

Astrobiology Manuscript Central: http://mc.manuscriptcentral.com/astrobiology

Spatial heterogeneity of thrombolites using molecular, biochemical, and stable isotope analyses

Journal:	Astrobiology
Manuscript ID	Draft
Manuscript Type:	Research Articles (Papers)
Date Submitted by the Author:	n/a
Complete List of Authors:	Louyakis, Artemis; University of Florida, Microbiology and Cell Science Mobberley, Jennifer; University of Florida, Microbiology and Cell Science Vitek, Brooke; University of Miami, Rosenstiel of Marine and Atmospheric Sciencs Visscher, Pieter; UCONN, Marine Sciences Hagan, Paul; University of Miami, Rosenstiel of Marine and Atmospheric Sciencs Reid, Pamela; University of Miami, Rosenstiel of Marine and Atmospheric Sciencs Kozdon, Reinhard; Columbia University, Lamont-Doherty Earth Observatory; Univeristy of Wisconsin, Department of Geoscience Orland, Ian; Univeristy of Wisconsin, Department of Geoscience Valley, John; Univeristy of Wisconsin, Department of Geoscience Planavsky, Noah; Yale University, Department of Geology and Geophysics Casaburi, Giorgio; University of Florida, Microbiology and Cell Science
Keyword:	Microbe-Mineral Interactions, Microbial Mats, Cyanobacteria, Stable Isotopes

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.

Table S2_PICRUSt_071316.csv TableS4_180_071216page1.csv TableS4_180_071216page2.csv TableS5_13C_071316page1.csv TableS5_13C_071316page2.csv

> SCHOLARONE[™] Manuscripts

Astrobiology

1	Spatial heterogeneity of thrombolites using molecular, biochemical, and stable isotope
2	analyses
3	
4	Artemis S. Louyakis ¹ , Jennifer M. Mobberley ¹ , Brooke E. Vitek ² , Pieter T. Visscher ³ , Paul D.
5	Hagan ² , R. Pamela Reid ² , Reinhard Kozdon ^{4,5} , Ian J. Orland ⁵ , John W. Valley ⁵ , Noah J.
6	Planavsky ⁶ , Giorgio Casaburi ¹ , and Jamie S. Foster ¹ *
7	
8	
9	
10	Running Title: Spatial organization of unlaminated thrombolites
11	
12	¹ Department of Microbiology and Cell Science, University of Florida, Space Life Sciences
13	Lab, Merritt Island, Florida
14	² Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
15	³ Department of Marine Sciences, University of Connecticut, Groton, Connecticut
16	⁴ Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
17	⁵ Department of Geoscience, University of Wisconsin, Madison, Wisconsin
18	⁶ Department of Geology and Geophysics, Yale University, New Haven, Connecticut
19	
20	
21	*Corresponding Author:
22	Tel: 321-525-1047; Email: jfoster@ufl.edu

Abstract

3

Thrombolites are build-ups of carbonate, exhibiting a clotted internal structure, formed through the interactions of microbial mats and their environment. Despite recent advances, we are only beginning to understand the microbial and molecular processes associated with their formation. In this study, a spatial profile of the microbial and metabolic diversity of thrombolite-forming mats of Highborne Cay, The Bahamas was generated using 16S rRNA gene sequencing and predictive metagenomic analyses. These molecular-based approaches were complemented with microelectrode profiling and *in situ* stable isotope analysis to examine the dominant taxa and metabolic activities within the thrombolite-forming communities. Results revealed three distinctive zones within the thrombolite-forming mats that exhibited stratified populations of bacteria and archaea. Predictive metagenomics also revealed vertical profiles of metabolic capabilities, such as photosynthesis, carboxylic and fatty acid synthesis within the mats. The carbonate precipitates within the thrombolite-forming mats exhibited isotopic geochemical signatures suggesting that the precipitation within the Bahamian thrombolites is photosynthetically induced. Together, this study serves as a foundation to begin to correlate the distribution of microbes and their activities within modern thrombolite systems to further understand their formation.

- Key words: thrombolites, microbial diversity, metagenome, stable isotopes, microbialites

Astrobiology

1. Introduction

With their long evolutionary history, microbialites serve as important model systems to explore and understand the co-evolutionary dynamics between lithifying microbial communities and their local environment. These carbonate structures are formed via the metabolic activity of microbes, which influence and drive biological processes associated with sediment capture and biologically induced mineralization. Microbialites have been found in a wide range of habitats including brackish (e.g., Laval et al., 2000; Breitbart et al., 2009; White et al., 2015), marine (e.g., Dravis, 1983; Reid et al., 2000; Stolz et al., 2009; Casaburi et al., 2016), and hypersaline (e.g., Logan 1961; Glunk et al., 2011; Wong et al., 2015; Suosaari et al., 2016; Paul et al., 2016) environments and are classified based on their internal microfabrics (Burne and Moore, 1987; Dupraz et al., 2009). Two of the most well-studied types of microbialities are stromatolities, which exhibit laminated internal fabrics (Reid *et al.*, 2000), and thrombolites with irregular clotted fabrics (Aitken, 1967; Kennard and James, 1986). Much of our understanding of microbialite formation comes from study of modern systems (e.g., Reid et al., 2000; Saghaï et al., 2015; Casaburi et al., 2016; White et al., 2015; Warden *et al.*, 2016; White *et al.*, 2016). Microbialites in The Bahamas have been particularly important in expanding research in this area, as they are the only known modern

62 open marine microbialite system. In Bahamian stromatolites, processes underlying formation

63 include iterative growth by cycling microbial mat communities and seasonal environmental

64 controls; the resulting lamination represents a chronology of past surface communities

65 (Visscher *et al.*, 1998; Reid *et al.*, 2000; Bowlin *et al.*, 2012). In thrombolites, the processes

66 that form the clotted fabrics are not well defined. In some Bahamian thrombolites, the clots

67 appear to be products of calcified cyanobacterial filaments, which through their metabolism

68 cause shifts in the carbonate saturation state and thereby drive precipitation (Dupraz *et al.*,

2009; Planavsky et al., 2009; Myshrall et al., 2010). Alternatively, it has been suggested that the clotted texture in thrombolites is linked to disruption or modification of microbial fabrics (Planavsky and Ginsburg, 2009; Bernhard et al., 2013; Edgcomb et al., 2013). To further explore the formation of clotted fabrics, the marine thrombolites of Highborne Cay, The Bahamas were targeted as they represent one of the few modern locations of actively accreting thrombolitic microbialites (Planavsky et al., 2009; Myshrall et al., 2010; Mobberley et al., 2012; Mobberley et al., 2013; Mobberley et al., 2015). These thrombolites form in the intertidal zone of a 2.5 km fringing reef complex that extends along the eastern margin of Highborne Cay (Fig. 1A; Reid *et al.*, 1999). The thrombolites range in size from up to one meter in height to several meters in length (Andres and Reid, 2006; Myshrall *et al.*, 2010) and are covered with several distinct microbial mat types (Mobberley *et al.*, 2012). The dominant mat type associated with these thrombolites, referred to as 'button' mat, harbors tufts of vertically orientated calcified cyanobacterial filaments (Fig. 1B; Myshrall et al., 2010; Mobberley et al., 2012). The dominant cyanobacterium identified within these tufts, using both morphological and molecular tools, is *Dichothrix* sp. (Planavsky *et al.*, 2009; Mobberley et al., 2012). At the surface, these Dichothrix-enriched button mats are calcified with aragonite precipitates located within the exopolymeric sheath of the cell. With depth, precipitates undergo dissolution and filaments degrade (Planavsky et al., 2009). In addition to the tufts of calcified filaments, the thrombolite-forming button mats also harbor a genetically diverse and active microbial community that appears to form vertical gradients of metabolic activity (Myshrall et al., 2010; Mobberley et al., 2013; Mobberley et al., 2015). Previous work in other microbialite systems, such as stromatolites, has shown that the relationship between active, distinct microbial guilds can alter the local physiochemical environment and generate discrete gradients of both solutes and redox conditions (e.g.,

3

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
30	
30	
31	
38	
39	
40	
41	
42	
Δ <u>Λ</u>	
44 45	
45	
40 47	
48	
40 40	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

94	Dupraz et al., 2009; Glunk et al., 2011; Wong et al., 2015). Within these microenvironments
95	the microbial activity can alter both the carbonate saturation index (i.e., carbonate alkalinity
96	and availability of free calcium) and the cycling of exopolymeric substances (EPS; Braissant
97	et al., 2009), which serve as important nucleation sites for precipitation (Dupraz and
98	Visscher, 2005). Certain metabolisms, such as photosynthesis and some types of sulfate
99	reduction, can lead to an increase in pH and thereby promote precipitation (Visscher et al.,
100	1998; Dupraz et al., 2009; Gallagher et al., 2012). Contrastingly, some metabolisms, such as
101	sulfide oxidation, aerobic respiration and fermentation, can increase dissolved inorganic
102	carbon (DIC) concentrations but lower the pH and carbonate saturation state of the local
103	environment and promote dissolution (Walter et al., 1994; Visscher et al., 1998; Dupraz et
104	al., 2009). Together it is the parity between metabolisms that determines the extent and net
105	precipitation potential within the lithifying mat community (Visscher and Stolz, 2005).
106	In addition to the precipitation potential, another component that is critical to the
107	formation of microbialites is the availability of nucleation sites, which can be controlled by
108	the production and degradation of EPS material. The EPS matrix serves several essential
109	roles in the formation of microbialites as it binds cations (e.g., Ca^{2+}) critical for carbonate
110	precipitation, serves as attachment sites for microbes to withstand the high energy wave
111	impacts, and protects microbes from environmental stresses, such as UV exposure and
112	desiccation (Dupraz et al., 2009). Metagenomic analyses of both stromatolites and
113	thrombolites across the globe have shown that Cyanobacteria and Proteobacteria are the two
114	primary producers of EPS material (Khodadad and Foster, 2012; Mobberley et al., 2013;
115	Mobberley et al., 2015; Casaburi et al., 2016; Ruvindy et al., 2016; Warden et al., 2016).
116	Alteration or restructuring of the EPS through microbial degradation can reduce the cation-
117	binding capability and thereby facilitate the precipitation of calcium carbonate on the EPS
118	matrix (Dupraz et al., 2004; Dupraz and Visscher 2005; Dupraz et al., 2009).
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 5

119	There have been major advances in understanding the processes controlling	
120	stromatolite formation; in contrast, the factors controlling carbonate precipitation in	
121	thrombolites are less understood. In this study we build on previous work by examining the	
122	spatial distribution of the bacterial and archaeal diversity associated with the button mats	
123	using a targeted phylogenetic marker gene approach coupled with a predictive computational	
124	reconstruction of the metagenome to ascertain how thrombolite-forming communities	
125	change, both taxonomically and functionally, with depth. These molecular based approaches	
126	are complemented with stable isotope work to provide additional constraints on carbonate	
127	precipitation in the Dichothrix calcified filaments. Together, these methodologies elucidate	
128	the spatial organization of the taxa associated with the thrombolite-forming mats as well as	
129	delineate their potential metabolic function in these lithifying ecosystems.	
130		
131	2. Methods	
132	2.1. Sample collection	
133	Thrombolite-forming button mats were collected from the island of Highborne Cay, The	
134	Bahamas (76°49' W, 24°43'N) in February 2010 and October 2013 from an intertidal	
135	thrombolitic platform from Site 5 (Andres and Reid, 2006). The 2010 mats were partitioned	
136	in the field into three distinct vertical sections $(0 - 3 \text{ mm}; 3 - 5 \text{ mm}; \text{ and } 5 - 9 \text{ mm}$ depth	
137	horizons, respectively) and immediately placed into RNAlater (Life Technologies, Inc.,	
138	Grand Island, NY). These samples were transported to Space Life Sciences Lab, Merritt	
139	Island, FL where they were stored at -80°C until processing. The 2013 mats were processed	
140	for isotope analyses as described below.	
141		
142		
143		
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 6	

2	
3	
4	
5	
6	
7	
, g	
0	
9	
10	
11	
12	
13	
1/	
14	
10	
16	
17	
18	
19	
20	
20	
∠ I 00	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
15	
40	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
51	
ວຽ	
59	
60	

144 2.2. Microelectrode measurements

145 Depth profiles of oxygen, sulfide and pH were determined in triplicate using needle 146 microelectrodes (Visscher et al., 1991, 1998; Pages et al., 2014) either in situ or ex situ under 147 ambient temperature and light intensity. Microelectrodes with a tip diameter between 60 and 148 150 µm were deployed in 250 µm depth increments using a manual micromanipulator 149 (National Aperture, Salem, NH). Oxygen profiles were measured in submerged mats (in ca. 150 5-15 cm water) using a polarographic Clark-type needle electrode with an outer diameter of 151 0.4 mm and readings were recorded with a picoammeter (PA2000; Unisense, Aarhus, 152 Denmark). Polarographic sulfide electrodes (Unisense, Denmark) were used in combination with a Unisense PA 2000 picoammeter, and pH and S²⁻ electrodes (Diamond General, Ann 153 154 Arbor, MI) were connected to a high-impedance millivolt meter (Microscale Measurements, 155 The Netherlands). Both electrode types were encased in needles (outer diameter 0.5 mm). 156 Sulfide electrodes were calibrated before and after each deployment using buffers of three 157 different pH values that span the pH range observed in the thrombolite (i.e., pH 7, 8 and 9). 158 Under an oxygen-free atmosphere, aliquots of a sulfide stock solution were added in 159 increments to the buffer and electrode signals were recorded. Subsamples of the buffer were 160 taken to ascertain the actual concentration of sulfide in the calibration cocktail using the 161 methylene blue method. The pH electrodes were calibrated at pH 5, 7 and 10. The pH 162 profiles were used to calculate the actual sulfide concentration at each depth. 163 164 2.3. Generation and sequencing of 16S rRNA gene libraries 165 DNA was extracted in triplicate from each vertical section using a modified MoBio

166 PowerSoil DNA isolation kit that included a xanthogenate pre-treatment, as previously

167 described (Mobberley *et al.*, 2012). The DNA was then PCR amplified in triplicate using

168 fusion 454-primers that included a unique eight base pair barcode on the 3' end

169	(Supplemental Table S1). The PCR reactions for the bacterial 16S rRNA libraries targeted	
170	the V1-2 region and included the following: 1 x Pfu Reaction Buffer (Stratagene, La Jolla,	
171	CA), 280 µM dNTPs, 2.5 µg bovine serum albumin (BSA), 600 nM of each primer, 1 ng of	
172	genomic mat DNA, 1.25 U of Pfu DNA Polymerase (Stratagene, La Jolla, CA) and nuclease-	
173	free water (Sigma, St. Louis, MO) in a volume of 25 μ l. The amplification parameters	
174	included a 95°C denaturation for 5 min, followed by 30 cycles of 95°C for 1 min, 64°C for 1	
175	min, 75°C for 1 min and a final extension at 75°C for 7 min.	
176	The archaeal libraries required a nested PCR approach that included two rounds of	
177	amplification and targeted the V3-5 region. The reactions contained the same concentrations	
178	as the bacterial library with the exception of 400 nM of 23F and 958R primers (Delong,	
179	1992; Barns et al., 1994) and 10 ng of thrombolitic mat DNA in round one, whereas 400 nM	
180	of primers 334F and 915R (Casamayor et al., 2002) with 10 ng of round one amplicon	
181	material as a template. The amplification parameters in round one included a denaturation	
182	step of 95°C for 2 min, followed by 35 cycles of 95°C for 30 sec, 55°C for 1 min, 72°C for 2	
183	min with an extension of 72°C for 10 min. In round two the parameters were similar except	
184	that the annealing temperature was changed to 61°C.	
185	For each library, the PCR amplicons were purified using the Ultraclean PCR Clean-	
186	Up Kit (MoBio, Carlsbad, CA) and combined into equimolar ratios. Sequencing was	
187	performed per manufacturers protocol using a 454 GS-FLX platform with Titanium	
188	chemistry (Roche, Branford, CT) at the University of Florida's Interdisciplinary Center for	
189	Biotechnology Research. The raw sequence data files were deposited into the NCBI	
190	sequencing read archive under number SRP068710 (bacteria) and SRP068710 (archaea)	
191	under project PRJNA305634.	
192		
193	2.4. Bioinformatic analysis of 16S rRNA gene libraries	
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801	

Page 9 of 59

Astrobiology

1	
2	
3	
4	
5	
6	
1	
8	
9	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
20	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40 11	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
ວ≾ ⊑4	
54 55	
50	
57	
58	
59	
60	

194	The recovered bacterial and archaeal 16S rRNA gene sequences were analyzed using
195	Quantitative Insights Into Microbial Ecology (QIIME; version 1.9.1; Caporaso et al., 2010).
196	Preprocessing was completed to separate the replicate libraries by depth, remove barcode
197	adaptors, and filter for quality using default parameters including: minimum sequence length
198	of 200 bp; maximum sequence length of 1000 bp; minimum quality score of 25; maximum
199	ambiguous bases of 6; and maximum homopolymer length of 6. Operational taxonomic units
200	(OTUs) were assigned to the filtered reads at 97% identity against the Greengenes database
201	(v13.8; DeSantis et al., 2006) using the UCLUST method within QIIME. Further filtering
202	was completed including removal of unassigned reads and filtering for most abundant OTUs
203	(> 0.005%). The generated OTU table was used for taxonomic comparison, filtering the
204	OTUs at 0.005% and producing taxonomic trees using Meta Genome Analyzer (MEGAN5;
205	Huson et al., 2007). OTU tables were filtered at 0.1% and hierarchal taxonomic pie charts
206	were created using the Krona tool (Ondov et al., 2011). The representative sequences were
207	aligned using PyNAST (v1.2.2; Caporaso et al., 2010) to the Greengenes Core reference
208	alignment and a phylogenetic tree was built using FastTree (v2.1.3; Price et al., 2010). The
209	phylogenetic tree was used for downstream community analyses. Diversity analyses were
210	preformed at a sequence depth of 3587 for archaea and 3691 for bacteria.
211	Alpha diversity indices were calculated using observed species and Faith's
212	Phylogenetic Diversity (PD) measure (Faith, 1992), and the averaged results were used to
213	generate rarefaction curves. Beta diversity comparisons were visualized using Principal
214	Coordinates Analyses (PCoA) using Emperor (Vázquez-Baeza et al., 2013) generated from
215	unweighted UniFrac distance matrices (Lozupone and Knight, 2005). Statistical significance
216	between the mat depths was calculated using adonis, a nonparametric, permutation based
217	metrics.
218	
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 9

219	2.5. Reconstruction of functional metagenome using the PICRUSt algorithm	
220	Functional gene content from each of the three vertical sections was predicted from the	
221	recovered 16S rRNA gene sequences using the algorithm Phylogenetic Investigation of	
222	Communities by Reconstruction of Unobserved States (PICRUSt v.1 .0; Langille et al.,	
223	2013), as previously described (Casaburi et al., 2016). Results were collapsed at KEGG	
224	Orthologs (KO) Level 3 within the pathway hierarchy of KEGG (Kanehisa and Goto, 2000).	
225	For comparison purposes a shotgun metagenomic dataset of whole Bahamian thrombolite-	
226	associated mats previously collected from Highborne Cay (Mobberley et al., 2013) was	
227	downloaded from the MG-RAST database with accession number 4513715.3. Raw reads	
228	were filtered using SICKLE (v. 1.2; Joshi and Fass, 2011) with default parameters. Filtered	
229	reads were re-annotated for functionality at different KEGG levels, using the Metagenome	
230	Composition Vector (MetaCV v. 2.3.0) with default parameters (Liu et al., 2012). Resulting	
231	hits were filtered at a correlation score > 30, collapsed at KO Level 3, and finally compared	
232	to the 16S rRNA gene predicted functional profile.	
233		
234	2.6. Bulk stable isotope analysis	
235	Samples of thrombolite-forming mats were collected from Site 5 (Andres and Reid, 2006) of	
236	Highborne Cay in October 2013. The mat samples were dried and examined using bulk	
237	isotope analysis for both inorganic and organic signatures. Calcified filaments were dissected	
238	from the button mats, dried and ground to a fine powder in triplicate. Aliquots of the	
239	carbonate (i.e., aragonite; Planavsky et al., 2009) were measured for inorganic δ^{13} C and δ^{18} O	
240	using a Finnigan-MAT 252 isotope ratio mass spectrometer coupled with a Kiel III	
241	carbonate preparation device.	
242	For isotopic analysis of organic matter, calcified filaments were dissected and treated	
243	with an acid solution (6N HCl) at room temperature overnight until all CaCO ₃ was removed.	
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801	

2 3

Page 11 of 59

Astrobiology

1	
2 3	244
4 5 6	245
0 7 8	246
9 10	247
11 12	248
13 14	249
15 16 17	250
18 19	251
20 21	252
22 23	253
24 25 26	254
20 27 28	255
29 30	256
31 32	257
33 34	258
35 36 37	259
38 39	260
40 41	261
42 43	262
44 45 46	263
40 47 48	264
49 50	265
51 52	266
53 54	267
55 56	268
57 58 59 60	200

244	Samples were loaded into tin capsules and placed in a 50-position automated Zero
245	Blank sample carousel on a Carlo Erba NA1500 CNHS elemental analyzer. After flash
246	combustion in a quartz column containing chromium oxide and silvered cobaltous/cobaltic
247	oxide at 1000°C in an oxygen-rich atmosphere, the sample gas was transported in a He
248	carrier stream and passed through a hot reduction column (650°C) consisting of
249	reduced elemental copper to remove oxygen. The effluent stream then passed through a
250	chemical (magnesium perchlorate) trap to remove water followed by a 3 meter GC column at
251	45°C to separate N ₂ from CO ₂ . The sample gas next passed into a ConFlo II preparation
252	system and into the inlet of a Thermo Electron Delta V Advantage isotope ratio mass
253	spectrometer running in continuous flow mode where the sample gas was measured relative
254	to laboratory reference N ₂ and CO ₂ gases. All carbon and oxygen isotopic results are
255	expressed in standard delta notation relative to Vienna Pee Dee Belemnite (VPDB), whereas
256	nitrogen isotopic results are expressed in standard delta notation relative to air (AIR). The
257	standard used for bulk C and O measurements was NBS-19, where as USGS40 and USGS41
258	were used for N. Measurements were conducted in triplicate at the Light Stable Isotope Mass
259	Spectrometry Laboratory in the Department of Geological Sciences at the University of
260	Florida. Instrument precision was better than 0.10‰ for all bulk isotope measurements.
261	
262	2.7. Stable isotope analysis using Secondary Ion Mass Spectrometry (SIMS)
263	Additional mat samples, collected in Oct 2013, were prepared as thin-sections at the
264	WiscSIMS laboratory, UW-Madison. Samples were cast with EpoxiCure resin in 25 mm
265	epoxy rounds, cut with a Buehler IsoMet TM low speed to expose the most suitable section for
266	analysis, and turned, together with two grains of UWC-3 WiscSIMS calcite standard ($\delta^{13}C =$
267	-0.91 ±0.04‰; δ^{18} O = -17.87‰ ± 0.03‰ VPDB (Kozdon <i>et al.</i> , 2009), into ~100 µm-thick
268	thin sections. An aragonite standard (UWArg-7, δ^{13} C = 5.99‰; δ^{18} O = -10.84‰ VPDB;
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

269	Orland, 2012; Linzmeier et al., 2016) was also run at the beginning of each day of analysis to
270	correct for the differences in instrumental mass fractionation between calcite and aragonite,
271	which was 1.3‰ for δ^{18} O and 1.5‰ for δ^{13} C. The epoxy rounds were ground to expose
272	features of interest for analysis. Petrographic microscopy was conducted using an Olympus
273	BH-2 microscope with plane-polarized and cross-polarized transmitted light at various
274	magnifications to identify potential sites suitable for SIMS analysis. The samples were then
275	polished and sputter coated with palladium for scanning electron microscopy (SEM) at the at
276	University of Miami's Center for Advanced Microscopy (UMCAM) to identify areas of
277	precipitate for analysis and to screen for potential textural anomalies that might impede in
278	situ δ^{13} C and δ^{18} O measurements. The SEM analysis was conducted on a FEI XL-30 Field
279	Emission ESEM/SEM instrument with energy dispersive spectrometer (EDS). The SEM
280	analysis was to insure integrity of the sample and to identify specific target sites. After SEM
281	analysis the palladium coating was removed with 0.25 μ m polish on alapidary wheel, dried,
282	and recoated with gold.
283	The thrombolite mat samples were then analyzed for $\delta^{13}C$ and $\delta^{18}O$ on a CAMECA
284	ims-1280 secondary ion microprobe mass spectrometer (SIMS) using a ¹³³ Cs ⁺ primary ion
285	beam at the WiscSIMS Laboratory, Department of Geoscience, University of Wisconsin-
286	Madison. A primary beam of 600 pA, with mean 0.77 ‰ spot-to-spot precision (2SD), was
287	used for δ^{13} C, and 1.7 nA was used for δ^{18} O with a 10 µm spot size (precision ~0.3‰).
288	Details of WiscSIMS carbonate analysis has been described in detail in previous publications
289	(Orland et al., 2009; Valley and Kita, 2009; Kozdon et al., 2011; Williford et al., 2016).
290	Analysis of the thrombolitic mat sections $(10 - 15 \text{ spot analyses per sample})$ were
291	bracketed by 8 - 10 repeat measurements on the UWC-3 standard grain using the same
292	parameters as the samples to help determine instrumental mass fractionation corrections for
293	each set of measurements. After completion of each analytical session, the samples were
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Astrobiology

returned to University of Miami for SEM inspection of the pits to evaluate any features that may have impacted accuracy (e.g., cracks or epoxy). Additionally, for those measurements that penetrated down to epoxy material (depths of $1-2 \mu m$) and had high secondary ion count rates (i.e., > 100% for ¹²C of the measured counts per second on the standard grain), the final three to six cycles (of 20) were excluded from computations and the values for the spots were recalculated as in Vetter et al. (2014). Visualization of the data was conducted in R (v.3.2.2; R Core Team, 2015) using the package ggplot2 (Wickham, 2009). 3. Results

3.1. Microelectrode profiling of thrombolite button mats

The *in situ* concentrations of oxygen and sulfide were measured with microelectrodes during early afternoon representing peak photosynthesis (i.e., 12:30pm and 2:00pm) and at the end of the night, at the end of a prolonged anoxic period (i.e., 4:00am - 6:00am) (Fig. 1C). The profiles revealed steep vertical gradients that fluctuated throughout the diel cycle. During the day, the oxic zone extended through the first 5 mm of the button mat with the peak of oxygen production (> 600 μ M) occurring in the upper 3 mm (Fig. 1C). At night, however, oxygen levels decreased significantly and were detectable only in the upper 2 mm of the mat suggesting rapid consumption at night and limited diffusion of O_2 from the overlying water column. Contrastingly, sulfide levels were low during the day with levels detectable only below 6 mm. At night, sulfide levels built-up and were detectable at 4 mm with a peak concentration occurring at a depth of 8 - 10 mm within the mat. In addition to oxygen and sulfide, pH was also monitored throughout the vertical profile of the button mat revealing a wide shift throughout the diel cycle. At peak photosynthesis the localized pH ranged from 8.4 to 10.4 throughout the depth profile with the highest pH occurring at a depth of 3 mm (Fig. 1C). At night, however, the pH steadily

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

decreased to as low as 7.1 at depths below 5 mm. Based on these oxygen, sulfide and pH microelectrode profiles three distinct spatial zones emerged. Zone 1 included the upper 3 mm of the button mat and contained a supersaturated oxic zone that was suggestive of high rates of oxygen production and consumption. Zone 2 represented a transitional area 3-5 mm beneath the surface where oxygen levels decreased and sulfide levels began to build. Finally Zone 3, which included depths below 5 mm, represented a primarily anoxic region of the thrombolite-forming mat.

3.2. Phylogenetic composition of Bacteria in thrombolite communities with depth

Immediately after the microelectrode profiles were generated the thrombolite mats were then

sectioned based on these three observed zones (Zone 1, 0 - 3 mm; Zone 2, 3 - 5mm; and

Zone 3, 5-9 mm) and each of these distinctive spatial regions was subsequently examined

for taxonomic diversity (Fig. 1D). Three replicate amplicon libraries were generated for each

zone targeting the 16S rRNA gene for both the Bacteria and Archaea. A summary of the data

associated with the amplicon libraries is provided in Table 1. The overall bacterial diversity

increased with depth (Supplemental Fig. S1A) with 2044 operational taxonomic units

(OTUs) at 97% sequencing similarity in the upper oxic Zone 1 and 2947 and 3525 OTUs

recovered from Zone 2 and 3, respectively. The number of recovered OTUs was much higher

then previous diversity assessments of the Highborne Cay thrombolites (Myshrall et al.,

2010; Mobberley et al., 2012) and likely reflects the increased sequencing coverage as

determined by Good's estimates (Table 1).

A total of 16 phyla were recovered from the three spatial zones within the thrombolite-forming mat with the Proteobacteria, Cyanobacteria, Bacteroidetes, Chloroflexi,

and Acidobacteria being highly represented in each zone (Supplemental Fig. S2). Distinct

taxonomic differences, however, were observed between the three spatial regions of the

Page 15 of 59

ge 15 of 59	Astrobiology
344	thrombolite mat at the family level (Fig. 2, 3; Supplemental Fig. S2). In the upper Zone 1, the
345	most abundant family represented within the mat is the cyanobacterial family Rivulariaceae
346	(Fig. 2; Supplemental Fig. S2). This taxon contains the genus, <i>Dichothrix</i> , previously
347	identified in the thrombolite mats as forming extensive tufts of calcified filaments (Fig. 1B)
348	and has rarely been found in laminated stromatolites (Foster and Green, 2011). The
349	Rivulariaceae dominated the oxic Zone 1 comprising 21% of annotated reads compared to
350	15% in the transitional Zone 2 and only 5% of the total recovered reads in Zone 3 (Fig. 2;
351	Supplementary Fig. S2). In addition to Rivulariaceae, other prevalent Cyanobacteria in the
352	oxic Zone 1 included Pseudanabaenaceae (11%), Xenococcaceae (5%), and
353	Synechococcaceae (4%; Fig. 2; Supplemental Fig. S2).
354	Although Cyanobacteria was the dominant phylum recovered from Zone 1, there was
355	also a diverse population of Proteobacteria, specifically, the subclass Alphaproteobacteria.
356	Within the Alphaproteobacteria there was enrichment of the photoheterotrophic
357	Rhodobacteraceae (19%) and Rhodospirillaceae (7%) families, and to a lesser extent the
358	Rhizobiales (5%). These taxa were not only abundant in Zone 1 but were highly represented
359	throughout the thrombolite vertical profile (Fig. 3; Supplemental Fig. S2). Other
360	proteobacterial taxa that were abundant in Zone 1 compared to the other two zones included
361	the sulfate-reducing Deltaproteobacteria family Deltavibrionaceae (3%) and the
362	Gammaproteobacteria family Thiotrichaceae (0.8%), which harbors several sulfide oxidizing
363	taxa (Fig. 3). A detailed krona plot of the upper 3 mm of the thrombolite mat is provided in
364	Supplemental Fig. S3.
365	Zone 2 represented a transitional phase in the thrombolite-forming mats with several
366	taxa first appearing in this $3 - 5$ mm zone and gradually increasing in relative abundance in
367	the anoxic Zone 3 (Fig. 3; Supplemental Fig. S2, S4). For example, in the
368	Deltaproteobacteria the sulfate-reducing families Desulfobacteraceae and
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

369	Syntrophobacteraceae were enriched in Zones 2 and 3 compared to Zone 1. Additionally, the
370	purple sulfur bacterial Gammaproteobacteria family Ectothiorhodospiraceae (order
371	Chromatiales) and the sulfide-oxidizing Piscirickettsiaceae (order Thiotrichales) also
372	exhibited a gradual increase in relative abundance with depth (Fig. 3). In addition to the more
373	prevalent taxa there were several families that appeared to a lesser extent only at depth and
374	included the photoheterotrophic Gemmatimonadetes, purple non-sulfur bacteria
375	Rhodobiaceae, and nitrite-oxidizing Nitrospiraceae. Detailed taxonomic profiles of Zone 2
376	and 3 are depicted as krona plots in Supplementary Figs. S4 and S5.
377	In addition to analysis of the bacterial composition, a beta diversity analysis was
378	completed to assess whether these observed taxonomic differences were statistically
379	significant. Unweighted UniFrac distance matrices were generated for the Bacteria amplicon
380	libraries and visualized using a jackknifed principal coordinate analysis (PCoA; Fig. 4A).
381	The results revealed that each of the three spatial zones represented distinctive microbial
382	communities with low standard deviation amongst the library replicates. Zones 2 and 3
383	shared a higher level of similarity with 27% of the variation between the upper and lower two
384	zones being explained by depth (p= 0.001 ; R ² = 0.402 , adonis; Fig. 4A).
385	
386	3.3. Phylogenetic composition of Archaea in thrombolite communities with depth
387	With regard to the overall archaeal diversity (e.g., Shannon Index) there was little difference
388	between the three zones with the recovered OTUs ranging from 506 to 671 (Table 1;
389	Supplementary Fig. S1B). Of the three recovered phyla, the Thaumarchaeota were dominant
390	in all three zones of the thrombolite forming mats with most of the reads sharing similarity to
391	the ammonia-oxidizing family Cenarchaeaceae (Fig. 5), specifically the genus
392	<i>Nitrosopumilus</i> . There were, however, some taxonomic differences between the different
393	spatial regions in the thrombolites. For example, phototrophic Halobacteriales showed the
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

2	
3	
3	
4	
5	
~	
6	
7	
0	
0	
9	
10	
10	
11	
12	
40	
13	
14	
15	
10	
16	
17	
10	
١ð	
19	
20	
20	
21	
22	
~~~	
23	
24	
25	
20	
26	
27	
21	
28	
29	
20	
30	
31	
32	
52	
33	
34	
25	
30	
36	
27	
31	
38	
39	
40	
40	
41	
⊿ว	
40	
43	
44	
15	
40	
46	
47	
40	
48	
49	
50	
90	
51	
52	
52	
53	
54	
57	
55	
56	
57	
ວ <i>1</i>	
58	
50	
00	
60	

394	highest abundance in the upper oxic Zone 1, as did the ammonia-oxidizer Nitrososphaeraceae
395	(Fig. 5). Although few methanogenic archaea taxa were detected in each of the three zones
396	they had the highest representation in the transitional Zone 2 with most of the reads sharing
397	similarity to the class Thermoplasmata and the family Methanocarcinaceae (Fig. 5). A beta
398	diversity test was also completed for the archaeal libraries and showed increased statistical
399	variation between replicates (Fig. 4B). Although the correlation was not as strong as in the
400	Bacteria, the three zones did appear to have spatially distinct Archaea populations with
401	approximately 20% of the variation between the zones being associated with depth (p=0.017;
402	R ² =0.307, adonis; Fig. 4B).
403	
404	3.4. Spatial profiling of functional gene complexity of thrombolite-forming mats using
405	predictive sequencing analysis
406	In addition to profiling the microbial diversity within the thrombolite button mat, a
407	reconstruction of the functional gene complexity was generated for each zone using the 16S
408	rRNA gene sequences and the algorithm Phylogenetic Investigation of Communities by
409	Reconstruction of Unobserved States (PICRUSt; Langille et al., 2013). As the number of
410	available reference genomes has steadily increased, PICRUSt has emerged as an effective
411	tool to accurately predict the functional complexity of the metagenomes based on taxonomic
412	information (Langille et al., 2013). The tool has successfully been used to reconstruct the
413	metagenomes of a wide range of ecosystems including nonlithifying microbial mats and
414	stromatolites (Langille et al., 2013; Casaburi et al., 2016). A predicted metagenome was
415	generated for each spatial zone using the QIIME taxonomic output, which was then
416	statistically compared to a previously published metagenome of the entire button mat $(0-9)$
417	mm; Mobberley et al., 2013) to determine whether differences in the metabolic capabilities
418	could be observed between zones. The previously sequenced thrombolite metagenome was
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

419 re-annotated using MetaCV to update the metagenomic dataset and enabling comparable420 annotations to the PICRUSt predictive metagenomes.

A total of 272 Kyoto Encyclopedia of Genes and Genomes (KEGG) functions were identified in the three zones corresponding to 328 level 3 KEGG orthology (KO) entries, which was consistent with the 268 KEGG functions observed in the re-annotated whole-mat metagenome (Supplemental Table S2). Additionally, there was a strong correlation between the PICRUSt predictive metagenomes and the whole mat metagenome (r = 0.93, Pearson), with most of the KOs (n = 222) showing little or no variation between zones (Supplemental Table S2). Of the 59 KOs that did show variation (> 0.1%) several of the differences occurred between the upper oxic Zone 1 and the two deeper Zones 2 and 3 (Fig. 6). In Zone 1, there was an increase in the relative abundance of KO pathways associated with photosynthesis including the antennae proteins, porphyrin and chlorophyll metabolism, whereas there was a lower abundance of genes associated with carboxylic acid metabolism (e.g., butanoate, benzoate, caprolactam metabolism; Fig. 6). Deeper within the mat in Zones 2 and 3 there was a higher relative abundance of genes associated with fatty acid metabolism and lipopolysaccharide biosynthesis compared to Zone 1. Despite these few select differences many of highly represented pathways in the thrombolite-forming mats, such as DNA repair proteins, two-component signaling, and bacterial motility, showed no differences between the three spatial zones and likely reflect the core metabolisms associated with the thrombolite microbiome.

# *3.5. Stable isotope analyses of thrombolitic carbonates*

The calcified carbonate filaments associated with the *Dichothrix* cyanobacteria in the upper Zone 1 were examined using a combined bulk isotopic analysis and targeted SIMS approach coupled, which enabled an *in situ* high-spatial resolution analysis (Valley and Kita

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Page 19 of 59

#### Astrobiology

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
33
22
33
34
35
36
37
38
30
10
40
41
42
43
44
45
46
47
10
40
49
50
51
52
53
54
55
55
00
5/
58
59
60

444	2009; Kozdon et al., 2009; Kita et al., 2011) (Fig. 7). Bulk samples of dissected calcified
445	filaments had $\delta^{18}$ O values with a mean of -0.53 ± 0.06‰ VPDB suggesting that the
446	precipitates associated with the filaments were not the result of evaporation, which would
447	cause an enrichment in heavy isotopes. Bulk $\delta^{13}C_{carb}$ values of the dissected filaments had a
448	mean of $4.98 \pm 0.03\%$ , which was similar to the surrounding carbonate sediments (+4.06‰
449	to +4.94‰; mean = 4.64 ± 0.30‰). The $\delta^{13}$ C values for the organic matter associated with
450	the filaments was depleted compared to the sediment with values ranging -9.87‰ and -
451	9.22‰ (mean = -9.64 $\pm$ 0.24‰), suggesting a relatively muted fractionation during organic
452	mater uptake, similar to what has been produced in other modern microbial mats (Canfield
453	and DesMarais, 1993). The $\delta^{15}N_{org}$ values associated with the filaments ranged from -1.09‰
454	to -0.14‰ (mean = -0.79 $\pm$ 0.29‰), suggesting nitrogen fixation is a predominant means of
455	N assimilation (Sigman et al., 2009) within the thrombolite-forming mats and correlates with
456	the high number of recovered diazotrophic Cyanobacteria and Alphaproteobacteria from the
457	mats.

458 To complement the bulk stable isotope analyses, the calcified filaments were also 459 analyzed in situ with SIMS to provide a higher spatial resolution (10 µm spot size) of the  $\delta^{18}$ O and  $\delta^{13}$ C compositions of the calcified filaments. Micrographs depicting the SIMS target 460 sites along the filaments and associated carbonate precipitate are shown in Fig. 8. The  $\delta^{18}$ O 461 462 value of the surrounding carbonate sediments ranged from -2.0% and -0.6% (mean = -1.26  $\pm$ 463 0.52%), whereas the filaments exhibited a more depleted oxygen signature ranging from -7.7‰ and -2.0‰ (mean = -3.15  $\pm$  1.05‰) (Fig. 7). The  $\delta^{13}$ C values of the surrounding 464 sediments in the thrombolite button mats had a narrow range of values (+3.6‰ to +4.6‰; 465 5 466 mean =  $4.10 \pm 0.42\%$ ), whereas the filaments had a much more dynamic range (+0.10% to 467  $\pm 5.5\%$ ; mean = 2.7  $\pm 1.25\%$ ). All stable isotope measurements are presented in order of 468 analysis in supplementary Tables S4-S5.

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

469	
470	4. Discussion
471	Within the thrombolite-forming mats of Highborne Cay the results of this study provide
472	evidence that: (1) despite the unlaminated microstructure discrete spatial zones of microbial
473	and biogeochemical signatures were present; (2) predictive metagenome reconstruction using
474	PICRUSt suggests a strong correlation between taxa and function, thereby identifying key
475	metabolic capabilities associated with carbonate precipitation; and (3) stable isotopic analysis
476	suggests that photosynthesis may be inducing precipitation in the thrombolite forming mats.
477	
478	4.1. Microbial diversity within thrombolite-forming mats are highly structured
479	The presence of discrete spatial zones of microbial and biochemical activity have
480	been well documented in stromatolites (e.g., Canfield and DesMarais, 1993; Visscher et al.,
481	1998; Wong et al., 2015), however, the occurrence of similar zonation in mats that form
482	clotted thrombolites has only been recently suggested (Mobberley et al., 2015). In this study,
483	analysis of the bacterial and archaeal communities revealed significantly different profiles of
484	taxa with depth (Fig. 4) suggesting the microbes form discrete microenvironments within the
485	thrombolite-forming mats with each zone having a potentially distinctive role in nutrient
486	cycling.
487	In the upper oxic Zone 1 the dominance of cyanobacterial sequences with similarity
488	to the filamentous Rivulariaceae reinforces the morphological observation that Dichothrix
489	sp., a member of the Rivulariaceae, serves as a 'hot spot' for photosynthetic activity and
490	carbonate deposition within the thick EPS matrix associated with the filaments (Planavsky et
491	al., 2009). Sequencing of the Dichothrix sp. genome is underway (Louyakis and Foster
492	unpublished) and will help to expand the relatively small database of filamentous,
493	heterocystous cyanobacteria as well delineate the specific pathways associated with EPS
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 20

Page 21 of 59

## Astrobiology

1	
2 3	
4 5 6	
0 7 8	4
9 10	4
11 12	4
13 14	4
15 16	
17 18 10	
20 21	
22 23	
24 25	
26 27	
28 29	
30 31 32	•
33 34	•
35 36	•
37 38	•
39 40	•
41 42	
43 44 45	
46 47	•
48 49	
50 51	
52 53	
54 55	
56 57	
58 59 60	

494	production in this keystone organism. In addition to the cyanobacteria, taxonomic analyses
495	also revealed an enrichment of diazotrophic, photoheterotrophs primarily associated with the
496	Rhodobacterales, Rhodospirillales, and Rhizobiales increasing with depth (Fig. 3). These
497	metabolically flexible Alphaproteobacteria are ubiquitous in marine microbial communities
498	including all previously characterized microbialites, coral symbioses, and sediments (e.g.,
499	Dang et al., 2013; Houghton et al., 2014; Wong et al., 2015; Casaburi et al., 2016; Hester et
500	al., 2016; Suosaari et al., 2016) and may be contributing to the carbon fixation rates deeper
501	within the thrombolitic mats where there are fewer cyanobacteria due to the reduced light
502	levels and the presence of sulfide. Additionally, the diazotrophic photoheterotrophs may be
503	helping to maintain the bioavailability of nitrogen in the thrombolite-forming communities.
504	Another key microbial functional group enriched within the thrombolite-forming
505	communities was sulfate-reducing bacteria (SRB), whose activity has been directly correlated
506	to deposition of carbonate in actively accreting stromatolites (Visscher et al., 2000; Decho et
507	al., 2010). There was a pronounced vertical stratification of SRBs in the thrombolite-forming
508	communities. Taxa associated with Desulfovibrionaceae, were enriched in the upper oxic
509	Zone 1, whereas the Deltasulfobacteraceae increased in their relative abundance with depth.
510	This vertical stratification of SRBs has been seen in the non-lithifying hypersaline mats of
511	Guerrero Negro, Mexico (Risatti et al., 1994) and Solar Lake Egypt (Minz et al., 1999).
512	Several species of sulfate-reducing Delsulfovribionaceae (e.g., Desulfovibrio spp. and
513	Desulfomicrobium spp) have been shown to be prevalent in the oxic zone of microbial mats
514	(Krekeler et al., 1997) and high levels of sulfate reduction activity have been recorded in the
515	upper oxic zone of non-lithifying and stromatolite-forming mats (e.g., Canfield and
516	DesMarais, 1991; Visscher et al., 1992, 2000). The abundance of SRBs in the oxic zone may
517	be, in part, due to the presence of sulfide oxidizing bacteria (SOBs). There was an enrichment
518	of the families Thiotrichaceae and Chromatiaceae in the upper Zone 1, which are known to
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 21

harbor many sulfide-oxidizing taxa (Pfennig and Trüper, 1992; Lenk et al., 2011). The SOBs may be removing the  $O_2$  and  $S^{2-}$  generated by the cyanobacteria and SRBs, both of which can be toxic to the SRBs at high enough levels (Decho et al., 2010). Together, this enrichment of SOBs, oxygen-tolerant SRBs and their vertical stratification in the thrombolite-forming may suggest that, much like in the stromatolites, these different phylogenetic groups may be playing distinctive community functions in response to variable carbon and electron donor availability at different depths as well as the diel flux of oxygen and sulfide. In addition to the bacteria, the archaeal population also exhibited stratification of certain taxa within the thrombolite-forming mat. There was an enrichment of Halobacteriales in the upper oxic Zone 1 of the thrombolitic mats. Members of this order are typically chemoheterotrophic and can grow on a wide range sugars, carboxylic acids, alcohols and amino acids. This aerobic taxon has been observed in both lithifying and nonlithifying microbial mat communities primarily in hypersaline environments (Burns et al., 2004; Arp et al., 2012; Schneider et al., 2013) and may be contributing to the heterotrophic degradation of EPS material associated with the calcified filaments. It should be noted that the salinity of the porewater in the upper part of the microbialites increases significantly (~135 PSU; Visscher unpubl) upon exposure to the atmosphere during low tide, creating temporary hypersaline conditions. Relatively few sequences were recovered from methanogenic archaea and these were primarily associated with the Methanocarcinaceae. These taxonomic results correspond to recovered methyltransferase-encoding genes in the thrombolite metagenome (Mobberley et al., 2013), and there was a slight enrichment of recovered sequences from Zone 2 (Fig. 5). Members of the Methanocarcinaceae can undergo methanogenesis using  $CO_2$ , acetate, and  $C_1$ compounds (Feist et al., 2006) and have been shown to elevate pH levels in mat communities

543 via CO₂ consumption (Kenward *et al.*, 2009). However, the low levels of recovered taxa in

#### Astrobiology

2	
3	
1	
-	
5	
6	
7	
8	
õ	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
31	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
ΔΔ	
17	
45	
46	
47	
48	
10	
<del>-</del> -0	
50	
51	
52	
53	
54	
57	
22	
56	
57	
58	
59	
60	
1 11 1	

this study coupled with relatively few functional genes observed in the thrombolite
metagenome (Mobberley *et al.*, 2013) suggest that methanogenesis may be playing only a
minor role in promoting an alkaline environment within these thrombolitic mats.

548 4.2. Predictive metagenome reconstruction shows strong correlation with taxa and function. 549 The PICRUSt predictive metagenome strongly correlated (r = 0.93) with the 550 previously published whole shotgun library (Mobberley et al., 2013) providing further 551 evidence that 16S rRNA gene libraries can be used to provide insight into the metabolic 552 capabilities of microbial ecosystems. There was extensive overlap in the relative abundance 553 of functional genes between the different depths in several pathways, such as nucleotide and 554 amino acid metabolism, genetic information processing, and environmental information 555 responses with the shotgun sequence library suggesting there is a core metagenome in the 556 thrombolite-forming mats at all depths (Fig. 6). Additionally, genes associated with several 557 key metabolisms associated with the promotion (e.g., photosynthesis, sulfate reduction) and 558 dissolution (e.g., sulfide oxidation, fermentation, ammonia oxidation) of carbonate 559 precipitation were observed within the thrombolite-forming mats.

560 Despite the extensive overlap between the core metagenome at each depth, some 561 differences were observed between the mat zones. The enrichment of genes associated with 562 photosynthesis pathways in the upper Zone 1 and the increase of genes associated with 563 different carboxylic and fatty acid metabolisms deeper within the mat reveal distinctive 564 metabolic transitions throughout the mat profile. These spatial differences in metabolic 565 capabilities are also reflected in the biochemical gradients observed within the mats (Fig. 1). 566 These functional genes could serve as ideal targets to examine the potential regulation of 567 these metabolisms within the thrombolite ecosystems potentially providing insight into the 568 molecular response to changing environmental variables, such as pH, oxygen and sulfide.

Additionally, by tracking these specific molecular pathways it may be possible elucidate the
specific genes and taxa involved in the diagenetic alteration of organic material in the
thrombolites over both spatial and temporal scales.

573 4.3. Stable isotope profiling suggests photosynthesis is the major driver in thrombolite-

574 forming mats.

In addition to the microbial and functional gene analyses the stable isotope profiling provided additional insights into the microbial nitrogen cycling and the mechanisms driving carbonate precipitation. Organic N isotope values approached 0‰, indicating nitrogen fixation was the dominant N source (Hoering and Ford, 1960; Minagawa and Wada, 1986; Sigman *et al.*, 2009), which is consistent with the abundance of heterocystous cyanobacteria, such as *Dichothrix* sp., and numerous nitrogen fixing anoxygenic phototrophs identified in Zone 1 (Fig. 8). These results are also consistent with the high number of nitrogen fixation genes (e.g., *nifD*, *nifH*, *nifK*) recovered from the metagenome and metatranscriptome of the thrombolites (Mobberley et al., 2015). Additionally, the enrichment of ammonia oxidizing archaea within the mat coupled with the low numbers of nitrification genes observed in both the predictive and whole shotgun libraries suggested that these chemolithotrophs may be actively involved in the cycling of the fixed nitrogen within the thrombolite forming mats. Analysis of  $\delta^{18}$ O values using both bulk and SIMS analyses do not provide evidence of an evaporative signal and are suggestive of biologically induced precipitation. The high rates of photosynthesis within the thrombolite-forming mats (Myshrall et al., 2010) coupled with the previously published observations that red algae distributed throughout the tufts of Dichothrix sp. filaments lack precipitates (Planavsky et al., 2009) make it unlikely that non-biological processes, such as  $CO_2$  degassing, are driving the precipitation within the thrombolites. The SIMS  $\delta^{18}$ O values for filaments are highly depleted compared to the values 

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Page 25 of 59

#### Astrobiology

2 3	594	associated with the sediments and previous studies have shown that increased ¹⁸ O depletion
4 5	595	under elevated pH (Spero and Lea, 1996) suggestive of rapid rates of carbonate precipitation
6 7 8	596	(McConnaughey, 1989). Although the offset between the bulk and SIMS $\delta^{18}$ O values cannot
9 10	597	yet be fully explained, systematically lower SIMS values have been observed up to 2‰
11 12	598	(Orland et al., 2015) and may be the product of water or organics within the sample site.
13 14	599	Furthermore, the low variability in the ¹⁶ OH/ ¹⁶ O values (Supplemental Table S4) suggests
15 16	600	that the zonation revealed by the SIMS data is accurate. The difference between SIMS and
17 18	601	bulk measurements may in part reflect the extensive grinding during sample preparation for
19 20 21	602	bulk isotone analysis. Previous studies in corals have shown that the friction generated during
21 22 23	603	milling or drilling of the carbonate samples can cause inversion of aragonite to calcite (Waite
23 24 25	604	and Swart 2015). As a result of extension processing (a.g. milling), the $S^{18}$ O values cause
26 27	604	and Swart, 2015). As a result of extensive processing (e.g. milling), the o O values cause
28	605	correction errors from 0.2 ‰ per 1% of inversion from aragonite to calcite (Waite and Swart,
29 30 31	606	2015). Such differences between the two approaches reinforce the value of using a SIMS-
32 33	607	based approach to capture the extensive variability that likely exists within the
34 35	608	microenvironments of thrombolite forming mats.
36 37	609	The bulk $\delta^{13}$ C values of the organic matter associated within the thrombolites were
38 39	610	heavy (mean -9.64 $\pm$ 0.24‰) relative to RuBisCO-mediated carbon fixation, which exhibits
40 41	611	fractionations that typically span between -35 to -23‰ in both plant and microbial
42 43	612	ecosystems and can be highly species-dependent (Farquhar et al., 1989; Falkowski, 1991).
44 45 46	613	These $\delta^{13}C$ –enriched values likely reflect diffusion limitations of CO ₂ into the thrombolite-
40 47 48	614	forming mats. Similar values have been observed in microbial mats found in the hypersaline
49 50	615	Solar Lake $(-5.7 \pm 1.4\%)$ and Gavish Sabkha $(-10 \pm 2.6\%)$ and have been attributed to EPS-
51 52	(1(	
53 54	616	rich materials on the surface of mats that impede transport of $CO_2$ into the mats (Schidlowski
54 55	617	et al., 1984). Previous studies have also shown that external factors, such as increased salinity
วง 57 59	618	and temperature, can also decrease the solubility of CO ₂ (Mucci, 1983). Therefore, the
58 59		
60		Norse Anna Lichart Inc., 440 Universit Official New Decidally, NY 40004

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

2	
~	
3	
0	
Δ	
-	
5	
0	
6	
5	
7	
'	
Q	
0	
a	
3	
10	
10	
11	
11	
12	
12	
12	
13	
11	
14	
15	
10	
16	
10	
17	
17	
18	
10	
10	
13	
20	
20	
21	
<b>∠</b> I	
22	
22	
22	
20	
21	
24	
25	
20	
26	
20	
27	
21	
20	
20	
20	
29	
30	
50	
21	
JI	
22	
SZ	
22	
33	
21	
34	
25	
55	
36	
50	
27	
37	
20	
50	
30	
29	
10	
40	
11	
41	
12	
42	
12	
43	
11	
44	
15	
40	
16	
40	
17	
41	
10	
4ð	
10	
49	
E٥	
<b>5</b> 0	
E 1	
DI	
<b>۲</b> 0	
JΖ	
<b>F</b> 2	
53	
E۸	
54	
EE	
22	
FC	
90	
57	
J/	
EO	
00	
50	
ວອ	
60	

619 abundance of EPS material within the thrombolite-forming mats coupled with high rates of 620 productivity (Myshrall *et al.*, 2010) may result in a potential shortage of  $CO_2$  that may reduce isotopic discrimination of  ${}^{13}C$  and is consistent with the idea of CO₂ driving a pH shift and 621 622 inducing carbonate precipitation.

623 The overall carbon isotope profiles of the carbonate suggest that the thrombolites of 624 Highborne Cay are primarily the result of photoautotrophic carbon fixation. The bulk isotope 625 data for carbonates correlates well with previous analyses on the calcified filaments 626 (Planavsky *et al.*, 2009) and are slightly higher then the  $\delta^{13}$ C values of the adjacent 627 stromatolites, which have been suggested to be the product of heterotrophic processes 628 (Andres et al., 2006). The SIMS values, however, are more variable than the bulk isotopes, 629 although the means are not statistically different. The extensive variability in the SIMS  $\delta^{13}C_{carb}$  values for filaments may reflect CO₂ constraints in the microenvironments along the 630 631 vertically orientated cyanobacteria filaments. High rates of photosynthesis can deplete local CO₂ concentrations resulting in variable fractionation rates (Calder and Parker, 1973). 632 Additionally, the lightest SIMS  $\delta^{13}$ C values in filaments may reflect the presence of 633 634 localized organics (e.g., EPS material) associated with the calcified filaments, given that 635 organic carbon has higher ionization efficiency than carbonate. However, as SIMS threshold cutoffs were applied to eliminate any spots that might include organics, the lower  $\delta^{13}$ C 636 637 values likely accurately capture filament carbonate values. In contrast, the isotopically 638 enriched samples, relative to values predicted from precipitation from local marine DIC, 639 provides evidence for carbonate precipitation in a microenvironment influenced by carbon 640 dioxide uptake, which increases the pH (Visscher et al., 1991, 1998, 2005; Planavsky et al., 2009). The highest SIMS  $\delta^{13}$ C values are more isotopically enriched than any previously 641 reported Highborne Cay bulk thrombolite or filament  $\delta^{13}$ C values (Planavsky *et al.*, 2009). 642 643 Planavsky and others (2009) used an offset between *Dichothrix* filament and detrital

Page 27 of 59

#### Astrobiology

644	sediment $\delta^{13}$ C values to argue for photosynthetic carbon dioxide consumption as the
645	initiation factor for carbonate precipitation within the filament sheaths. The observed
646	markedly enriched filament $\delta^{13}$ C values strengthen the case for photosynthetic carbonate
647	precipitation trigger.
648	
649	5. Conclusions
650	The integrated approaches of microbial diversity, metagenome reconstruction,
651	microelectrode, and stable isotope analysis provide a spatial portrait of thrombolite-forming
652	communities revealing that despite the unlaminated, clotted microstructures these
653	thrombolitic communities form distinct taxonomic and metabolic stratifications. The results
654	of this study also reveal that the taxa and primary metabolic triggers associated with
655	precipitation in thrombolites are distinctive from stromatolites. Even within the same
656	ecosystem, where thrombolites are juxtaposed to stromatolites under similar environmental
657	conditions (e.g., pH, salinity, temperature, UV flux) these differences between their taxa and
658	metabolic activities appear to generate very distinct carbonate microstructures. Elucidating
659	how these disparate structural fabrics arise will require a more detailed look into the
660	networking and connectivity of the microbial interactions and metabolisms. Regulation of
661	these processes on both diel and seasonal time scales will help assess the patterns associated
662	with microbial activities and their response to their changing environment. Together, these
663	analyses help elucidate the pathways associated with microbialite formation and represent a
664	valuable tool to help reconstruct the microbiological and environmental conditions of the
665	past.
666	
667	Acknowledgements
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 27

668	The authors would like to thank Jennifer Larimore for her technical assistance. A.S.L was
669	supported by the NSF Graduate Research Fellowship Program and J.M.M was supported by
670	the NASA Graduate Student Research Program fellowship (NNX10AO18H). The research
671	efforts were supported by the NASA Exobiology and Evolutionary Biology program element
672	(NNX12AD64G). WiscSIMS is funded by NSF (EAR1355590).
673	
674	Author Disclosure Statement
675	No competing financial interests exist
676	
677	Author Contributions
678	A.L., J.M., R.R., P.V., and J.F. conceived the experiments. J.M., P.H., J.F., and P.V.
679	collected the samples. All authors contributed to the performance and analysis of the
680	experiments. All authors reviewed and approved the final manuscript.
681	
682	References
683	Aitken JD. (1967) Classification and environmental significance of cryptalgal limestones and
684	dolomites, with illustrations from the Cambrian and Ordovician of southwestern
685	Alberta. Journal of Sedimentary Petrology, 37, 1163-1178.
686	Andres M, Sumner D, Reid RP, and Swart PK. (2006) Isotopic fingerprints of microbial
687	respiration in aragonite from Bahamian stromatolites. <i>Geology</i> , 34, 973-976.
688	Andres MS, and Reid RP. (2006) Growth morphologies of modern marine stromatolites: a
689	case study from Highborne Cay, Bahamas. Sedimentary Geology, 185, 319-328.
690	Arp G, Helms G, Kalinska K, Schumann G, Reimer A, Reitner J, and Trichet J. (2012)
691	Photosynthesis versus exopolymer degradation in the formation of microbialites on
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 28

#### Page 29 of 59

#### Astrobiology

692	the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geomicrobiology
693	Journal, 29, 29-65.
694	Barns SM, Fundyga RE, Jeffries MW, and Pace NR. (1994) Remarkable archaeal diversity
695	detected in a Yellowstone National Park hot spring environment. Proceedings of the
696	National Academy of Sciences, 91, 1609-1613.
697	Bernhard JM, Edgcomb VP, Visscher PT, McIntyre-Wressnig A, Summons RE, Bouxsein
698	ML, Louis L, and Jeglinski M. (2013) Insights into foraminiferal influences on
699	microfabrics of microbialites at Highborne Cay, Bahamas. Proceedings of the
700	National Academy of Sciences, 110, 9830-9834.
701	Bowlin EM, Klaus J, Foster JS, Andres M, Custals L, and Reid RP. (2012) Environmental
702	controls on microbial community cycling in modern marine stromatolites.
703	Sedimentary Geology, 263-264, 45-55.
704	Breitbart M, Hoare A, Nitti A, Siefert J, Haynes M, Dinsdale E, Edwards R, Souza V,
705	Rohwer F, and Hollander D. (2009) Metagenomic and stable isotopic analyses of
706	modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environmental
707	Microbiology, 11, 16-34.
708	Burne RV, and Moore LS. (1987) Microbialites: organosedimentary deposits of benthic
709	microbial communities. <i>PALAIOS</i> , 2, 241-254.
710	Burns BP, Goh F, Allen M, and Neilan BA. (2004) Microbial diversity of extant stromatolites
711	in the hypersaline marine environment of Shark Bay, Australia. Environmental
712	Microbiology, 6, 1096-1101.
713	Calder JA, and Parker PL. (1973) Geochemical implocations of induced changes in ¹³ C
714	fractionation by blue-green algae. Geochimica et Cosmochimica Acta, 37, 133-140.
715	Canfield DE, and Des Marais DJ. (1991) Aerobic sulfate reduction in microbial mats.
716	Science, 251, 1471-1473.
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 29

717	Canfield DE, and Des Marais DJ. (1993) Biogeochemical cycles of carbon, sulfur, and free
718	oxygen in a microbial mat. Geochimica et Cosmochimica Acta, 57, 3971-3984.
719	Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N,
720	Pena AG, Goodrich JK, Gordon JI and others. (2010) QIIME allows analysis of high-
721	throughput community sequencing data. Nature Methods, 7, 335-336.
722	Casaburi G, Duscher AA, Reid RP, and Foster JS. (2016) Characterization of the stromatolite
723	microbiome from Little Darby Island, The Bahamas using predictive and whole
724	shotgun metagenomic analysis. Environmental Microbiology, 18: 1452-1469
725	Casamayor EO, Massana R, Benlloch S, Ovreas L, Diez B, Goddard VJ, Gasol JM, Joint I,
726	Rodriguez-Valera F, and Pedros-Alio C. (2002) Changes in archaeal, bacterial and
727	eukaryal assemblages along a salinity gradient by comparison of genetic
728	fingerprinting methods in a multipond solar saltern. Environmental Microbiology, 4,
729	338-48.
730	Dang H, Yang J, Li J, Luan X, Zhang Y, Gu G, Xue R, Zong M, and Klotz MG. (2013)
731	Environment-dependent distribution of the sediment nifH-harboring microbiota in the
732	Northern South China Sea. Applied and Environmental Microbiology, 79, 121-132.
733	Decho AW, Norman RS, and Visscher PT. (2010) Quorum sensing in natural environments:
734	emerging views from microbial mats. Trends in Microbiology, 18, 73-80.
735	DeLong EF. (1992) Archaea in coastal marine environments. Proceedings of the National
736	Academy of Sciences, 89, 5685-5689.
737	DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu
738	P, and Andersen GL. (2006) Greengenes, a chimera-checked 16S rRNA gene
739	database and workbench compatible with ARB. Applied and Environmental
740	Microbiology, 72, 5069-5072.
741	Dravis JJ. (1983) Hardened subtidal stromatolites, Bahamas. Science, 219, 385-386.
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 30

#### Page 31 of 59

### Astrobiology

2 3	742	Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, and Visscher PT. (2009)
4	743	Processes of carbonate precipitation in modern microbial mats. Earth Science
6 7 8	744	<i>Reviews</i> , 96, 141-162.
9 10	745	Dupraz C, and Visscher PT. (2005) Microbial lithification in marine stromatolites and
11 12	746	hypersaline mats. Trends in Microbiology, 13, 429-438.
13 14	747	Dupraz C, Visscher PT, Baumgartner LK, and Reid RP. (2004) Microbe-mineral interactions:
15 16	748	early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas).
17 18 19	749	Sedimentology, 51, 1-21.
20 21	750	Edgcomb VP, Bernhard JM, Beaudoin D, Pruss S, Welander PV, Schubotz F, Mehay S,
22 23	751	Gillespie AL, and Summons RE. (2013) Molecular indicators of microbial diversity
24 25	752	in oolitic sands of Highborne Cay, Bahamas. Geobiology, 11, 234-251.
26 27 28	753	Falkowski PG. (1991) Species variability in the fractionation of ¹³ C and ¹² C by marine
29 30	754	phytoplankton. Journal of Plankton Research, 13, 21-28.
31 32	755	Farquhar GD, Ehleringer JR, and Hubick KT. (1989) Carbon isotope discrimination and
33 34	756	photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40,
35 36 37	757	503-537.
38 39	758	Feist AM, Scholten JC, Palsson BO, Brockman FJ, and Ideker T. (2006) Modeling
40 41	759	methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina
42 43	760	barkeri. Molecular System Biology, 2, 1.
44 45 46	761	Foster JS, and Green SJ. (2011) Microbial diversity in modern stromatolites In: Cellular
40 47 48	762	Origin, Life in Extreme Habitats and Astrobiology: Interactions with Sediments.
49 50	763	edited by J Seckbach and V Tewaris, Springer, p 385-405.
51 52	764	Gallagher KL, Kading TJ, Braissant O, Dupraz C, and Visscher PT. (2012) Inside the
53 54	765	alkalinity engine: The role of electron donors in the organomineralization potential of
55 56 57	766	sulfate-reducing bacteria. Geobiology, 10, 518-530.
58 59		
60		Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 31

767	Glunk C, Dupraz C, Braissant O, Gallagher KL, Verrecchia EP, and Visscher PT. (2011)
768	Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Elutera,
769	Bahamas). Sedimentology, 58, 720-738.
770	Hester ER, Barott KL, Nulton J, Vermeij NJA, and Rohwer FL. (2016) Stable and sporadic
771	symbiotic communities of coral and algal holobionts. <i>ISME Journal</i> , 10, 1157-1169.
772	Hoering T, and Ford HT. (1960) The isotope effect in the fixation of nitrogen by Azotobacter.
773	Journal of American Chemical Society, 82, 376-378.
774	Houghton J, Fike D, Druschel G, Orphan V, Hoehler TM, and Des Marais DJ. (2014) Spatial
775	variability in photosynthetic and heterotrophic activity drives localized delta13C org
776	fluctuations and carbonate precipitation in hypersaline microbial mats. Geobiology,
777	12, 557-574.
778	Huson DH, Auch AF, Qi J, and Schuster SC. (2007) MEGAN analysis of metagenomic data.
779	Genome Research, 17, 377-386.
780	Kanehisa M, and Goto S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic
781	Acids Research, 28, 27-30.
782	Kennard JM, and James NP. (1986) Thrombolites and stromatolites: two distinct types of
783	microbial structures. PALAIOS, 1, 492-503.
784	Kenward PA, Goldstein RH, Gonzalez LA, and Roberts JA. (2009) Precipitation of low-
785	temperature dolomite from an anaerobic microbial consortium: the role of
786	methanogenic Archaea. Geobiology, 7, 556-565.
787	Khodadad CL, and Foster JS. (2012) Metagenomic and metabolic profiling of nonlithifying
788	and lithifying stromatolitic mats of Highborne Cay, The Bahamas. PLoS ONE, 7,
789	e38229.
790	Kita NT, Huberty JM, Kozdon R, Beard BL, and Valley JW. (2011) High-precision SIMS
791	oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy,
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 32

#### Astrobiology

2 3	792	surface topography and crystal orientation. Surface and Interface Analysis, 43, 427-
4 5	793	431.
7 8	794	Kozdon R, Kelly DC, Kita NT, Fournelle JH, and Valley JW. (2011) Planktonic
9 10	795	foraminiferal oxygen isotope analysis by ion microprobe technique suggests warm
11 12	796	tropical sea surface temperatures during the Early Paleogene. Paleoceanography, 26.
13 14	797	Kozdon R, Ushikubo T, Kita NT, Spicuzza M, and Valley JW. (2009) Intratest oxygen
15 16 17	798	isotope cariability in the planktonic foraminifer N. pachyderma: real versus apparent
18 19	799	vital effects by ion microprobe. Chemical Geology, 258, 327-337.
20 21	800	Krekeler D, Teske AP, and Cypionka H. (1997) Strategies of sulfate-reducing bacteria to
22 23	801	escape oxygen stress in a cyanobacterial mat. FEMS Microbiology Ecology, 25, 89-
24 25 26	802	96.
27 28	803	Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC,
29 30	804	Burkepile DE, Vega Thurber RL, Knight R and others. (2013) Predictive functional
31 32	805	profiling of microbial communities using 16S rRNA marker gene sequences. Nature
33 34 25	806	Biotechnology, 31, 814-821.
36 37	807	Laval B, Cady SL, Pollack JC, McKay CP, Bird JS, Grotzinger JP, Ford DC, and Bohm HR.
38 39	808	(2000) Modern freshwater microbialite analogues for ancient dendritic reef structures.
40 41	809	Nature, 407, 626-629.
42 43	810	Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, and Mussmann M. (2011) Novel groups of
45 46	811	Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal,
47 48	812	intertidal sediment. Environmental Microbiology, 13, 758-774.
49 50	813	Linzmeier B, Kozdon R, Peters S, and Valley JW. (2016) Oxygen isotope variability within
51 52 52	814	growth bands suggests daily depth migration behavior is recorded in <i>Nautilus</i> shell
55 55	815	aragonite. PLOS ONE, e0153890.
56 57		
58 59		
60		Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 33

816	Logan BW. (1961) Crytpzoan and associated stromatolties from the recent, Shark Bay,
817	Western Australia. Journal of Geology, 69, 517-533.
818	Lozupone C, and Knight R. (2005) UniFrac: a new phylogenetic method for comparing
819	microbial communities. Applied and Environmental Microbiology, 71, 8228-8235.
820	McConnaughey T. (1989) ¹³ C and ¹⁸ O isotopic disequilibrium in biological carbonates: I.
821	Patterns. Geochimica et Cosmochimica Acta, 53, 151-162.
822	Minagawa M, and Wada E. (1986) Nitrogen isotope ratios fo red tide organisms in the East
823	China Sea: a characterization of biological nitrogen fixation. Marine Chemistry, 19,
824	245-259.
825	Minz D, Fishbain S, Green SJ, Muyzer G, Cohen Y, Rittmann BE, and Stahl DA. (1999)
826	Unexpected population distribution in a microbial mat community: sulfate-reducing
827	bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference
828	for anoxia. Applied and Environmental Microbiology, 65, 4659-4665.
829	Mobberley JM, Khodadad CL, and Foster JS. (2013) Metabolic potential of lithifying
830	cyanobacteria-dominated thrombolitic mats. Photosynthesis Research, 118, 125-140.
831	Mobberley JM, Khodadad CL, Visscher PT, Reid RP, Hagan P, and Foster JS. (2015) Inner
832	workings of thrombolites: spatial gradients of metabolic activity as revealed by
833	metatranscriptome profiling. Scientific Reports, 5, 12601.
834	Mobberley JM, Ortega MC, and Foster JS. (2012) Comparative microbial diversity analyses
835	of modern marine thrombolitic mats by barcoded pyrosequencing. Environmental
836	Microbiology, 14, 82-100.
837	Mucci A. (1983) The solubility of calcite and aragonite in seawater at various salinities,
838	temperatures, and one atmosphere total pressure. American Journal of Science, 283,
839	780-799.
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 34

#### Page 35 of 59

#### Astrobiology

2 3	840	Myshrall K, Mobberley JM, Green SJ, Visscher PT, Havemann SA, Reid RP, and Foster JS.
4 5 6	841	(2010) Biogeochemical cycling and microbial diversity in the modern marine
7 8	842	thrombolites of Highborne Cay, Bahamas. Geobiology, 8, 337-354.
9 10	843	Ondov BD, Bergman NH, and Phillippy AM. (2011) Interactive metagenomic visualization
11 12	844	in a Web browser. BMC Bioinformatics, 12, 385.
13 14	845	Orland IJ. (2012) Seasonality from spleothems: high-resolution ion microprobe studies at
15 16 17	846	Soreq Cave, Israel: University of Wisconsin-Madison.
18 19	847	Orland IJ, Bar-Matthews M, Kita NT, Ayalon A, Matthews A, and Valley JW. (2009)
20 21	848	Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe
22 23	849	analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel.
24 25 26	850	Quaternary Research, 71, 27-35.
20 27 28	851	Pages A, Welsh DT, Teasdale PR, Grice K, Vacher M, Bennett WW, and Visscher PT.
29 30	852	(2014) Diel fluctuations in solute distributions and biogeochemical cycling in a
31 32	853	hypersaline microbial mat from Shark Bay, WA. Marine Chemistry, 167, 102-112.
33 34 25	854	Paul VG, Wronkiewicz DJ, Mormile MR, and Foster JS. (2016) Mineralogy and microbial
36 37	855	diversity of the microbialites in the hypersaline Storr's Lake, The Bahamas.
38 39	856	Astrobiology, 16, 282-300.
40 41	857	Pfennig N, and Trüper HG. (1992) The family Chromatiaceae. In: The Prokaryotes, Springer,
42 43	858	New York, p 3200-3221.
44 45 46	859	Planavsky N, and Ginsburg RN. (2009) Taphonomy of modern marine Bahamian
47 48	860	microbialites. PALAIOS, 24, 5-17.
49 50	861	Planavsky N, Reid RP, Andres M, Visscher PT, Myshrall KL, and Lyons TW. (2009)
51 52	862	Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology, 7,
53 54 55	863	566-576.
56 57		
58 59		
60		Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 35

864	Price MN, Dehal PS, and Arkin AP. (2010) FastTree 2approximately maximum-likelihood
865	trees for large alignments. PLoS ONE, 5, e9490.
866	Reid RP, Macintyre IG, and Steneck RS. (1999) A microbialite/algal-ridge fringing reef
867	complex, Highborne Cay, Bahamas. Atoll Research Bulletin, 465, 459-465.
868	Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl
869	HW, Pinckney JL, Prufert-Bebout L and others. (2000) The role of microbes in
870	accretion, lamination and early lithification of modern marine stromatolites. Nature,
871	406, 989-992.
872	Risatti JB, Capman WC, and Stahl DA. (1994) Community structure of a microbial mat: the
873	phylogenetic dimension. Proceedings of the National Academy of Sciences, 91,
874	10173-10177.
875	Ruvindy R, White Iii RA, Neilan BA, and Burns BP. (2016) Unravelling core microbial
876	metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput
877	metagenomics. ISME Journal, 10, 183-196.
878	Saghaï A, Zivanovic Y, Zeyen N, Moreira D, Benzerara K, Deschamps P, Bertolino P, Ragon
879	M, Tavera R, Lopez-Archilla AI and others. (2015) Metagenome-based diversity
880	analyses suggest a significant contribution of non-cyanobacterial lineages to
881	carbonate precipitation in modern microbialites. Frontiers in Microbiology, 6, 797.
882	Schidlowski M, and Matzigkeit U. (1984) Superheavy organic carbon from hypersaline
883	microbial mats. Naturwissenschaften, 71, 303-308.
884	Schneider D, Arp G, Reimer A, Reitner J, and Daniel R. (2013) Phylogenetic analysis of a
885	microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll,
886	Central Pacific. PLoS ONE, 8, e66662.
887	Sigman DM, Karsh KL, and Casciotti KL. (2009) Ocean process tracers: nitrogen isotopes in
888	the ocean. Encyclopedia of Ocean Science, 4138-4153.
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 36

#### Astrobiology

889	Spero HJ, and Lea DW. (1996) Experimental determination of stable isotope variability in
890	Globigerina bulloides: implications for paleoceanographic reconstructions. <i>Marine</i>
891	Micropaleontology, 28, 231-246.
892	Stolz JF, Reid RP, Visscher PT, Decho AW, Norman RS, Aspden RJ, Bowlin EM, Franks J,
893	Foster JS, Paterson DM and others. (2009) The microbial communities of the modern
894	marine stromatolites at Highborne Cay, Bahamas. Atoll Research Bulletin, 567, 1-29.
895	Suosaari EP, Reid RP, Playford PE, Foster JS, Stolz JF, Casaburi G, Hagan PD, Chirayath V,
896	Macintyre IG, Planavsky NJ and others. (2016) New multi-scale perspectives on the
897	stromatolites of Shark Bay, Western Australia. Scientific Reports, 6, 20557.
898	Valley JW, and Kita NT. (2009) In situ oxygen isotope geochemistry by ion microprobe. In:
899	Mineralogical Association of Canada Short Course, p 19-63.
900	Vazquez-Baeza Y, Pirrung M, Gonzalez A, and Knight R. (2013) EMPeror: a tool for
901	visualizing high-throughput microbial community data. Gigascience, 2, 16.
902	Vetter L, Kozdon R, Valley JW, Mora CI, and Spero HJ. (2014) SIMS measurements of
903	intrashell $\delta^{13}$ C in the cultured planktic foraminifer Orbulina universa. Geochimica et
904	Cosmochimica Acta, 139, 527-539.
905	Visscher PT, Beukema J, and van Gemerden H. (1991) In situ characterization of sediments:
906	measurement of oxygen and sulfide profiles with a novel combined needle electrode.
907	Limnology and Oceanography, 36, 1476-1480.
908	Visscher PT, Prins RA, and van Gemerden H. (1992) Rates of sulfate reduction and
909	thiosulfate consumption in a marine microbial mat. FEMS Microbiology Letters, 86,
910	283-293.
911	Visscher PT, Reid RP, and Bebout BM. (2000) Microscale observations of sulfate reduction:
912	correlation of microbial activity with lithified micritic laminae in modern marine
913	stromatolites. Geology, 28, 919-922.
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 37

914	Visscher PT, Reid RP, Bebout BM, Hoeft SE, Macintyre IG, and Thompson JA. (1998)
915	Formation of lithified micritic laminae in modern marine stromatolites (Bahamas):
916	The role of sulfur cycling. American Mineralogist, 83, 1482-1493.
917	Visscher PT, and Stolz JF. (2005) Microbial mats as bioreactors: populations, processes and
918	products. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 87-100.
919	Waite AJ, and Swart PK. (2015) The inversion of aragonite to calcite during the sampling of
920	skeletal archives: implications for proxy interpretation. Rapid Communications in
921	Mass Spectrometry, 29, 955-964.
922	Warden JG, Casaburi G, Omelon CR, Bennett PC, Breecker DO, and Foster JS. (2016)
923	Characterization of microbial mat microbiomes in the modern thrombolite ecosystem
924	of Lake Clifton, Western Australia using shotgun metagenomics. Frontiers in
925	Microbiology, doi: 10.3389/fmicb.2016.01064.
926	White RA, 3rd, Chan AM, Gavelis GS, Leander BS, Brady AL, Slater GF, Lim DS, and
927	Suttle CA. (2016) Metagenomic Analysis Suggests Modern Freshwater Microbialites
928	Harbor a Distinct Core Microbial Community. Frontiers in Microbiology, 6, 1531.
929	White RA, 3rd, Power IM, Dipple GM, Southam G, and Suttle CA. (2015) Metagenomic
930	analysis reveals that modern microbialites and polar microbial mats have similar
931	taxonomic and functional potential. Frontiers in Microbiology, 6, 966.
932	Wickham H. (2009) ggplot2: elegant graphics for data analysis. Springer Science & Business
933	Media.
934	Williford KH, Ushikubo T, Lepot K, Kitajima K, Hallmann C, Spicuzza MJ, Kozdon R,
935	Eigenbrode JL, Summons RE, and Valley JW. (2016) Carbon and sulfur isotopic
936	signatures of ancient life and environment at the microbial scale: Neoarchean shales
937	and carbonates. <i>Geobiology</i> , 14, 105-128.
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 38

#### Astrobiology

Wong HL, Smith DL, Visscher PT, and Burns BP. (2015) Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. *Scientific Reports*, 5, 15607.

#### **Figure Legends**

FIG. 1. The thrombolites of Highborne Cay, The Bahamas. (A) Intertidal thrombolite platforms from Site 5. Bar, 1 m. (B) Light micrograph of a thrombolite forming button mat revealing extensive vertical assemblages of calcified filaments (arrows). Bar, 500 µm. (C) In situ depth profiles of oxygen (square), sulfide (triangle) and pH (circle) collected at peak of photosynthesis (open symbols) or respiration (filled symbols). (D) Cross section of button mat depicting the three spatial regions including an oxic Zone 1 (0-3 mm), transitional Zone 2(3-5 mm), and anoxic Zone 3(5-9 mm). Bar, 3 mm.

#### FIG. 2. Taxonomic distribution of cyanobacteria within the thrombolite-forming mats

derived from MEGAN5 using the Greengenes database. Read counts are presented

logarithmically depicting the distributions for Zone 1 (blue), Zone 2 (green), and Zone 3

(red). Read abundance data for each taxonomic level are included in parentheses.

FIG. 3. Taxonomic distribution of Bacteria within the thrombolite-forming mats derived from MEGAN5 using the Greengenes database. Read counts are presented logarithmically depicting the distributions for Zone 1 (blue), Zone 2 (green), and Zone 3 (red). Read

abundance data for each taxonomic level are included in parentheses.

FIG. 4. Comparison of diversity analyses of three spatial zone within the thrombolite-

forming mats. Principal coordinate analysis of communities from unweighted UniFrac

963	distance matrix of Zone 1 (0 – 3 mm, blue), Zone 2 (3 – 5 mm, green), and Zone 3 (5 – 9
964	mm, red) in (A) Bacteria and (B) Archaea populations. Ellipses represent standard deviation
965	over ten rarefaction samplings. Adonis tests suggest that depth is a significant predictor of
966	community composition for both bacterial (R=0.402, p=0.001) and archaeal (R=0.307,
967	p=0.017) communities.
968	
969	FIG. 5. Taxonomic distribution of Archaea within the thrombolite-forming mats derived
970	from MEGAN5 using the Greengenes database. Read counts are presented logarithmically
971	depicting the distributions for Zone 1 (blue), Zone 2 (green), and Zone 3 (red). Read
972	abundance data for each taxonomic level are included in parentheses.
973	
974	FIG. 6. Functional gene comparison of the three thrombolitic mat spatial zones from 16S
975	rRNA metabolic prediction (PICRUSt) and whole shotgun sequencing. Pearson correlation
976	value (r) is shown for the comparison of metabolic predictions for Zone 1 (blue), Zone 2
977	(green) and Zone 3 (red) and the whole mat shotgun metagenome.
978	
979	FIG 7. Stable isotope results for calcified filaments located in the upper 3 mm of thrombolite
980	forming button mat. (A) Oxygen isotope values of organic and inorganic fractions using both
981	bulk and SIMS analysis. Analyses were completed for both background carbonate
982	precipitates (sediment), calcified filaments (filaments) and untreated whole mat samples. (B)
983	Carbon and nitrogen isotope values of both organic and inorganic fractions using both bulk
984	and secondary ion mass spectroscopy (SIMS) analysis. (C) Comparative plot of SIMS values
985	collected for oxygen and carbon isotopes. All results are expressed in delta notation with
986	respect to the carbon/oxygen Vienna Peedee Belemnite (VPDB) or nitrogen air (AIR)
987	standard.
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

#### Astrobiology

1		
2 3	988	
4 5 6	989	FIG. 8. Overview of target areas for SIMS analyses within the thrombolite forming mat. (A)
7 8	990	Petrographic thin section of <i>Dichothrix</i> sp. filaments (f) and associated carbonate precipitate
9 10	991	(cp) surrounded by sediments such as ooids (o). (B) Gold-coated reflected light image as
11 12 13	992	viewed by the SIMS instrument. (C) SEM micrograph showing the numerous 6-10 $\mu$ m pits
14 15	993	formed during the SIMS analysis. Boxes depict representative pits that show both high
16 17	994	(green) and low (red) quality targets within the sample. (D) Higher resolution SEM
10 19 20	995	micrograph of representative high quality pit (corresponding to green box in C) showing no
21 22	996	textural anomalies or cracks. (E) SEM micrograph of low quality pit (corresponding to red
23 24	997	box in C) showing crack within the targeted sample site. All low quality target sites were
25 26	998	removed from down-stream analyses.
27 28	999	
29 30	1000	Supplemental FIG. S1. Rarefaction plots for number of observed species approaching
32 33	1001	asymptote at read cutoffs of (A) 3691 for Bacteria and (B) 3587 for Archaea. Error bars
34 35	1002	represent standard deviation of three biological replicates for Zone 1 ( $0 - 3$ mm, blue), Zone
36 37 38	1003	2 (3 – 5 mm, green) and Zone 3 (5 – 9 mm, red).
39	1004	
40 41 42	1005	Supplemental FIG. S2. Relative abundance of bacterial population. Lines depict family-
43 44	1006	level OTU (97% cutoff) differences between depth zones grouped by phylum. Taxonomy
45 46 47	1007	was assigned using the Greengenes database and filtered by abundance (0.005%).
47 48 49	1008	
50 51	1009	Supplemental FIG. S3. Taxonomic abundance diversity of bacteria associated with Zone 1
52 53	1010	(0 - 3 mm) of the thrombolite forming mats as visualized in a hierarchal Krona plot. Each
54 55	1011	ring within the plot represents a different taxonomic level (i.e., phylum, class, order, family).
56 57 58 59 60	1012	Taxa comprising less than 0.1% of the community were omitted.
		Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

1013	
1014	Supplemental FIG. S4. Taxonomic abundance diversity of bacteria associated with Zone 2
1015	(3 - 5 mm) of the thrombolites as visualized in a hierarchal Krona plot. Each ring within the
1016	plot represents a different taxonomic level (i.e., phylum, class, order, family). Taxa
1017	comprising less than 0.1% of the community were omitted.
1018	
1019	Supplemental FIG S5. Taxonomic abundance diversity of bacteria associated with Zone 3
1020	(5 - 9 mm) of the thrombolites as visualized in a hierarchal Krona plot. Each ring within the
1021	plot represents a different taxonomic level (i.e., phylum, class, order, family). Taxa
1022	comprising less than 0.1% of the community were omitted.
1023	
1024	Supplementary Table S1. Primer list used to generate titanium 454 barcoded libraries for
1025	bacteria and archaea.
1026	
1027	Supplemental Table S2. Functional gene complexity of predicted and whole shotgun
1028	metagenome in the thrombolite forming mats of Highborne Cay, The Bahamas. (please note
1029	this table format is an excel worksheet but had to be uploaded as csv file).
1030	
1031	Supplemental Table S3. Percent of key elements by weight found in the thrombolite-
1032	forming microbial mat.
1033	
1034	Supplemental Table S4: Ion microprobe raw and corrected oxygen isotope ratios from 77
1035	analyses of thrombolite samples 10B1 and 10B2 from Highborne Cay, The Bahamas. (Please
1036	note this table format is excel worksheet but had to be uploaded as two page csv file).
1037	
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801 42

#### Page 43 of 59

# Astrobiology

1		
2 3 4	1038	Supplemental Table S5: Ion microprobe raw and corrected carbon isotope ratios from 92
5 6	1039	analyses of thrombolite samples 10B1 and 10B2 from Highborne Cay, The Bahamas. (Please
7 8	1040	note this table format is excel worksheet but had to be uploaded as two page pcsv file).
9 10	1041	
11 12	1042	
13 14 15 16 17 18 9 21 22 23 24 26 27 28 9 30 12 23 24 26 27 28 9 30 132 33 45 36 7 89 90 41 23 44 5 46 7 89 50 52 34 55 67 89 60 122 34 55 67 89 60 122 34 55 67 89 60 122 34 55 67 89 60 122 34 55 67 89 60 122 34 55 67 89 60 122 34 55 67 89 60 122 34 55 67 89 60 122 34 55 67 89 60 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 89 90 122 34 55 67 55 55 55 55 55 55 55 55 55 55 55 55 55	1043	
		Many Ann Liphort Inc. 140 Huguanot Street New Peeballo NV 10201 43



FIG. 1. The thrombolites of Highborne Cay, The Bahamas. (A) Intertidal thrombolite platforms from Site 5. Bar, 1 m. (B) Light micrograph of a thrombolite forming button mat revealing extensive vertical assemblages of calcified filaments (arrows). Bar, 500 µm. (C) In situ depth profiles of oxygen (square), sulfide (triangle) and pH (circle) collected at peak of photosynthesis (open symbols) or respiration (filled symbols). (D) Cross section of button mat depicting the three spatial regions including an oxic Zone 1 (0 – 3 mm), transitional Zone 2 (3 – 5 mm), and anoxic Zone 3 (5 – 9 mm). Bar, 3 mm.

171x159mm (300 x 300 DPI)



Page 45 of 59

Astrobiology



 

 Image: A sented logarith, Read abundance is parentheses.

 Image: Image: A sented logarith, Read abundance is parentheses.

 FIG. 2. Taxonomic distribution of cyanobacteria within the thrombolite-forming mats derived from MEGAN5 using the Greengenes database. Read counts are presented logarithmically depicting the distributions for Zone 1 (blue), Zone 2 (green), and Zone 3 (red). Read abundance data for each taxonomic level are



FIG. 3. Taxonomic distribution of Bacteria within the thrombolite-forming mats derived from MEGAN5 using the Greengenes database. Read counts are presented logarithmically depicting the distributions for Zone 1 (blue), Zone 2 (green), and Zone 3 (red). Read abundance data for each taxonomic level are included in parentheses.

246x368mm (300 x 300 DPI)



Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801





FIG. 4. Comparison of diversity analyses of three spatial zone within the thrombolite-forming mats. Principal coordinate analysis of communities from unweighted UniFrac distance matrix of Zone 1 (0 – 3 mm, blue), Zone 2 (3 – 5 mm, green), and Zone 3 (5 – 9 mm, red) in (A) Bacteria and (B) Archaea populations. Ellipses represent standard deviation over ten rarefaction samplings. Adonis tests suggest that depth is a significant predictor of community composition for both bacterial (R=0.402, p=0.001) and archaeal (R=0.307, p=0.017) communities.

146x253mm (300 x 300 DPI)





shing m. ly depicting ior each taxon. FIG. 5. Taxonomic distribution of Archaea within the thrombolite-forming mats derived from MEGAN5 using the Greengenes database. Read counts are presented logarithmically depicting the distributions for Zone 1 (blue), Zone 2 (green), and Zone 3 (red). Read abundance data for each taxonomic level are included in parentheses.

105x79mm (300 x 300 DPI)



FIG. 6. Functional gene comparison of the three thrombolitic mat spatial zones from 16S rRNA metabolic prediction (PICRUSt) and whole shotgun sequencing. Pearson correlation value (r) is shown for the comparison of metabolic predictions for Zone 1 (blue), Zone 2 (green) and Zone 3 (red) and the whole mat shotgun metagenome. 

207x141mm (300 x 300 DPI)

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801





FIG 7. Stable isotope results for calcified filaments located in the upper 3 mm of thrombolite forming button mat. (A) Oxygen isotope values of organic and inorganic fractions using both bulk and SIMS analysis. Analyses were completed for both background carbonate precipitates (sediment), calcified filaments (filaments) and untreated whole mat samples. (B) Carbon and nitrogen isotope values of both organic and inorganic fractions using both bulk and secondary ion mass spectroscopy (SIMS) analysis. (C) Comparative plot of SIMS values collected for oxygen and carbon isotopes. All results are expressed in delta notation with respect to the carbon/oxygen Vienna Peedee Belemnite (VPDB) or nitrogen air (AIR) standard.

239x281mm (300 x 300 DPI)





FIG. 8. Overview of target areas for SIMS analyses within the thrombolite forming mat. (A) Petrographic thin section of Dichothrix sp. filaments (f) and associated carbonate precipitate (cp) surrounded by sediments such as ooids (o). (B) Gold-coated reflected light image as viewed by the SIMS instrument. (C) SEM micrograph showing the numerous 6-10 µm pits formed during the SIMS analysis. Boxes depict representative pits that show both high (green) and low (red) quality targets within the sample. (D) Higher jond. jorresp. re removed J resolution SEM micrograph of representative high quality pit (corresponding to green box in C) showing no textural anomalies or cracks. (E) SEM micrograph of low quality pit (corresponding to red box in C) showing crack within the targeted sample site. All low quality target sites were removed from down-stream analyses.

123x76mm (300 x 300 DPI)

TABLE 1. SUMMARY STATISTICS FOR THROMBOLITE SAMPLES BY ZONE FOR BACTERIA AND ARCHAEA

**Supplemental Figure S1** 









Page 55 of 59

1

Astrobiology

S

# **Supplemental Figure S3**



**Supplemental Figure S4** 



6

7

8 9

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

27

28

29 30 31

32

33

34

35

36 37

38

39

Astrobiology

#### **Supplemental Figure S5** Sphingomonadales (0.3%) Rickettsiales (0.3%) Kiloniellales (0.6%) 141 100 580 88 (0, 10) Other 01210.9% < (300) Cystobacterineae (0.1%) BD1:3 (2010) JTB38 (0.3%) NB1-1100) Mytococcales Desulfobacteraceae (0.6%) Detted deconacteria Bacteriovoracaceae (0.3%) NB1-Rhodospirillaceae (9%) vntrophobacteraceae (0.1%) **Phodospirillales** Desulfovibrionaceae (0.1%) Spirobacillales (0.1%) Alphaproteobacteria Proteolacteria Gammaproteobacteria Piscirickettsiaceae (3%) lotrichales 2 Other (0.3%) .3%) Chromatiaceae (0.3%) Ectothiorhodospiraceae (0.2%) Rhodobiaceae (0.2%) Phyllobacteriaceae (0. Chroococcales **Bacteria** (5-9 mm) Rhizobiales Other (2%) Cjanobacieria Other (0.1%) Xenococcaceae (7%) Hyphomicrobiaceae (6%) teroidetes R Rivulariaceae (5%) loropli avobacteriales Other (0.4%) Cyanobacteriaceae (0.2%) ch Stramenopiles (200) Pseudanabaenaceae (3ºlo) ophagales |Flavobacteriaceae (2%) Fihodobacteraceae (16%) Flammeovirgaceae (2°/o) Other (0.3%) Cryomorphaceae (0.2%) Saprospiraceae (0.2%) Anaerolineae (0.8%) Phycisphaerae (0.6%) Acidobacteria (0.4%) Spirochaetes (0.3%) Other (0.2%)

							,	
	SUP	PLEMENTARY TAR	LE S1 PRIM	AFR LIST IIS	ED TO GENERATI	E TITANIII	M 454 BARCODED LIBRARIES FOR BAG	TERIA AND ARCHAEA
-	Specificity	Primer ID	Sample	454 Primer ^a	Barcode ^b	Linker	16S Primer	16S rRNA primer reference ^c
	bacteria	Bac27F-T	Bacteria	А	none	тс	AGAGTTTGATCCTGGCTCAG	Suzuki & Giovannoni, 1996
	universal	Bac338R-01-T	Zone 1	В	CCAACCTT	CA	TGCTGCCTCCCGTAGGAGT	Suzuki & Giovannoni, 1996
)	universal	Bac338R-02-T	Zone 1	В	GGAATTGG	CA	TGCTGCCTCCCGTAGGAGT	Suzuki & Giovannoni, 1996
	universal	Bac338R-03-T	Zone 1	В	AACCAACC	CA	TGCTGCCTCCCGTAGGAGT	Suzuki & Giovannoni, 1996
<u>)</u>	universal	Bac338R-04-T	Zone 2	В	TTAAGGCC	CA	TGCTGCCTCCCGTAGGAGT	Suzuki & Giovannoni, 1996
5	universal	Bac338R-05-T	Zone 2	В	CCGGCCTT	CA	TGCTGCCTCCCGTAGGAGT	Suzuki & Giovannoni, 1996
r - )	universal	Bac338R-06-T	Zone 2	В	AAGGCCTT	CA	TGCTGCCTCCCGTAGGAGT	Suzuki & Giovannoni, 1996
6	universal	Bac338R-07-T	Zone 3	В	AACGAAGC	CA	TGCTGCCTCCCGTAGGAGT	Suzuki & Giovannoni, 1996
7 )	universal	Bac338R-08-T	Zone 3	В	TTCGAAGC	CA	TGCTGCCTCCCGTAGGAGT	Suzuki & Giovannoni, 1996
) _	universal	Bac338R-09-T	Zone 3	В	AATACCGC	CA	TGCTGCCTCCCGTAGGAGT	Suzuki & Giovannoni, 1996
)	archaea	Arc23F ^e	Archaea	none	none	none	ATTCCGGTTGATCCTGC	Barns et al., 1994
	archaea	Arc958R ^{d,e}	Archaea	none	none	none	YCCGGCGTTGAMTCCATTT	Delong, 1992
<u>/</u>	archaea	Arc344F-T ^d	Archaea	Α	none	TC	ACGGGGYGCAGCAGGCGCGA	Casamayor et al., 2002
, l	archaea	Arc915R-01-T	Zone 1	В	CCAACCAA	CA	GTGCTCCCCCGCCAATTCCT	Casamayor et al., 2002
5	archaea	Arc915R-02-T	Zone 1	В	CGAACCAT	CA	GTGCTCCCCCGCCAATTCCT	Casamayor et al., 2002
) ,	archaea	Arc915R-03-T	Zone 1	В	AGACAGTG	CA	GTGCTCCCCCGCCAATTCCT	Casamayor et al., 2002
}	archaea	Arc915R-04-T	Zone 2	В	AGACACAG	CA	GTGCTCCCCCGCCAATTCCT	Casamayor et al., 2002
)	archaea	Arc915R-05-T	Zone 2	В	CCAACGTA	CA	GTGCTCCCCCGCCAATTCCT	Casamayor et al., 2002
)	archaea	Arc915R-06-T	Zone 2	В	CATCTCGT	CA	GTGCTCCCCCGCCAATTCCT	Casamayor et al., 2002
)	archaea	Arc915R-07-T	Zone 3	В	CATCTCCA	CA	GTGCTCCCCCGCCAATTCCT	Casamayor et al., 2002
- }	archaea	Arc915R-08-T	Zone 3	В	CAGTGTGT	CA	GTGCTCCCCGCCAATTCCT	Casamayor et al., 2002
l.	archaea	Arc915R-09-T	Zone 3	В	CCGGATTA	CA	GTGCTCCCCCGCCAATTCCT	Casamayor et al., 2002

a. 454 Life Sciences sequence primers A (CTATGCGCCTTGCCAGCCCGCTCAG) and B (CGTATCGCCTCCCTCGCGCCATCAG) with a DUATOR LA TC or CA linker, respectively, preceding the 16S primer sequence.

b. Barcodes sequences from Hamady et al., 2008.

References are for 16S rRNA gene primer. C.

2 3

Primers contain degenerate bases: Y (C,T), M (A,C). d.

Archaea specific 16S rRNA gene primers used for initial amplification of a nested PCR. e.

#### Astrobiology

SUPPLEMENTAL TABLE S3. PERCENT OF KEY ELEMENTS BY WEIGH	Г
FOUND IN THE THROMBOLITE-FORMING MICROBIAL MAT	

_	100				
		n	% <u></u> C (s.e.)	%N (s.e.)	%CaCO3 (s.e.)
	Whole mat	12	12.05 (0.037)	0.17 (0.003)	91.72 (0.24)
	Organic	6	43.1 (0.598)	3.26 (0.168)	-
	Inorganic	6	-	-	93.33 (0.649)
	Filament	1	-	-	45.87 (n/a)
-					
	Mar	v Anr	Liebert. Inc., 1	40 Huguenot S	Street, New Rochelle, NY 10801
		,		Julia	