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Coupled Free Oscillations of an Aspherical, Dissipative, Rotating Earth:

Galerkin Theory
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Variational theory based on self-adjoint equations of motion cannot {ully represent the interac-
tion of the carth’s seismic free oscillations in the presence of lateral structure, attenuation, and
rotation. The more general Galerkin procedure can model correctly the frequencies and altenua-
tion rates of hybrid oscillations Implementation of either algorithm leads to a generalized matrix
eigenvatuc problem in which the potential and kinetic encrgy interactions arc separated into distinct
matrices. The interaction of the carth’s seismic frce oscillations duc to aspherical structure,
attenuation, and rotation is best treated as a matrix cigenvalue problem. The presence ol attenua-
tion causcs the matrices to be non-Hermitian and requires the use of a general Galerkin procedure
Physical dispersion, represented as a logarithmic function in frequency, must be represented by a
truncated Taylor series about a fiducial frequency in order to be incorporated in the Galerkin for-
malism in a numerically tractable manner. The earth’s rotation introduces an interaction matrix
distinct from the potential and kinetic energy matrices, leading lo a quadratic eigenvaluc problem
A simple approximation leads to an eigenvalue problem linear in squared [requency Tests show
that this approximation is accurate for calculations using modes of frequencies f/ > 1 mHz, unless
interaction across a wide frequency band is modeled. Hybrid oscillation particle motions are
represented by matrix cigenvectors that can be significantly nonorthogonal. The degrees of free-
dom in the low-frequency seismic system remain distinct, since source excitation is calculated by

using dual eigenvectors

Synthetic seismograms that are constructed from Galerkin coupling calcu-

lations without reference to this eigenvector nonorthogonality can be disastrously noncausal

1. INTRODUCTION

The evidence for significant lateral structure throughout
the mantle grows with each round of observational studies
in low-frequency seismology. Each of these studies relies
on some simplification of the full equations of seismic
motion. Lateral models derived from time domain obser-
vations of surface waves [Okal, 1977, Nakanishi and
Anderson, 1983, 1984; Woodhouse and Dziewonski, 1984;
Tanimoto, 1984; Tanimoto and Anderson, 1985} rely on a
high-frequency, geometric ray approximation to the equa-
tions of motion, often termed the great circle approxima-
tion. The limitations of this approximation for surface
waves are best suggested by the study of Woodhouse and
Girnius [1982], which presents kernels for offpath scatter-
ing. Moreover, both body wave and surface wave studies
thus far have used tomographic (fixed ray) approximations
to the geometric ray formulation. The shortcomings of
this tomographic approximation for surface waves have
been demonstrated by Lay and Kanamori [1985) and Wong
and Woodhouse [1983]. Both noted a significant lateral
wander of the "true" geometric ray from the tomographic
approximation. Lateral models constructed using apparent
frequency shifts of fundamental spheroidal free oscilla-
tions [Silver and Jordan, 1981, Masters et al., 1982] use an
asymptotic representation of the effect of the first-order
splitting of the singlets of degenerate free oscillation mul-
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tiplets due to Jordan [1978], that at bottom, also relies on
a tomographic (i.e., great circle) approximation to the
equations of motion. Spheroidal overtonc splitting obser-
vations [Masters and Gilbert, 1981; M. Ritzwoller et al.,
unpublished manuscript, 1986] have often appeared to be
characterized by simple spherical harmonic surface depen-
dence. Although this behavior is a blessing so far as
obscrving isolated singlets is concerned, it restricts our
inferential capability to only axisymmetric models (i.e.,
spherical harmonic expansions with azimuthal order ¢ = 0).

Although a bootstrap-style iterative improvement in
lateral structure models using successively refined
representations of the full equations of motion is virtually
inevitable, it has become both possible and feasible to
model complete low-frequency seismograms using sums of
coupled free oscillations. The approximations that must
be made in such calculations in return for numerical trac-
tability are different in nature from those associated with
the high-frequency, geometric ray approximation. A first-
order splitting calculation, in which no coupling is
assumed between distinct free oscillation multiplets, is the
first-order approximation to the full coupled mode seismo-
gram and can represent much more wave propagation
behavior than the great circle surface wave approximation.
The effect of including interactions between some modes
and neglecting interactions between others can be assessed
numerically using theorems from matrix algebra.
Although an inversion scheme using the full coupled
mode seismogram formalism has not yet been attempted,
we can compute scismograms for realistic models to dis-
cover more accurately the behavior of low-frequency
seismic waves in a laterally variable earth.

The goal of this study is to show how free oscillation
coupling calculations can be incorporated into our search
for global lateral structure in the decp earth. A discussion
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Fig. 1. Schematic of coupled pendulum problem discussed in text

of the methods of performing coupling calculations is
given, followed by recipes and examples of the construc-
tion of synthetic seismograms. Examples of coupling due
to rotational Coriolis force that are clearly observable have
been given by Masters et al. [1983] and Park [1986] and
were shown to correspond to coupling calculations in a
qualitative manner. The discussion of coupling kernels,
whose form will determine our ability to resolve structure,
will be addressed in a later study. Various degrees of cou-
pling interaction are demonstrated and compared in cou-
pled, fundamental mode, synthetic seismograms.

We preface the theoretical exposition with section 2,
where the mechanical problem of two coupled pendula is
examined. In this example we model the coupling and
attenuation properties of the system in a manner identical
to that later applied in free oscillation problems. The
reader can inspect how the relations of matrix algebra
apply to the physical problem of excitation and attenuation
properties.

Section 3 outlines the Galerkin formalism for calculat-
ing coupled modes from a fixed basis Lagrangian interac-
tion.  Formulae for source excitation calculafions are also
given in a recipe for constructing coupled mode synthetic
seismograms. The equations of motion for a rotating
earth lead properly to a quadratic eigenvaiue problem.
The inclusion of physical dispersion into the eigenproblem
will, in the case of an absorption band attenuation model,
lead to a transcendental eigenvalue problem. Nearly all
applications can be adequately modeled as a quadratic
eigenvalue problem. We show how the quadratic eigen-
value problem reduces to a more tractable linear eigen-
value problem using an approximation to the term linear
in oscillation frequency .

Section 4 discusses the numerical effects of adding dissi-
pation to the problem. If spherical earth modal singlets
with differing attenuation rates are included in a coupling
calculation, the matrix interaction system loses ils sym-
metry. This increases the numerical computations
required for solution by a factor of 3 or more. The
nonorthogonality of distinct-frequency free oscillation par-
ticle motions in the presence of attenuation is an addi-
tional nontrivial consequence.

Sections 5 and 6 present numerical examples of cou-
pling interaction on rotating, attenuative, earth models
with lateral structure. Section 5 examines the numerical
error introduced by solving the Galerkin interaction prob-
lem with a linear eigenvalue problem rather than the more
accurate quadratic eigenvalue formalism. The discrepancy
is found to be small but should be detectable for the
gravest free oscillations. Section 6 shows examples of how
the non-Hermiticity of the attenuative interaction matrices
leads to significant . nonorthogonality of free oscillation
modal singlets. We show how, if this nonorthogonality is
neglected when calculating synthetic seismograms, severe
problems (e.g., noncausal seismic motions) can result.
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2. A SIMPLE MECHANICAL EXAMPLE

We illustrate the importance of dissipation in coupling
problems with a simple mechanical example. Suppose we
have two pendula (Figure 1) with identical length [ side
by side with inertial masses M,, M,, where M, = M,.
The two pendula are connected with a massless spring of
spring constant k. The angle §; represents the deflection
of the ith pendulum small enough to approximate
sin #; = 0;. We can immediately write down the Lagran-
gian energy functions for potential and Kinetic enecrgy,
respectively;

V="1YMgLo}+ hMgL0}+ HhkL>(0,—0,)?

2 2 n

de, dae,
—| + WBM,L? =
M dt

T= 1/2}‘41142

where g is gravity. We assume sinusoidal oscillation with
frequency @ and obtain a 2x 2 generalized eigenvalue
problem

Mgl +kL? —kL?
det

Msz+kLz

ML> 0
o mrf[=9
)

The most efficient mathematical solution of (2) proceeds
by diagonalizing the kinetic energy interaction matrix to
obtain a standard eigenvalue problem:

—w

—kL?

_&4_*{(., __:L
L M (MM 1o

det K _&+_IL —w“[o 1] =0 (3)
(MM L M,

If k=0 we obtain @ =+/g/L for both (uncoupled)
modes  of  vibration. f k>0 w=-g/L,
{/L)+ k[/ M)+ (Y M)} are the split doublet fre-
quencies. The splitting width increases monotonically with
increasing k. This behavior is well known from mechani-
cal coupling problems [Sommerfeld, 1952, pp. 106—-111].
The orthonormal eigenvectors of (3) are

a. = (M37% M7") (M+M,)"
and

&+ - (MT% ,—MQH% )/ (MH‘Mz)%

These vector quantities must be transformed to the eigen-
vectors a,,a_ of the original physical problem (2).
o= 21D, a, = (My—M) (Mi+M3)" are the free
modes of oscillation of the coupled pendulum system.
The two solutions e_, e, refer to modes that leave the
spring undisturbed and flex it, respectively. Note that
a_-a,. %0 unless M= M, The two modes of motion
are orthogonal, however, when the Kkinetic energy metric
defines the inner product. (This is the usual requirement
for the modes to be "orthogonal” in the physical sense.)
The nonorthogonality of these vector representations of
free mode displacements can cause some confusion in
evaluating pendulum motion from given initial displace-
ment values #{% and #{%. For {0 = 9{9 cxamination of
the equations of motion for the sysiem reveals that
6,(t) = 0,(t) for all succeeding times. This is true only if
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coupled pendula, one with friction
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Fig 2. Each line represents a locus of (Relw) Im{w)) values as a

tunction of spring constant & At k=0, the two resonant frequen-
cles are w_ =Vg/L ,w, = \/g/l (1 +1(2Q) 1), As k increases,

w_ and w, migrate to sweep out the curves shown, one sel Ior
cach value of M/ M, When M, =
k for which w, = m_ and the displacement cigenvectors become
paratlel

the mode «, is not excited. The initial displacement
©©,049) is parallel to @_ but not orthogonal 1o e, and
therefore is an improper quantity with which to calculate
modal excitation. In seismic excitation problems, fault
displacement is usually expressed in lerms of "equivalent
forces," the force field required to suspend fault motion
until rupture occurs. The force vector required to suspend
the initial displacement ({9,059 is © =
(M g0, Myg0s®). 1t 00 =9, fO.q, =0 and the
desired orthogonality is achiecved. In the excitation of
pendulum motion the displacement e, must be multiplied
by equivalent force vectors. Note that this requirement is
mathematically equivalent to the orthogonality of modal
displacement with respect to the kinetic energy inner pro-
duct (the right-hand matrix in (2)). The "equivalent
force" metaphor, however, is commonly used to describe
seismic sources and so better to illustrate the connection

between the pendulum example and the excitation of

seismic free oscillations.

Suppose the first pendulum is supported on a friction-
less hinge and the second one on a slightly rusty hinge.
We can model the energy lost to dissipation in the second
pendulum as a hysteresis effect in which it loses a fraction
27/ Q of its vibrational energy during each full oscillation.
The parameter Q, assumed to be much larger than unity,
is the quality factor. This model is uniformly preferred in
seismic free oscillation studies over the velocity-dependent
frictional potentials favored in most mechanics texts le.g.,
Goldstein, 1980, p. 265], since seismic Q of free oscilla-
tions is directly measurable. The hysteresis attenuation is
modeled by adding a small imaginary part to the friction-
less pendulum frequency: w? = (g/L)(1+iQ~!). Substitu-
tion of this expression into (2) yields a general complex
eigenprobiem that leads to squared. eigenfrequencies

M, there is a critical value of

Ly 1/z(~—+—~)

- £
L(1+ Q T

%
LQ

The behavior of w, for k > 0 is plotted in Figure 2.
Each line represents a locus of w, values for a given
r= M)/ M, Ask increases from zero, the two eigenfre-
quencies come closer, shaving the difference in squared
eigenfrequency to a minimum as the imaginary-part
(attenuative) frequency components become more equal,

e —) (4)

k k
1 _ 2_
+ (Ml Mz) M,

Q2L2

As k — oo the difference between the imaginary com-
ponents approaches an asymptotic minimum
. M, M
min(Im(w;—o_)) = LQ (=27 )/ (1+ M2 (5)

As k increases, the repulsion of the real-part eigenfre-
quencies takes over. For M,= M, this transition in
behavior occurs sharply when the spring constant

= (g/QL) [(/MD+ (MY, at which point the
eigenvalues are accidentally degenerate. The complicated
attraction and repulsion of eigenvalues in the complex
plane mimic the frequency behavior of coupled free oscil-
lations with variable attenuation rates.

The pendulum motions in this example are very
different from those appropriate to a f{rictionless system.
In a fIlcllonlesS system the ordinary complex vector dot
product a a+ a_=0. If one computes ImJr & | as a func-
tion of k for the system with hysteresis friction, the
degree of nonorthogonality is striking (Figurc 3). This
behavior makes necessary the introduction of dual eigen-
vectors 1o describe properly the forced motions of the sys-
tem. This has been recognized in the free oscillation
problem by Dahlen [1981] and is crucial to the construc-
tion of synthetic seismograms from coupled free oscilla-
tions of varying attenuation rates. The dual cigenvectors
B4, B_ of this system are found by solving the "adjoint"

one with Tfriction

coupled pendula,

nw 1.0

gM/QL

cosine betweer

spring constant k

Fig. 3. Duecllon cosine between &, and &, defined by
cost =a) - a_/ (lalilla_ 1%, plotted as a functlon ol spring
constant k for the choices of M,/ M used in Figure 2. The value
of k for which w, = w_ when M, = M, is indicated along the
spring constant ordinalc
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coupling without attenuative effects
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Fig. 4. Time series of pendulum motion for two coupling examples. The top two traces show motion of the two
pendula coupled without reference to attenuation effects but with both free modes given 0=100. The lower two
traces show pendulum motion calculated with the Galerkin procedure, cognizant of altenuative coupling effects
The lower traces do not show the beating between pendula present in the upper traces

eigenvector-eigenvalue problem. This problem is the
transpose of (2). If the coupling interaction were nonat-
tenuative, the matrix system would be real-valued sym-
metric or complex valued Hermitian. Solving the adjoint
problem would give dual vectors B, = &; FEIRIRIER. ()
Hae,ll = 1, the dual vector formalism reduces to the ordi-
nary complex-vector dot product. With (friction, the
matrices in (2) are complex-valued symmetric, and
B, = @, and B_ = &_ as long as we choose the complex
scaling factor that forces Otherwise
Bs=a, / (&i '&i)~

Despite the "self-dual' appearance of the eigenvectors
and their adjoints, they are not orthogonal under the prop-
erly defined Euclidean norm in complex two space, ie.,
llall = @&*-@&. In general, B-&=0 does not imply
B*-a=0 if the components of B and & have nonzero
relative phase. Nonzero relative phase means that in a
given eigenmode, the two pendula do not swing either in
tandem or in exact opposition. We can illustrate this with
the time-dependent behavior of the coupled pendulum
example. Let g/L=1s2 Q=50, and M/ M,=r=1.1.
We choose the spring constant k = 0.01045 M|, the value

a, o =1,

at which the squared eigenfrequencies w2 are closest. The
frequencies wi are indicated in Figure 2. The two free
modes of oscillation have quality factors Q, =130,
Q_=82.6. The eigenvector solutions (unnormalized) are
ay=(1.,—0.1664+0.779i), a_=~ (1.,0.2614+1.227i). The
unnormalized displacement vectors e, for the free modes
of oscillation are gotten by dividing the second component
of @, by Vr = 1.05. From the complex phase of the
second component relative to the first, it is seen that in
the positive mode, the motion of the first pendulum leads
the motion of the second by roughly 102°. In the negative
mode, the motion of the second pendulum lags behind
that of the first by roughly 78°. This contrasts with the 0°
and 180° phase lags of the nonattenuative coupling case.
The splitting of real-part eigenfrequencies is roughly 5
times greater in the nonattenuative coupling case for this
choice of parameters. To contrast the two coupling
schemes (attenuative and nonattenuative), we give each
nonattenuatively coupled freec mode a Q of 100 and plot
in Figure 4 the pendulum motion arising from unit initial
displacement of the first pendulum for both coupling
schemes. We plot motion for 0< ¢ < 1250 s, correspond-



PARK AND GILBERT: GALERKIN THEORY FOR SrisMIC OSCILLATIONS

ing to roughly 200 cycles of motion. Note the bealing
between the two pendula in the nonattenuative coupling
example. The beating, as explicated in many mechanics
textbooks, has a modulation frequency ®med
Relw, —w_). Energy will pass back and forth between the
pendula until all motion decays away. The motion of the
attenuative coupling example is not visibly affected by
beating. Two effects cause this. First, the modulation fre-
qUENcy @mea = Relw,—w_) for this example is much
smaller. Second, the free modes have distinct atlenuation
rates. If both a,,a_ modes of oscillation are initially
equally excited, the negative mode motion will have
decayed to ~25% of the positive mode motion amplitude
at the end of 100 cycles. Destructive interference cannot
occur with the amplitudes so mismatched. As { — oo, the
relative phase of the pendulum displacements will
approach thal between the components of a., with a
steady ratio of amplitudes.

Many of the qualitative effects derived from this simple
mechanical example will carry over into the description of
the coupled seismic free oscillations of the earth.
Although the mathematics involved is more complex, the
coupling of spheroidal and toroidal seismic oscillations is
formally similar to the above pendulum example. Espe-
cially when influenced by the rotational Coriolis force,
spheroidal and toroidal modes couple and split in real-part
frequencies, while tending to average the higher toroidal
attenuation rate with the lower spheroidal attenuation.
Residually higher Q of dominantly spheroidal (St) modes
can prove troublesome in the search for dominantly
toroidal (Ts) modes in seismic data. As in the coupled
pendulum example, Ts motion can decay rapidly relative
to the less dissipative St motion, obscuring its existence
beyond the first few dozen oscillations. If the spatial com-
ponent relative phase is known, it is possible in principle
to remove the St motion via a matched filter. In practice,
however, St motion is composed of dozens of distinct
modes of oscillation, complicating any effort to remove it.

In order to discuss more fully the coupling of seismic
free oscillations and its expression in both the frequency

and time domains, it is necessary lo introduce more .

sophisticated mathematics, in particular, the Galerkin for-
malism. The outline of this procedure is the subject of
the next two sections.

3. VARIATIONAL THEORY:
NONDISSIPATIVE EARTH MODELS

Before we outline the Galerkin procedure, it will be
helpful briefly to review variational theory as applied to
the earth’s normal modes. The formal aspects of the nor-
mal mode variational principle have been developed in
detail by others le.g., Dahlen, 1973, Woodhouse, 1976;
Woodhouse and Dahlen, 1978], and it is to those sources
that the reader must turn for a full derivation. One begins
with the equations of motion for small elastic-gravitational
oscillations of an earth model about stable equilibrium.
The earth model is contained within a volume V and is
characterized by material and stress properties as a func-
tion of vector position r within V. density p (), gravita-
tional potential ¢ @), an initial stress field To@), and a
fourth-order tensor C = {Cy;(r)} relating stress and
strain. We will consider earth models that rotate with a
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steady angular velocity €, aligned with the Z axis. The
centripetal potential associated with rotation s r) is

P @) = —1A1Q2—(Q - 1)?] (6)

where 0 = |Q], r = |r|. The gravitational potential is
related to the density via the Poisson equation

Vi) = 4w Gp ) (7

where V2 is the Laplacian operator and G is the gravita-
tional  constant. We define the  geopotential
®olr) = ¢ @) + i ). The value of apparent "gravity" for
which the mass at position r is at equilibrium on the rotat-
ing earth is —V®,{r). Consider an elastic-gravitational
disturbance characterized by a vector displacement func-
tion s (r) and a gravitational potential disturbance ¢;().
The linearized equations of motion in the frequency
domain that govern this motion are [Dahlen, 1973]

plews+ 2o xs+Vh +s VVd) =V T (8)
Vz(bl =47 Gp,
where
pr=—V - {ps) 9

w is angular frequency, i?= -1, and ¥V and V'V are the
vector gradient and dyadic derivative, respectively. T@) is
the incremental Piola-Kirchhoff stress tensor related to the
incremental strain € = 4[Vs+ (Vs)T] by

T=A:e (10)

This double-dot pfoducl represents
Ty = Ay ext (1D
using the standard index summation convention. The

fourth-order tensor {A;;J may be expressed in terms of
the elastic tensor {C,;,-k(} and the initial stress field T.

A = Cig + AT+ T8y + Tid g

— T8y~ T8, — Tj1dy) (12)

There exist solutions of (8) at a denumerably infinite
number of eigenfrequencies w, . On a nonrotating spheri-
cal earth model the equations of motion can be solved in
terms of vector spherical harmonics. One expresses
st)=s(.0.¢)

s=,UURYPOH) +,V DV Y OD)

L WR X Y 0$) (13)

where f,(),&) are unit vectors in the spherical coordinate
directions, V= 69, + cosec()&f)(,, is the spherical surface
gradient, and Y7 (@,¢) are scalar spherical harmonics of
angular degree ( and azimuthal order m. The subscript n
refers to overtone number. We use the definition of
Edmonds [1960], in which the spherical harmonics are nor-
malized by

2
f f (Y (0.1 Y7 0.0)sin0dBdd = § Sy (14)
0 %0

where integration is over the unit sphere. We use
complex-valued harmonics to represent more easily rota-
tional splitting and coupling. On a spherical nonrotating
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earth model, each overtone number/angular degree pair
(n,0 defines a multiplet within which the 2(+ 1 azimuthal
orders —f{ < m < [ of the (th degree spherical harmonic
label individual singlets. Each singlet represents a possible
angular pattern of motion at the degenerate multiplet fre-
quency ,wy. '

A variational principle can be obtained from (8) by tak-
ing its scalar product with D,s*, where D, is the substantial
(Lagrangian) time derivative and s* is the complex conju-
gate of s. One integrates the resulting scalar quantity over
the earth’s volume V to obtain an expression for the
Lagrangian of the system governed by Hamilton’s varia-
tional principle. Woodhouse and Dahlen [1978] give the
desired expressions in terms of an integral functional
L{w,s,¢;) given by

L=fV i(s*,¢*,s,¢l)dV+{ [MG*0*s $)7dx  (15)

where

L=ploks*s+2ios* (Qxs)+s* Vp+s -V +s*

VYD) + GrGY Ve P+ eAe (16)
and
M= 1h[@E -s*)Vs - rs)+ G -$)Vs - (ms*)—ms™
c(Vss) i—ms- (Ves*)-n]l A7

The surtace integral arises from the extra prestress terms
necessary at frictionless intérnal bounidaries. [M]* van-
ishes at welded boundaries and at the free surface, contri-
buting to L only at fluid-solid boundaries. The variational
principle is satisfied for an clastic-gravitational deformation
field (s,¢,) at a frequency w if the functional L is station-
ary with respect to small perturbations in's and ¢,. Such
deformation fields satisfy the equation of motion (8). At
solutions of (8) the functional L will vanish as well. As
defined, the functionals L. and M are symmetric in (.6 /)
and (s*,¢ ). They are therefore Hermitian bilinear forms.
It is convenient to rearrange (15)--(17) by powers of w:

L=VGE*s$)+ oW *s) — 0’TE*s) (18)
where we have left implicit the dependence on ¢; in the
notation of the functionals.

T(s*,s)=fps*~st (19
vV

W(s*,s)=f 2ips™- (2 xs)dV (20)
v

Vis*s) =f G* Vo +s -V +s*- VVD-s)
v

Ll

W |V¢1|2+e:A:e]dV+! Ms*s)]Tds (21

are the kinetic energy functional, Coriolis functional, and
potential energy functional, respectively. Each of these
functionals is Hermijtian bilinear in s and s*. The func-
tionals V', W, and T ar¢ Fourier-transformed quantities
that represent time-averaged energy. The variational prin-
ciple thus formulated becomes

L=0=VE*s)+oWE*s)— w’Ts*s) (22)
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and

3L =0 (23)

with respect to small perturbations ins and ¢.

The numerical application of the variational principle is
explicated in many textbooks [Moiseiwitsch, 1966, Mar-
chuk, 1975]. In the normal mode problem, one selects a
basis set of functions {s,,s,, - - - ,sy}, where we have
again left the gravitational perturbation implicit. These
basis functions have sufficient smoothness for the

differential equation and also satisfy the unperturbed

boundary conditions. One constructs an eigenfunction-
eigenfrequency pair with a linear combination of the s;.
Let s = a;s;, with sum over i implicit. Substitution into
(22) gives

0=L = Via'sSa;s;) + oW’ as;)

— sz((x,-*S,-*,a,S,) = o (V;+o W;—w?T;)a, (24)
where
Vi=V&ts;)
W, = WiE*s;) (25
T, =TG s;)

are the matrix elements of interaction between the basis
functions. If we define the N vector e = (g, - - - ,an),
and the interaction matrices V = {V,}, etc., (24) reduces

0=a" (V+toW—0T) o (26)
Application of the variational principle gives us a quadratic
problem in angular frequency w. The quantity on the
right side of (26) is stationary to small changes in « if and
only if @ is an eigenvector of V+ oW —w?T. The matrices
V,W,and T are all Hermitian, e.g., V;; = V7, as they are
projections of Hermitian forms, The quadratic system can
be transformed into a linear eigenvalue problem at thc
expense of doubling the matrix size {Garbow et al., 1977].

Define
~ WYV _
V=11 o] T-

where T is the N x N identity matrix.
becomes

T 0

01 @7

Equation (26)

y* - V=oT) - y=0 (28)

where

(29)

The cigenvalue problem defined by (28) has 2N eigen-
values, whereas we only have N basis vectors. Since the
choice of matrix manipulation scheme cannot alter the
number of degrees of freedom in the problem, the eigen-
values of (28) must be related. Dahlen and Smith [1974]
note that if the eigenfunction-eigenfrequency pair (s,w)
satisfies (22) and (23), then so does (s*,—w). One forms
a sum of the two solutions

csm)e®  + c*s*@)e !

(T(l)](r)e’“” + C*d)l*(r)e*iw/ (30)
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where ¢ is an arbitrary complex scalar, to form a real-
amplitude standing wave pattern within the earth. Care
must be taken in the variational scheme that, if the basis
set {s, - - - sy} generates an eigenvector s’, the complex
conjugate (s')* is within the span of {s; - -+ sy} as well.
In practice, this is achieved by either choosing the basis
functions s; to be purely real, or, for complex-valued vec-
tor spherical harmonic expansions, including both its posi-
tive and negative azimuthal orders (+m). A basis set
composed in either manner will yield N eigenvalue pairs
(w~w) and N paits of eigenvectors (y*,y ). These
eigenvectors are related to the solutions of (26) by

B —wa
Y = a

wa+

a+

+ -

yt= 3N

at and a— specify the linear combinations of the basis set
{s, -+ sy} that combine according to (30) to produce
real-amplitude motion.

In the eigensystem in (28), V is not Hermitian. How-
ever, we can perform a similarity transform that will make
it so, as long as V is positive definite as well as Hermitian.
Under these conditions, we can form the complex Cho-
lesky decomposition

V=1L L4 (32)

where L is a lower triangular complex matrix and L is
the Hermitian transpose of L. If we define

1 0

0 L" (33

then §-T-§'=T leaves the Kkinetic energy matrix
unchanged and

g.a-1

§-V.§ ' =

W L
] (34)

LA 0

is Hermitian. The similarity transform leaves the eigen-
values of the system unchanged. The eigenvectors y, are
replaced by S -y = (wa,L7 -a).

V is not positive definite in cases where the degrees of
freedom spanned by the basis set {s, - sy} include
either secular motion (e.g., rigid rotation of the mantle
about the rotation axis) or unstable motion in the outer
core. Many standard earth models have regions in the
outer core with imaginary Brunt-Viisild frequency [Mas-
ters, 1979]. For these models there exist normal modes
with imaginary eigenfrequency. Secular modes have zero
frequency, and (28) will yield two eigenvectors

0
| e

If a*=a the matrix V is formally defective. The
numerically derived eigenvector associated with the defec-
tive eigenvalue should be used with caution, if at all. In
studies of free oscillation behavior, at all but the lowest
frequencies the potential energy matrix V will be positive
definite. Park [1985] describes coupling results for the
mode (S, for cases where V is singular.

Let S=1{s;, - - ,sy] be a set of normal mode eigen-
functions of a nonrotating, elastic isotropic spherical earth
model, referred to as the "terrestrial monopole" The "ter-

+

0
Y = +

a

restrial monopole" nomenclature also refers to models that
possess radially dependent anelasticity and whose attenua-
tive effects on basis set modes are calculated with first-
order perturbation theory. S is a global basis, as its
members are nonvanishing over the whole of the earth’s
volume V where that type of mode can be defined, e.g.,
all of V for spheroidal modes, the mantle and crust for
mantle toroidal modes. Let {w,(, wyy, * ** ,wey) be the
eigenfrequencies of the basis set S with respect to the ter-
restrial monopole.  Typically, these {requencies are
grouped into degenerate muitiplet frequencies. Rotation,
anisotropy, and lateral structure can be viewed as pertur-
bations to the terrestrial monopole, and their effect can be
quantified through Rayleigh’s principle. First-order per-
turbation theory based on Rayleigh’s principle has been
developed by Dahlen 11968, 1969], Madariaga [1971],
Zharkov and Lubimov [1970a,b], and others. The exten-
sion of perturbation theory to a global variational pro-
cedure using many different multiplets has been applied by
Luh [1974], Stifler and Bolr [1981], Morris and Geller
(19821, Kawakatsu and Geller (19811, Tanimoto and Bolt
[1983], and others. The formulation of Rayleigh’s princi-
ple for perturbations to density p, isotropic elastic parame-
ters u ., and boundaries, as well as rotation, deviatoric
prestress, and general anisotropy are given by Woodhouse
and Dahlen [1978). Expressions for all but the last two
effects in a form more suitable for computation are given
in the appendix of Woodhouse [1980]. Continuous volume
perturbations in p x, and p involve no approximations to
the general variational principle (24) on the finite basis set
S. The rotational terms of Woodhouse and Dahlen [1978]
neglect the second-order interaction of the earth’s rotation
with its induced equatorial bulge, which is important only
for certain secular modes. Terms appropriate to deforma-
tions at earth discontinuity surfaces involve an approxima-
tion because members of the global basis S fit the boun-
dary conditions on the undeformed boundary. Woodhouse
[1976] shows how boundary deformations can be handled
to first order in Rayleigh’s priciple. If the boundary per-
turbations are small, the spherical earth eigenfunctions
should be adequate to model observations of free oscilla-
tion data.

We reformulate (24) by taking Vy(*s), Tols*s) and
5Vis*s), 8T (s*s) as functionals for the terrestrial mono-
pole and the aspherical component of the given earth
model, respectively:

Vis*s)= Vys*s)+8V(s*s)

T@*s)= T,s*s)+3TE"s) (36)

5V (s*s) will contain interaction terms due to the cen-
tripetal force. 1f v, =8V (s*s), 1, =38T 6" s),

2
Vi = wady + v

where w,; is the unperturbed frequency of the ith singlet.
We have used the normalization convention

,T()(S,'*,Sj) = Sij (38)

For reasonable aspherical models, f; << 1 for all modes
of interest, and v; << w,w, whens;,s; are not secular
motions or outer core gravitational modes. When the
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basis set .§ does not contain any such zero or ncarly zero
frequency spherical earth modes, both V and T arc diago-
nally dominant matrices. Since the earth rotation fie-
quency £/ (27) = 11.6 nHz satisfies ) << w for all fre-
quencies of interest in terrestrial seismology, the Coriolis
functional matrix element satisfies wwy; << (wqw,;) when
s;.s; are not zero or nearly zero frequency motions of the
terrestrial monopole. [t is conventlional to choose a
fiducial frequency @ and absorb the matrix W intop the
potential energy matrix V to form a new interaction matrix

V=V+aW (39

The immediate advantage of (39) is that it reduces (26) to
a linear eigenvalue problem in @? of order N. We test the
numerical validity of (39) in a later section.

We wish to solve the linear eigenvalue problem
(V—u?T)-a = 0. T is positive definite Hermitian, so the
complex Cholesky decomposition T = L - L cxists, where
L is a complex lower (riangular matrix with inverse L=!.
The eigenvalue problem becomes

L'V L A—d) L a)=V'—ad)-a=0 (40)

We can decompose V' into its cigenvalues and eigenvec-
tors
V'=U-D U" (41

where D = diaglw?,w#, - - - ,wsy} contains the squared
hybrid eigenfrequencies w? and the columns of U contain

the eigenvectors &; of V'. "The @& are orthonormal with -

respect to the complex inner product &,-*~&, = 3;, and the
wf are rteal- A further transformation a, =L 7 a;
obtains the linear combinations of spherical earth singlets
that comprise the desired hybrid normal mode free oscilla-
tion singlets. The a; satisfy the orthogonality condition

LT ALM & =5, (42)

a,*~T'a,=&,*
Since T is close to the identity matrix (1; < the maximum
fractional change in density, presumably small except in
the crust), the e, are nearly orthonormal.
The solution to the quadratic eigenvalue problem is
similar. If T=L-L7, V=LV -L¥,
W =L"1W-L7 and

- W'y’

V=110
tllen §olulion of the~ lincar eigenvalue problem
(V'—wl) - % = 0, where I is the 2N x 2N identity matrix,

will yield hybrid eigenfrequencies +w, and eigenvectors
yi such that

(43)

(44)

~
Y =

The desired hybrid singlets arc again obtained by the for-
mula e = L "&; . Only the af are needed in the calcu-
lation of synthetic seismograms.

The excitation of seismic motion by an earthquake
source can be expressed for both rotating and nonrotating
carth models. Dahlen [1978] shows that the two cases
differ by a term proportional to §§/Q, the fractional
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change in the earth’s rotation frequency caused by the
redistribution of mass following an earthquake. This term
arises from coupling of the elastic-gravitational normal
modes with the secular axial spin modes of the earth. For
almost all seismic applications, the excitation expansion
for the nonrotating case is adequate. If the seismic source
is modeled as a point source, it can be defined by a
frequency-dependent moment tensor M(w). For an earth-
quake that occurs at pointr, the particle motion u at point
r as a function of frequency can be expressed [Gilbert and
Dziewonski, 1975] as

u(r,w)=2§k O Mw)e )G ) (45)
K

where €/ (r,) = {3, ¢,)+ [V5 ¢,)]7) is the complex
conjugated strain at the source position r, associated with
the hybrid free oscillation singlet §,.. Cy (@) is the singlet
resonance function, well approximated by wi2i(w—w; )"
on a nondissipative earth. The sum extends over all nor-
mal modes. G (w) differs from the Gilbert and Dziewon-
ski expression by a factor of w}, as we have adopted a
different normalization condition, and by the absence of a
dissipation parameter .

We restrict attention to a narrow band of frequency
w, * Aw containing N spherical earth singlets s;. The
rotating, aspherical earth singlets 5, within this band can
be approximated by hybrid combinations

N
Sy = 2 QS
j=1

Lete; = 12[Vs;+(Vs;)!] be the strain associated with the
spherical carth singlet s;. Equation (45) becomes, over
the bandwidth w, + Aw,

N N N

u(r,w) = 2 2 2 ak,-a;j-s,'(I‘)[M(w)ie,*(h)](} ((u) (46)
i=1 j=1 k=1

The contribution from the resonance peaks outside
w, + Aw is neglected. Equation (46) shows how excita-
tion calculations for a spherical earth model can be
extended to aspherical models.

4. GALERKIN THEORY: DISSIPATIVE EARTH MODELS

The recipe for the Galerkin procedure parallels that for
the variational principle. Let the set of functions
{s1,85, -+ ,sy] be a set of normal mode eigenfunctions
for a terrestrial monopole. We decompose the kinetic and
potential energy functions as in (36) into terms VyG6*s),
Tols*s) representing the terrestrial monopole and
8V(s*s), 6T (s*s) representing a given model for
asphericity and attenuation. The need to model physical
dispersion in tandem with attenuation was first pointed out
by Akopyan et al. 11975, 1976]. We model attenuation by
assuming the absorption band model put forward by Liu et
al. [1976]. The elastic moduli u and « become complex
and frequency dependent according to the relations

I rw)= ;L()(r){ 1+ Q;l (7‘)[(2/77)1”((»/(1)0)—1']} + ou )
ko) =k(r){1+ Q! I/ m)Inlw/dg)—il} + 8k @)
47)

8w ,8x are the aspherical perturbations to the terrestrial
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monopole elastic parameters wg,ko. Q,, U, are spherically
averaged quality factors that vary with radius but not with
frequency within a specified absorption band. This band is
typically taken to cover all measured free oscillation fre-
quencies. The @, is a reference frequency for the loga-
rithmic dispersive term. Seismic evidence for lateral varia-
tions in mantle Q structure has been cited for ScS body
wave phases by Sipkin and Jordan 11980]. There is as yet
no persuasive evidence in low-frequency seismology for
such heterogeneity. Masters and Gilbert [1983] found that
Q estimates measured from fundamental spheroidal mode
0S¢ resonance peaks varied widely among records. How-
ever, this variation showed no robust pattern with source-
receiver orientation and was taken to be caused by the
interference cffects of lateral structure. This conclusion is
supported by Park [1985] and Davis [1985] where a similar
variability was found in Q estimates made from synthetic

seismograms obtained from the lateral structure model of

Woodhouse and Dziewonski [1984], which has no lateral
variation in attenuation. For this reason wec have chosen
not to model lateral variation in Q-structure in our calcu-
lations. The interaction matrix will therefore have a small
imaginary part on the diagonal, causing the matrix system
to be complex. It is useful to separate the interactions due
to dispersion 1o obtain a new functional expression

L=VE*s)+ Inlw/dg) Vyps*s)+toWs*s)—o’TE*s)
(48)

where the dispersive interactions are included in the func-
tional ¥, (s*s). We seek w,s for which L is stationary.
Since the absorption band dissipation model is not
intended for modes al zero {requency, the logarithmic
term causes {ormal problems if secular modes are con-
sidered. We restrict altention to seismic modes. For com-
putational purposes we replace In(w/@g) by its Taylor
series. Letn = (w—dg)/@g. Then

2 3 4
Inlw/ae) = In(l+m) = n — 12L + % - ﬂ4— + - (49)

If wop = 3 mHz and le—w,| < 0.2 mHz, n < 0.067 and we
can truncale (49) at the quadratic term with a relative
error < 0.005 in this case. We adopt this truncation in

general to avoid higher-order eigenproblems. The new
relation becomes
w’*—dwd ot 30)3 -
L=VE*s)— —————— VpG™s)
0
+oWis*s) — Tk s) (50)

Note that the dispersion term has a component linear in
.

We seek linear combinations of spherical earth eigen-
functions with zeroth-order eigenfrequencies near the
fiducial frequency @, that make (50) stationary. As in the
variational problem, the hybrid eigenfunction is a linear
combination of basis set functions s = «;s;. We allow for
the lack of symmetry in the attenuative-dispersive opera-
tor by seeking an adjoint solution § = g8;s;*. With no
attenuation 8; = «;*. The Galerkin procedure on this
basis set is equivalent to the eigenvalue problem
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O=L=8- [V—%V0+w(w+2(:>glvl,)
—<u2('1‘+éa)gzvp)] a (5D
where
(V[))l_/ = Vp (S,*,S/) (52)

The right and left eigenvectors a,,8; of (51) represent
the eigenfunctions and adjoint eigenfunctions of the
attenuative-dispersive free oscillation operator projected
onto the basis set {s; - - - sy}. For computational con-
venience we normalize these vectors by the rule

B, - (T+%i; 'Vp) e, =8, (53)
To solve (51), decompose
T + I/?(L)szl) =L LH (54)

This decomposition is valid since T and Vj, are both Her-
mitian, We form V'=L7! (Vf%Vn) L%  and
W' =L (W+26,'Vp) - L'/ in order to construct
W’ V’]

Lo (55)

As in the variational case, we must solve the linear eigen-
valuc problem (V—wl) % = 0 to obtain hybrid cigenfre-
quencies and eigenvectors

If the linear term in e is not desired, we take w =ay as
before to form the generalized cigenvalue problem

VH AV p+oW—w?[T+ (A) g Vpll -a=0 (56)

Taking V' =1L " [V+(D)Vp+oWl-L7%, we have the
counterpart of (40)

V'-T) L7 a)= V—0i) -a=0 57)

We restrict the following discussion to the solution of
(57), as the gencralization to the quadratic eigenvalue
problem has becn discussed in the previous section.
Although the effect of physical dispersion is self-adjoint
in character, the effect of finite dissipation s not. If
k(r®) and u(rw) arc modeled as in (47), the diagonal
terms of the potential energy matrix V will gain a small
imaginary part. V is no longer Hermitian. If two distinct
singlets with the same angular dependence (e.g., oS¢ and
11S2) are included in the Galerkin basis set {s; - - - sy},
there will be a small off-diagonal non-Hermitian part as
well. V' is a general complex matrix, as multiplication by
the Cholesky factors spreads the non-Hermitian part off
the diagonal. Thus the Galerkin procedure casily includes
aspherical attenuation. The decomposition of V' differs
from (41) in a potentially drastic manner. V' has both
right-eigenvectors @&, and left- (or adjoint) eigenvectors
Bi Il w,Zw;, & B,=B,-&=0, but & -a;> 0 and
Bi -[}/ = 0. If an eigenfrequency w; is k -fold degenerale,
we are not guaranteed k lincarly independent right-
cigenvectors for ;. The same is true for left-
eigenvectors. A N x N matrix with fewer than N linearly
independent right- (or lefl-) eigenvectors is called defec-
tive. A truly defective free oscillation interaction matrix
would be unlikely, as only accidental frequency degeneracy
can occur on a rotating earth. Unfortunately therc are
many cases of near-degeneracy, some of which give rise to
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nearly  defective  attenuative-dispersive  interaction
matrices.

If V' is not defective, it can be decomposed as

(58)

where S is a nonsingular matrix and D is a diagonal
matrix of squared hybrid frequencies w;. The columns of
S are the right-eigenvectors &, of V'. The rows of 7! are
the left-eigenvectors B,. If V' were Hermitian, S would be
unitary as in (41) and, since S~!=S# for unitary S, B;
would equal &,-*. V' is "similar to the diagonal matrix D
according to (58). Mathematically specaking, this relation
is much less symmetric than "unitary similarity’ as
expressed in the decomposition (41). Although the right
and left eigenvectors &, and B, are "dual' (e,
&, -B; = 8;;), pairs of the &, (alternatively pairs of )
can be nearly parallel in N space. As in the Hermitian
case we transform with the Cholesky factors of T to obtain
eigenvectors appropriate to our perturbed earth model

V=8-D-S"

ap = LiH '&k
B = Bi-L! (59)
oy BK = (Tfl)k(
Since T differs only slightly from the identity,
{la; - ay} and {B; - - By} are nearly dual Lo each
other.

Both eigenveclor sets are necessary lo construct a syn-
thetic -seismegram:--As-before;-we restrict--attention- to- a
set of N spherical earth singlets s; that are nearby in fre-
quency. The hybrid singlets, as in the Hermitian case, are

M=

Sk = 2 S

where «; is the jth component of a,. We define adjoint
hybrid singlets

M=

= Lk
Sk = Bus;
=1

where By, is the jth component of 8,. When we apply
the formula for seismic particle motion (45), we must
express €;(r,) in terms of the adjoint hybrid singlets S, .
The particle motion u (r,w) at frequency w and position r
due to these singlets is, analogous to (46)

N N N

uw) =32 ¥ Y aufiys ©Mw) e c,)C ) (60)
=1 j=1 k=1

The definitions of M{w), €, r, and C, are unchanged
from those of (46).

The Galerkin formalism is more complicated than the
variational formalism, the latter being a special case of the
former. The additional flexibility afforded by the Galerkin
formalism is crucial to many coupling problems where the
effect of attenuation can be very important.

5. NUMERICAL TESTS OF GALERKIN PROCEDURE:
QUADRATIC EFFECTS

The Galerkin principle can be applied to the free oscilla-
tions of a rotating general earth model in either a linear or
quadratic eigenvalue-eigenvector scheme. The quadratic
scheme is 4 more accurate representation of the physical
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problem, but its application doubles the size of the eigen-
value problem to be solved. This increascs the amount of
compulation required by a factor of 8§, as an eigenvalue
problem of order N requires kN? operations. The k is a
constant of order 1—10 that depends on the type of
matrix and the matrix algorithm chosen. On computers
with vector processing hardware the CPU time required
can be made to vary as N2. Even with this improvement
the extra precision is bought dearly. It is important to
assess where the quadratic effects are important and where
they can be ignored. We will compare quadratic and linear
perturbation formulae for a rotating elliptical earth and
numerical examples for an earth model with the transition
zone anomaly of Masters et al. [1982].

First-order perturbation theory for rotation and ellipti-
city [Dahlen, 1968] results in a singlet frequency splitting
pattern that is quadratic in azimuthal order m

(61)

where ,o is the degenerate multiplet frequency and
a,b,c are splitting parameters that depend on the
multiplet’s eigenfunction. a= [((+1)/3]¢ in order to
satisfy the diagonal sum rule [Gilbert, 19711. Dahlen and
Sailor [1979] have calculated second-order effects of rota-
tion that contribute to ¢ and c¢. These second-order
effects violate the diagonal sum rule. We expect a varia-
tional or Galerkin principle to replicate the perturbation
terms. Park [1985] shows that first-order splitting of
singlets ‘within an isolated multiplet, when calculated with
the linear eigenvalue formulation (39) or (56), gives a
second-order Coriolis interaction that differs in sign with
the Dahlen and Sailor [1979] valuc. The more accurate
quadratic eigenvalue formulation (26) or (51) gives the
correct sign for this term, which is proportional to h?m?.
Examination of the values of a ,b ¢ compiled in Table 1 of
Dahlen and Sailor [1979] shows that this can be a problem
for a handful of modes. The b2m? term for S, is roughly
equal to the cm? term. ()S_g, 2S1, ()S4, lSZa IS.% ]S4, ()Tz,
and ;7 all experience enough rotational splitting for
b? > 0.03¢. However, outside this small group of grave,
low angular order multiplets, the effect on the sign of
b?m? second-order Coriolis term caused by choosing the
linear over the quadratic eigenvalue method will be negli-
gible.

Finite dissipation does not change the above results, as
one can generalize ,w(, 0", ¢, and a to be complex.
Physical dispersion, however, generates additional
second-order terms. We define vy = Vp (s, ,8¢), where
Vp is the dispersive functional introduced in (48).
Vy << (o0? for all seismic free oscillations to the best
of our knowledge. We solve (50) for the singlets of an
isolated multiplet (n () on a rotating, elliptical,
attenuative-dispersive earth using the degenerate multiplet
frequency ,o(= @, as the reference frequency. Using the
quadratic cigenvalue scheme, the result, to second-order
in small parameters, differs from (61) by a term linear in
the nondispersive frequency perturbation:

2ot = o0 (14+a+bm+cm?)

~ Yp 2
wé’ilspersive = w 1,1?>mlispcrsivc [+ ) (a+bm+cm?)]  (62)
00

where o dispersive 1S given by (61). Since p and « increase
logarithmically with frequency, v, is positive. Physical
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TABLE 1. Comparison of Coupled-mode Singlet Frequencies

037073054

Dahlen and Quadratric- Quadratic-
Observed Sailor [1979} Linear Quadratic Dispersive Linear Quadratic  Dispersive
0572 (.3000100 0.299994 0.299776 0.300059 0.300053 0299648 0.300046 0.299948
0S7! 0304799 0304854 0.304633 0.304702 0.304699 0.304491 0 304682 0.304585
oS3 0309490 0.309548 0.309336 0.309336 0.309336 0.309194 0309313 0309219
oS3 0.314000 0.314078 0.313865 0.313934 0313936 0313733 0313913 0.313821
0S4 0.318499 0318442 0.318202 0.318468 0318473 0.318089 0318455 0.318365
a(x1073) 0.117 0.376 -0.311 —0.310 —0.311 -0.771 —0384 —0.689
b(x1073) 14.924 14905 14.893 14.882 14.891 14.906 14.882 14.889
c(x107%)  —0.1757 —0.2671 —0.2802 —0.0586 —(.0589 —0.2627 —0.0506 —0.0503

All [requencies in mHz; of3 = 0.309432 mHz.

dispersion therefore amplifies any deviation from the mul-
tiplet frequency, causing a larger multiplet splitting width
overall. If attenuation is restricted to splitting within a
single multiplet, this effect will be negligible for seismic
modes, excluding perhaps the Slichter mode |S;. It (62)
is compared with (47), the amplification factor for disper-
sive first-order splitting of a mode with quality factor Q is
1+e, where € = 2Aw/(mwQ) and Aw/w is the relative
splitting width of the multiplet. Even a strongly split
mode like 4S; (Aw == 18 wHz) hase < 1074

The dispersive effect can be modeled in the linear
eigenvalue scheme as well, but care must be taken with
the linear term in  frequency. The function
folw)= (2@0)*2(w2A4w<2)0+36)§) is the polynomial in w
that multiplies the dispersive term in (50). If we approxi-
mate  dwdy = 2w’ + 26)5, we obtain an alternative
filw)= (&)0)*2(&)54(1)2) without a linear term. The

difference fy—f; = (@o) *lw—dy)?, so that f'(kg) =
f1'(@g)=--1, where the prime indicates first derivative. 1l

we use [ (w) in place of [y (w), the eigenfrequencies in
the presence of dispersion differ from the eigenfrequencies
in the absence of dispersion by the same factor derived for
the quadratic eigenvalue scheme, to second-order. There-
fore (62) applies for both methods of solving the matrix
problem.

Quadratic and dispersive effects are not limited to the
splitting of isolated multiplets. If mode coupling extends
over a wide frequency band, these effects can increase.
Moreover, eigenvectors are usually more sensitive than
eigenvalues to matrix perturbations. Large errors in
eigenvectors can seriously contaminate synthetic seismo-
grams generaled by coupled free oscillations, as will be
shown in a later section. We performed several numerical
experiments with an aspherical earth model to assess the
possible problems. We have used model 1066A as the
unperturbed model in these calculations. Model 1066A is
nondispersive, i.e., it was derived from free oscillation fre-
quencies without taking physical dispersion into account.
The dispersive effect in the Galerkin procedure is a rela-
tive effect that depends on the bandwidth defined by the
basis set singlets. We therefore expect that a nondisper-
sive earth model is adequate to describe the effect of
dispersion on coupling. We used the transition zone
anomaly suggested by Masters et al. 11982] to produce
large-scale coupling of singlets within multiplets.

We have compared quadratic and quadratic-dispersive

eigenvalue procedures with the linear eigenvalue approxi-
mation for Galerkin basis sets consisting of the singlets of
the multiplet groups OSQ, 052 - 0T34 0S4, 3S1_ 153,
oS11— 0712, 05190720, 0S32— 0731, and oS12 — o713 — 0S4
— oT1s = oS1. The first three groups are very low fre-
quency, with coupling dominated by rotation, The next
three groups are quasi-degenerate pairs of the (((+1),
((f—1) crossovers of the fundamental spheroidal and
toroidal mode branches. The last group is a chain of fun-
damental modes coupled by rotation over a frequency
range of 0.475 mHz, with a relative Aw/w > 20%. Secu-
lar modes have been excluded from the calculations. Only
the gravest modes are significantly affected by the exclu-
sion. We report in detail the (S; calculation and those
using the last two groups. The other calculations gave
similar results, which are summarized by Park [1985].
052

Since the Slichter mode .S, is virtually confined to the
core and remains unobserved [Rydelek and Knopoff, 19841,
oS, is the gravest observed seismic free oscillation. The
Chandler wobble, though technically a terrestrial free
oscillation [Smith and Dahlen, 19811, is not primarily
seismic. Measurements of all five singlets of (S, have
been reported using spherical harmonic stacking [Buland et
al., 1979] and multitaper spectral techniques (J. Park et
al., unpublished manuscript, 1986). Measurements from
both studies suggest the ability to resolve frequencies to
within 0.1 wHz with International  Deployment of
Accelerometers (IDA) seismic data from a great earth-
quake, in this case the Sumbawa event of 1977. In Table
1 we compare singlet frequencies from the Buland et al.
[1979] study with frequencics computed from rotation and
hydrostatic ellipticity using various schemes, including the
results of Dahlen and Sailor [1979], obtained through per-
turbation techniques. The values of the first-order split-
ting parameters (i.e., for w4 = w,(1+a+bm+cm?)) were
obtained by fitting a quadratic to the singlet frequencies in
all but the Dahlen and Sailor case, where their values are
given. All values are given with respect to the degenerate
multiplet frequency of (S, appropriate to model 1066A.

There is considerable variation of ¢ and ¢ among cou-
pling schemes. The linear splitting term b varies only
slightly. All values for the constant shift ¢ gotten through
the chosen coupling schemes arc opposite in sign com-
pared to both observation and the Dahlen and Sailor
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value. The latter calculations included coupling perturba-
tions from secular modes. These effects, discussed by
Park [1985], will increase the mean multiplet frequency.
In the cases where (S, couples to nearby modes (S, and
oT3, the static shift is somewhat amplified, but much less
so in the quadratic coupling scheme. The large negative a
for the quadratic-dispersive scheme is due to an artificial
shift in the shear and bulk moduli of 1066A caused by
arbitrarily specifying its fiducial frequency &, to lie
between those of the three coupled multiplets (S,, (773,
054. On a dispersive earth model @q would be fixed for all
modes, with dispersive corrections to the degenerate
eigenfrequencies preincorporated. Relative spacing of
singlets in (S, is relatively unaltered by the dispersive
scheme. The various shortcomings of the linear éigen-
value approach cancel in such a way as to have its value
for the quadratic coefficient ¢ be roughly equivalent to the
Dahlen and Sailor value. The nominally more precise
quadratic approaches give values of ¢ that differ strongly,
but the effect of secular modes is not included. Galerkin
calculations in which secular modes are included match
the observed frequencies better than any of the calcula-
tions tabulated here [Park, 1985].

083 — o731

This multiplet pair, in all standard earth models derived
from free oscillation data, marks the crossing of the
o5 — o7y dispersion branches. As the highest-frequency
fundamental branch crossing susceptible to Coriolis force,
the 128 singlets of this multiplet pair couple and split in a
dramatic fashion. The effects of rotation, ellipticity, and
the Masters et al. [1982] anomaly were included in comi-
parative calculations. The hybrid singlet frequencies span
a bandwidth of roughly 20 n Hz, clustering in real-part fre-
quency in the center of the band (cf. Figure 11).

A comparison between quadratic and linear eigenprob-
lems yields larger discrepancies in hybrid singlet composi-
tion than in other examples. Eleven of 128 singlets of the
quadratic eigenproblem solution, in the central cluster,
differ by more than 107? in composition. Four singlets
vary by 1—2%. The absence of larger discrepancies, how-
ever, is almost surprising in light of the profound hybridi-
zation and nonorthogonality of the coupled singlet eigen-
functions (cf. Figures 12 and 13). A large number of
hybrid singlet compositions differ by only one decimal
place greater than the numerical eigenvector precision.
Results for the quadratic-dispersive eigenproblem scheme
are similar, with 14 singlet compositions differing by
greater than 10~° and four singlets with discrepancies
between 1 and 1.5%. Frequency discrepancies between
schemes are no larger than the width of the quadratically
coupled singlet band which widens by 0.003 uwHz relative
to the linearly coupled band, while the dispersively cou-
pled band widens by 0.07 wHz. In only one case does a
pair of hybrid singlets switch position in relative real-part
frequency. None of these discrepancies is likely to be
readily observable in seismograms.

oS12— 0l1i3— 0S4 — o715 — 0516

This chain of low-frequency fundamental modes couples
principally through Coriolis force. The degenerate fre-
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quencies of these modes (using model 1066A) are widely
spaced:

of 1, = 1.989000 mHz
of 13 = 1.979013 mHz
of 3 = 2.229991 mHz
of [s = 2.212406 mHz
of To = 2.456930 mHz

However, the Coriolis coupling is strong enough to induce
component mixtures of up to 5% in relative amplitude
between modes > 0.2 mHz apart in degenerate frequency.
The maximum energy admixture would be roughly
(0.05)2 = 0.25%. Effects on frequency and attenuation
would likely be smaller than those on amplitudes. With
coupling evident across large frequency spacings, it is pru-
dent to consider the approximation made by taking an
intermediate fiducial frequency w, for Coriolis interaction
terms in the linear eigenproblem approach. Comparison
calculations were made using rotation, ellipticity and the
Masters et al. [1982] model.

Significant discrepancies between schemes were noted in
these tests. Although hybrid singlet frequencies were, on
the whole, relatively stable, isolated singlet discrepancies
were as large as 0.1 wHz, with most discrepancies hover-
ing between +0.03 wHz. Quadratic and quadratic-
dispersive singlet frequencies were on average slightly
higher relative to linear eigenproblem frequencies due to
the correct sign of the second-order Coriolis term Y2h2m?
In isolated cases, pairs of singlets appear to have coupled
differently in the different schemes, leading to a relative
frequency repulsion/attraction of ~0.15Hz and a I—
10% wvariation in hybrid component mixture. Isolated
discrepancies of relative component mixture of up to 30%
can be found between the linear and quadratic-dispersive
eigenproblem solutions, but this occurs principally from
the remixing of nearly degenerate (Aw < 0.02 wHz)
singlets. In the quadratic-linear comparison, 43 of 145
singlel comparisons varied in composition by more than
1%, 12 of these 43 varied by more than 5%. However, in
the middle two hybrid multiplets (St;4, o755, only four
hybrid singlets varied by more than 1%, and no one
singlet comparison varied by more than 4%. In the
quadratic-dispersive linear comparison, 55 of 145 singlet
comparisons varied by more than 1%, with 18 of these 55
varying by more than 5%. The I8 worst cases occur in
nine nearly degenerate pairs of hybrid singlets. FEight of
60 hybrid singlets in ¢St4, o755 possess variations greater
than 1%. Hybrid singlet attenuation varies by a few per-
cent between schemes. This variation is caused princi-
pally by the swapping of spheroidal and toroidal com-
ponents between nearly degenerate singlets. Since the
toroidal spherical earth singlets have an intrinsic Q0 that is
roughly half that of the spheroidal singlets, first-order per-
turbations in relative composition result in first-order vari-
ations in singlet Q. If averaged over many neighboring
singlets, these variations will tend to cancel and thus be
unobservable.

Although substantial numerical variation exists between
coupling schemes in this example, it is offset largely by
averaging the effects over neighboring singlets. This
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averaging is unavoidable for surface wave modes, as indi-
vidual singlets, broadened by attenuation and packed
densely into hybrid multiplets, are unresolvable. More-
over, differences between calculation schemes are much
smaller for hybrid singlets near the center of the basis set
bandwidth. Hybrid modes at the f{requency extremes of a
large basis set are relatively unreliable as coupling effects
from outside the bandwidth are omitted. That they are
also less reliable in the linear eigenproblem approximation
to the full quadratic or dispersive eigenproblem should not
cause great additional concern. A prudent large-scale cou-
pling scheme will retain hybrid singlets trom the central
frequency region of each calculation, using overlapping
basis sets. However, as the coupling calculations become
more ambitious and if our knowledge of lateral structure
becomes as prccise as our current knowledge of radial
structure, the use of dispersive earth models like PREM
[Dziewonski and Anderson, 1981] becomes necessary, and
the approximations made in neglecting eigenproblems of
order higher than linear may have somc impact at fre-
quencies greater than 1 mHz. At lower trequencies, the
gravest modes will be influenced somewhat by the earth’s
secular modes of motion which, in a Galerkin formalism,
can only be properly modeled with a quadratic or higher-
order eigenproblem.

6. NUMERICAL TESTS OF GALERKIN PROCEDURE:
NONORTHOGONAL EIGENVECTORS

Care must be taken in the solution of the initial value
problem (e.g., fault displacement at t=0) for seismic
motion on an aspherical attenuative earth. In simple
mechanical systems one finds the "normal" modes of oscil-
lation directly from the configuration. The earth’s "nor-
mal' modes, as they are often called, are truly orthogonal
only on the particular density structure from which they
are derived. As can be seen {from the dissipative coupled
pendulum problem, the free modes of an attenuative sys-
tem need not be orthogonal under either the standard
Euclidean norm or the inner product defined by the
kinetic enecrgy interaction matrix. The Galerkin procedure
outlined in this paper uses the set of normal modes
appropriate to a given terrestrial monopole to describe
seismic motion on a more complicated model. The hybrid
free oscillations that result are no longer normal. Even if
the earth model is nonattenuative, a perturbation in den-
sity structure will cause nonorthogonality with respect to
the sperhically averaged density structure. If referenced to
the perturbed rather than the spherically averaged density
structure, the new modes will be "normal’ in a nonat-
tenuative model. For computational purposes, it is useful
to separate the effects of variable attenuation rate and

density perturbation. We will find that the former cffect is

often quite large, while the latter is usually small enough
to be neglected.

We return to the similarity decomposition of the
modified potential energy matrix V'
V=s-D S! (63)

After some experimentation we have found the EISPACK
subroutine path CBAL-CORTH-COMQR2-CBABK2? to be
more desirable than other algorithms. We can relate the
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matrix decomposition (63) to the source excitation for-
mula (60) by noting that «n= L78S), and
Bu= S LML Y,, where L is defined in (54). The
COMQR?2 subroutine path computes the matrix of right-
eigenvectors S, after which a back transform using the
Cholesky factor of T obtains L/ -S_ The explicit calcula-
tion of S~ is both time consuming and potentially
unstable. Close examination of (60) shows that ncither S
or S7! are required explicitly, only the quantities
ye s @77-8) and SU-L'yg, where (yg),
M(w) - €, &,), the excitation at r, of the ith spherical
earth singlet, and (yp); = X s, () is the displacement of
the ith spherical earth singlet at the recciver location r in
the direction specified by the unit vector X. The synthesis
of three-component seismic motion requires three orthog-
onal choices for £ and thus three distinct y, "receiver vec-
tors.” In order to compute the vector-valued hybrid source
excitations using S™!, we use the LU dccomposition of
LS.

L. S=P -W-U (64)

where W is lower (riangular with diagonal clements
W, =1, U is upper triangular, and P is a permulation
matrix P; = 8,¢), where 7 (/) is the pcrmutation of rows.
P represents a partial pivoting scheme necessary to stabil-
ize the numerical decomposition. The LU decomposition
is the usual first step in explicitly calculating the inverse of
a matrix. For our purposes we need go no further. Note
that

LSyl =81-LH=st. L L LY =S LT
(65)

The kinetic energy interaction matrix T is very close to the
identity matrix I, and so tempts us to ignore it. If we take
T — I to be negligible, we have approximated

SLl=ul-owlop! (66)

from which S*'- L1 yg=U"T1-W1-Pl.y¢ can be
calculated by reordering indexes and performing two com-
plex back transforms, at a cost of N? complex multiplica-
tions and additions, The number of operations required
by the two back transforms equals that required for the
forward transform

’)’R‘]liH“Sz’)/R‘P'W"U

and can be vectorized since the inner loop is not recursive.
One obvious advantage of the LU decomposition scheme
is that it stores both L= - S and its inverse in the same
matrix plus an integer vector that stores the row permuta-
tion 7 (j). The cxact calculation can be gotten as well by
extending the formalism, noting that

S Lt =@H-S)'- L7 1!

=U71-W71'P71“L”H _L—l (67)

The approximation (66) can be removed with two addi-
tional back transforms using the Cholesky factors of T, of
which only one need be stored. We will later discuss a
numerical comparison test of (66) and (67).

It is useful to examine a few examples of coupled
modes in order to assess the impact of the nonorthogonal-
ity of hybrid singlets. In Figures 5—7 we show the results
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Fig. 5. Hybrid singlet frequencies of ,S,-,Ss before and after
coupling. Pluses indicate the real-part frequencies and 1000/ Q
values for the singlets of ,S, and (S5 sclf-split by rotation and
ellipticity. Diamonds indicate the hybrid frequencies of ,5,— S
coupled with model M84A of Woodhouse and Dziewonski [1984].
All calculations use model 1066A {Gilbert and Dziewonski, 1975]
for the underlying spherical earth structure.

of coupling ,S, and ;S5 through the aspherical upper man-
tle shear velocity model M84A proposed by Woodhouse
and Dziewonski [1984]. Figure 5 shows the effect of the
laterally varying model on complex-valued singlet frequen-
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Fig. 6. Schematic of hybrid ,S,—Ss coupled singlets in terms of
spherical harmonic singlets 2377, using rolation, ellipticity, and
model M84A. The symbols show the relative magnitude of the
matrix elements of the matrix of transition S defined by (65)
Values for which [(S);; | < 0.05max (i/) {|6), ]} arc omitted from
the plot. Each column represents the linear combination of spher-
ical harmonic singlets thal constitutes the jth hybrid singlet parti-
cle motion, ordered by increasing frequency  Fach row represents
the distribution ot an individual spherical earth singlct among the
coupled hybrid singlets. Symbal size indicates relative magnitude.
Note that the spherical-carth singlets [S?, —5 < m < 2, remain
virtually uncoupled but that the m = 3,45 singlets of 185 couple
significantly among themselves and wnh the smgjlels of 1,84
Hybrid singlets dominated by (S%, m = 3,4,5, particle motion
show noticeable perturbations in 1000/Q n I<1g,ur<, S,
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cies. In this and later such figures the pluses indicate
spherical harmonic singlet frequencies plotted in millihertz
versus 1000/ Q appropriate for a first-order splitting by
rotation and ellipticity. Although the real-part {requencies
can split widely, the radial Q model fixes the imaginary-
part frequency at the degenerate multiplet value, leading
to a noticeable drift in wvalues of 1000/Q =
2000[Im{w)/Relw)]. The even spacing of the singlet fre-
quencies of S5 indicdte strong rotational splitting. The
clustered singlets of ,5,; reflect predominately ellipticity
splitting.  The diamonds show the hybrid singlet frequen-
cies. Coupling between multiplets manifests itself in this
type of figure by the "aftraction” of opposing singlet
attenuation rates toward an average value of 1000/Q.
Figure 5 we see that a few singlets of the lower Q. rota-
tionally split S5 have interacted with the cluster of less
attenuative ,S4 singlets. Due to angular selection rules,
this coupling is caused by odd-order components in the
lateral model. In Figure 6 the coupling coefficients in this
problem are symbolically graphed, using a sequence of
thresholds to indicate the magnitude of the matrix ele-
ments (L™7-S),;. With the a; normalized so that
af - ap = 1, coefficient positions with magnitudes less
than 0.05 were left blank. Each column of the graph
represents the expression of a hybrid singlet in terms of
spherical earth (i.e., spherical harmonic) singlets. The
hybrid singlets are ordered by increasing real-part fre-
quency. Most of the singlets of S5 remain virtually
uncoupled under the influence of Woodhouse-Dziewonski
model M84A. The singlets of ,5, not only couple with the
m = 3,45 singlets of S5 through the odd-order lateral
structure but also couple strongly among themselves
through the even-order lateral structure.
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Fig. 7. Direction cosines of the right-eigenvectors that define the

hybrid singlets of ,S,—;S5, coupled with rotation, ellipticity, and
M84A. This matrix of direction cosines is found by forming
I'=S7-S, where S is deﬁncd by (65) and normalizing the rows
and columns so that ['; = Valucs of |F | < 0.01 are not plot-
ted. The magnitudes of I',- are indicated by symbol size. If the
right eigenvectors of the coupling interaction matrix system were
orthonormal, I' = I the identity matrix.
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The nonorthogonality of the hybrid singlets can be
demonstrated by computing I';; = a* - @;, the complex-
Hermitian Gram matrix of eigenvectors. The magnitudes
of the off-diagonal elements of T'; represent the direction
cosines between the hybrid frec osciltations of the per-
turbed carth model, as long as the diagonal elements arc
normalized so that T'; = 1. If the «; were orthonormal,
all T'; = 0 for i # j. The complex Gram matrix for the
coupled singlets of ,5;— 1S5 ts symbolically graphed in
Figure 7, with values of |[';] < 0.01 (corresponding to
< 0.57° deflection from the perpendicular in complex 20
space) left blank. Noticeable nonorthogonality afflicts only
a handful of hybrid singlets, but one pair of hybrid singlet
eigenvectors, as and a7, deviate over 15° from the per-
_pendicular with respect to each other.

The largest coupling that has been observed thus far in
free oscillation data occurs between fundamental
spheroidal and toroidal multiplets and is caused principally
by Coriolis force [Masters et al., 1983]. Angular selection
rules [Dahlen, 1968] restrict coupling to spheroidal and
toroidal multiplet pairs that differ by one in angular order.
There is also allowable coupling between distinct like-type
multiplets of equal angular order, but this effect is much
smaller. One example of spheroidal-toroidal coupling
through Coriolis force and lateral structure is given in Fig-
ures 8—10 for the multiplet pair ¢S4 — ¢7T)s. Figure 8
shows singlet frequencies both before (using first-order
splitting of rotation and ellipticity) and after coupling
through rotation, ellipticity, and the s =2 transition zone
model suggested by Masters et al. [1982]. The hybrid
singlets remain grouped into separate hybrid multiplets,
cubbed St and Ts modes by Masters et al. [1983], accord-
ing to which variety of particle motion predominates.
Close inspection reveals that the two "centers of mass' of
the hybrid multiplets have come closer in attcnuation rate
but have repelled in real-part frequency. The symbolic
representation of the components of the resultant hybrid
singlets is given in Figure 9. As in Figurc 6, the columns
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Fig. 8. Singlet hybrid {requencies for (S|4~ Ts. The pluses indi-
cate the real-part frequency 1000/ Q values for spherical harmonic
singlets self-split by rotation and ellipticity, with coupling between
0314 and (T neglected. The diamonds indicate hybrid eigenfre-
quencies for coupling due to rotation, ellipticity, and the (= 2 tran-
sition zone model suggested by Masters et al. [1982]
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Fig 9. Schematic of hybrid (S,4—¢7s singlets in terms of spheri-
cal harmonic singlets , Sp* ., T{" coupled with rotation, ellipticity,
and the (= 2 transition zone model. Symbol conventions identical
to those of Figure 6.

of the graph represent the component parts of the hybrid
singlets, ordered in increasing real-part frequency. The
spherical earth singlets, referenced by row, are grouped
into separate multiplets within which ordering is by azi-
muthal order m. The symbolic representation of the
Gram matix I'y =« «, is shown in Figure 10.
Nonorthogonality is confined mostly to hybrid singlets that
lic close together in tfrequency but afflicts nearly all hybrid
singlets to some cxtent.  Values of ([, | < 0.05
(corresponding to < 2.87° deflection from the perpendicu-
lar) were left blank.

The most profound example of nonorthogonal hybrid
singlet oscillations that we have found at frequencies
< S mHz is the fundamental multipiet pair ¢Sz — 7.
This pair represents the third, highest-frequency crossing
of the S, fundamental Rayleigh wave dispersion branch
with either the (7., or (T, branches and the most
dramatic example of coupling through Coriolis force. The
study of Masters et al. [1983] has cast doubt on the place-
ment ol the branch crossing at exactly ¢S5, — (75, and
future measurements and models may realign the
branches. However, this coupling case serves as a useful
numerical example of the worst case complications of
large-scale coupling of neighboring singlets. We have used
the s = 2 transition zone lateral structure to couple the 128
singlets of the two multiplets. Figure 11 shows the singlet
frequencies before and after the coupling calculation. As
in Figure 5, the pluses represent first-order splitting of fre-
quencies due to ellipticity and rotation. The diamonds are
placed at singlet frequencies, in millihertz versus 1000/ Q,
derived from the full calculation. The attraction of
attenuation rate and the repulsion of oscillation frequency,
characteristic of attenuative coupling, are evident in vary-
ing degrees among the hybrid singlets. First-order rota-
tional splitting is comparatively weak for these multiplets.
The tendency for the singlet frequencies in Figure 11 is to
group in pairs of singlets with nearly arithmatically oppo-
sitc azimuthal components. The traveling wave explica-
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Fig 10. Direction cosines of the right-cigenvectors that define the

hybrid singlets of 484~ 75, coupled with rotation, cllipticity, and
the (=2 transition zonc model Symbol conventions identical to
those of Figurc 7. Values of |I‘,-,-| < (.05 arc not plotted

tion of this effect is that the associated surface wave can-
not.tell the difference between traveling east to west and
west to east. A rougher lateral structurc, likc M84A of
Woodhouse and Dziewonski [1984], causes more interaction
between + m singlets, disrupting this pairing of hybrid fre-
quencies. The thorough scattering of eigenfrequencies in
the figure suggests that it would be difficult in this case to
separate the singlets into a quasi-spheroidal and quasi-
toroidal hybrid multiplets. The coupling matrix, symboli-
cally graphed in Figure 12, also offers little help in distin-
guishing separate hybrid multiplets.
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Fig. 11. Hybrid singlet frequencies for 483,—¢73;. The plus

markers indicate the real-part frequency. 1000/ Q values for spher-
ical harmonic singlets sel(-split by rotation and ellipticity, with
coupling between (S35 and (T3 neglected. The diamonds indicate
hybrid frequencies for coupling due to rotation, cllipticity, and the
(=2 transition zonc model
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_The Gram matrix of the hybrid singlets of (S3; — o773 1S
graphed symbolically in Figure 13. The degree of
nonorthogonality is large. Two hundred and ecighty-five
eigenvector pairings out of 8128 have dircction cosine
> 0.5 (& 30° deflection from the perpendicular) and 30
pairs have dircction cosine = 0.9 (> 65° deflection).
Moreover, smaller-scale nonorthogonality afflicts nearly all
eigenvectors.

The degree of nonorthogonality between hybrid singlets
on an altenuative earth model varies with the strength of
coupling and the amount of attenuation attraction between
multiplets of varying altenuation rates. Most of the cou-
pling calculations reported by Masters et al. [1983] involve
comparatively small amounts of nonorthogonality. Con-
sidering the cost of computing the LU decomposition to
represent both left and right eigenvectors of the interac-
tion Lagrangian matrix, it is germane to ask whether ade-
quately precise seismograms can be synthesized by approx-
imating

STL-L-!'=84 . L7'= A% -8)4 (68)

We can compare (68) with calculations using either (66)
or (67) in order to assess the relative error invoked in
neglecting the Cholesky back transforms implicit in (67).
For this experiment we calculated coupling due to rota-
tion, ellipticity, and the lateral structure of Woodhouse and
Dzeiwonski [1984] for all spheroidal and toroidal funda-
mental mode multiplets, grouped in distinct batches of 44
to 174 singlets, with degenerale frequency < 6.2 mHz.
The matrix decompositions were performed on the Cray
1A machine at the National Magnetic Fusion Energy
Computer Center at the Lawrence Livermore National
Laboratory. Later calculation of seismograms was per-
formed on the PRIME 750 machine, equipped with an
FPS-AP120B array processor, at the Scripps Institution of
Oceanography. We compared seismograms for a suite of
source-receiver pairs, using a variety of source orienta-
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Fig. 12. Schematic of 4S3,—¢ 73 singlets in tcrms of spherical har-
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tion zone model. Symbol conventions identical to those of Figure
6.
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direction cosines of (Ss, ¢T3, hybrid singlets
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120

tions, for the exact representation (67), the simplified LU
approach (66) and the Hermitian transpose approximation
(68). A low pass filter was applied to the synthetic traces
in order to reduce ringing from the edge of the frequency
cutoff.

Figures 14—17 show synthetic seismograms for a
scismic source at the hypocenter of the June 22, 1977,
Tonga event (22.9°S, 175.9°W, depth 65 km). Strike-slip
sources were used to increase the Jong-period toroidal

Hermitian transpose approx
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Fig. 14 Strike-slip synthetic source of 1977 Tonga hypocenter, as
calculated tor IDA station NNA using the three linear algebra
algorithms discussed in text. The lower trace shows the exact cal-
culation. The middle trace shows the simplified LU approach,
which discards the effect of the kinctic energy matrix in the
transformation of the source excitation vector y,. The top trace
shows the result of using the right cigenvectors of the coupling
matrix rather than their dual left eigenvectors in the transforma-
tion of y,. The lower (races are visually identical, while the upper
trace has spurious complexity
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mode excitation and thereby accentuate coupling effects.
Figures 14 and 15 show IDA instrument responsc of NNA
(Nafia, Peru) and ALE (Alert, Northwest Territories),
respectively, for a 50° strike, 90° dip, 0° slip source. The
Tonga-ALE source receiver path is nearly polar, with prin-
cipally north-south wave propagation. The great circle of
the Tonga-NNA path is inclined only 26° above the equa-
or, posscssing mostly east-west wave propagation, On all
traces the Rayleigh wave arrivals R; through R4 can be
observed. There is no visual difference between the exact
representation and the simplified LU approach that omits
the Cholesky factors. Differencing the records reveals
variations on the order of 0.1—0.5% of the maximum
amplitude of the record. The Hermitian transpose approx-
imations are inadequate in both source-receiver oricnta-
tions. Noncausal precursory motion, much larger than
that attributable to band edge ringing, contaminates the
start of both records. More sinister is the appearance of
dubious phases (e.g., the small pulse just beyond R, in
both ALE and NNA records).

Figures 16 and 17 show identical source-recetver pairs
for a strike-slip event with 90° strike. The azimuth of the
source-receiver path in both cases exits the source near
the node of the Rayleigh wave radiation pattern and the
antinode of the Love wave radiation paltern. As discussed
by Park [1986], the Tonga-ALE gcometry is especially
favorable for Coriolis coupling effects, while the Tonga-
NNA geomelry is unfavorable. The NNA synthetics in
Figure 16 show the first five Rayleigh wave packet arrivals
clearly, with no discernible difference between the exact
calculation and that omitting the Cholesky [lactor.
Neglecting the dual basis in the Hermitian transpose
approximation gives a very poor result, with considerable
interpacket cnergy. In a case where coupling effects are
strong (Figure 17), there is considerable interpacket
energy in all calculation schemes, with poorly defined sur-
face wave arrivals and unexpected phases. The exact and
simplied LU calculations remain visually indistinguishable.
The Hermitian transpose approximation leads to enormous
precursory wavelorms and waveforms whose phase differs
greatly from that of the more precise calculations.

| Hermitian transpose approx
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Fig. 15 Tonga-ALE scismograms for the same source laken in

Figure 14 The upper trace has significant spurious waveform
energy preceding R
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Fig. 16. Tonga-NNA seismograms for a strike-slip source with
source strike oriented so as to enhance possible coupling effects.
The lower traces show no visible effects, as would be expected on
a roughly equatorial (@ = 26°) propagation path. The upper trace,
which ignores eigenvector nonorthogonality in the source excita-
tion, contains much spurious enecrgy

0 TIME (+RS)

The case for using the dual-vector formalism in
attenuative coupling calculations is unassailable. The
simplified LU calculation scheme, which omits the Cho-
lesky factors, appears adequate in the test calculations that
have been done thus far. An enlargement of the first four
hours of a synthetic with strong coupling effects (Tonga-
SPA (south pole), 90° strike, 90° dip, 0° slip, pure north-
south wave propagation) is shown in Figure 18. A third
trace shows the difference of the two synthetics. A ripple
in the third trace is evident, but the two synthetics match
nearly perfectly. No set of traces thus far tested showed a
mismatch > 1% of the maximum trace amplitude, much
smaller than the 10--40% misfit common to low-frequency
source inversions. In return for this mismatch the user
obtains considerable savings in computer CPU time and
disk storage. Calculations taken to higher frequencies,

% I ' ¥ el MWW'JW fVWU\W bl
5 Al i
: WrMWWwMWWWMWW%MMM%mJwﬁﬁﬁwww

10

Fig. 17. Tonga-ALE seismograms for a strike-slip source oricnted
so as to maximize coupling effects. The complexity of the exact
calculation is visually matched by the simplified LU algorithm syn-
thetic. The Hermitian transpose approximation is clearly in error,
with large noncausal waveforms.

0 TIME (HRS)
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however, may require the exact calculation with the Cho-
lesky factors. Coupling between dissimilar modes for
f>7-8 mHz will likely depend strongly on shallow
lateral structure in which relative density variation is high.
Density variations of as much as 10—20% will significantly
perturb the kinetic energy of hybrid mode singlets that
correspond to surface waves traveling in the crust and
uppermost mantle. This perturbation will be reflected in
Cholesky factors that are noticeably distinct from the iden-
tity matrix.

7. SUMMARY

1. The investigation of free oscillation coupling on a
nondissipative earth can be carried out with a variational
formalism using a global basis of spherical earth oscilla-
tions in a narrow frequency band. The mechanical solu-
tion is found via the decomposition of a generalized
matrix eigenvalue problem with Hermitian symmetry.
The exact representation of interaclion on a rotating earth
requires a matrix equation that is quadratic in eigenfre-
quency . Coriolis interaction terms are grouped in a
matrix linear in w. If this linear dependence is removed
by replacing w with a fixed fiducial frequency @g,, one
needs only to solve a linear eigenvalue problem, affording
a factor of 4—8 increase in computational speed, depend-
ing on computer architecture. Numerical experiments
indicate that this approximation is adequate for modes
with frequencies /27 > | mHz, as long as the relative
frequency spread (Aw)/ @) is not large. The linearization
of the problem results jn the wrong sign for the second-
order Coriolis contribution 5?m?, which is significant for
the gravest free oscillations, e.g., ¢S, Calculations that
include secular or nearly secular spherical earth modes
must use the quadratic formulation.

2. The investigation of coupling using dissipative earth
models requires the use of the more general Galerkin for-
malism. In this formalism, the Coriolis interaction and
Kinetic energy matrices retain Hermitian symmetry, but

difference
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Fig. 18 Comparison of coupled-mode synthetics, for Tonga-SPA
record of strike-slip cvent listed in text. The lower trace shows
the exact calculation, composed, by virtue of the geometry,
almost entirely of the spheroidal components of quasi-toroidal
hybrid multiplets. The simplified LU synthetic is shown in the
middle trace. The upper trace shows the difference of the two
synthetie records. Four hours of seismic motion are shown
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the potential energy interaction matrix becomes general
complex. The retention of symmetry in the former two
matrices allows the problem to be solved via the
COMQR?2 EISPACK path, rather than the more general,
but slower, LZ algorithm used by Tanimoto and Boli
[1983]. The loss of symmetry results in a large loss in
computational speed relative to the fully Hermitian varia-
tional formalism. In some applications the increased pre-
cision is small relative to the increased effort. For exam-
ple, if only coupling within an isolated multiplet is con-
sidered for an earth model that does not have lateral Q
structure, the results are virtually identical to those gotten
from a variational calculation in which the degenerate
attenuation rate is appended to the hybrid eigenfrequen-
cies. The effect of physical dispersion does not by itself
break Hermitian symmetry in the interaction matrices, but
its commonly assumed logarithmic dependence on fre-
quency must be approximated by a truncated Taylor series
about a chosen fiducial frequency @, in order to retain a
feasible numerical problem. The principal effect of physi-
cal dispersion on coupling is to widen slightly the fre-
quency bandwidth across which coupled eigenfrequencies
spread, This effect, however, is observationally negligible
for the Q model of Masters and Gilbert [1983] and will
likely be so for any reasonable Q model, barring the possi-
ble existence of significantly large, highly attenuative
(Q << 100) regions in the earth.

3. The hybrid free oscillations of a dissipative earth
model are represented by the right eigenvectors of the
matrix interaction system. These eigenvectors are not
necessarily orthogonal. The orthogonality of the degrees
of vibrational freedom represented by these hybrid modes
is retained by the fact that excitation calculations must use
the left, or adjoint, eigenvectors of the matrix system,
which form a vector space basis dual to that formed by the
right eigenvectors. If the right eigenvectors arc used
instead for source excitation calculations, the resulting
synthetic seismograms can be severely contaminated with
spurious waveforms.
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