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ABSTRACT

The influence of six CAM5.1 cloud microphysical parameters on the variance of phase partitioning in

mixed-phase clouds is determined by application of a variance-based sensitivity analysis. The sensitivity

analysis is based on a generalized linear model that assumes a polynomial relationship between the six pa-

rameters and the two-way interactions between them. The parameters, bounded such that they yield realistic

cloud phase values, were selected by adopting a quasi–Monte Carlo sampling approach. The sensitivity

analysis is applied globally, and to 208-latitude-wide bands, and over the Southern Ocean at various mixed-

phase cloud isotherms and reveals that theWegener–Bergeron–Findeisen (WBF) time scale for the growth of

ice crystals single-handedly accounts for the vastmajority of the variance in cloud phase partitioning inmixed-

phase clouds, while its interaction with the WBF time scale for the growth of snowflakes plays a secondary

role. The fraction of dust aerosols active as ice nuclei in latitude bands, and the parameter related to the ice

crystal fall speed and their interactions with the WBF time scale for ice are also significant. All other in-

vestigated parameters and their interactions with each other are negligible (,3%). Further analysis com-

paring three of the quasi–Monte Carlo–sampled simulations with spaceborne lidar observations by CALIOP

suggests that the WBF process in CAM5.1 is currently parameterized such that it occurs too rapidly due to

failure to account for subgrid-scale variability of liquid and ice partitioning in mixed-phase clouds.

1. Introduction

An age-old problem that has existed ever since the

dawn of the rise of global climate models (GCMs) is the

representation of clouds on the global scale. The prob-

lem stems from the fact that processes in clouds occur at

microscopic scales that cannot be resolved in GCMs;

hence, these processes need to be parameterized in such

models. The parameterization of these processes comes

at the cost of necessitating tuning parameters that are

often unphysical and lead to compensating errors

(Boucher et al. 2013; McFarlane 2011).

Substantial improvements have been made to the

cloud microphysical schemes implemented in the latest

generation of GCMs over the years. In the case of cloud

phase, there is a move afoot to eliminate fixed-

temperature-ramp schemes and to instead replace

them with prognostic schemes. Two-moment schemes

that include both prognostic equations for number

concentrations of cloud ice and droplets and mass mix-

ing ratios have also replaced outdated one-moment

schemes that only predict mass mixing ratios (e.g.,

Morrison and Gettelman 2008; Salzmann et al. 2010).

Another notable example of an advancement in GCMs

is the implementation of ‘‘statistical cloud schemes’’ that

are based on probability distribution functions (PDFs)

of cloud-related properties, such as the total water

mixing ratio (e.g., Tompkins 2002), vertical velocity

(e.g., Storelvmo et al. 2008; Ghan et al. 1997), and cloud

fraction (e.g., Naumann et al. 2013). The statistical cloud

schemes allow the representation of subgrid-scale vari-

ability in clouds properties, which reduces biases in-

troduced by assuming homogeneous cloud properties

within individual grid boxes. This, in turn, reduces the

need for tuning parameters, which arises from these

biases in the first place (Rotstayn 2000). Ultimately,

more accurate calculations of radiative fluxes result

from the representation of subgrid-scale variability

(Pincus and Klein 2000).

Despite these improvements, a continuing out-

standing weakness of these schemes lies in the arbi-

trariness of the tuning parameters there within, which
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are notoriously fraught with uncertainties. Among these

parameters, few have been specifically tuned to accu-

rately simulate thermodynamic phase partitioning in

mixed-phase clouds. These clouds are ubiquitous in

Earth’s mid- and upper troposphere at midlatitudes and

the lower troposphere in the Arctic (Shupe 2011; Hobbs

and Rangno 1998; Pinto 1998; Hobbs et al. 2001; Mioche

et al. 2015). They exist at temperatures between 2358
and 08C and contain a thermodynamically unstable

mixture of coexisting supercooled liquid droplets and ice

crystals. The contrasting optical properties and fall

speeds of liquid droplets and ice crystals imply that

Earth’s radiative budget will delicately depend on the

proportion of supercooled liquid to ice within these

clouds. The latter quantity will herein be referred to as

the supercooled cloud fraction (SCF) and is quantified

as the fraction of supercooled liquid to the total

amount of supercooled liquid and ice within a mixed-

phase cloud population. In addition to the purely ra-

diative effect of liquid droplets and ice crystals alone,

various climate feedbacks act to further amplify or

damp the radiative forcing effect of cloud phase. This

will likely impact the transient climate response

(TCR) and has been shown to result in a wide range in

equilibrium climate sensitivity (ECS), which pre-

cludes accurate projections of future climate change

(Mitchell et al. 1989; Li and LeTreut 1992; Tsushima

et al. 2006; Choi et al. 2014). Thus, accurately repre-

senting phase partitioning in mixed-phase clouds in

GCMs is critical for future climate projections. Yet

less-than-desired progress has been made over the

years. Comparatively scarce observations, limited un-

derstanding of the underlying microphysical mecha-

nisms, and exorbitant computational costs are the

culprits for the lack of progress seen in accurate rep-

resentations of cloud phase-partitioning schemes in

GCMs. A key issue recently identified in a sizable

portion of atmospheric GCMs is the underestimate of

SCF in mixed-phase clouds compared to satellite ob-

servations (Komurcu et al. 2014; Cesana et al. 2015).

Underestimates of SCF on a global scale have been

linked to underestimates in ECS (I. Tan et al. 2016,

unpublished manuscript).

The current study is motivated by the uncertainties in

cloud microphysical tuning parameters in GCMs and

the inability of GCMs to accurately reproduce cloud

phase observations that collectively lead to uncer-

tainties in ECS and TCR. The goal is to eventually

narrow the uncertainty range by systematically un-

derstanding the most important underlying mecha-

nisms related to the microphysics of mixed-phase

clouds. This is accomplished by honing in on what the

authors consider to be the most relevant cloud

microphysical parameters related to cloud phase in the

mixed-phase cloud temperature range and sub-

sequently searching for the combination of parameter

ranges within realistic bounds that can most accurately

reproduce observations of cloud phase. Thus, the goal

is to eventually narrow the uncertainty ranges in ECS

and TCR by accurately simulating observations of

cloud phase and understanding the cloudmicrophysical

processes responsible for controlling it, as opposed to

narrowing these ranges by arbitrarily tuning parame-

ters without physical meaning. A variance-based sen-

sitivity analysis that is able to quantify the individual

and two-way interactions between parameters is then

used to assess the relative contributions of each of the

parameters to the total variance in SCF. The sensi-

tivity analysis will reveal the most relevant parameters

and any of their two-way interactions with other pa-

rameters that have the greatest impact on controlling

cloud phase. Insight gained from the sensitivity anal-

ysis can also be used for developing enhanced pa-

rameterizations associated with the most important

processes.

The remainder of the paper is structured as follows:

section 2 first describes the methodology of the cur-

rent study, which takes a hybrid approach of com-

bining model results with satellite observations;

section 3 documents and offers a discussion of the

results of the study, which is partitioned into two main

sections, the former involving the quantification of the

contribution of each of the cloud microphysical pa-

rameters to the total variance in SCF on various spa-

tial scales and the latter analyzing strategically

selected best and worst matches to satellite observa-

tions. Finally, a summary is provided, and conclusions

are drawn in section 4.

2. Methodology

This section describes how global satellite observa-

tions of cloud phase were analyzed and provides a

general description of the atmospheric GCM and its

setup used to model satellite observations of cloud

phase. Here, a description of the cloud microphysical

parameters considered most relevant for tuning cloud

phase to satellite observations, along with their in-

vestigated ranges, is also provided. Next, the quasi–

Monte Carlo (QMC) sampling technique that was ap-

plied to obtain low-discrepancy (evenly dispersed)

samples that span the full cloud microphysical parame-

ter space is described. Details of the variance-based

sensitivity analysis to quantify the relative impact of

each of the cloud microphysical parameters are then

given and are followed by a description of the criteria
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applied to judge the closest matches to satellite obser-

vations of all the QMC-sampled simulations.

a. Global CALIOP observations of supercooled
cloud fractions

Global satellite observations of cloud phase were ob-

tained by NASA’s Cloud–Aerosol Lidar with Orthogonal

Polarization (CALIOP) instrument. CALIOP is a dual-

wavelength (532nm, 1064nm), 38-off-nadir-viewing (at

the present) polarization lidar (532-nm beam polarized)

onboard theCloud–Aerosol Lidar and Infrared Pathfinder

Satellite Observations (CALIPSO) satellite. Launched

in 28 April 2006, CALIOP flies in a sun-synchronous

polar orbit with the A-train constellation at a 705-km

altitude and 16-day repeat cycle that produces a foot-

print of 70m along Earth’s surface. Its resolution is high,

taking measurements every 333m in the horizontal and

60m in the vertical below 8.2 km in altitude and every

60m and 1km in the vertical and horizontal, re-

spectively, above 8.2 km in altitude. As the first-ever

polarization lidar (polarization purity greater than 99%)

to vertically measure cloud and aerosol properties

throughout Earth’s troposphere that made its way into

orbit in space, CALIOP has been instrumental in im-

proving the understanding of clouds and aerosol pro-

cesses (Koffi et al. 2012; Cesana and Chepfer 2013).

Through its cloud–aerosol discrimination (CAD) al-

gorithm (Liu et al. 2009), CALIOP can discriminate be-

tween clouds and aerosols in Earth’s atmosphere based

on statistical properties of layer volume color ratio, mean

attenuated backscatter coefficient at 532nm, de-

polarization, latitude, and height of the center of the

layer. If a layer is identified as a cloud, it can further be

classified as either a liquid or ice cloud via CALIOP’s

cloud phase discrimination algorithm. This algorithm

discriminates between ice and liquid clouds based on the

depolarization ratio, temperature, and height of the layer

(Hu et al. 2009). The cloud phase discrimination algo-

rithm heavily relies on the depolarization ratio at 532nm,

which is fundamentally based on the assumption that

cloud water droplets are spherical in shape and ice crys-

tals are irregular and nonspherical in shape. Therefore, in

single-scattering events, the depolarization ratios of cloud

water droplets are assumed to be zero, while those of ice

crystals are assumed to be nonzero. CALIOP’s cloud

phase discrimination algorithm also accounts for the ef-

fects of multiple scattering, a necessary procedure given

that CALIOP is a spaceborne lidar. CALIOP’s cloud

phase discrimination algorithm can also detect the pres-

ence of horizontally oriented ice crystals that occur as a

result of weak updrafts in 30%–60% of all mixed-phase

clouds, according to satellite observations (Zhou et al.

2013; Noel and Chepfer 2010; Chepfer et al. 1999).

Because of the low depolarization of horizontally ori-

ented ice crystals, the presence of these crystals can easily

be confused with the presence of liquid droplets. To ac-

count for this effect, CALIOP’s near-nadir-viewing ge-

ometry of 0.38 off nadir was tilted to 38 off nadir as of
November 2007 to prevent specular reflection of hori-

zontally oriented ice crystals from contaminating cloud

phase discrimination and to increase the accuracy of the

retrievals of extinction profiles in ice clouds (Hu et al.

2009). If the layer is instead identified as one consisting of

aerosols based on the aforementioned statistical proper-

ties, then it is classified into one of six aerosol categories

(dust, polluted dust, smoke, clean continental, polluted

continental, and clean marine) (Omar et al. 2009).

CALIOP CALCULATIONS OF SUPERCOOLED

CLOUD FRACTIONS

The current study focuses on observations of cloud

phase, quantified by SCF, at the mixed-phase cloud-top

temperatures of 2108, 2208, and 2308C. The isotherms

were obtained using National Centers for Environ-

mental Prediction–Department of Energy (NCEP–

DOE) Reanalysis-2 data of air temperature and geo-

potential height at a resolution of 2.58 longitude by

;2.58 latitude (Kanamitsu et al. 2002). Versions 3.01–

3.03 of CALIOP’s level 2 vertical feature mask, which

include observations spanning from November 2007

to June 2014 were used to compute SCFs, here defined

as SCF 5 SCF5 fliquid/( fliquid 1 fice), where fliquid and

fice are the number of footprints classified as liquid and

ice clouds, respectively. Footprints classified as ice

clouds are composed of both randomly and horizontally

oriented ice crystals. Note that CALIOP does not have a

mixed-phase cloud category. Several precautions were

taken in analyzing the data. To avoid misclassifications

by the CAD algorithm, data with low-confidence CAD

scores were filtered out, and only data withmedium- and

high-confidence CAD scores were analyzed. In addition,

since solar background noise degrades the signal-

to-noise ratio of the 532-nm channel, daytime data

were excluded from the analysis. Note that, although

CALIOP is able to measure the vertical distribution of

clouds and aerosols, its beam extinguishes when it passes

through any medium with an optical depth t . 3. More

details on the methodology of calculating SCFs from

CALIOP observations can be found in Choi et al. (2010)

and Tan et al. (2014).

b. CAM5.1-modeled supercooled cloud fractions

The National Center for Atmospheric Research

(NCAR)’s widely used standalone atmospheric GCM,

the Community Atmosphere Model, version 5.1
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(CAM5.1), was used as the model of choice for this

study. CAM5.1 is a freely available model that

contains a state-of-the-art two-moment cloud micro-

physics scheme that computes number and mass con-

centrations of cloud condensate and ice as prognostic

variables (Morrison and Gettelman 2008). This model

can be run in conjunction with land, sea ice, and ocean

components as part of a complete Earth system model

[the Community Earth SystemModel (CESM)], making

it particularly desirable for the purposes of the current

study and its companion study to follow (I. Tan et al.

2016, unpublished manuscript). For a general de-

scription of CAM5.1, the reader is referred to Neale

et al. (2010).

1) CAM5.1 SETUP

For the purpose of the current study, CAM5.1 was run

at a horizontal resolution of;48 latitude by 58 longitude
and vertical resolution of 30 levels. The highest level of

the model reaches ;2 hPa, which corresponds to

;40 km in height. These levels are spaced approxi-

mately 1200m apart in the free troposphere and lower

stratosphere. The resolution, although relatively coarse,

is sufficient for the topics of interest in this study. Ad-

ditional CAM5.1 simulations run at ;1.98 latitude by

2.58 longitude confirmed that no appreciable differences

in SCF between the two horizontal resolutions exist (not

shown). Three months were allocated for spinup, and

SCF calculations are based on 12-month averages after

the spinup period. The three-mode Modal Aerosol

Module (MAM3), which includes representations of

lognormal size distributions of aerosols grouped into the

Aitken, accumulation, and coarse modes, was used in

this study (Liu et al. 2012). All simulations were run with

the finite-volume dynamical core and a model time step

of 30min.

Before running any of the simulations, the afore-

mentioned issue of excessively low SCFs found in

atmospheric GCMs in comparison with satellite obser-

vations, to which CAM5.1 is no exception, must first be

addressed. The low SCFs simulated in the out-of-the-

box control CAM5.1 are too low to the point that the

model is not capable of simulating observations of cloud

phase in the actual atmosphere. In out-of-the-box

CAM5.1, SCFs are particularly unrealistically low,

generally underestimating CALIOP-observed SCFs by

over 90% in some regions. Upon investigation, the out-

of-the-box CAM5.1 convective detrainment schemewas

found to be among the causes contributing to the un-

derestimate of SCFs in mixed-phase clouds. In the out-

of-the-box detrainment scheme, cloud condensate

detrained from the convective parameterization is sep-

arated into three regimes within the mixed-phase cloud

temperature range (Morrison and Gettelman 2008). At

temperatures warmer than 2108C (regime I), the ratio

of ice to total cloud condensate detrained from con-

vective air masses Fdet vanishes. Between 2408
and 2108C (regime II), Fdet is a linear function of tem-

perature. At temperatures below 2408C (regime III),

Fdet 5 1. This detrainment scheme, which led to much

lower SCFs than those observed, was modified such that

the temperature threshold of 2108C in the out-of-the-

box scheme was replaced by 2308C (Fig. 1). The con-

vective detrainment scheme was chosen as the means to

increase SCFs to be within the range of observations for

two reasons. First, doing so does not interfere with cloud

microphysical parameters, some of which are tuned in

this study. Second, the convective detrainment scheme is

based on a temperature ramp, which is a practice that is

gradually being abandoned in GCMs (e.g., Song and

Zhang 2011).

In addition to modifying the detrainment scheme to

increase SCFs, the default Meyers et al. (1992) immer-

sion and deposition ice nucleation scheme present in the

out-of-the-box CAM5.1 has been replaced with an up-

dated ice nucleation scheme by DeMott et al. (2015).

This updated scheme is based on field observations [Eq.

(A13)] and diagnoses ice nuclei (IN) concentrations as a

function of the concentration of large dust particles. The

DeMott et al. (2015) ice nucleation scheme is preferred

over the Meyers et al. (1992) scheme for two main rea-

sons. First, it computes the ice nucleating particle

number concentration based on prognostically calcu-

lated aerosol number concentrations instead of

assuming a fixed dependence on temperature and su-

persaturation that fails to take spatial and temporal

variability into account. Second, it is based on surface

FIG. 1. The ratio of ice to total cloud condensate detrained from

convection Fdet for the out-of-the-box CAM5.1 (Morrison and

Gettelman 2008) and after modification to increase SCFs in this

study. SCFs simulated using the original convective detrainment

scheme underestimated those from CALIOP observations by

20%–30% worldwide.
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level and aircraft in situ observations obtained over a

wide range of seasons and regions. CAM5.1 with the

DeMott et al. (2015) ice nucleation scheme and the

change in the convective detrainment scheme will serve

as the new ‘‘default’’ (as opposed to the out-of-the-box)

model to which adjustments of the cloud microphysical

parameters changes will be made. Note that the out-of-

the-box Bigg immersion scheme (Bigg 1953) was deac-

tivated, while the Young contact-freezing scheme

(Young 1974), as well as the Cotton parameterization

(Cotton et al. 1986) of the Hallet–Mossop process were

activated and not modified in this study.

2) CAM5.1 CLOUD MICROPHYSICAL

PARAMETERS

Of the many parameters associated with microphysi-

cal processes that influence cloud phase, six deemed by

the authors to be most important for phase partitioning

were selected as tuning parameters. The parameters

(Table 1) are (i) the fraction of dust particles active as IN

(fin), (ii) the Wegener–Bergeron–Findeisen (WBF)

process time scale that determines the growth of ice

crystals at the expense of liquid droplets (a corollary that

follows from the lower saturation vapor pressure of ice

relative to liquid water) (epsi), (iii) the WBF process

time scale for snowflakes (epss), (iv) one related to the

ice crystal fall speed (ai), and wet scavenging of aerosols

in (v) stratiform (sol_facti) and (vi) convective clouds

(sol_factic). The primary driving equations in which

these parameters appear are given in the appendix.

The parameter fin in this study is the fraction that is

multiplied by the concentration of IN that nucleate ice

via condensation, immersion, and deposition freezing in

the DeMott et al. (2015) scheme. The investigated range

for fin is limited to half of that in the original parame-

terization for two main reasons: first, certain minerals

in dust aerosols are more efficient at ice nucleation

than others (Atkinson et al. 2013), implying that not

all dust aerosols in the atmosphere are active as IN;

and second, because CAM5.1, among other atmo-

spheric GCMs, severely underestimates SCFs in mixed-

phase clouds (Komurcu et al. 2014; Cesana et al. 2015),

potentially because IN are overestimated in GCM

parameterizations.

The WBF process is possibly the most inaccurately

parameterized of all the investigated processes in this

study. Accurately representing the WBF process is

motivated by the central role it plays in mixed-phase

cloud formation. The main limiting factor in accurately

modeling the WBF process is the lack of representation

of the subgrid-scale variability in cloud liquid and ice

within mixed-phase clouds (Storelvmo et al. 2008). Most

atmospheric GCMs define a threshold cloud mixing ra-

tio above which the entire grid box glaciates, when, in

fact, observational evidence obtained from field cam-

paigns and satellite measurements suggest against this

assumption. Rather, ice crystals and liquid droplets are

usually found clustered in pockets horizontally spanning

anywhere from the order of 10m, for example, in the

Arctic (Chylek and Borel 2004) to a few kilometers in

mid- and high latitudes (Korolev et al. 2003; Field et al.

2004). While no such threshold mixing ratio exists in

CAM5, unrealistic maximum overlap in ice crystals and

liquid droplets within mixed-phase clouds do exist in

CAM5, implying that liquid is maximally depleted in the

process of ice depositional growth rate in the WBF

process. Furthermore, the subgrid-scale variability in-

volved in the WBF process in CAM5 is inaccurately

taken into account by assuming a gamma distribution

with fixed variance for liquid water content (Fan et al.

2011). In other words, the fact that, on subgrid scales,

pockets of ice and liquid are actually observed in the

atmosphere instead of artificial homogeneous mixtures

of ice and liquid implies that there is often an over-

estimate in the efficiency of the WBF time scale lurking

in atmospheric GCMs. In the most extreme case, this

assumption results in a six-order-of-magnitude over-

estimate in volume where the WBF process occurs

compared to actual observations that suggest that uni-

form mixing occurs on scales as small as tens of meters

(Fig. 2). This difference in volume translates to a dif-

ference of up to six orders of magnitude in the time scale

of the WBF process since the local in-cloud deposition

rate of water vapor onto cloud ice is assumed to scale

TABLE 1. Description of the six selected CAM5.1 cloud microphysical parameters modified in the 256 simulations selected via QMC

sampling, along with their investigated ranges.

Process investigated Relevant parameter Default value Investigated range

Fraction of dust aerosols active as IN fin 1 [0, 0.5]

WBF time-scale exponent for ice epsi 0 [26, 0]

WBF time-scale exponent for snow epss 0 [26, 0]

Fraction of aerosols scavenged in stratiform clouds sol_facti 1 [0.5, 1]

Fraction of aerosols scavenged in convective clouds sol_factic 0.4 [0.2, 0.8]

Related to the ice crystal fall speed (s21) ai 700 [350, 1400]
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linearly with the WBF time scale (see the appendix,

section a). Hence, in the current study, epsi and epss, the

parameters that control the time scale of the WBF pro-

cess for ice and snow, respectively, unlike the other pa-

rameters investigated in this study, are actually exponents

ranging from 26 to 0 to reflect observed subgrid-scale

variability. It is also noteworthy that test simulations with

CAM5.1 have revealed that the effect of the WBF time

scale on zonally averaged SCF saturates when the process

is retarded by six orders of magnitude (not shown). The

WBF time scale is most greatly affected by mixing pro-

cesses in the atmosphere, which homogenize ice crystals

and liquid droplets in mixed-phase clouds. Regions dis-

tantly separated from regions of convection and the at-

mospheric boundary layer are therefore expected to

exhibit more subgrid-scale variability. Although most of

the uncertainty in the WBF time scale is associated with

subgrid-scale variability, minor contributions are attrib-

uted to uncertainties in the spectral parameters related to

the size distribution of ice crystals and the diffusivity of

water vapor [see Eqs. (A3) and (A6)].

The ranges of the other three parameters, which are

the ice crystal fall speed–related parameter and the

fraction of aerosols scavenged in stratiform and con-

vective clouds, were selected following Zhao et al.

(2013), who performed sensitivity analyses on the effects

of 16 cloud and aerosol parameters within realistic

ranges. Their sensitivity analyses determined how

the individual and two-way interactions between the

parameters influenced the variance in top-of-the-

atmosphere (TOA) radiative fluxes, a quantity that is

closely linked to SCFs. These three parameters were

selected on the basis that they were found to be the next

most influential processes in the variance in radiative

flux in CAM5.1 according to Zhao et al. (2013). All

parameter ranges used in this study are summarized in

Table 1.

3) CAM5.1 CALCULATIONS OF SUPERCOOLED

CLOUD FRACTIONS

Following Komurcu et al. (2014), SCFs modeled by

CAM5.1 are calculated at the 2108 6 18C, 2208 6 18C,
and 2308 6 18C isotherms as SCF5 rliquid/(rliquid 1 rice),

where r is themixing ratio. To allow for fair comparisons

between the modeled SCFs with CALIOP observations

of SCF, only mixing ratios at cloud tops were included in

the calculations, except in the case of optically thin

clouds (t, 3), where mixing ratios in lower cloud layers

are also included. Although SCFs calculated from

CALIOP observations are based on footprints that es-

sentially determine the frequency of occurrence of liq-

uid and ice cloud layers, the much higher resolution of

the observations renders them comparable to those

modeled by CAM5.1.

c. Quasi–Monte Carlo sampling of the cloud
microphysical parameter space

The two goals of this study were borne in mind when

selecting combinations of the cloud microphysical

parameters listed in the previous section. The first goal

is to simulate satellite observations of cloud phase as

accurately as possible by probing the six-dimensional

space of parameters within their realistic ranges. The

second goal is to determine the most influential pa-

rameters on cloud phase. QMC sampling through the

use of a Halton sequence is advantageous for this

purpose since it can span the full parameter space

while deterministically minimizing the discrepancy

between sample points, thereby guaranteeing good

dispersion between them (Caflisch 1998). By probing

the full parameter space, QMC sampling fulfills the

two aforementioned goals by effectively checking a

large number of combinations that may reproduce

FIG. 2. Schematic diagrams contrasting (a) the idealized homo-

geneous mixture of ice/snow and liquid within a GCM grid box,

which typically spans on the order of 100 km in the horizontal and

1 km in the vertical, with (b) the more realistic heterogeneous

mixture of ice/snow and liquid that usually exists in separate

pockets of liquid and ice on the order of tens of meters to 20 km

according to satellite and field observations. The gray-shaded re-

gions represent the mixing zones, where liquid droplets and ice

crystals interact via the WBF process. In (a), the entire grid box is

the mixing zone. In (b), the mixing zone is reduced to include only

the regions outside the outlined pockets.
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satellite observations, while simultaneously providing a

sample set that spans the full parameter space necessary

for a sensitivity analysis. When considering the total

number of simulations to perform, the trade-off between

computational cost and numerical error must be consid-

ered, and thus a total of 256 combinations of the six pa-

rameters were obtained using theQMC samplingmethod

as in Zhao et al. (2013).

d. Sensitivity analysis

This study employs the method of Zhao et al. (2013),

who applied a generalized linear model (GLM) after

completion of the 256 QMC-sampled simulations to

carry out a variance-based sensitivity analysis. The

GLM assumes a polynomial relationship between the

cloud microphysical parameters and CAM5.1-modeled

SCF and determines whether perturbations to the pa-

rameters through their individual and two-way in-

teractions with each other significantly influence

variance in SCF through null hypothesis testing. Note

that the polynomial assumption is inappropriate if the

fitted variance is too small (i.e., R2 ; 0) (Zhao et al.

2013). The GLM can then rank, as a percentage, the

contributions of the statistically significant individual and

two-way interactions between the input parameters to the

total variance in SCF. The GLM can be written as

Yi 5b
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where Yi is the ith response variable, SCF; bj and bj,k are

coefficients of the linear (individual) and two-way in-

teraction terms, respectively; and p
j
i (p

k
i ) are the ith re-

alization of the jth (kth) parameter. The index i runs from

1 to 256, and n5 6. The residual of the ith realization is

given by «i. The residuals are assumed to follow a zero-

mean, unit-variance normal distribution. The null hy-

pothesis assumes that the regression coefficients bbi are

zero, and the t statistic for the null hypothesis is given by

t5 bbi/SE(bbi). Parameters are deemed significant when

the corresponding P, 0:05. In this study, the GLM is

applied on the global scale, to 208-latitudinal-wide bands,
and separately over the Southern Ocean.

There are two main advantages of using the QMC/

GLMapproach for sensitivity analysis. First, unlike one-

at-a-time sensitivity analyses that operate by varying

only one parameter at a time while holding all other

parameters constant, the GLM is able to take in-

teraction effects between parameters into account

(Zhao et al. 2013). Second, QMC sampling of the pa-

rameter space for the GLM sensitivity analysis is an

efficient way of sampling a full multidimensional

parameter space that cannot be achieved with one-at-a-

time sensitivity analyses.

e. Selection criteria

To quantitatively determine the simulations that best

match CALIOP observations of cloud phase, the SCF

score is defined as

SCF score(i, j)5 SCFM
i,j
2 SCFO

i,j
, (2)

where SCFMi,j is the average CAM5.1-modeled SCF,

and SCFOi,j is the average CALIOP-observed SCF at

the ith 208-latitude-wide bands and jth isotherm

(either 2108, 2208, or 2308C). The overline denotes a

time average (the last year of simulation for CAM5.1

and the full 79-month period for CALIOP observa-

tions). In assessing which simulations perform best

overall among all nine latitude bands and all three iso-

therms, the cumulative SCF score (CS score) is in-

troduced as

CS score5 �
n

j51
�
m

i51

(SCFM
i,j
2SCFO

i,j
) . (3)

In selecting the simulations that most accurately re-

produce CALIOP observations, the goal is to select the

simulations with the lowest CS scores, that is, those with

the smallest overall differences between modeled and

observed SCFs in all three dimensions at grid boxes

resolved at 48 latitude by 58 longitude, averaged over

208-latitude-wide bands and at the three select isotherms

of 2108, 2208, and 2308C. Note that, according to this

convention, lower-scoring simulations are synonymous

with better-scoring simulations.

3. Results and discussion

In what follows, the results of the GLM sensitivity

analyses are first reported. The QMC-sampled simula-

tions that best meet the selection criteria for matching

CALIOP observations are then analyzed and discussed.

Finally, focus is given to the most influential parameter

according to the GLM sensitivity analyses and how its

range impacts the ability to reproduce CALIOP obser-

vations in latitude bands. This is followed by physical

interpretation of the results. The validity of the un-

derlying polynomial assumption in the GLM is justified

in each application.

a. Sensitivity of supercooled cloud fraction to the
cloud microphysical parameters

The results of the GLM sensitivity analyses are

partitioned into three sections, each describing the

analysis in different regions. The results on the global
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scale are first discussed and analyzed, and these are

followed by results in 208-latitude-wide zonal bands.

Special focus is given to the Southern Ocean in the last

section.

1) ON THE GLOBAL SCALE

To be able to apply the GLM for sensitivity analysis,

the assumption that the polynomial relationship in Eq.

(1) is reasonable must first be established. A plot of

the globally averaged GLM-predicted SCFs as a

function of the globally averaged CAM5.1-modeled

SCF confirms that the polynomial assumption is in-

deed valid on the global scale at the three mixed-phase

cloud isotherms; the R2 values of 0.754, 0.906, and

0.945 indicate that the GLM explains 75.4%, 90.6%

and 94.5% of the variance in CAM5.1-modeled SCF at

the 2108, 2208, and 2308C isotherms, respectively

(Fig. 3). It is important to note the relatively low R2

value at the 2108C isotherm; results at this particular

isotherm should therefore be interpreted with cau-

tion. Highly nonlinear interactions between the vari-

ables and multiple-way interaction effects account for

deviations from the polynomial assumption, and,

hence, low R2 values.

With the basis of the GLM applied on the global scale

now established, the results can be conveniently visual-

ized at a glance in the form of heat maps (Fig. 4). These

heatmaps show the relative contribution of themain (on

the diagonal) and interaction (on the off diagonal) ef-

fects of the six parameters to the total variance in

globally averaged SCF across three mixed-phase cloud

isotherms. What is immediately apparent from these

heat maps is that the vast majority of parameters and

their interactions with each other contribute very little

(,10%) to the total variance in globally averaged SCF

at each of the individual three isotherms. In fact, at

approximately midway into the mixed-phase cloud

temperature range of 2208C, aside from the contribu-

tion of ;15% to the total variance in SCF that derives

from the interaction between epsi and epss (the two

parameters associated with the rate at which ice and

snow, respectively, grow at the expense of liquid

droplets in the WBF process), the individual effect of

epsi accounts for 66% of the total variance in globally

averaged SCF. At the 2308C isotherm, the individual

effect of epsi is even more pronounced; it alone ac-

counts for ;85% of the total variance in SCF on the

global scale. In contrast, the relative contribution of the

interaction effect between epsi and epss of ;39%

outweighs the individual effect of epsi of ;15% at

the 2108C isotherm. These results are logical, as ice

crystals become present in larger quantities and snow-

flakes diminish in quantity as homogeneous freezing

temperatures are approached, therefore causing the WBF

process associated with snowflakes (ice) to exert a rela-

tively stronger influence at warmer (colder) mixed-phase

cloud temperatures. Note that the default threshold size

for the autoconversion from ice to snow is 400mm. Self-

collection processes for ice and snow are parameterized;

however, the collection of droplets by cloud ice is

neglected in CAM5.1.

The parameters with the next most significant con-

tributions to the total variance in globally averaged

SCFs are fin and ai. On the global scale, the contribution

of fin is largest at the 2108C isotherm (;21%) and di-

minishes with decreasing temperature, accounting for

;12.8% and ;5.9% of the total variance in SCF at

the 2208 and 2308C isotherms, respectively. This result

is expected, as IN are the primary means by which ice

crystals are found at mixed-phase cloud temperatures,

holding true to a greater extent at temperatures further

from the homogeneous freezing temperature. Ice crystal

FIG. 3. Globally averaged GLM-predicted SCFs as functions of globally averaged CAM5.1-modeled SCFs at the

(a)2108, (b)2208, and (c)2308C isotherms. The GLM is able to explain 75.4%, 90.6%, and 94.5% of the variance

in CAM5.1-modeled SCFs at the respective isotherms on the global scale. The plots substantiate the validity of the

polynomial assumption in the GLM.
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fall speed, on the other hand, in theory, should be ex-

pected to be more important at colder mixed-phase

cloud temperatures, since ice crystals are expected to be

more ubiquitous at colder temperatures in Earth’s at-

mosphere. Indeed, ai contributes more to the total var-

iance in globally averaged SCF at the 2308C isotherm

(;5.0%) than at the other two isotherms; it does, how-

ever, contribute less at the 2208C isotherm than at

the 2108C isotherm (;4.1% vs ;3.2%). The latter un-

expected effect may be attributed to the overestimate of

IN at temperatures warmer than 2128C typically as-

sumed in climate models (Conen et al. 2015).

On the global scale, the interaction between fin,

sol_factic and sol_facti, and the individual effect of

sol_facti are statistically insignificant (P . 0.05) at all

three isotherms (as indicated by the blank spaces).

All other interactions are statistically significant.

Note that the statistical significance of these values

will depend on the range of the parameters as well.

Note also that, although some of these simulations

may result in off-balance top-of-the-atmosphere ra-

diation budgets, they can be tuned if coupled to a

responding climate system. Since these simulations

were run with fixed sea surface temperatures, further

tuning beyond what is described in the manuscript is

not applicable.

2) IN ZONAL BANDS

In the previous section, the GLM revealed which pa-

rameters and their interaction effects are generally most

important at the three isotherms on the global scale;

however, SCF greatly varies on the global scale, as evi-

denced by satellite observations (Tan et al. 2014),

therefore warranting further analyses on a more local-

ized scale. The GLM sensitivity analysis was therefore

then applied to 208-latitude-wide bands at the same

three isotherms to break down the contributions of the

parameters and their interactions into latitude bands

(Fig. 5). When applied to the nine 208-latitude-wide
bands at each isotherm, the GLM sensitivity analysis

generally explains 80%–90% of the variance in

CAM5.1-modeled SCF, and, at the very least, in a few

rare cases which will be pointed out, 54.1%, 71.4%, and

68.1% of the variance in CAM5.1-modeled SCF at

the2108,2208, and2308C isotherms, respectively. The

polynomial assumption is therefore valid for all regions

examined in this study; however, the authors reiterate

that regions with low R2 values should be interpreted

with caution.

The most prominent feature common to all three

isotherms is the dominating effect of epsi, as expected

from the heat maps in Fig. 4. The parameter epsi single-

handedly accounts for most of the variance in SCF at all

latitude bands, except at those between 308S and 308N
at the two colder isotherms (Figs. 5b and 5c). The 108S–
108N band at the 2208 and 2308C isotherms should be

interpreted with caution because of the relatively low

R2 values of 0.71 and 0.68, respectively. From the global

analysis shown by the heat maps in Fig. 4, the in-

teraction between epsi and epss and the individual

FIG. 4. Heat maps of the relative contribution of main (displayed on the diagonal) and interaction effects of the

six cloud microphysical parameters to the total variance globally averaged SCF, based on the GLM sensitivity

analysis of the QMC-sampled simulations at the (a) 2108, (b) 2208, and (c) 2308C isotherms. The white space

indicates statistically insignificant (P , 0.05) or redundant values.
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effect of fin are significant at the 2108 (Fig. 4a)

and 2208C isotherms (Fig. 4b). A comparison with

Fig. 5 shows that these effects are only important out-

side the tropics. The effect of fin naturally derives from

the latitude bands containing the Taklimakan and Sa-

hara Deserts (Figs. 5a and 5b, respectively). The sen-

sitivity to ice nucleation by dust aerosols in these

regions (related to fin) presumably increases ice crystal

formation in mixed-phase clouds, where there would

otherwise be more liquid droplets, thereby actively

involving the WBF process time scale for snowflakes

(related to epss) and ice crystal sedimentation speed on

influencing SCF (related to ai in Figs. 5b and 5c). These

processes appear to be intertwined at the 2208
and 2308C isotherms.

At the 2108C isotherm, the relative contributions of

epsi to the variance in globally averaged SCFs seen in

Fig. 4 underestimate those seen in the zonal averages.

The polynomial relationship used in the GLM, how-

ever, is generally a better assumption for the zonal

averages (mean R2 5 0.845 across the nine latitude

bands in Fig. 5a) than the global averages (R2 5 0.754

for Fig. 4a) at this isotherm, except at the 308–508S
band (R2 5 0.541 in Fig. 5a), and therefore lends more

credibility than the results on the global scale. It is

therefore more likely that epsi also plays a more critical

role at the 2108C isotherm than shown by the global

analysis. Although not quantitatively as reliable, the

analysis on the global scale, however, still points out the

key important parameters and their interactions that are

FIG. 5. Relative contribution of individual parameters and two-way interactions (denoted by

the colons) between them to the variance in SCF in 208-latitude-wide bands at the (a) 2108,
(b) 2208, and (c) 2308C isotherms based on the GLM sensitivity analysis. Statistically signif-

icant [i.e., P , 0.05 (insignificant, i.e., P . 0.05)] data points are represented by circular (tri-

angular) points. The reader is advised to interpret the marked bands with caution because of

the low R2 values.
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most important for determining SCF variance. Unlike the

two colder isotherms, the interaction between fin and epsi

shown in Fig. 5a plays a more important role in influ-

encing the variance of SCF, in agreement with Tan et al.

(2014), who found stronger negative correlations be-

tween dust aerosols and SCF at the2108C isotherm than

at other mixed-phase cloud isotherms based on CALIOP

observations.Aswith the two colder isotherms (Figs. 5b,c),

the interaction between epsi and epss continues to play a

significant role at the 2108C isotherm as well (Figs. 5a).

In comparison to Zhao et al. (2013), two-way in-

teractions effects were also found to be negligible in this

study relative to the individual effects of a few key pa-

rameters. However, whereas Zhao et al. (2013) found

that the size threshold for the autoconversion from ice to

snow (dcs) dominated variance in radiative fluxes at the

TOA, the current study finds that epsi is the parameter

that dominates SCF variance. Although Zhao et al.

(2013) found dcs to be by far the most influential pa-

rameter in controlling variance in TOA radiative fluxes,

the parameter was purposely excluded from this study

since snow is not included in the SCF calculation of this

study. Snow is intentionally excluded in the SCF calcu-

lations of the current study since the CALIOP calcula-

tions of SCF, which the CAM5.1 simulations strive to

reproduce, do not include snow. The CALIOP lidar is

unable to penetrate far into clouds (its detection limit is

t; 3), so this study only takes measurements at cloud

tops into account, where snow is unlikely to be present.

Accounting for snow in the SCF calculations would

therefore always lead to an underestimate of SCF

compared to CALIOP observations. Since CALIOP is

unable to detect snow in mixed-phase clouds, dcs was

thus excluded as a parameter in this study to allow for

fair comparisons with CALIOP observations of SCFs. It

is also worth noting that autoconversion is not a real

physical process that occurs in the actual atmosphere

and is instead purely used as a tuning parameter. For this

reason, there is a need to eventually eliminate dcs in

future improved models (Eidhammer et al. 2014).

3) OVER THE SOUTHERN OCEAN

As a cloudy region with substantial low cloud cover

associated with high uncertainties in cloud albedo re-

sponses to a warmed climate (Zelinka et al. 2012;

McCoy et al. 2014), the Southern Ocean is a region of

particular interest. A GLM sensitivity analysis was

performed for the region extending from 588 to 908S,
covering the entire expanse of the Southern Ocean at

mixed-phase cloud temperatures (Fig. 6). In the South-

ern Ocean, the same parameters and their interactions

with each other more or less affect the three isotherms;

however, the extent to which they contribute to SCF

variance differs considerably. The parameter epsi con-

tinues to dominate the variance in SCF at all isotherms,

followed by its relatively weaker but nevertheless im-

portant interaction with epss, but the lone effect of ai

only becomes appreciable at the two colder isotherms.

As a particularly pristine region, the Southern Ocean is

relatively free of aerosols. Thus, at colder isotherms, the

effect of fin is relatively small, contributing to at least

half of what it does at the 2108C isotherm. This pre-

sumably occurs because IN, if present in this pristine

region, do not get lofted to high altitudes. The influence

of ai therefore potentially at least partially derives from

homogeneously nucleated ice from cirrus clouds aloft.

At the 2108C isotherm, the contribution of epsi is

downplayed by fin and interactions between epsi and

each of the three parameters epss, ai, and fin. Any trace

amounts of IN found in the IN-scarce region of the

FIG. 6. Relative contribution of key individual parameters and two-way interactions (denoted by colons) between them to the variance

in SCF over the Southern Ocean, spanning the region from 588 to 908S at the (a) 2108C (R2 5 0.893), (b) 2208C (R2 5 0.953), and

(c) 2308C (R2 5 0.969) isotherms based on GLM sensitivity analysis. These R2 values quantify the ability of the GLM polynomial

assumption to explain the variance in CAM5.1-simulated SCFs. All contributions excluding those in the ‘‘other’’ category are statistically

significant (i.e., P , 0.05).
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Southern Ocean are expected to decrease SCFs more

than they would in another region ubiquitous in IN. IN

lofted to low altitudes in this region appear to contribute

to quite a significant portion of the variance in SCF (just

under 10%), although not nearly as much as it does over

the desert regions discussed above. A particular feature

that stands out in the Southern Ocean, however, is the

;5% contribution of the interaction between fin and

epsi found only here and in desert regions at the 2108C
isotherm. This feature demonstrates the sensitivity of

the Southern Ocean to any trace amount of IN found in

the region. Aside from the individual effect of epsi, the

subsequent ice crystal fall speed (associated with ai)

after its formation by way of the WBF process and the

interaction between theWBFprocesses for ice and snow

are the two next largest contributors to SCF variance in

the Southern Ocean.

b. Selected simulations and their comparisons with
CALIOP observations

The second objective of this study is to select a handful

of the QMC-sampled CAM5.1 simulations with low CS

scores, a diagnostic that was defined to identify which

simulations are the most well rounded in reproducing

CALIOP observations of SCF in three-dimensional

space (discretized into 48-latitude-by-58-longitude grid

boxes and at the 2108, 2208, and 2308C isotherms).

As a starting point, the simulation with the lowest CS

score, which will be referred to by its technical name,

CALIOP-169, was selected. Note that, since the CS

scores were calculated over 208-latitudinal-wide bands,

certain combinations of parameter values frequently

result in simulations that score very well in one partic-

ular band or isotherm but also very poorly in another

band or isotherm. The CS score combines these can-

cellation effects and simply scores simulations based on

how well rounded they are overall. Instead of exclu-

sively utilizing CS scores to stringently select the other

best matches, selecting a group of simulations that

span a wide parameter range, especially in epsi, epss,

and fin, the three most influential parameters as de-

termined by the GLM sensitivity analysis then became

the most important criterion so long as the CS score is

within a reasonable range of CALIOP-169, which has a

CS score of 140.09. To this end, two more simulations,

CALIOP-7 and CALIOP-172, with CS scores of 186.72

and 220.75, respectively, were selected. These CS scores

should be compared to that of the simulation with the

highest CS score, CALIOP-50, which has a value of

442.97, and those of the default CAM5.1 and out-of-the-

box CAM5.1 simulations (492.45 and 512.49, re-

spectively). Table 2 compares the CS scores of the three

selected simulations with each other and with the sim-

ulation with the highest CS score; parameter values are

listed alongside.

The global distributions of SCFs at the three iso-

therms as observed by CALIOP, differenced with the

three selected simulations, the simulations with the

highest CS score, and as modeled by the out-of-the-box

CAM5.1 model are shown in Fig. 7. The most striking

feature of Fig. 7 is the severe underestimate of SCFs,

especially in the extratropics of the two warmer iso-

therms in the out-of-the-box CAM5.1 and default

CAM5.1 shown in the bottom panel. Note that the

coldest isotherm performs relatively well in comparison

to the other two isotherms in these two simulations.

Although this is not a region where strong mixing pro-

cesses occur, there is not much supercooled liquid to

begin with, since the temperature is close to the homo-

geneous freezing temperature. The pattern root-mean-

squared errors (RMSEs), correlation coefficients, and

standard deviations of the reference (CALIOP) and

field (modeled) SCFs are summarized in Fig. 8 as a

Taylor diagram (Taylor 2001). It is apparent from Fig. 8

that out of the QMC-sampled simulations, CALIOP-

169 and CALIOP-172 bear the closest resemblance in

terms of their global distributions of SCF. Both simu-

lations share similar R values at the two coldest iso-

therms. From Table 2, the values of epsi, the most

influential parameter on SCF variance according to the

GLM sensitivity analysis, for the two simulations are

also relatively similar in magnitude, showing the im-

portance of the effect of epsi on global SCF distribu-

tions. Note that Fig. 8 shows patternRMSEs, which have

the means of the field SCFs and reference SCFs re-

moved. The correlation coefficients show the difficulty

TABLE 2. Cloud microphysical parameter values rounded to the hundredth decimal place for the best- and worst-scoring simulations and

the two selected best-scoring simulations with contrasting parameter ranges, along with their CS scores.

Simulation fin epsi and epss sol_facti sol_factic ai (s21) CS score

CALIOP-169 0.024 21.23 0.72 0.74 690.78 140.09

CALIOP-7 0.19 20.096 0.99 0.97 371.085 186.72

CALIOP-172 0.49 21.62 0.96 0.72 354.28 220.75

CALIOP-50 0.37 25.35 0.87 0.58 711.24 442.97

CAM5.1 default 1 0 1 0.4 700 492.45

CAM5.1 out of the box — (Meyers et al. 1992) 0 1 0.4 700 512.49
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in obtaining spatial correlations with the observations

with a single value of epsi used for the entire globe. For

this reason, correlation coefficients were not a part of

the selection criterion used in this study.

In contrast toCALIOP-169, CALIOP-7 andCALIOP-

172, the worst-scoring simulation, CALIOP-50, con-

sistently exhibits roughly the same pattern at all three

isotherms (Fig. 7). CALIOP-50 has a tendency to over-

estimate SCF in the extratropics more than it does in the

tropics and subtropics. It has some of the lowest pattern

RMSEs among all the simulations, as evidenced by Fig. 8.

In reference to Table 2, the near-minimally slow WBF

time scale of the simulation is likely too slow for simu-

lating SCF observations at the2308C isotherm, while it

is not slow enough at the 2108 and 2208C isotherms.

A natural question to ask is how exactly epsi in-

fluences global distributions of SCF, knowing that it

exerts the largest influence on SCF variance. In other

words, it is interesting to determine which regions re-

quire shorter or longer WBF time scales to better re-

produce observations of SCF. To quantify these effects,

it is useful to utilize the SCF scores that quantify the

ability of the simulation to reproduce CALIOP obser-

vations and to visualize the effect of the range of epsi in

the form of box-and-whisker plots for each 208-latitude-
wide band and isotherm (Fig. 9). From the box-and-

whisker plots, which categorize SCF scores by their

corresponding epsi values into 16 equal groups, it is clear

that no single epsi value performs equally well at all

latitudes at reproducing CALIOP observations. The

ability of espi to accurately reproduce CALIOP obser-

vations depends on its ability to change from region to

region and from isotherm to isotherm. This finding is in

agreement with the difference plots of the global dis-

tributions in SCFs shown in Fig. 7 that show the large

spatial spread in SCF. As demonstrated by Fig. 9, and in

agreement with Fig. 7, very slow WBF time scales (re-

tarded between two and six orders of magnitude) are

able to better reproduce CALIOP observations of SCF

(i.e., have lower SCF scores) at the high latitudes at

the 2108C isotherm. This is because the high-latitude

regions are not affected by strong mixing processes and

therefore have more subgrid-scale variability. In the

tropics, however, a WBF time scale closer to that of the

default model is better able to reproduce CALIOP ob-

servations of SCF at all three isotherms, as expected

from the bottom two panels of Fig. 7 and consistent with

Komurcu et al. (2014). The fact that the default value of

the WBF process time scale, or values close to it, re-

produces CALIOP observations of SCF well in the

tropics can be explained by the vigorous mixing pro-

cesses that make the faster WBF process time scale a

good assumption in this particular region. WBF process

time scales retarded by only one to two orders of mag-

nitude relative to the default time scale in the model are

better able to reproduce CALIOP observations of SCF

at the 2308C isotherm, essentially at all latitudes, since

this isotherm is close to the homogeneous freezing

temperature, where spontaneous freezing of any liquid

occurs. The coldest isotherm is therefore not as sensitive

to the WBF process time scale. Like the 2108C iso-

therm, the 2208C isotherm requires much slower WBF

processes in order to better reproduce CALIOP obser-

vations of SCF over the high latitudes of the Southern

Hemisphere. Outside this latitude band, the 2208C
isotherm, like the 2308C isotherm tends to better re-

produce CALIOP observations of SCF when epsi is

between21 and22. These findings suggest overall that,

with the current modification to the detrainment

scheme, retarding the WBF process by up to two orders

of magnitude is appropriate for regions outside the

tropics and extratropics in CAM5, where SCFs are

highly underestimated compared to CALIOP observa-

tions. In the tropics, the default WBF process time scale

is able to provide a decent match for the observations,

likely because of the mixing processes present in this

region. In the high latitudes, slowing the WBF process

time scale by two to six orders of magnitude is more

beneficial for reproducing CALIOP observations of

SCF. Hence, subgrid-scale variability of cloud water at

various latitudes must be taken into account. Further-

more, the pattern of SCFs in CAM5 cannot be modeled

accurately on the global scale with a single epsi value for

the entire globe, given the spatial variability in mixed-

phase cloud partitioning.

4. Summary and conclusions

Lack of understanding and observations of cloud mi-

crophysical processes and limitations in computational

resources necessitate parameterizations of cloud mi-

crophysical processes in atmospheric GCMs. These pa-

rameterizations often include arbitrary and unphysical

tuning parameters that yield physically unrealistic re-

sults. Until tuning parameters can be completely elimi-

nated from these models and replaced by purely

prognostic schemes, the QMC/GLM methodology ap-

plied in the current study can be used to narrow the

range of uncertainties in various microphysical param-

eters by providing insight into the physical explanations

for shortcomings associated with parameterizations.

The QMC/GLMmethodology can also be used to gauge

which physical processes have the largest influence on

the process of interest. This information can be used for

future improvements in the parameterizations of the

most important processes identified by the sensitivity
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FIG. 7. Global distributions of (top) SCFs as observed by CALIOP, and their differences with (second row) CALIOP-7, (third row)

CALIOP-169, (fourth row) CALIOP-172, (fifth row) CALIOP-50, (sixth row) default CAM5.1, and (bottom row) out-of-the-box

CAM5.1 at the (left)2108, (center)2208, and (right)2308C isotherms. CALIOP observations of SCF were calculated at a resolution of

;2.58 latitude by 2.58 longitude, limited by the NCEP–DOE Reanalysis-2 data. All CAM5.1-modeled simulations were computed at

a resolution of ;48 latitude by 58 longitude. The interannual variability calculated as the standard deviation in the global, annual-mean

observed SCFs are less than 1% at all three isotherms.
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analysis. In this study, 256 combinations of six cloud

microphysical parameters related to the partitioning

between liquid and ice in mixed-phase clouds were se-

lected by adopting a QMC sampling approach. All 256

simulations were run with a change to the convective

detrainment scheme to reflect observational evidence

that SCFs are underestimated by the CAM5.1. The

Meyers et al. (1992) ice nucleation scheme was also re-

placed by the updatedDeMott et al. (2015) scheme in all

of the 256 simulations. The purpose of the QMC/GLM

methodology was to achieve two main goals.

The first goal involved conducting sensitivity ana-

lyses on the simulations by applying a GLM to the

simulations that assumes a polynomial relationship,

including individual and two-way interactions effects of

the six parameters. In most cases, the polynomial as-

sumption was reasonable, as indicated by the R2 value,

which showed that the GLM could explain a large

amount of the variance in CAM5.1-modeled SCFs. The

GLM revealed that the WBF time scale for the growth

of ice crystals at the expense of liquid droplets in

mixed-phase clouds (epsi) single-handedly accounts for

the vast majority of the variance in SCFs in various

208-latitude-wide bands and at the2108,2208, and2308C
isotherms. Its interaction with the WBF time scale for

the growth of snowflakes at the expense of liquid

droplets in mixed-phase clouds (epss) was also found to

play an important but secondary role in influencing

SCF variance. The influence of the fraction of dust

aerosols active as IN (fin) by itself and its interaction

with epsi on SCF variance was evident mostly in lati-

tude bands covering large desert regions (108–508N)

and over the Southern Ocean (588–908S). Although the

GLM sensitivity analysis applied in this study is limited

to two-way interaction effects, it appears that a com-

mon sequence of events is that, in regions with high

concentrations of dust, ice nucleation on dust particles

and the subsequent formation of ice crystals is likely

highly influenced by the WBF time scale for ice. The

individual influence of ice crystal fall speed (ai) only

appears to contribute noticeably to SCF variance at the

two colder isotherms examined in this study, where ice is

expected to be more prevalent.

The second objective of the studywas to select 3 out of

the 256 QMC-sampled simulations that best reproduce

CALIOP observations of SCF based on a defined score

(the CS score), meant to select the simulation that most

closely reproduces observations on the whole, as well as

other selection criteria that opted for simulations with

parameter values that together span a wide range. All

simulations, including the simulation deemed the worst

match to CALIOP observations, were better at repro-

ducing CALIOP observations than the out-of-the-box

CAM5.1 model, which consistently severely under-

estimated SCFs at almost all latitudes and isotherms. In

the two control simulations, the 2308C isotherm per-

formed, by far, the best out of the three isotherms. This

can be explained by the fact that the isotherm, even

though far from regions of strong mixing, is close to the

homogeneous freezing temperature, where virtually all

liquid freezes, and the WBF process time scale is

therefore not as relevant. In regions with vigorous

mixing processes, such as the tropics, the default WBF

process time scale reproduced CALIOP observations of

SCF quite well, since this region is well mixed and

therefore not sensitive to subgrid-scale variability. In the

extratropics and high latitudes, where efficient mixing

processes like those over the tropics do not exist, re-

tarding theWBF process time scale by one to two orders

of magnitude in the extratropics and between two and

six orders of magnitude in the high latitudes results in

better agreement in SCFs with the observations.

CALIOP-169 and CALIOP-172 have similar epsi values

and produced similar patterns in SCFs at the three iso-

therms. The simulation with the highest CS score [i.e.,

the simulation deemed the worst match to CALIOP

observations (CALIOP-50)] consistently overestimated

SCFs at higher latitudes and underestimated SCFs at

lower latitudes.

FIG. 8. Normalized Taylor diagram displaying the pattern

RMSEs, correlation coefficients, and standard deviations of the

reference (CALIOP observed) and field (CAM5.1 modeled) SCFs.

Note that the pattern RMSEs and standard deviations have been

normalized by the standard deviation of the reference field in this

diagram. Note also that means of the field observations and ref-

erence observations have been subtracted in the pattern RMSEs as

defined in Taylor (2001).
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FIG. 9. Box-and-whisker plots of the SCF scores of the 256 QMC-sampled simulations, grouped into 16 equally

divided bins based on their epsi values such that each bin contains 16 simulations. Plots for each of the nine latitude

bands are displayed at the (top) 2108, (middle) 2208, and (bottom) 2308C isotherms. The boxes display the me-

dian, lower, and upper quartiles and minimum and maximum values within each bin. Outliers are not shown.
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In conclusion, this study demonstrates the critical im-

portance of the WBF time scales involving ice and snow

for influencing SCFs on the global scale. In nature,mixed-

phase clouds are rarely composed of homogeneous mix-

tures of liquid and ice, but rather, have a tendency to exist

as inhomogeneous pockets of ice crystals and super-

cooled liquid droplets that are orders of magnitude

smaller in volume than grid boxes typical of atmospheric

GCMs. The results of this study show that failing to ac-

count for this effect could potentially explain the vast

majority of the severe underestimate in SCFs seen espe-

cially in the extratropics in most atmospheric GCMs.

Given the importance of cloud thermodynamic phase on

the radiative properties of clouds, improvements to the

parameterizations in the WBF process could thus po-

tentially improve climate projections.
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APPENDIX

Equations

The primary driving equations in which the six cloud

microphysical tuning parameters appear are provided in

the following sections.

a. Wegener–Bergeron–Findeisen process time scale
for ice

The local in-cloud deposition rate of water vapor onto

cloud ice A is given by

A5
q
y
*2 q

yi
*

G
p
t
i

, (A1)

where qy* is the in-cloud water vapor mixing ratio, qyi* is

the in-cloud water vapor mixing ratio at ice saturation,

and Gp is the psychrometric correction to account for the

release of latent heat given by

G
p
5 11

L
s

c
p

dq
yi

dT
, (A2)

where Ls is the latent heat of sublimation, cp is the

specific heat capacity at constant pressure, and dqyi/dT

is the change of ice saturation vapor pressure with

temperature. The supersaturation relaxation time

scale for ice deposition (i.e., the inverse of epsi) is

given by

t
i
5 (2pN

0i
r
a
D

y
l22
i )21 , (A3)

where ra is the density of air, Dy is the diffusivity of

water vapor in air, and N0i and li are the intercept and

slope of the ice size distribution, respectively, repre-

sented by the gamma function:

f(D)5N
0i
Dm exp2liD , (A4)

where D is the diameter, and m is the spectra shape

parameter, which is set to zero for cloud ice. If A.Q,

whereQ is the gridbox-averaged difference in the rate of

condensation and evaporation of cloud water and ice,

then the growth of ice through the WBF process occurs

at the expense of the surrounding cloud liquid water.

The total grid-scale condensation growth rate of ice is

given by

�
›q

i

›t

�
cond

5min
�
F
cld
A,F

cld
Q1

q
c

Dt

�
, (A5)

where qi is the mixing ratio of cloud ice, Fcld is the cloud

fraction, and Dt is the model time step. The order of

magnitude estimate of the retardation factor of the

WBF time scale is derived as follows. The volume of a

typical GCM grid box is O(1) km 3 O(100) km 3
O(100) km 5 O(1013)m3 (see Fig. 2). In the most ex-

treme case, pockets purely composed or liquid droplets

or ice crystals can extend down to O(10)m in the hori-

zontal (Chylek and Borel 2004). When subgrid-scale var-

iability is neglected, the mixing zone where liquid droplets

and ice crystals interact via the WBF process spans the

entire grid box. When subgrid-scale variability is taken

into account, the mixing zones decrease in volume. In

the most extreme case found in the Arctic where the

pockets extend ;O(100)m horizontally, there would be

alternating pockets of liquid droplets and ice crystals,

separated by mixing zones that are less than O(100)m

wide in the horizontal. Taking the width of the mixing

zone to beO(1)m, this implies that therewould be 103 (10)

alternating pockets of liquid droplets and ice crystals

in the horizontal (vertical) directions. Thus, the total

mixing zone volume would beO(103)m3O(103)m3
O(10)m 5 O(107)m3. This volume is six orders of

magnitude smaller than that of the mixing zone if

homogeneous mixtures of liquid droplets of ice are
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assumed. The difference is reflected in the WBF

time scale.

b. Wegener–Bergeron–Findeisen process time scale
for snow

All equations are identical to those in the previous

section except for Eq. (A3), which is instead replaced by

ts, which is the inverse of epss and is defined as

t
s
5

�
2pN

0s
r
a
D

n

�
f
y1
l22
s

1 f
y2

ffiffiffiffiffiffiffiffiffiffi
r
as
r
a

m
a

r
Sc1/3G

�
5

2
1

b
s

2

�
l
5/21bs/2
s

	
21

, (A6)

whereN0s and ls are the intercept and slope of the snow

size distribution, respectively, fy1 and fy2 are ventilation

factors for snow fixed at 0.86 and 0.28, respectively, ma is

the viscosity of air, Sc is the Schmidt number, bs is an

empirical coefficient fixed at 0.41 for snow and is related

to the terminal fall speed for an individual particle V by

V5 asD
b
s , where a is another empirical parameter fixed

at 11. 72m12bs s21 for snow and D is the particle di-

ameter, and ras is the air density correction factor for

snow given by ras 5 (ra/ra0)
0:54, where ra0 is the air

density at 850 hPa and 08C.

c. Ice crystal fall speed

The parameter related to the ice crystal fall speed, ai,

relates the terminal fall speed for an individual ice par-

ticle through the same relation described in section

b above, except that b is instead fixed at 1 (i.e.,V5 aiD
bi ,

where bi 5 1). We use a (or ai as written in the previous

equation) in the mass- and number-weighted terminal

fall speeds for all cloud and precipitation species (Vq and

VN , respectively), given by

V
N
5

ð‘
0

(r
a
/r

a0
)0:54aDbf(D) dDð‘

0

f(D) dD

5
(r

a
/r

a0
)0:54aG(11 b1m)

lbG(m1 1)
and (A7)
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(pr/6)D3f(D) dD
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a
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)0:54aG(41 b1m)

lbG(m1 4)
, (A8)

where ra0 is the reference air density at standard tem-

perature and pressure.

d. Fraction of ice nuclei active in ice nucleation

The concentration of active IN in the original Meyers

et al. (1992) scheme is replaced by

n
INP,Tk

5 finFn
a(273:162Tk)1b

a.0:5mm eg(273:162Tk)1d , (A13)

where fin is the tuning factor used in this study to control

the fraction of IN active in ice nucleation; F is the cali-

bration factor, recommended to be set to 3 for atmo-

spheric data; the empirical constants a5 –0:074, b5 3:8,

g5 0:414 and d529:671; Tk is the cloud temperature

(K); nINP,Tk
is the ice nucleating particle number con-

centration (L21) at cloud temperatureTk; and na.0:5mm is

the number concentration of aerosol particles with di-

ameters larger than 0.5mm (cm23).

e. Fraction of aerosols scavenged in stratiform and
convective clouds

The parameters sol_facti and sol_factic are solubility

factors that can be interpreted as the product of the

fraction of aerosols in cloud droplets and an additional

tuning factor. The total in-cloud scavenging for strati-

form clouds Sstrat,tot is given by

S
strat,tot

5
1

Dt
sol_factif

p
C(12 f

i
)1

1

Dt
sol_factiif

p
C(12 f

i
) ,

(A14)

where fp is the fraction of cloud water converted to pre-

cipitation, sol_factii is the fraction of aerosols scavenged

in stratiform ice clouds, C is the tracer mixing ratio, fi is

the fraction of cloud condensate in the ice phase, andDt is
the model time step. The total in-cloud scavenging for

convective clouds is

S
conv,tot

5
1

Dt
sol_facticf

t
f
p
C(12 f

i
)

1
1

Dt
sol_factiicf

p
C(12 f

i
) , (A15)

where ft is the total cloud fraction and sol_factiic is the

fraction of aerosols scavenged in convective ice clouds.
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