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Bioavailability of zinc in marine systems
through time
Clint Scott1,2*, Noah J. Planavsky1, Chris L. Dupont3, Brian Kendall4,5, Benjamin C. Gill6,
Leslie J. Robbins7, Kathryn F. Husband8, Gail L. Arnold9, Boswell A. Wing2, SimonW. Poulton8,
Andrey Bekker10, Ariel D. Anbar4,11, Kurt O. Konhauser7 and TimothyW. Lyons1

The redox state of the oceans strongly influences the
concentration of dissolved trace metals in sea water. Changes
in the redox state of the oceans are thought to have limited
the availability of some trace metals in the past, particularly
during the Proterozoic eon, 2,500 to 542 million years ago1–4.
Of these trace metals, zinc (Zn) is of particular importance to
eukaryotic organisms, because it is essential for awide range of
basic cellular functions. It has been suggested5 that during the
Proterozoic, marine environments were broadly euxinic—that
is, anoxic and sulphidic—which would have resulted in low
Zn availability. Low Zn bioavailability could therefore be
responsible for an observed delay in eukaryote diversification2.
Here we present a compilation of Zn abundance data from
black shales deposited under euxinic conditions from the
Precambrian time to the present. We show that these values
track first-order trends in seawater Zn availability. Contrary to
previous estimates6, we find that Zn concentrations during the
Proterozoic were similar to modern concentrations, supporting
recent studies7,8 that call for limited euxinia at this time.
Instead, we propose that predominantly anoxic and iron-rich
deep oceans, combined with large hydrothermal fluxes of
Zn, maintained high levels of dissolved Zn throughout the
oceans. We thus suggest that the protracted diversification
of eukaryotic Zn-binding proteins was not a result of Zn
biolimitation.

There has been extensive discussion about the relative roles
of environmental versus biological controls on the evolutionary
history of life9,10. For instance, it has long been debated10 whether
metazoan divergence and radiation were triggered by an oxygena-
tion event, or reflect the timing of genetic innovation independent
of an environmental control. Similar considerations apply to eu-
karyotic diversification in general. Stem-group eukaryotes emerged
in the Archaean eon or the Palaeoproterozoic era, with estimates
for emergence ranging from 3,200 to 1,600Myr ago11,12. However,
the fossil record indicates that there was limited morphological
and functional diversity in eukaryotes before the latest Proterozoic,
800–600Myr ago11,12. Similarly, biomarker work on sedimentary
successions indicates very limited eukaryote primary production
even in mid-Proterozoic ecosystems12. Whether a biological or
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environmental control was responsible for the 1–2-billion-year
delay in the diversification of eukaryotes is a fundamental and
unanswered question in the history of life on Earth.

A significant delineation between prokaryotic and eukaryotic
life lies in the utilization of the trace element Zn. Eukaryotic
proteomes bind substantially more Zn than do prokaryotic
proteomes on a proportional basis (that is, percentage of total
proteome). Nearly 30% of known Zn-binding protein structures
are found exclusively in eukaryotes and account for the entire
proportional difference between prokaryotic and eukaryotic Zn-
binding proteomes13. Phylogenomic reconstructions2 demonstrate
that these protein structures evolved either concurrent with or
after the emergence of the Eukaryotic domain. Data on cellular
localization show that these proteins are found primarily within
the nucleus, the hallmark feature of eukaryotes, and most of these
structures are involved in transcriptional, post-transcriptional or
translational regulation2.

A common explanation for the delayed diversification of
eukaryotes during the Proterozoic is the development of seawater
trace-metal biolimitation under broadly euxinic conditions1,6
where many elements with an affinity for sulphur (Mo, Zn, Cu
and so on) are predicted to have existed at low concentrations
(10�16 to 10�18 M), many of orders of magnitude below modern
levels. Newmodels for Proterozoic ocean chemistry call for broadly
ferruginous deep oceans and a more limited occurrence of euxinic
conditions along productive continental margins7,8. As even a
limited extent of marine euxinia has the potential to significantly
drawdown the global marine inventories of many transition
metals4, it is important to explore the potential for trace metal
biolimitation under these less extreme redox conditions. Given
the high Zn requirements of eukaryotes, relative to prokaryotes,
Zn would be one of the most likely trace metals to provide a
geochemical barrier specific to eukaryotic evolution.

The average concentration of Zn in Earth’s crust is ⇠85 ppm
(ref. 14), but like many transition metals it is conspicuously
enriched in fine-grained, organic-rich sediments and their ancient
analogues—black shales15—often exceeding 1,000 ppm. Trace-
metal enrichments in general, and Zn enrichments specifically, are
well known to be derived directly from sea water (for example,
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Figure 1 |Average Zn enrichments (Zn/Al ratios) in modern euxinic
(anoxic and sulphidic) settings. The magnitude of the Zn enrichment in
sediments scales with the dissolved Zn concentration in sea water. This
relationship suggests that enrichments in euxinic shales can be used to
track the evolution of the marine Zn reservoir in the past. Data, in order of
increasing Zn enrichments, are from the Black Sea, Cariaco Basin, Jellyfish
Lake and Framvaren Fjord (see Supplementary Information for further
information). Analytical error is smaller than the symbols.

ref.15), both in association with phytoplankton biomass and with
authigenic sulphide minerals.

Under sulphidic conditions, dissolved Zn is rapidly precipitated,
either in solid solution with iron sulphides or as an independent
authigenic phase16. Importantly, for modern sediments deposited
beneath euxinic (anoxic and sulphidic) bottom waters we find a
direct correlation between the concentration of Zn in the water
column and the magnitude of enrichment in the underlying
sediments (Fig. 1). We stress that this is a qualitative relationship,
and Zn concentrations in ancient black shales should not be
used to make quantitative estimates of seawater Zn concentrations
in ancient oceans. However, the first-order relationship between
the concentration of Zn in sea water and the magnitude of
enrichment in underlying euxinic sediments suggests that sediment
Zn enrichments can be used to track first-order shifts in dissolved
Zn levels through time. A direct correlation between dissolved
concentrations and sediment enrichments under euxinic conditions
is also well developed for the transition metal Mo (ref. 17) and has
been used to infer temporal trends in seawaterMo inventories4.

In this study we follow the precedent of ref. 4 and focus on the
enrichment of Zn in ancient euxinic black shales as a first-order
indicator of changes in the size of the marine Zn reservoir through
time. If seawater Zn concentrations were orders of magnitude lower
than modern levels during the Proterozoic6, we should expect Zn
enrichments in Proterozoic black shales to be virtually absent,
just as Mo enrichments are virtually absent before the rise of
atmospheric oxygen4,18.

We measured Zn concentrations from a large sample set of
Precambrian black shales and compared them with published
results from Phanerozoic (<542Myr old) shales and modern
sediments (Fig. 2a). Our focus on enrichments in shales deposited
under euxinic conditions is intended to exclude data from marine
settings where sulphide was restricted to sediment pore waters
(that is, where trace-metal enrichments in the sediments do
not straightforwardly reflect their dissolved concentrations in the
overlying water column). Euxinic shales were identified using
well-established palaeoredox proxies7,8. Owing to the relatively high
background concentration of Zn in continentally derived material,
Zn concentrations are also presented normalized to Al to highlight
enrichments beyond the detrital flux (Fig. 2b).

As Zn can become enriched in black shales during secondary
mineralization, we have avoided known mineralized units and
have targeted samples exhibiting depositional or early diagenetic
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Figure 2 | Zn enrichments in euxinic black shales through time. a, Bulk Zn
concentrations. b, Zn concentrations normalized to Al concentrations
(Zn/Al; ppm/wt %). Grey bars represent the crustal average for Zn
concentrations and Zn/Al ratios, respectively14.

sulphide textures (see Supplementary Information). In contrast,
mineralized shales are typically characterized by coarser euhedral
sulphides and commonly are conspicuously altered on a macro-
scopic scale (for example, formation of quartz and sulphide veins).
In some cases, later mineralization can be ruled out by the agree-
ment between black shale Re–Os and zircon U–Pb depositional age
constraints for the succession (for example, ref. 19).

Our Precambrian sample set includes many previously studied
units, including the 2,640-Myr-old Roy Hill Member of the
Jeerinah Formation, the oldest known occurrence of euxinia in
Earth’s history18, and the 2,500-Myr-old Mount McRae shale,
which contains evidence for oxidative processes before the Great
Oxidation Event19. From the Proterozoic, we present data from
several extensively studied units: the about 2,100-Myr-old Sengoma
argillite20, the 1,840-Myr-old Rove Formation21 and the 1,400-Myr-
old Velkerri Formation22. In addition, we have analysed black shales
from the about 1,100-Myr-old Atar Group of the Taoudeni Basin,
Mauritania23, providing a much-needed addition to the sparse
mid-Proterozoic black shale record (for example, refs 3,4). Through
careful selection and assembly of large, well-characterized sample
and data sets, we have produced a reliable, first-order archive
of temporal changes in Zn concentrations in Precambrian and
Phanerozoic sea water.

Our record of Zn enrichments in ancient euxinic shales sug-
gests a relatively stable marine reservoir over the past 2,700Myr,
rather than the extreme Zn depletions suggested by previous
thermodynamically based models6. During this time, the mean
Zn/Al ratios (Fig. 2b) for euxinic black shales are typically be-
tween 15 and 1,000. We observe no clear trend across the Great
Oxidation Event (about 2,300 to 2,500Myr ago) and only a mild
increase in maximum values (and no significant shift in the
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mean) coincident with lateNeoproterozoic surface oxygenation4,24.
During the Phanerozoic we observe higher maxima, and thus a
wider range in enrichments, but average Zn/Al ratios typically
remain within an order of magnitude of both modern and Pre-
cambrian samples. Extremely Zn-enriched samples—enrichments
outside the observed average range—probably represent sedi-
ments with either very slow sedimentation rates or a local hy-
drothermal source of Zn. Importantly, there is a drop in the
magnitude of Zn enrichments in shales deposited under eux-
inic conditions during some Phanerozoic ocean anoxic events
despite persistently high sediment sulphide and organic matter
concentrations25. This conspicuous absence of discernible Zn en-
richment in black shales deposited during the peaks of ocean
anoxic events is consistent with the expansion of anoxic and
sulphidic environments exerting a strong control on the size of
the marine Zn reservoir.

Our evidence for a substantial Zn reservoir in Precambrian
oceans conforms with recent geochemical evidence of widespread
anoxic and Fe-rich (ferruginous) Precambrian deep oceans, with
water-column euxinia limited to productive regions along ocean
margins and in restricted basins7,8. Hydrothermal fluids are strongly
enriched in Zn (ref. 26). However, in an ocean with oxic or euxinic
deep waters, little Zn will leave proximal hydrothermal settings
owing to oxide and sulphide mineral formation, respectively26,27.
Conversely, in a ferruginous deep ocean with very low sulphide
levels, this flux would provide an additional source of the Zn to
the photic zone. We propose that the dominance of ferruginous
deep oceans, in combination with strong hydrothermal Zn fluxes,
maintained relatively high dissolved Zn levels in Precambrian
oceans. More broadly, this study provides further evidence for
a kinetic, source–sink balance4 rather than a thermodynamic
(mineral solubility)6 control on the abundance of trace metals in
the Earth’s early oceans.

Recent studies emphasizing whole-genome-based proteomics
argue for continuously increasing Zn utilization in the eukaryotic
lineage2,28 through time. Eukaryotes, in contrast to bacteria and
archaea, have increasingly incorporated Zn-binding structures
during the last third of their evolutionary history, such that
modern bacteria and archaea still use predominantly ancient
metal-binding protein structures, whereas eukaryotes employ both
early- and late-evolving structures2,28. A direct environmental
constraint (that is, biological Zn limitation in broadly euxinic
Proterozoic oceans) initially seemed the most plausible hypothesis
for the protracted evolution of these proteins2. However, our
geochemical evidence suggests that Precambrian oceans were not
severely Zn bio-limited.

The main use for Zn in eukaryotes is in nuclear, probably
regulatory, proteins, most notably in transcription factors such as
Zn fingers2. Thus, the late diversification of Zn-binding proteins
and their preferential use in eukaryotes can be simply tied to their
utility in nuclear signalling and the late diversification of complex
eukaryotic life in Earth’s history. The black shale record of Zn
enrichments suggests that the history of biological Zn utilization
and, more broadly, metallome (metalloproteome) characteristics
within specific lineages,mirrors functional requirements and evolu-
tionary contingencies rather than environmental metal availability
as previously proposed29.

Methods
Major- and trace-element concentrations were determined with inductively
coupled plasma mass spectrometry at Arizona State University and the University
of California, Riverside following a standard multi-acid (HCl–HNO3–HF)
digestion. Accuracy and precision were monitored with duplicate analyses
and shale geostandards. Single-run reproducibility was better than 95%.
Euxinic samples were identified by iron speciation methods that have been
described in detail elsewhere. In short, pyrite sulphur was extracted during
a 2 h hot chromous chloride distillation procedure followed by idiometric

titration. Pyrite Fe concentrations were calculated assuming a stoichiometry
of FeS2, unless specified. The total reactive Fe pools were determined
using either a boiling, concentrated HCl leach30 or a sequential extraction
method31 using sodium acetate, dithionite and ammonium oxalate. On the
basis of duplicate analyses, the reproducibility of sequential Fe extraction
measurements is better than 95% and the reproducibility of the HCl leach
is better than 90%.
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