radial component amplitude
significantly. The radial component of the direct P wave suffers a two-lobed
perturbation to its amplitude in the presence of P anisotropy (Fig. 7). The intensity
of the pattern depends on the tilt of the symmetry axis. Radial P amplitudes are
also affected by S anisotropy, which imposes a weak four-lobed perturbation. An
equal combination of P and S anisotropy generates amplitude perturbations that
resemble those of the pure P case. The transverse component of the P phase is not
a P-SH converted phase, but rather a compressional motion deflected out of the
source-receiver plane. The most pronounced effect is observed for pure P an-
isotropy (Fig. 8). Depending on the tilt angle h, the amplitude patterns are either
two- or asymmetrically four-lobed.

P-to-S conversion at the base of the anisotropic layer follows direct P on our
synthetic seismograms. In the presence of S-wave anisotropy its timing on the
radial component relative to the direct P follows a four-lobed azimuthal pattern
(Fig. 9), as would be expected from the introduction of cos 2j variations in shear
velocity. Peak-to-peak variation of almost half a second is reached in our models
for near-horizontal orientation of anisotropy axis, as the shear wave (Ps) traverses
the entire crust in the model. The presence of P anisotropy in the surface layer adds
a smaller, but nonzero, perturbation to the P-Ps delay time.

Figure 7
Radial component of the direct P wave as a function of back-azimuth in family A models with negative
(pumpkin or ‘‘−’’) anisotropy. Incidence angle of the incoming wave is 25°. The line type indicates the
tilt from vertical of the anisotropic symmetry axis: dotted −15°, dashed −45°, solid −75°. Type of

anisotropy (P-, S- or combined) is indicated on the plots.
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Figure 8
Transverse component of the direct P wave in family A models with negative anisotropy as a function
of back-azimuth, incidence angle and anisotropic axis tilt from vertical. Parameters of radial plots are
as in Figure 5. Anisotropy type and anisotropic axis tilt from vertical are indicated above each plot.

The radial amplitude of the Ps phase can change by more than a factor of 2 in
the presence of P anisotropy (Fig. 10a). The azimuthal pattern is two-lobed. Pure
S anisotropy causes much smaller variations in the radial Ps phase (Fig. 10b). In a
deviation from typical behavior, a change from a ‘‘pumpkin’’ to a ‘‘melon’’
anisotropy (i.e., the sign of the anisotropic parameters B and E) affects the
amplitude of the transverse Ps phase slightly without altering the distribution of
lobes in the azimuthal pattern. This subtle change is not likely to be a useful
interpretive tool for observations, however.

A combination of P and S anisotropy results in azimuthal patterns that depend
strongly on the axis tilt (Fig. 10c). Axes inclined no more than 45° result in
two-lobed amplitude patterns that are relatively smooth. Ps amplitude perturba-
tions for opposite signs of anisotropic parameters B and E resemble mirror images
of each other. If the axis of symmetry ŵ is subhorizontal, however, Ps amplitude
oscillates rapidly with back-azimuth. This pattern is sufficiently asymmetric to
cause, in the case of the ‘‘pumpkin’’ (negative) anisotropy, Ps amplitudes from
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Figure 9
Timing of Ps phase in family A models with positive (open symbols) and negative (closed symbols) P
and S anisotropy. Values are computed for the ray incidence angle 25°, and a symmetry axis tilted 75°

from vertical. For this incidence angle, 75° tilt yields the largest azimuthal variation of Ps-P delay.

back-azimuths subparallel to ŵ that exceed those from other directions by almost a
factor of 2 on the radial component.

The transverse component of Ps phase can be as large as 15% of P in our synthetic
seismograms (Fig. 11). Near-vertical incidence leads to converted waves with small
amplitudes (+5%), leaving the largest converted-wave amplitudes to shallow-inci-
dence P waves. Azimuthal patterns obtained in models with pure P anisotropy are
generally two-lobed, with two additional smaller lobes appearing in the pattern for

Figure 10
Radial component of the Ps phase in family A models. Type and sign of anisotropy is indicated on the
plots. The line type indicates the tilt of the anisotropic symmetry axis from vertical: dotted −15°, dashed
−45°, solid −75°, a) Pure P anisotropy. b) Pure S anisotropy. Distribution of lobes in the azimuthal
pattern is not sensitive to the sign of anisotropy; c) P and S anisotropy. Azimuthal patterns strongly

depend on h.
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Figure 11
Transverse component of the Ps phase in family A models with negative anisotropy. Parameters of area
plots are as in Figure 5. Anisotropy type and anisotropic axis tilt from vertical are indicated above each

plot.

near-horizontal axes and relatively shallow incidence. In models with S velocity
anisotropy the azimuthal pattern of transverse Ps amplitudes is always four-lobed,
with relative sizes of the lobe pairs controlled by the anisotropic axis tilt. Trans-
verse-component amplitude in the case of P anisotropy is relatively small. For S
anisotropy, derivative-pulse shapes on the transverse component indicate that much
of this waveform arises from a shear-wave splitting time delay dt. The relative
amplitude of the transverse component therefore depends on the ratio of dt to the
period T of the incoming wave i.e., stronger for shorter period waves, weaker for
longer-period waves.

The Psms phase arrives between 15 and 17 seconds after the direct P in our
simulations. It is a split shear wave, generated through a substantial P-S conversion
at the free surface and subsequently reflected back from the top of the halfspace.
The Psms phase is very prominent on the transverse component if there is S wave
anisotropy in the model (Fig. 12), as a result of shear-wave splitting. The delay time
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of the Psms arrival, relative to P, is only slightly affected by the presence of
anisotropy, because both fast and slow S polarization contribute to the waveform.
For symmetry-axis tilts h\45°, the amplitude of this phase can be as large as 15%
that of direct P, forming four-lobed azimuthal patterns.

Model Family B: Isotropic Layer o6er Anisotropic Halfspace

In synthetic seismograms computed for this model family, Ps is the first arrival
on the transverse component. Its delay relative to the direct P varies insignificantly
with back-azimuth. The radial component of the direct P wave is also nearly
constant as back-azimuth varies. The amplitude of the radial component of the Ps
phase, on the other hand, can change by as much as a factor of 2 in a two-lobed
azimuthal pattern (Fig. 13). The transverse component of Ps is larger (up to 5%) in

Figure 12
Transverse component of the Psms phase in family A models with negative anisotropy. Parameters of
area plots are as in Figure 5. Anisotropy type and anisotropic axis tilt from vertical are indicated above

each plot.
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Figure 13
Radial component of the Ps phase in family B models. The line type indicates the tilt of the anisotropic
symmetry axis from vertical: dotted −15°, dashed −45°, solid −75°. Type of anisotropy is indicated on

the plots.

models with P anisotropy than in models with pure S anisotropy (Fig. 14).
Azimuthal patterns of transverse Ps amplitude change from two-lobed for subverti-
cal axes to asymmetric four-lobed for subhorizontal axes. The transverse amplitude
of the Psms phase does not exceed 3% in any of our simulations, with S anisotropy
models leading to stronger conversions, largely due to the lack of shear-wave
splitting in the isotropic surface layer. Azimuthal patterns are mostly two-lobed,
with two vestigial lobes present if the symmetry axis ŵ is subhorizontal.

Model Type C: Thin Anisotropic Layer in an Isotropic Stack

Many parameters influence the P coda generated in this family of models. The
ratio of wave period T to the travel time through the anisotropic layer is one of the
strongest influences, as it determines whether the converted phases generated at the
upper and lower boundaries of the anisotropic zone interfere or arrive as separate
pulses. We used a velocity-depth profile in which the sense of velocity contrast
across all boundaries does not change if 5% anisotropy is introduced into a thin
intermediate layer (Fig. 2c). This type of model would be appropriate, for instance,
for a shear zone within the crust (COLEMAN, 1996). Other scenarios may be
necessitated by particular datasets (e.g., a direction-dependent low-velocity zone),
but we defer their investigation.

The radial component of the direct P wave does not vary significantly with
back-azimuth. The first-arriving energy on the transverse component is the equiva-
lent of the Ps phase (labeled Ps % to distinguish it from P-to-S conversion at the base
of the ‘‘crust’’). This phase, composed of two pulses of opposite polarity generated
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at the two interfaces bounding the anisotropic layer, dominates the transverse
component in the presence of P anisotropy. The separation between the two pulses
depends on the layer thickness and the dominant period of the incident waveform.
Because interference between converted phases is what distinguishes model family C
from earlier cases, we scaled the thickness of the intermediate layer to examine
these effects (Fig. 3c). The timing of the Ps % phase relative to the direct P arrival is
determined by the depth of the imbedded layer and is only weakly affected by the
presence of anisotropy in it.

The azimuthal variation of the radial component of the Ps % phase is shown on
Figure 15. Significant changes in amplitude with azimuth are seen only for the
models containing P velocity anisotropy. The azimuthal patterns are four-lobed,
with the relative size of lobes strongly dependent on the axis tilt. The amplitudes of
the transverse component of Ps % reach 10% in our simulations, with P wave
anisotropy leading to considerably stronger converted phases. The azimuthal
patterns (Fig. 16) change from two-lobed for subvertical ŵ to asymmetric four-

Figure 14
Transverse component of the Ps phase in family B models with negative anisotropy. Parameters of area
plots are as in Figure 5. Anisotropy type and anisotropic axis tilt from vertical are indicated above each

plot.



P-SH Conversions in Layered Media 687Vol. 151, 1998

Figure 15
Radial component of the Ps % phase in family C models with negative anisotropy. Significant variation
of radial amplitude is seen only if P anisotropy is present in the model. The line type indicates the tilt
of the anisotropic symmetry axis from vertical: dotted −15°, dashed −45° solid −75°. Type of

anisotropy is indicated on the plots.

lobed for subhorizontal ŵ. The raypath through the anisotropic layer is too short
to induce substantial shear-wave splitting, so this patterns depends more on the
details of wave conversion at the interfaces. In another deviation from the general
tendency, only the radial amplitudes of Ps % are affected by a change of sign in the
anisotropic parameters B and E, while the lobe patterns are similar for both
‘‘melon’’ and ‘‘pumpkin’’ models.

Reverberations in a model containing three layers over a halfspace lead to
synthetic seismograms sufficiently complex to make later arrivals more difficult to
associate with particular interfaces. Although numerous phases comparable in
amplitude with Ps % appear in synthetics computed for pure S anisotropy, their
origin and properties are likely to be very model-specific. By extension, multiple-
layer models with distinct anisotropic parameters in successive layers will often lead
to P coda that are difficult to interpret.

Special Case—Horizontal Symmetry Axis

Most studies of shear-wave splitting due to seismic anisotropy assume that the
axis of symmetry ŵ is horizontal. This assumption is also made by KOSAREV et al.
(1984), FARRA et al. (1991) and VINNIK and MONTAGNER (1996) to analyze P-SH
conversions from upper-mantle discontinuities. In our synthetics, the azimuthal
patterns of converted phases that develop for horizontal axes of anisotropy are
qualitatively similar to the ‘‘near-horizontal’’ cases in each model family. The main
distinguishing feature of SH waveforms in the horizontal axis models is an exact
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sin 2j symmetry in the amplitude patterns. Zero amplitude nodes occur both
parallel and at 90° to the symmetry-axis direction, and all four lobes of the pattern
are of the same size.

Other Parameters, Other Effects

The velocity contrast across an interface in an anisotropic medium controls the
process of P-SH conversion, as it controls P-SV conversion in the isotropic case:
the amplitude of SH-type motion scales directly with the velocity jump across the
interface (Fig. 17). Converted-phase amplitudes are enhanced with an increase in
the incidence angle. An exception is the transverse component of the direct P,
which depends primarily on polarization distortion in the surface layer, and only
weakly on the velocity contrast of the interface.

Figure 16
Transverse component of the Ps % phase in family C models with negative anisotropy. Parameters of area
plots are as in Figure 5. Anisotropy type and anisotropic axis tilt from vertical are indicated above each

plot.
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Figure 17
Influence of the velocity contrast across an interface on the P-SH conversion. Compressional velocity
values of 6.0, 6.5 and 7.0 km/sec were used for the anisotropic layer over an isotropic halfspace with
compressional velocity 8.0 km/sec (model family A). Shear velocity values were computed as Vp/1.8. A
positive (melon) anisotropy of 5% in both P and S velocities were used in the layer. The plot depicts
amplitudes of transverse Ps (circles) and Psms (triangles) phases for rays incoming from back-azimuth

315° with an incidence angle of 30° (open symbols) and 50° (closed symbols).

The magnitude of anisotropy (i.e., the value of B and/or E coefficients in (1))
directly scales the amplitude of resulting P-SH conversions. Stronger anisotropy
leads to azimuthal patterns that are more differentiated but have nodes (polarity
changes) in the same places. It should be noted that direct dependence of converted-
phase parameters on velocity contrast and anisotropy extent holds only as long as
the sense of velocity change across the interface is preserved. These relationships
will break down if the velocity difference across the interface is comparable to the
anisotropic perturbation. In an extreme case, a directionally-dependent velocity
inversion may exist, so that different phases may be generated for different
combinations of incidence angle, axis orientation and ray back-azimuth.

Discussion

The effects of anisotropy one may hope to interpret successfully in P coda
involve both the presence of transverse motions (the phases Ps and Psms and the
transverse component of direct P), as well as the azimuthal variation of radial
amplitudes (P and Ps). Synthetic seismograms for a variety of simple 1-D an-
isotropic velocity models allow us to make a number of observations, and to
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propose answers for the questions posed at the onset of this study. The major
lesson drawn from this exercise is the importance of P anisotropy in the generation
of P-coda from teleseismic body waves, as well as the strong sensitivity of P-to-S
converted phases to the tilt of the symmetry axis of anisotropy. Most anisotropy
studies, aside from large-scale tomographic experiments, assume a horizontal or
vertical axis of symmetry and interpret data in terms of S anisotropy only. Our
experiments suggest that this may be too restrictive.

Models with a surface anisotropic layer (family A) are most efficient in
generating P-SH conversions in our experiments. Ps and Psms with amplitudes on
the order of 10% of the vertical P will be observed for incidence angles over 20°. A
transverse component of the direct P is a diagnostic phase of this model type,
indicating that anisotropy extends all the way up to the receiver. Also diagnostic is
the azimuthal dependence of the P-Ps phase timing, and strong azimuthal variation
in the radial component of the direct P.

A delayed first motion on the transverse component is diagnostic of models in
families B and C, in which the anisotropic layer is buried. For simple models with
a single anisotropic layer, the P-SH converted phase would likely be the most
energetic transverse arrival as well. The timing of this arrival relative to direct P
may be the best indicator of the depth of the buried anisotropic layer. Since the
surface layer is isotropic in both model families B and C, the variation of Ps-P
delay times is negligible, as is the variation in radial amplitude of direct P. A
possible discriminant between types B and C is the azimuthal variation of the radial
Ps phase. If the symmetry axis ŵ is tilted 45°, the pattern is two-lobed if the layer
is buried and ‘‘thick’’ (family B) and four-lobed if the anisotropic layer is buried
and ‘‘thin’’ (family C). It is instructive that both B and C model families yield
significant P-SH conversions only if P-wave anisotropy is present. Speculatively, a
thin layer of anisotropy within the crust may prove to be more appealing in crustal
models than the ‘‘anisotropic halfspace’’ concept. It is also instructive that large
transverse-component P coda can be generated with anisotropic layers that are too
thin to generate significant shear-wave splitting. The derivative-pulse shape charac-
teristic of the Ps % phase in model family C (Fig. 3) resembles a split shear wave, but
actually is generated by the interference of P-to-S conversions at separate inter-
faces. To distinguish between this type of effect and that of an anisotropic layer
above the P-to-S conversion, one might check for a transverse component in direct
P due to polarization distortion, and the transverse component of a ‘‘Psms ’’ phase,
generated by P-to-S conversion at the free surface.

It seems that discriminating the ‘‘melon’’ and the ‘‘pumpkin’’ models of an-
isotropy on the basis of P-SH converted data may be difficult with P coda
observations only, as the azimuthal patterns of most phases are similar. In model
family A the pattern of the radial Ps phase may help determine the sign of
anisotropy. Also a comparison of Ps-P delay pattern with that of the direct P
amplitude may be instructive. However, supplementary data may be necessary to
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distinguish directly whether inferred anisotropy is due to cracks or thin layering
(‘‘pumpkin’’) or LPO of mineral fast-axes (‘‘melon’’).

Stacking P coda to enhance converted phases is potentially a powerful tool. If
the symmetry axis ŵ throughout the crust and shallow mantle is horizontal,
stacking with cos 2j- and sin 2j-weighting with back-azimuth j should enhance the
signal-to-noise ratio and identify the strike of ŵ. Likewise, the effects of P and S
anisotropy are quite similar for horizontal ŵ. Although this makes distinguishing P
from S anisotropy difficult from seismic data alone, the tradeoff between the two is
straightforward. However, if the axis is tilted, the converted-phase azimuthal
patterns can be four-lobed, two-lobed or a mixture of the two. The two anisotropy
types behave differently as ŵ varies from horizontal to vertical, making data
interpretation more challenging.

Conclusions

Seismic anisotropy in a flat-layered homogeneous medium results in the genera-
tion of P-SH converted phases and also affects P-SV conversions. Since the
anisotropy of many rocks can be approximated to possess either a fast or slow axis
of symmetry, we have used hexagonal symmetry in our calculations, varying the
orientation of the symmetry axis ŵ. P-SH conversions arise in models containing
either P and/or S velocity anisotropy, with P anisotropy leading to stronger effects
in many of the scenarios we examined. Synthetic P coda from different combina-
tions of anisotropy type, sign and location are substantially distinct, and potentially
resolvable in band-limited noisy data.

The strengths of P-SV and P-SH conversions vary with the back azimuth j of
the incoming wave relative to the axis of symmetry ŵ. These patterns can be used
to distinguish candidate models of anisotropy. The tilt of the anisotropic symmetry
axis and the incidence angle of the incoming P wave control the resulting azimuthal
pattern. Perturbative waveforms on the radial component, whether due to con-
verted phases or polarization distortions of direct P, are symmetric to sign changes
in j. Perturbative waveforms on the transverse component are anti-symmetric to
sign changes in j. Near-vertical axes of symmetry result in azimuthal patterns that
are effectively two-lobed (sin j). A transition to asymmetric four-lobed pattern
occurs with increasing tilt and is more pronounced for shallow incidence P waves.
The perturbative waveforms often do not vanish at the pair of ‘‘nodes’’ that define
extra lobes in the azimuthal pattern, but rather distort gradually in a manner that
makes the precise location of the polarity transition somewhat subjective. Patterns
with exact sin 2j and cos 2j symmetry, and waveforms that vanish at the second set
of polarity transitions, occur only when the axis of symmetry ŵ is horizontal. The
effect of pure P anisotropy is maximized when the symmetry axis ŵ is tilted 45°
from the vertical, while the effect of pure S anisotropy is strongest for subhorizon-
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tal axes. In the case of mixed anisotropy, azimuthal patterns follow the stronger
influence. For subvertical axis tilts, models with pure P and pure S anisotropy
predict transverse Ps patterns of opposite polarity. Aside from a few cases, changes
of anisotropy sign, that is, switching between slow and fast axes of symmetry,
results in azimuthal patterns that are mirror images of each other.

Our synthetic P coda suggest that interference between P-to-S converted phases
from different interfaces within the crust can create SH-waveforms that resemble
the derivative-pulse waveforms diagnostic of shear-wave splitting. Paradoxically,
these phases are best generated by thin layers of compressional, not shear, an-
isotropy with a tilted axis of symmetry.
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Appendix: Relation to THOMSEN (1986)

Anisotropy with one axis of symmetry can be parameterized by seven constants,
two of which describe the orientation of the axis of symmetry ŵ, and five elastic
parameters. Several choices for the five elastic parameters exist in the literature
(ANDERSON, 1989). The choice we take in (1) was initially derived for weak
anisotropy with a horizontal axis of symmetry in the context of marine refraction
studies (BACKUS, 1965). In the limit of weak anisotropy, the coefficients in (1) can
be related directly to a decomposition of the elastic tensor, each term of which
possesses hexagonal symmetry with respect to rotations about ŵ (SHEARER and
ORCUTT, 1986). We express the elastic tensor in each layer with the following
decomposition:

L=ALA+BLB+CLC+DLD+ELE, (2)

where

LA=I�I

LB=W�I+I�W

LC=8W�W−I�I (3)
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LD= (13)I�I+ (14)I�I−2I�I

LE=2[(13)LB+ (14)LB−2LB ]+LD.

The ‘� ’ symbol denotes the tensor product operation, and W=w/ �ŵ−1
2I, where

I is the identity tensor. The permutation (ij) indicates the interchange of the ith and
jth tensor index e.g., {(13)I�I}ijkl=dkjdil. An isotropic elastic tensor L(0) contains
only terms proportional to the isotropic tensors LA and LD, as neither depends on
ŵ.

When using expressions (2) and (3), we are neither limited to ‘‘weak’’ anisotropy
nor to a horizontal axis of symmetry. For ‘‘strong’’ anisotropy, PARK (1996) shows
that the azimuthal phase velocity formulas (1) are the first-order approximations to
the P and SV head-wave velocities of a medium with horizontal ŵ and elastic tensor
described by (2) and (3). For modeling media with more complexity, it is possible
to form a linear combination of anisotropic deviations from an isotropic reference
model, each with its own axis of symmetry ŵ. This would be useful for media with
both oriented cracks and oriented minerals, if the orientations differ, or for media
with orthorhombic symmetry.

Another common parameterization for hexagonally-symmetric anisotropy is
that derived by THOMSEN (1986) for a vertical axis of symmetry in the context of
shallow seismic profiling. Thomsen references phase velocities to the vertical
velocity, rather than to the average of the velocity extremes, with three anisotropic
parameters g, o and d*. In applications, Thomsen recommends replacing d* with a
first-order approximation ‘‘d ’’. To relate these parameters to our anisotropic
parameters B, C, and E, we can use the formulas of YU and PARK (1993) to express
the elastic tensor 6×6 matrix format {Cjk } for a vertical axis of symmetry. We
adopt the usual conventions, with components 1, 2, 3 corresponding to x, y, z,
respectively, and Cjk=Llmnp according to the substitutions 1�11; 2�22; 3�33;
4�23; 5�13; and 6�12. The matrix C is expressed as

Ã
Ã

Ã

Ã

Ã

Æ

È

A−B+C

A−B+C−2(D−E)

A−3C−2(D+E)

A−B+C−2(D−E)

A−B+C

A−3C−2(D+E)

A−3C−2(D+E)

A−3C−2(D+E)

A+B+C

D+E

D+E

D−E

Ã
Ã

Ã

Ã

Ã

Ç

É

(4)

where the blank indices are zero. Using the formulas in PARK (1996), the Christof-
fel matrix K for this elastic tensor can be computed for an upgoing plane wave at
an angle of incidence u to the vertical, using wavenumber vector k= x̂ sin u−
ẑ cos u. (Note that z increases downward in the coordinate system of our synthetic-
seismogram calculations.)



Vadim Levin and Jeffrey Park694 Pure appl. geophys.,

K=

<(A−B+C) sin2 u+ (D+E) cos2 u

0

−(A−3C−D−E) sin u cos u

0

D+E cos 2u

0

−(A−3C−D−E) sin u cos u

0

(A+B+C) cos2 u+ (D+E) sin2 u

=
(5)

The eigenvalues of the Christoffel matrix correspond to the phase velocities of the
quasi-P, quasi-SV and quasi-SH polarized waves. These phase velocities correspond
to those derived by THOMSEN (1986).

Using (4), we can relate the two sets of anisotropic parameters, using Thomsen’s
definitions

o=
C11−C33

2C33

=−
B

A+B+C

g=
C66−C44

2C44

=−
E

D+E

d=
(C13+C44)2− (C33−C44)2

2C33(C33−C44)
=

8C2−B2−2BC−2(B+4C)(A−D−E)
2(A+B+C)(A+B+C−D−E)

. (6)

The first two of Thomsen’s parameters relate directly to our parameters B and E for
the cos 2j azimuthal variation in phase velocity. The negative sign in the formulas
for o and g reflects the preponderance of ‘‘slow’’ symmetry axes in crustal environ-
ments, corresponding to crack and/or fine-layering anisotropy. The formula for d is
complex, but can be reduced by discarding higher-order terms to obtain

d:o−
4C

A+B+C
(7)

From this formula, one infers that the phase velocity surface for quasi-P waves is
elliptical only if o=d. This condition is not satisfied for many of the anisotropy
measurements tabulated in THOMSEN (1996), indicated that C=0 might be an
incorrect assumption. However, extending these measurements to characterize
crystalline bedrock may be risky. All elastic properties tabulated in THOMSEN

(1986) involve shallow sedimentary facies relevant to oil exploration, with relatively
few values measured in situ. For the in situ measurements of seismic anisotropy
tabulated in THOMSEN (1986), o:d tends to be better satisfied. This suggests an
enhancement of C by decompression, perhaps via an increase in the porosity of a
rock sample.

The case for setting C=0 in our calculations is supported by the perturbative
expressions for anisotropy in cracked isotropic media (HUDSON, 1981; CRAMPIN,
1984). These expressions estimate that B=C=0 for fluid-saturated cracks, and,
using (4), one can show that C=0 of the first-order perturbation associated with
dry cracks. In the second-order dry-crack perturbation in a Poisson solid,
C/B+0.1, suggesting that P-phase velocities are near-elliptical for this case, in
Hudson’s perturbation theory at least.
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A suggestion that C might typically be nonzero arises from a special case in the
theory for anisotropy caused by thin-layering of different media (BACKUS, 1962;
HELBIG, 1994; THOMSEN, 1986). In this theory, Thomsen’s parameter d:0 if the
alternating lithologies share a common Poisson ratio. This is equivalent to C=
−B/4, a small value, but not zero. However, constant Poisson ratio is not the norm
among crustal rocks. A typical intercalation in the crystalline basement might
involve felsic and mafic rock types, where the mafic layers have higher seismic
velocities a, b and higher Poisson ratio (i.e., a higher velocity ratio a/b). Using the
averaging formulas in Chapter 7.4 of HELBIG (1994), one can demonstrate that
BB0 and 05 (B+4C)/B51 for this case, so that �C � is bounded by �B/4� and can
be considerably smaller.

Teleseismic P-coda reverberations with periods TH1 sec are typically used to
investigate the properties of the bulk crust, e.g., its Poisson ratio, or differences
between upper and lower crustal layers. Given the above estimates, our choice to
neglect the cos 4j azimuthal variation in P velocity seems reasonable as a working
hypothesis for the bulk of the crust. However, shallow structures, such as sedimen-
tary basins, may require this parameter for an accurate description of the P-coda.
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