son (1982) to a number of high

the record.

1. INTRODUCTION

Spectral estimation is a powerful method of data
analysis which is often used to study geophysical
processes. The estimation of the spectra of background
noise, line components, and transient signals is central to
the analysis of electric, magnetic, and seismic time series.
There have been many techniques developed which are
effective for the analysis of long records of stationary
processes.  Unfortunately, these techniques are not
universally applicable to seismic data sets. In many stu-
dies it is necessary to estimate a spectrum from a short
time series. This situation can occur if some of the data
-are missing or if the data of interest (e.g., a seismic phase)
are contained in a short segment of a longer record.

A new approach for estimaling the spectra of short fime
series, known as multitaper spectral analysis, has been
developed recently. We have applied this technique,
which was first presented by Thomson [1982], to several
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Spectral estimation procedures which employ several prolate spheroidal sequences as tapers have
been shown fo yield beiter results than standard single-taper spectral analysis when used on a
variely of engineering date. We apply the adaptive muititaper spectial estimation method of Thom-
-resolution digital seismic records and compare the results to those
obtained using standard single-taper spectral estimates. Single-taper smoothed-spectrum estimates
are plagued by a trade-off between the variance of the estimate and the bias caused by spectral
leakage. Applying a taper to reduce bias discards data, increasing the variance of the estimate.
Using a taper also unevenly samples the record. Throwing out data from the ends of the record
can result in a spectral estimate which does not adequately represent the character of the spectrum
of nonstationary processes like seismic waveforms. For example, a discrete Fourier transform of
an uniapered record {i.e., using a boxcar taper) produces a reasonable spectral estimate of the
large-amplitude portion of the seismic source spectrum but cannot be trusted to provide a good
estimate of the high-frequency roll-off. A discrete Fourier transform of the record multiplied by a
more severe taper (like the Hann taper) which is resistant to spectral leakage leads to a reliable esti-
mate of high-frequency spectral roll-off, but this estimate weights the analyzed data unequally.
Therefore single-taper estimators which are less affected by leakage not only have increased vari-
ance but also can misrepresent the spectra of nonstationary data. The adaptive multitaper algo-
rithm automatically adjusts between these extrem
seismic data recorded by instruments in the Anza
an analysis demonstrating the superiority of the mullitaper algorithm in providing low-variance
spectral estimates with good leakage resistance which do not overemphasize the central portion of

es. We demonstrate its advantages using 16-bit
Telemetered Seismic Network. We also present

dozen seismograms;, in this paper we analyze two
representative records. The spectra estirhated using the
multitaper technique are compared with several direct
spectral estimates employing commonly used single tapers.
We show that the multitaper approach can yield superior
results when applied to high-frequency seismic data.

Spectral analysis of specific phases within a seismogram,
particularly those at regional or local distances, can be
difficult. It is often impossible to isolate a particular
phase. If one isolates a major phase by discarding the rest
of the record and then makes a direct estimate of the
waveform’s spectrum without first tapering the data (G.e.,
using a boxcar taper), the high-frequency roll-off of the
estimated spectrum can be severely biased by spectral
leakage. Therefore it is standard practice to multiply the
time series by a taper before performing a discrete Fourier
transform (DFT) to reduce spectral leakage (an extensive
review of tapering is provided by Harris [1978]).

The cosine or Hann taper is popular in seismic analysis,
being both effective and easy to calculate. The utility of
the Hann taper is bought dearly, however. If one views
each data point in-a time series as a constraint on the
estimated frequency content of the record, the Hann taper
discards 5/8 of the statistical information in a given time
series. This can be easily seen from the graph of the
Hann taper in Figure 1. The data points at the extremes
of the record are weighted weakly, while the center of the
time series is emphasized. This unequal weighting causes
the statistical variance of a direct spectral estimate using a
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Fig. 1. Comparison plot of boxcar, Hann, and 20% cosine tapers.

Hann taper to be greater than the variance of a periodo-
gram speciral estimate.

Blackman-Tukey tapers are designed to circumvent this
loss of information somewhat by applying the cosine
weighting o only the extremes of the record. For
instance, the 20% cosine taper (Figure 1) discards only
12.5% of the available data variance constraints. How-
ever, Harris [1978] shows that this taper has less resist-
ance to spectral leakage than a Hann taper. As long as
only a single data taper is used, there will be a trade-off
between the resistance to spectral leakage and the variance
of a spectral estimate.

Thomson 11982] introduced the multitaper spectral
analysis technique. First, the data are multiplied by not
one, but several leakage-resistant tapers. This yields
several tapered lime series from one record. Taking the
DFTs of each of these time series, several "eigenspectra”
are produced which are combined to form a single spectral
estimate,

The tapers are constructed so that each taper samples
the time series in a different manner while optimizing
resistance to spectral leakage. The statistical information
discarded by the first taper is partially recovered by the
second taper, the information discarded by the first two
tapers is partially retrieved by the third taper, and sc on.
Only a few low-order tapers are employed, as the higher-
order tapers allow an unacceptable level of spectral leak-
age. One can use these tapers to prodice an estimate that
is not hampered by the trade-off between leakage and vari-
ance that plagues single-taper estimates, as we will demon-
strate.

Single-taper spectral estimates have relatively large vari-
ance (increasing as a larger fraction of the data is dis-
carded and the bias of the estimate is reduced) and are
inconsistent estimates (i.e., the variance of the estimate
does not drop as cone increases the number of data). To
counteract this, it is conventional to smooih the single-
taper spectral estimate by applying a moving average 1o
the estimate. This reduces the variance of the estimate but
results in a short-range loss of frequency resolution and
therefore an increase in the bias of the estimate.

The multitaper spectral estimates are formed as a
weighted sum of the eigenspectra, Therefore the multi-
taper speciral estimate is aiready a smooth estimate; it has
less variance than single-taper spectral estimates which
have been designed to reduce bias, and it is also a con-
sistent estimator. The comparison belween the bias and
variance properiies of the single taper and multitaper esti-
mates is discussed further in sections 3 and 4.
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Another difficulty with seismic data is that the reconl
are nonstationary; that is, the statistical character of (I
data changes with position in the record. Therefore .
spectral estimator which weights the data in the center ol
the time series more heavily than data at the ends cau
overemphasize the signal energy in the middle of 1l
record. This can result in a misrepresentation of the spu.
trum, as we demonstrate in section 3. The multitaper esn
mate, which discards very litile data from the record it
weights the data relatively evenly, is not subject to thr
problem,

Section 2 presents an outline of the basic algorithm
This outline contains sufficient detail to allow the reader o
implement the algorithm but avoids derivations that ca
be found elsewhere. Section 3 describes the seismic dul.
used in this study and presents comparisons of the specii..
of seismic time series generated by both regional and local
events. We demonstrate the trade-off between spectral
leakage resistance and variance of the spectral estimilo-.
produced using the boxcar, 20% cosine, and cosine taper.
We compare the bias and variance of these conventional
single-taper direct spectral estimates with the bias anl
variance of the multitaper spectral estimates in section |
A numerical method for calculating the prolate eigeniape:-
is given in the appendix.

2. THE MULTITAPER ALGORITHM

The multitaper method is based on a family of taper.
which are resistant to spectral leakage. We outline the
multitaper method here, and note that more detailed treu
ments can be found in the works by Themson [1982] and
Lindberg [1986].

Suppose that we are given the finite time serics
Ix11==0,1,...,N--1) which is a set of discrete samples ol
a continuous time process |x,;0:< 1 < N—1] (we assume &
unit sample interval == 1, without loss of generality), It
X, has no harmonic components, then it has the Cram¢
spectral representation [Doeb, 1953];

X, = f e i2:r_I]X(}r‘)df
[

We wish to estimale the amplitude spectrum
S{I=ENX (MY (where £ | denotes expecled value)
of the continuous time process {x,.0< 1 << N--1} from the
time series {x1Y,'. A conventional direct spectral esti-
mate |X, (f)|2 of §{/) is found by multiplying the datu
{x3¥y' by a sequence {a,|o' called a taper, applying a
DFT,

N
AGED WYL
0

and finally taking the squared modulus of the resulting
function X, (/). Although ¢ is discrete, f is continuous,
with [/'] < % (as the Nyquist frequency fnyquis='4). We
normalize the taper so that

M-l
2 arz =

14
The spectral leakage properties of the data tlaper ga,.
t=0,1,2,...,¥--1 can be deduced from its DFT:

N1
A (f) - Z ae i g
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For conventional tapers the function |4 | has a broad main
iobe and a succession of smaller side lobes. For example,
for the boxcar taper, a, = 1/~/N and

_ 1 l_e-»i2:.'f1'\" e iN--Dwy
AN = Temr 5

in this case the function |4 (f)| is readily observed to
have a central lobe flanked by smaller side peaks. (The
phase factor e/'""%/ results from choosing the time ori-
gin =0 to coincide with the first data point. It does not
affect the leakage resistance of the taper.) The larger the
side lobes, the more spectral leakage is encountered using
this taper, biasing the estimate X, away from its desired
value. This can be seen by observing that

sinNwf
sinwf

b A f A~ XS ©)
=1

which follows from substituting the Cramér spectral

representation of x, in the definition of X, , and therefore
PAGIEE f L4 (F=rnPs (r0dr
T

A good data taper should have a spectral window
A(f—f") whose amplitude is large in the central lobe
region where |f—/'| is small and has low side lobes at
more distant frequencies. This reduces the bias in the
estimate by preventing the energy in X at distant frequen-
cies from leaking over to affect the estimate |X, |? at fre-
quency f.

Suppose we wish to minimize the bias at frequency f
due to spectral leakage from outside the frequency band
|F'—f1 < W, where 2W is some chosen bandwidth. We
maximize the fraction of energy of 4 within the chosen
band:

f l4 () 2df
AW W) =K (3)

J: |4 (F)%df

Since no finite time series can be completely band-limited,
A(N,W) < 1 for finite N and nontrivial W. The func-
tional A can be interpreted as follows: in a single-taper
direct estimate of the spectrum of a white noise process at
frequency f, X is the fraction of spectral energy in that
estimate that derives from the frequency interval
If=f1 < W; 1—x is the fraction of spectral energy that
leaks in from outside that band.

It is convenient from a computational viewpoint to sub-
stitute (1) into (3) to express A in terms of the data tapers
themselves rather than their transforms. If we seek a
taper for an N point time series, the sequence {a,) ¥5' can
be represented as an N vector a. This notation allows us
to express (3) in matrix form {(following the derivation of
equation (2.5) of Park er al. [1987], letting the decay rate
a=10)

AN,y = BCn @)

where the matrix C has components

sin 20 W (t—¢1] |

Cp= gy PR ; t'=0,1,2,...,N—-1

4n prolate tapers

2.0
1.5
1.0
0.5
0.0
~0.5
-1.0
-1.5

0.0 0.4 0.8

Fig. 2. The five lowest-order 4# prolate eigentapers. The
zeroth-order eigentaper v\ is plotted with a solid line, and the
higher-order tapers are plotted with dashed lines.

We seek those values of a for which the functional A is
stationary. This leads to the matrix eigenvalue problem

C-a—ax(¥,Wa=0 (5)
which has as its solutions the ordered eigenvalues
1> > A > Ay > > Ay~ > 0 and associated
eigenvectors v (N, W); k=0,1,2,...,N—~1 (which have
components v, r=0,1,2,..., N—1). Thev*)(N W) are
discrete prolate spheroidal sequences [Slepian, 1978],
which we also refer to as prolate eigentapers. We will
suppress the explicit dependence of v on N and W in
the following. A prolate eigentaper with a time-bandwidth
product of P=NW is called a Pw prolate taper; it concen-
trates spectral energy in frequency bands of width
2W=2P/N. As the Rayleigh frequency /N is the fast
Fourier transform (FFT) frequency bin spacing, a P pro-
late taper will have a main lobe which is 2P "frequency
bins" wide. For instance, {apers for which NW =4 mini-
mize the spectral leakage at frequency f from outside the
frequency band defined by |f'—f| < 4/N. For large N
(> 100) one can construct a set of the v& for any value
of the time-bandwidth product NW. As noted in the
appendix, this allows the user to calculate one set of
eigentapers v for a fixed value of N and to interpolate
this set to construct tapers for time series of various
lengths. We have restricted the following discussion to 4#
prolate tapers, but similar behavior is found for other
choices of the time-bandwidth product.

The five lowest-order eigentapers v*), k = 0,1,2,3,4
shown in Figure 2 have been made for a time series of
length N=128 and time-bandwidth product NW = 4.
The lowest-order taper (k=0) is the familiar 4w prolate
laper advocated by Thomson [1971, 1977a,8) and Eberbard
[1973] and has a shape similar to conventional tapers such
as the cosine taper (Figure 1). The higher-order eigen-
tapers are markedly different from ordinary data tapers.
For even values of k, the v*) are symmetric about the
midpoint of the time series. For odd values of &, the v*)
are antisymmetric about the midpoint. All the tapers,
except the lowest-order one, have regions of positive and
negative data weighting. We normalize the tapers so that

N--1
2 (v,“‘")2= 1
=0

As the eigentapers v*) are solutions to (5), they are
orthogonal:
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T v(A) v =5,

~.(ThlS can® be clearly seen: in Figure 2.) This relatron shows'
“~‘that each v can be used to provrde an orthogonal sample -

i;;iof the data-{x} X5t o

“TaKing discrete: Fourler transforms of the protate ergen—

: _,tapers produces the spectral windows

M(N Wj): € Z v,(“(N W)e—»r'lrrj(i' W1y (7)_

~where we have used the time- centered transform to. elrm-,
. ddnate Spurious’ phase factors 'in ‘the definition.- “The' func-
.o tion e, =1if k is even; e, =7 if k is odd. The uss of e, -
- frs a notational conventron 50 that U, 'is real -valued. “Plots -

' “of the Uk for N= 128 and NW-=14: ‘appear in Figure 3 for

o side lobes, but spectral ‘leakage resistance becomes pro-.

¥ gressrvely poorer as the ordeér of the ‘taper increases, ‘The -
"~ lowest-order 2NW eigentapers (e.g., the elght lowest- order -

gy prolate “tapers) have eigenvalues X; close’ enough to: -
unity that they are useful for minimizing spectral leakage. '

.- The eigenvalues A\, of the eight lowest-order ergentapers
‘with time-bandwidth” products 4, 3, and 2 are given~in
Table 1-for N 128. For reference the value of- the func-

-~ tional (3) is given:for ‘a’ boxcar taper which concentrates '
: fspectral energy within frequency bands of the same width,

To construct a multrtaper spectral estrmate one first cal-

* culates the complex "ergencoeﬂ”rcrents w(f) by takrng j: I

: s 'DFT of the product of the data wrth each [v (")}N“

yk (f) — Z v(k)x et2ﬂ'ff .
=0 S

i 'An estrmate of the spectrum can be made from werghted
~sums of the eigenspectra |y, |2 Thomson [1982] formu-
lates the problem of estimating the spectrum of a record
as an integral equation. The solution of the integral equa-
tion -is averaged over (Ff—W,f+W) (o produce the
smoothed high-resolution spectral estimate:
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~z"from.an-arithmetic average of the eigenspectra as
" for the lowest-order eigentapers..

‘if-"spectraI estrmate to use An adaptrve spectrai estlma

: o (£) .chosen to. reduce bias from spectral leakage [Th

~mates.

8 (f ) “This- misfit, although unknown can be estimat

S 4. Most of the-energy’ of - the U, is concen-j
“oootrated w:thrn the specrﬁed frequency band as- was required
7by maximizing '(3). The spectral windows corresponding -
{io the “lowest- order eigentapers ‘have impressively small: -

®

S(f)—K ! 2 (rk 1ka(f)l2

where K-is the number of tapers used If K is not 1i
" the smoothed. high-resolution estimate 9 differs

Although straightforward, (9) is not the best mulllt

k}fb ldk(f)yk(f)iz
S(f)— — i

2 Idr(f)lz |
'can be devised whrch has frequency dependent wei

“son, 1982]. This technique proves extremely useful
‘anaIysrs of highly-colored spectral processes. At frequ
~cies [ where the spectrum is reasonably ﬂat the .wei
“d () = 1, reducing the variance of the spectrai"es[
At frequencies / where spectrum has a
slope; ‘the contribution from the hlgher order-eigentap
"whrch ‘have poorer leakage resistance, is reducet 1
_trade-off between ‘spectral * leakage and- varlance 0
spectral estrmate rs baianced at each frequency :

"rmlsﬁt of the “estimated spectrum to* ‘the ‘true spectruy

o Vasg)
MS (f)‘l'E{Bk (f)}

dk(f)

: where S (f ) is the true value of the spectrum at frequ n
“f-and B, (f) is the spectral energy at frequency S 1h
-leaks in from outside the frequency band (f—W, f +7W

We replace the unknown value S(f) by its estimate $(f

Thomson [1982) * found it adequate to approximat
E{B.(f)) = o2 (1-\,), ie., as a constant fraction of th
- ,total varrance of the time series:

ol = 2 X2
“We. fmd the estimate S(f ) by iteration. We take" the-=

arrthmetrc average of lys(f)|? and |y, ()12 as an initial
estimate of S ) then substrtute this value into (11) to--

TABLE 1. *Fractional Leakege of Eigentapers

) | P Prolate - :
7 P=14 P=3 . P=)

. hg - 0.9999999998  0.999999885: -0.999948125
A - 0999999978 - 0999992014 . 0.997764652
‘A, 0999999008  0.999750480  0.962155175
Ay 0.999972984 0995477689  0.733922358
Ay 0.999500363  0.951033908. 0.287339619
hg 0993525891  0.725208760 *

Ng 0943750573 0.307789684 *

A; 0721233936  0.060764834 .
Boxcar 0974748450  0.966410435  0.949939339

“ap < .05 ‘



produce first guesses of the weights d, (). These weights
% are then used in (10) to generate a new spectral estimate
8§{f}, and the process is repeated, Convergence is usually
satisfactory within a few cycles.

Careful examination of the adaptive spectral estimate
- shows that Parseval’s theorem is not explicitly satisfied,
i.c., there is no requirement that the energy of the spec-
trum estimate, integrated over frequency, equal the total
variance of the time series. This arises from the way that
the multitaper algorithm attempts to compensate for the
cflects of spectral leakage. If the expected broadband bias
E{Bi(f)] were to vanish, then (11) would become
i (f) = A%, and the adaptive estimate {10) would reduce
to the smoothed high-resolution estimate (9) (except for a
small multiplicative factor due to the departure of the
cigenvalues &, from unity). This would occur if the true
spectrum  were zero outside the frequency band
[/ =F1<W. As (1-)\;) of the process variance within

irge,
little

aper

(10)

ights
hom-
1 the

uen- the frequency interval [f—f'| < W is leaked outside the
ights band, the limiting case d; (f} = A;* represents an attempt
esti- by the estimator to compensate for this spectral energy
iteep

lost to leakage by boosting the coefficients of the higher-
order eigenspectra in the weighted sum. When the spec-
trum has a steep slope, the higher-order eigenspectra are
downweighted and the adaptive spectral estimate tends
toward the least biased eigenspectral estimate |y, (f)]2
Thomson [1982] analyzed two synthetic time series using
multitaper methods. Both series had fewer than 100 data
points and a numerical precision of roughly 20 bits. In the
first example, it was demonstrated that a multitaper
approach could accurately estimaie a spectrum with a
dynamic range of more than seven decades and accurately
infer the existence of harmonic lines (i.e., coherent
sinusoids} in the data. Thomson also analyzed a 64-point
time series used by Kay and Marple [1981] in a spectrum
uanalysis “shootout" comparing 11 spectral estimation tech-
niques, including the maximum entropy method as well as
4 single-taper direct spectral estimale and several other
popular spectral estimates. Unlike any of the techniques
tested by Kay and Marple [1981], a multitaper technique
was able to produce a speciral estimate which was similar
to the true spectrum of the synthetic time series.
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3. SPECTRAL COMPARISONS USING SEISMIC DATA

¢ the We compare a number of single-taper direct spectral
nitial cslimates with the adaptive multitaper spectral estimate
[} to techniques on wide dynamic range, high-resolution seismic

data. The advent of digital arrays with 16-bit data loggers
and the proposed 22- or 24-bit precision instruments
demand an improved sophistication in data analysis tech-
niques. We may soon have seismic data which are
recorded to the same precision as the synthetic examples
of Thomson [1982].

The daia used in this paper were recorded on seismom-
clers in the Anza Seismic Telemetered Array. The Anza

nals from local earthquakes. The instruments in this array
measure surface velocity, and the data are recorded as 16-
bit numbers (this allows a dynamic range of 96 dB). See
Berger et al. [1984] for a more detailed description of the
Anza array.

The multitaper spectral estimate has a smaller variance
at each frequency than a single-taper direct spectral esti-
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array was designed to record high-frequency seismic sig-
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mate. To make a fair comparison between the various
direct spectral estimates and the adaptive multitaper
method, we will smooth each single-taper estimate using a
moving average so that each estimate averages informa-
tion over roughly the same frequency band as a multitaper
estimate using seven 4m prolate eigentapers.

The effect of smoothing single-taper direct spectral esti-
mates in this way is shown in Figure 4. The section of the
seismogram which is analyzed is shown at the top of Fig-
ure 4. The unsmoothed spectral estimates are shown
below on the left, and the smoothed estimates are
displayed on the right below the record. The upper traces
are direct estimates using the Hann taper, the middie
traces are spectral estimates made with a 20% cosine, and
the lower traces are spectrum estimates which employ a
boxcar taper. The amplitude is plotted on a logarithmic
scale on the vertical axis, and frequency is plotted on a
linear scale on the horizontal axis. Each trace is offset by
a multiplicative factor of 50 from the adjacent traces.
Notice that if one studies the unsmoothed spectral esti-
mates, it is difficult to distinguish any specific features
common to each of the estimates except for a general
linear trend. In comparison, the smoothed spectral esti-
mates have many of the same features. Each major peak
or trough appears at the same frequency in each of the
smoothed estimates.

Unfortunately, since we are using real data, it is impos-
sible to know the true spectrum for any of the examples.
However, the work of Thomson [1982] demonstrates that
the muititaper method provides a reasonable spectral esti-
mate, This is confirmed by a study comparing the multi-
taper estimate with the smoothed direct estimates on a
synthetic seismic wave train with a known spectrum (C.
Lindberg et al., unpublished manuscript, 1987).

To study how tapering affects the spectra of body wave
pulses, we isolate a phase in the middle of a seismogram,
produce spectral estimates using each of the four methods,
and compare the results. The upper graph in Figure 5
shows the transverse horizontal seismogram of an earth-
quake which had an epicentral distance of 100 km from
the recording station PFO (in Pinyon Flat, California).
We extract that section of the seismogram corrresponding
to the shear wave arrival and estimate its spectrum by
each method, The spectral estimates are plotted on a -
linear-linear scale in the lower portion of Figure 5 and for
clarity are plotted in dimensionless velocity units on the
vertical axis. Each of the four spectral estimates have two
main peaks in the frequency band frem 0 to 20 Hz, near 4
and 14 Hz. '

These estimates are interesting to compare. Three of
the estimated spectra (those plotted using solid and dashed
lines) have almost identical features (except for the offset
between them). In these spectral estimates the amplitude
of the peak at 14 Hz is about 20% less than the amplitude
of the peak at 4 Hz. The other estimated spectrum {curve
d, plotted with asterisks}) does not resemble the other
three estimates closely. The peak at 14 Hz is 10% higher
than any other peak in this estimate. This change in the
relative amplitude of the two spectral peaks would
influence the choice of a corner frequency if these spectra
were converted from velocity to displacement or accelera-
tion,

The three spectral estimates which exhibit similar
characteristics are the multitaper estimate {(curve a, plotted
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Fig. 4. (Top) Comparison of unsmoothed and smoothed estimates of the spectrum of a high-frequency § wave.
The spectra are plotted on a log-linear scale and are offset to facilitate comparison. The boxcar spectral estimates are

graphed with a solid line. The dashed lines at the top of

each of the lower figures are spectral estimates employing a

Hann taper. The middle curves are spectral estimates obtained using a 20% cosine taper.

as a solid line), the 20% cosine direct estimate (curve b,
the upper dashed line), and the boxcar direct estimate
(curve c, the lower dashed line). The spectrum showing a
different distribution of spectral energy was estimated
using the Hann taper (curve d). The Hann direct spectral
estimate is unlike the other three estimates because it
imposes a different emphasis on the time series. Refer-
ring back to Figure 1, it is easy to see that the boxcar
applies equal weighting to the entire lime series and the
0% cosine taper weights 80% of the series equally. Not
surprisingly, using either of these two tapers produces
essentially the same result. However, the multitaper spec-
tral estimate also gives essentially equal importance 10
every data point, like the boxcar and 20% cosine estimates
(see Figure 2). The Hann taper puls over 80% of its
emphasis on the middle 50% of the time series and gives
the data in the first and last 25% of the series less weight.
This rejection of data near the ends of the series causes
the apparent misrepresentation of the distribution of spec-
tra energy shown in Figure 5.

We also compared estimates of the spectrum of a verti-
cal recording of a nuclear explosion. This event had an
epicentral range of 412 km and also was recorded at PFO.
The section of data which was analyzed is bounded by the
vertical dashed lines in the upper trace in Figure 6. The
analysis procedures were identical to those used in the pre-
vious example except that the log amplitudes of the spec-
tra were plotied on the vertical axis.

The spectrum of the nuclear test has a large dynamic
range and has most of its energy concentrated below
20 Hz. By examining the estimated spectra, one can se¢
that some estimates are more effecled by spectral leakage

than others. The two estimates which are less subj
spectral leakage, the Hann direct estimate {curve d.
ted with asterisks) and the adaptive multitaper estin
(curve a, the solid line), are very similar. Both ol 1y
estimated spectra clearly show the spectrum of the =~
from O to 20 Hz; from 20 to 60 Hz the spectrum ot 1l
ground noise is visible. The antialias filters of the recos
ing system are 6 pole Butterworth filters which hav
corner frequency of 62.5 Hz. The effect of the filter
visible in the 60—80 Hz band. In the band from &
125 Hz the ground noise is less than the instrument s
The variance of the adaptive multitaper spectrum is L
in the low-amplitude portion of the spectrum and hene
appears unsmoothed. This is because the downweighiti
of the higher-order eigenspectra minimizes spectral lv.
age at the cost of reducing the effective number of degr:
of freedom of the estimate at each frequency. If smult
variance is desired in the low-amplitude portion ol i
adaptive multitaper spectrum, then prolate tapers with
larger time-bandwidth product could be used.

The spectra shown in Figure 6 which were obtain.
using the 20% cosine and boxcar tapers suffer from
effects of spectral leakage. The spectrum estimate emp-
ing the 20% cosine (curve c, the lower dashed line) sull:)
less from spectral leakage than the estimate utilizing 1l
boxcar, as expected. The leakage of spectrum estimul:!
using a 20% cosine taper hides nearly all the features
the ground noise between 20 and 60 Hz. The effect of te
antialias flters is completely obscured. The apparcn
energy in the 20% cosine spectrum estimate is larger than
the instrument noise in the §0--125 Hz band by a factor «4
10. The performance of the spectral estimate obtainl




; subject to

er estimal¢
th of these
f the signal
Tum of the
the record-
iich have 8

from 80 lo

pectral leak-
ar of degrees
1. 1f smaller

rtion of thé -
apers with o

ere obtaincd
fer from the

nate employ-
| line) suffers

utilizing the

am estimated *..
e features in

> effect of the

[he apparent
is larger thun

by a factor
nate obtained

ve d, plol- -

he filters is

iment noise, -
um is larger
1 and henct -
wnweighting -

0 5 10 15 .20
TIME (SECS)

LARGE AMPLITUDE COMPARISGH

1200

1000

BOO

AMPLITUDE

600

400

0 2 4 6 8 10 12 14 16 18 20
FREQUENCY (HZ)

Fig. 5. A multitaper spectral estimate (solid line, labeled a) of the
frequency content of an SH wave (top) is compared with direct
spectral estimates using the boxcar taper (fine dashed line, labeled
b), 20% cosine taper {coarse dashed line, labeled c), and Hann
taper (asterisks, labeled d). The spectra are plotted using linear
scales for the horizontal and vertical axes. The boxcar, 20%
cosine, and multitaper estimates of the § wave spectrum are
almost identical, but the Hann taper estimate is substantially
different. This is because the Hann-tapered spectra overem-
phasize the data in the center of the time series and downweight
data points toward the ends of the record. The section of the
time series which was analyzed is bracketed by dashed lines in the
seismogram at the top.

using a boxcar taper (curve b, the upper dashed line) is
even worse, since it does not exhibit any of the features of
the true spectrum between 20 and 125 Hz.

These examples show that each of the spectral estimates

“has different advantages. The smoothed spectrum esti-

mate employing a boxcar taper produces a good estimate

“of the large-amplitude portions of the spectrum but has
~very poor spectral leakage properties and is not of much

use for spectra which have a large dynamic range. The
sinoothed spectrum estimate using a Hann taper is less
affected by spectral leakage, but this estimate can

* misrepresent the large-amplitude portion of the spectrum.
A smoothed spectral estimate incorporating the 20%

cosinie taper combines the best properties of the spectral
estimates which use the boxcar and the Hann tapers. It
retrieves the large-amplitude features almost as well as the
boxcar estimate and has spectral leakage properties which
are sufficient for many geophysical applications. The adap-
tive multitaper estimate has even better performance,
representing the large-amplitude spectral components as
sccurately as the boxcar estimate and having excellent
spectral leakage properties.

We have also made multitaper estimates of the spectra
of more than a dozen events recorded at local and regicnal
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distances by the Anza array. Multitaper techniques like
the ones presented here and by Park et al. [this issue]
appear to be useful tools for seismic data analysis.

4. STATISTICAL COMPARISONS

We compare the broadband bias and variance of the
smoothed single-taper direct spectral estimates with the
smoothed high-resolution and adaptive multitaper esti-
mates. We consider smoothed single-taper and multitaper
spectral estimates whose values al some frequency f are
formed by averaging seven direct spectral estimates which
concentrale the spectral energy at frequency f mainly
within the frequency band (f—W,f+ W), where
W =4/N- (4 times the Rayleigh frequency 1/N). There:
fore we use 4w prolate eigentapers for the multitaper esti-
mates; the seven Jowest-order 4x eigentapers have good
resistance to spectral leakage (see Table 1), but we do not
use the seventh-order 4w prolate eigentaper; it allows
excessive spectral leakage, as A; = 0.721233936. We
compare the multitaper estimates with a smoothed single-
taper estimate S, {f) which is formed by averaging the
seven direct spectral estimates |X, (f+i/ N j=-3,
—2, ..., 2, 3 obtained using a taper la OI1NG, ie.,

) 3
5(0)=11Y XGNP (13)
j=-3

This estimate is mostly an average of spectral energy from
the band (f —4/N, f+4/N). (The main lobes of tapers
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Fig. 6. Comparison of the leakage of various eslimates of the
spectrum of a vertical seismogram recorded 412 km away from a
Nevada Test Site explosion. The spectral eslimate using & cosine
taper (asterisks, labeled d) and the multitaper spectral estimate
{solid line, labeled a) give good representations of the spectra of
the seismic signal (0 —20 Hz) and ground noise (20 —60 Hz).
The spectra are plotted using a log-linear scale.




: TABLE2 Stausucal Comparlson L

SEEeTLLE ot Fract:onal :
'Estimat'e' D Varlance leakage (1= ?t)
Smoothed boxcar - . - 1.0000 - 0.0367
Smoothed 20% cosing - "1.0814 0.0192
..-Smoothed Hann - 1.8142 -~ 0:0093
- Smoothed high resolution 1.0196- - - -0.0094
(seven 4m-jrolate ergentapers) ERAETE N SOl S
L Adapat]ve multitaper .=/ 1:0004 -~ 7 0.0094 =

(seven 4a.- prolate elgentapers)

: "'; other than the boxcar taper are w1der than 2/N so thlS is
'-"not strlctly correct but we. wnlI make th!S approx:matlon) :

41’4.1;_} Vanance G

e compare the variances of each spectral estimate fora
.+ ‘time series  composed of ~Gdussian white: noise,
S 'smgle-taper esttmates we deﬁne the covarlance mamx

I

A(f) is the spectral window mtroduced in. (1),
“single-taper estimates X, (f +i/N) and X, (f +j/N) are
wuncorrelated for = 7, then A s a diagonal matrix. -If the

2 smgular matrlx with “at:least ong . zero elgenvalue In

these extremes.
For white nozse data the expected vaiue of S (f ) iS

E{S (f)} == 0-2 Z ‘\n

i=-3

-but as

g
f\ij= 2 az(f)=l

o PR B
- for all/, 5 o
XA =T

: «‘,~-3 S :
"and E[S (f)}—o' The variance of 5, (f) is -
4 Et(S (f))z} ~ (ElS, (f)})2
: ,,The ﬁrst term of (15) is:
P A
{(S (f))] 49 S

*’-As each functlon IX (f-H/N)]2 is” the sum of squares of
two Gaussnan random varlables we ean show that

2 Z [\"‘\jj+|\fjl ]

j=c-3 je=-

E{(G, (f))2

" “{Papoulis, 1977, chapter 111, so

(o7, Values. of. (7o) Var|3, (£)]
-periodogram, 20% cosine taper and ‘Hann taper “dire
"spectral estimates.are tabulated in Table 2, "Notice that 4

~spectral estimate increases.

o estamate 9,

“To: gam some tdea of how smooth the estlmators ‘are,

“For f'When the K 7 lowest-order 4w prolate elgentapers ar

- used, then E{S(£)] = (1.0095)02, so the estimate S(f
48 mlldly biased for whlte noise data Also, =~

;{,5._; —E{X (f+r/N)X (f+J/N)} S
SR s Var{S(f)} E[[S(f)p} - (E{S(f)}
= fA (f+t/N)A (f+J/N)df g..fBu’t,
: ,jfor i,j= ——3 =2,..5,2, 3 [see Thomson 1982 equatlon* iyk(f)| Eyk'(f)l := KEI KEI [E[lyk(f)|2]

4.1], where o2 is the process variance defined in- 12) and
If the j.

, as the elgentapers are orthonormal (equatlon (6)) 50 :
- -amount of correlation of the estimates X, o +r/N) is

~'such: that . one or. more -of ‘the X, (f+i/N) can be
‘expressed as-a lmear combmat;on of the others, then A is
_préctice, A’ ‘has a behavxor whlch lzes somewhere between .

‘used, .then ‘Var{S§(f}} =

- noise data (equatlon {4 5) of Thomson [1982])'"

cand

as)

Z E[_IX (f+——)| EX (f+J—)1 : '
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_ For the smoothed periodograrn -estimate . (i.¢., di
estimate using a boxcar taper),’A; =8, and VarlS, ()
for the smoothe

more data ‘are-discarded- by the taper, the varlance of th

For the smoothed hlgh-resolution multltaper‘ spectr

><

ES0) e

k=0 k=0, -
E{ |yk (f)|2} + 0'45kt ]

4 K 1 K=is akk,

=0 k= 0. )\k’lk'

Il
"

VarlS(f)} - 2

When the K =

ai(l. 0196)/7 Therefore th
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\/E for whtt
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I
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For the K=7 lowest-order 4r prolate eigentapers,
Var{$ (f)} = ¢4(1.00038)/7. Therefore the adaptive mul-
titaper estimate has slightly less variance than the
smoothed high-resolution estimate and slightly more vari-
ance than the periodogram estimate.

4.2. Bias

It is not useful to compare the bias performance of
these spectral estimates for white noise data. One is most
interested in a measure of broadband bias. Broadband
bias is caused when spectral energy at one frequency leaks
away to affect the spectral estimate at a distant frequency
and is an important factor to consider in the estimation of
spectra of co}oréd processes.

We take as our measure of broadband bias the fraction
of energy (1-\) in the frequency band |f—f'| < W that
leaks out to affect the estimated spectrum at other fre-
quencies. Suppose that the record consists of a single
sinusoid, so that the spectrum is highly colored. The kth
eigenspectrum retains A =\, of the spectral energy of the
sinusoid within a frequency band of width 2W centered on
the sinusoid frequency. The fractional leakage of the
smoocthed high-resolution spectral estimate is

A . N f|UA(f)|2df
1—x = 1—-
0 N f|UA(f)|2df
= 1— —f K

1

'iz-

If we use the seven lowest-arder 4w prolate eigentapers in
the estimate, A = 0.99057, so 1—x==0.00943. For the
adaptive multitaper spectral estimate, a numerical calcula-
tion shows that 1 —A = 0.00256.

The smoothed single-taper direct spectral estimates are
also biased when the process has a colored spectrum. A
single periodogram estimate allows

1
Ak

L
l—=A=1- f l4 (£ 2df = 1- 0.903 = 0.097
) —-liN

of the energy of a single sinusoid to leak outside its main
lobe. The smoothed perjodogram estimate allows

3
1-)= 1—% 2 f |A(f+-'L)|2df ~ 0.0367

j==3 4N
of the energy in |f—/f'| <4/N to leak out. For the
smoothed Hann taper estimate, we find 1—A = (.00934,
while the smoothed 20% cosine taper estimate allows
1—x==0,0192 of the sinusoid’s energy to leak out of
Ir=ril<w.

The Hann and 20% cosine tapers do not permit as much
spectral leakage as the boxcar taper, but only the
smoothed Hann taper estimates exhibit broadband Bias
characteristics which are as good as the multilaper esti-
mates. Numerical experiments using the w-square and w-
cube source spectrum models of Aki [1967] demonstrate
that spectral estimates employing a boxcar taper are inade-
quate for representing the source spectrum roll-off. The
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Fig. 7. Comparison of the variance and broadband bias of several -
single-taper spectral estimates (solid circles) and the multitaper
estimates (solid triangles), .

other tapers are sufficient unless the spectrum rolls off
more steeply than £

Clearly, for smoothed single-taper speciral estimates
there is a trade-off. The more severe the taper, the less
spectral leakage contaminates the estimate but also the
larger the variance of the estimate. The multitaper esti-
mates manage to defeat this trade-off by using several
orthogonal leakage-resistant tapers in a single estimate.
The relative variances and fractional spectral leakage that
are associated with each spectral estimate are listed in
Table 2 and are plotted in Figure 7 for comparison.

5. CONCLUSIONS

Multitaper spectral analysis techniques offer the
seismologist formal and practical advantages over single-
taper techniques. Adaptive reweighting of eigenspectra
according to the predicted level of spectral leakage enables
well-constrained smoothed spectral estimates in portions
of the spectrum that have large amplitude, while retaining
excellent resistance to spectral leakage in the region where
earthquake spectra exhibit a steep roll-off. Comparisons
between direct spectral estimates produced using boxcar,
Hann, and 20% cosine tapers show that the boxcar taper
estimate is contaminated by spectral leakage, that the
Hann taper estimates can be misleading in the high-
amplitude portion of the spectrum, and that the 20%
cosine taper offers a compromise between these two
extremes. Therefore a 20% cosine taper may be adequate
in many cases but would not be suitable for the analysis of
either an unusually dispersive or unusually band-limited
seismic signal. However, these pathological situations
present ne difficulty for the adaptive multitaper estimate,

There are drawbacks to using the multitaper method.
The adaptive multitaper algorithm consumes more com-
puter time, since several FFTs must be computed for each
time series -and one needs to calculate a set of prolate
tapers {or each time series length. The computational bur-
den is becoming a less serious problem as computer
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speeds increase and‘the cost of ‘computation drops. Also, '

we have found it adequate-to -calculate -the prolate eigen-

‘tapers once for-a time series of length 128 and generate -

tapers of other lengths N > 128 by interpolating the: 128-
- point tapers using cubic splines (see the appendlx) :

APPENDIX CALCULATING Pr PROLATE EIGENTAPERS

“TRBAK1[see:Garbow et al, 1977] “This procedure deter-
-mines only the largest: ‘eigenvalues and their ‘eigenvectors

of ‘a matrix, ‘avoiding the “numerical. burden -of- fully/;"
decomposmg the. matrix. - In: this . manner one- calculates‘

- the prolate eigentapers for a time series of length: N’ - >
i : Slep:an D.; Prolate spherordal wave funcllons Fourrer

€ Using  the algorithm ‘déscribed by Thomsori - [1982}, one

" approximates -the discrete time tapers with the contmuous
“ time “prolate spheroidal wave: functions in ‘order to- set- up:
_-an -eigénvalue:. problem -based . on:  Gaussian quadrature

4 --One -obtains discrete- tapers:at: nonuniform sample” pomts

“that-cary be mterpo!ated to produce lapers w1th /even sam-

- pling and of a:given. length. . In our: appllcations we-have

w.chosen:-to use spline. interpolation: routines: o interpolale

~ixthe evenly spaced tapers of Eength N'ito produce tapers of :
7 length N>NL oo
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