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s0010 11.1. PRINCIPLES OF CARBON ISOTOPE
STRATIGRAPHY

p0015 The potential of marine carbonate d13C values to date and
correlate rocks relies on the fact that their 13C/12C values have
varied over time, mainly as the result of partitioning of carbon
between organic carbon and carbonate carbon reservoirs in the
lithosphere (e.g., Shackleton and Hall, 1984; Berner, 1990;
Kump and Arthur, 1999; Falkowski, 2003; Sundquist and
Visser, 2004). Precipitation of carbonates involves little carbon
isotopic fractionation relative to dissolved inorganic carbon
(DIC), and the d13C of carbonate is relatively insensitive to
changes in temperature (about 0.035& per �C; Lynch-Stie-
glitz, 2003). Therefore the d13C of inorganically and biologi-
cally precipitated carbonate in the oceans is very close to that
of the DIC in the oceans (Maslin and Swann, 2005), the largest
reservoir in the recent ocean-atmosphere system (Figure 11.1).
To explain changes in this isotopic signature we need to
consider the global carbon cycle on different time scales
(Falkowski, 2003; Sundquist and Visser, 2004).

p0020 Carbon cycling between the ocean and the atmosphere
occurs on time scales of <1000 years. At the present pH
conditions of sea water (7.5e8.3),>90% of the carbon in the
deep ocean is present as bicarbonate (HCO3

�). The deep
oceanic DIC reservoir is about 50 to 60 times as large as the
atmospheric reservoir was in pre-industrial times
(e.g., Ravizza and Zachos, 2003; Sundquist and Visser,
2004; Sarmiento and Gruber, 2006; Houghton, 2007).
Carbon in the atmosphere is present as carbon dioxide
(CO2), whereas the lithosphere, which exchanges carbon

with the ocean-atmosphere system on longer time scales
(105e106 years), contains carbon in both organic matter and
carbonate rock (limestones and dolomites) (Berner, 1990).

p0025The carbon isotopic composition of CO2 in the atmo-
sphere was about �6.4 & prior to anthropogenic fossil fuel
burning, close to the mantle value of about �6& (Sundquist
and Visser, 2004) (Figure 11.1). The photosynthetic fixation
of carbon using atmospheric CO2 involves a large negative
fractionation, so that all organic carbon compounds are
strongly depleted in 13C relative to atmospheric CO2

(e.g., Maslin and Thomas, 2003). Most Recent land plants use
the C3 photosynthetic pathway, and have d13C values
between�23 and�33& (mean value ~�26&). Plants in dry
regions (tropical grasses, salt water grasses) use a different
photosynthetic pathway (C4), and have d13C values ranging
from �9 to �16& (mean value ~ �13&) (Maslin and
Thomas, 2003). The photosynthetic reaction pathways of
marine phytoplankton are less well-known; d13C values in
marine phytoplankton range between �10 and �32& (most
lie between �17 and �22&) depending upon temperature,
with values in the tropics ranging up to �13&, and at high
latitudes as low as �32& (Sarmiento and Gruber, 2006).

p0030The d13C value of whole-ocean DIC has not been constant
over geologic time. Variations in d13C in DIC in the oceans
over time scales of tens of thousands of years or less, as for
instance seen in the Quaternary glacial/interglacial cycles,
can be understood in terms of redistribution of carbon among
the Earth’s surface carbon reservoirs, i.e., atmosphere,
oceans, biosphere and superficial sediments (see
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e.g., Sundquist and Visser, 2004). Over timescales of
hundreds of thousands to millions of years, variations in d13C
of DIC are mainly the results of changes in the size and rate of
the exchange fluxes between the Earth’s surface carbon
reservoirs and the lithosphere (e.g., Berner, 1990; Kump and
Arthur, 1999; Sundquist and Visser, 2004; Maslin and Swann,
2005), specifically storage in the lithosphere of varying
amounts of carbon as organic carbon relative to the amount
stored in carbonates. The lithospheric organic carbon reser-
voir includes coal measures, oil and gas reserves, but is
dominated by dispersed organic matter (Figure 11.1). Pres-
ently the carbon out-flux from the oceans into calcium
carbonate is about 4 times as large as the out-flux of carbon
into organic matter (Shackleton and Hall, 1984; Shackleton,
1987). If relatively more/less carbon is removed from the
oceans in organic matter (relative to carbonate), the d13C
value of DIC in the whole ocean increases/decreases
(Shackleton, 1987; Berner, 1990; Kump and Arthur, 1999;
Hayes et al., 1999; Derry et al., 1992; Des Marais et al., 1992;
Zachos and Ravizza, 2003½AU1� ; Sundquist and Visser, 2004;
Maslin and Swann, 2005). When there is net deposition of
organic matter globally, the d13C value of DIC in the whole
ocean increases; when there is net oxidation of organic matter
globally, the d13C value of DIC in the whole ocean decreases.

p0035 The carbon isotopic composition of DIC in the oceans is not
only linked to the d13C of CO2 in the atmosphere through
exchange between the atmosphere and surface ocean, but also
through circulation between surface and deep waters in the
oceans: the “atmosphere is the slave of the ocean” because of its

much smaller size (Sundquist and Visser, 2004; Maslin and
Swann, 2005). A change in carbon isotope composition of the
large oceanic DIC reservoir is thus reflected in the isotopic
composition of other components of the carbon cycle, within
times on the order of circulation of the deep-sea (~1000 years)
(Figure 11.1): organic matter in marine and terrestrial sedi-
ments (Hayes et al., 1999), plant material (e.g., Robinson and
Hesselbo, 2004), carbonate nodules in soils (Ekart et al., 1999),
and carbonate in herbivore teeth (e.g., Koch et al., 1992).

p0040This coupling between carbon isotope values in DIC and
organic matter may not have been in existence in the Protero-
zoic, when the reservoir of dissolved and particulate organic
carbon may have been much larger than that of DIC (Rothman
et al., 2003, Fike et al., 2006; McFadden et al., 2008; Swanson-
Hysell et al., 2010), although there are potentially diagenetic
explanations for this lack of coupling (e.g., Derry et al., 2010 ½AU2�).
Until the early 1990s, changes in the sizes of the global reser-
voirs were thought to have occurred on time-scales of 105 to 106

years and more (the oceanic residence time of carbon being
about 105 years), because oceanic deposition and erosion and
weathering on land cannot be re-organized quickly
(e.g., Shackleton, 1987; Magaritz et al., 1992; Thomas and
Shackleton, 1996). More recently, negative carbon isotope
excursions (NCIEs) have been documented with a duration of
several ten thousands to hundred thousands of years, with
transition into the NCIE possibly over <<104 years,
although this is still under discussion (Zachos et al., 2007,
Cui et al., 2011). Such NCIEs include the one during the
Paleocene-Eocene Thermal Maximum (PETM; ~ 55.5 Ma;

f0010 FIGURE 11.1 The carbon reservoirs of the

present (pre-industrial) carbon cycle with

their carbon isotopic composition. The

numbers showing the size of reservoirs are

expressed in the units presently most

commonly used in the literature: petagrams

carbon (Pg C, 1015 g carbon). Figure after

Dunkley-Jones et al., 2010.
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e.g., Kennett and Stott, 1991; Sluijs et al., 2007), smaller NCIEs
during other late Paleocene and early Eocene hyperthermal
events (Cramer et al., 2003; Lourens et al., 2005), and possibly
earlier events, for example the Early Cretaceous and Early
Jurassic ~183 Ma Oceanic Anoxic Events (Jenkyns, 1985,
2010; Gröcke, 2002; Gröcke et al., 2003; Cohen et al., 2007; but
see also McArthur et al., 2008) and the Permo-Triassic
extinction event (e.g., Magaritz et al., 1992; Erwin, 1993;
Bowring et al., 1998; Berner, 2002; Retallack and Jahren,
2008). The origin of these rapid, global, negative CIEs is under
debate, but they require a fast input of large amounts of isoto-
pically light carbon into the ocean-atmosphere from a litho-
spheric source, e.g., methane from dissociation of clathrates, as
proposed independently for the Permo-Triassic by Erwin
(1993) and for the Paleocene-Eocene by Dickens et al. (1995)
and Matsumoto (1995), or organic matter heated by volcanic
intrusions (Svensen et al., 2004), or various combinations of
oxidation of organic matter and hydrates (reviews by Zeebe
et al., 2009; Dickens 2011). Such NCIEs have been compared
to the effects of anthropogenic fossil fuel burning, which has
occurred over a few centuries, resulting in a decrease in d13C of
atmospheric CO2 from about �6.4 to �7.9& (Francey et al.,
1999), and propagating into the oceans (e.g., Quay et al., 1992;
Cao et al., 2009).

s0015 11.2. SPATIAL HETEROGENEITY OF d13C
OF DISSOLVED INORGANIC CARBON

p0045 Carbon isotope values in marine carbonates do not simply
reflect the average global d13C values of DIC in the oceans,
but are influenced by local primary and export productivity,
the regional and global pattern of ocean circulation, and local
to regional effects such as addition of light HCO3

� in coastal
regions. The equilibrium fractionation between dissolved
CO2(aq) (thus atmospheric CO2) and bicarbonate (thus dis-
solved inorganic carbon, DIC or SCO2) changes by about
0.1& per �C change in temperature. It follows that the d13C
value in DIC in surface waters at high latitudes (colder) is
higher with respect to the atmosphere than in the warmer, low
latitude ocean surface waters by ~ 2& (Lynch Stieglitz et al.,
1995; Lynch-Stieglitz, 2003). This equilibrium is not ach-
ieved anywhere because surface waters are replaced too
quickly, but colder waters generally have higher d13C values
in DIC than warmer waters. Colder surface waters invariably
ventilate the deep ocean, so this effect (called “the solubility
pump”) would result in a surface-to-bottom gradient in which
the DIC in surface waters is isotopically lighter than that in
deep waters (Raven and Falkowski, 1999).

p0050 In most places in the present oceans we observe the
reverse, and the DIC of surface waters has d13C values that
are heavier by aboutþ2 toþ3& than deep-water values, with
the average whole ocean d13C value of total DIC within about
1& of the average deepwater value of ~0& (Figure 11.1)

(e.g., Kroopnick, 1985; Gruber et al., 1999; Sarmiento and
Gruber, 2006). This vertical gradient is due to biological
activity (the “biological pump”, Raven and Falkowski, 1999).
Photosynthesis in the oceans is limited to the photic zone,
causing depletion in 12C in DIC in the surface waters. The
d13C values of DIC in waters below the photic zone, down to
the ocean floor, are lower than those in surface waters,
because organic matter sinks, and isotopically light carbon
dioxide from its remineralization is added to these waters.
The magnitude of this vertical gradient depends upon the
primary productivity of the surface waters and the export
productivity of organic matter to deeper waters: higher export
productivity leads to a steeper gradient, with the largest
gradient in the present oceans found to be around 3& (Raven
and Falkowski, 1999; Sarmiento and Gruber, 2006).

p0055Remineralization of organic matter adds nutrients (nitrate,
phosphate) as well as DIC to the deeper waters in the oceans.
The concentration of nutrients and isotopically light carbon
derived from remineralization of organic matter increases
with increasing water-mass residence times (or “aging”) in
the deep ocean (e.g., Kroopnick, 1985; Lynch-Stieglitz, 2003;
Sarmiento and Gruber, 2006).

p0060As a result of the aging process we see a generally good
correlation between d13C values in DIC and nutrient levels
(phosphate) in open ocean. This relationship can be determined
using the equation from Broecker and Maier-Reimer (1992):

d13C� d13CMO ¼ Dphoto=SCO2
MO C=Porg

ðPO4 � PO4
MOÞ

(1)

p0065where MO stands for mean ocean,Dphoto is the photosynthetic
fractionation factor and C/Porg is the carbon to phosphorus
ratio in marine organic matter. For the modern ocean
(Dphoto¼�19&, d13CM� ¼ þ0.5&, SCO2

MO¼ 2200 mmol/
kg, PO4

MO¼ 2.2mmol/kg, and C/Porg¼ 128) so that equation
1 becomes:

d13C ¼ 2:9� 1:1 PO4 (2)

p0070The d13C of modern tropical and temperate surface waters
that average 0.2 mmol/kg of PO4 is about 1.5& higher than
surface waters of the Antarctic, which contain the highest PO4

values (1.6 mmol/kg) of the surface oceans. The highest PO4

values in the modern ocean are found in the deep Pacific (up
to 3 mmol/kg), and these waters have a d13C of about �0.3&,
which differs modestly from mean ocean carbon at þ0.5&
with a PO4

M� ¼ 2.2mmol/kg (Broecker and Maier-Reimer,
1992). In the present oceans we thus see a difference in
isotopic composition of DIC in the deep Atlantic (younger
waters) and the deep Pacific (older waters), with the north
Pacific about 1& lighter than the Atlantic, and reflecting the
net aging of waters in the global deep-sea circulation pattern
from North Atlantic to North Pacific (Lynch-Stieglitz, 2003;
Ravizza and Zachos, 2003; Sarmiento and Gruber, 2006).
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p0075 In semi-restricted water masses above modern carbonate
platforms, we see a fairly severe version of “aging”, i.e., an
increase in time during which the water has not been in
contact with the atmosphere (Patterson and Walter, 1994;
Immenhauser et al., 2002). In addition, lighter d13C values
occur in DIC in coastal waters, especially close to major river
inflows. The major sources of carbon contributing to DIC in
natural waters are CO2 derived from the decay of organic
matter in continental soils and from the dissolution of
carbonate, while in general the contribution of atmospheric
CO2 is negligibly small (Mook and Tan, 1991). The large
amounts of dissolved organic carbon (DOC) in rivers
contribute to light DIC in coastal waters upon their oxidation,
in addition to the DIC derived from oxidation of organic
matter due to plankton blooms in eutrophied coastal regions
where water column stratification develops seasonally
(Thomas et al., 2000; Fry, 2002; Diz et al., 2009).

p0080 Local to regional negative carbon isotope excursions in
restricted basins with a stratified water column have been
explained by advection of the isotopically light, organic matter-
derived DIC formed within anoxic bottom waters below
a pycnocline, e.g. for the Toarcian and Kimmeridgian events
(Kuespert, 1982; Jenkyns and Clayton, 1986, 1997; Saelen
et al., 1998; Schouten et al., 2000). A similar process on an
ocean-wide scale has been proposed for the Permo-Triassic, at
which there was widespread anoxia in the global ocean (Pan-
thallasa), so that isotopically light carbon as well as toxic H2S
could have advected from below the pycnocline (e.g., Erwin,
1993, 2006; Kump et al., 2005). Ventilation of carbon from the
ocean interior (i.e., redistribution of carbon within the ocean-
atmosphere system) even in the absence of anoxia has also been
proposed as cause of some of the smaller Eocene hyper-
thermals, but not for the PETM (Sexton et al., 2011).

p0085 In conclusion, one can be confident that an observed
d13Ccarb trend represents global primary seawater DIC values
only if it is reproducible globally, and in a wide range of
depositional settings that have undergone differing degrees of
diagenetic alteration.

s0020 11.3. MATERIALS AND METHODS

p0090 In Figures 11.2 through 11.7, d13Ccarb is plotted according to
the time scale presented in this volume. Correlation among
stratigraphic sections by comparison of the d13C curves is
a common practice, but curves covering any time interval
show considerable spatial and temporal variability. In order to
be applied successfully for dating and correlating, d13Ccarb

excursions must therefore be recognized in sections from
different parts of the world, and d13Ccarb chemostratigraphy
must be carefully scrutinized and integrated into a bio-,
magneto- and sequence stratigraphic framework. We can use
the carbon isotope pattern to correlate and date more
precisely, as was done for example, for the Paleocene-Eocene
Thermal Maximum or the Late Cambrian Paibian Stage, only

when we identify a CIE in coeval records from different
environments, dated independently (e.g., Zachos et al., 2005;
Saltzman et al., 2000).

p0095Carbon isotope records based on organic matter (d13Corg)
and in terrestrial carbonate nodules may also be used for
correlation (e.g., Koch et al., 1992), but long-term trends
through most of Earth history are in general less well known
and not covered here in detail. Furthermore, d13Ccarb and
d13Corg measured in the same rocks may show significant
differences in the magnitude and/or timing of carbon isotope
excursions (e.g., in the Cambrian, Ordovician, Cretaceous
and Paleocene/Eocene e see Section 11.4) that may relate to
temporal changes in photosynthetic fractionation, or poor
carbonate preservation (e.g. Hayes et al., 1999; McCarren
et al., 2008; Jenkyns, 2010).

p0100Materials analyzed for d13Ccarb differ between authors,
a fact that should be kept in mind when comparing d13C
curves. Which carbonate materials are analyzed depends on
availability and preservation of sediment, depositional envi-
ronments, and the presence of calcifying organisms which
evolved through geological time. In addition, choice of
materials is governed by the spatial and temporal scale of the
problem to be addressed.

s002511.3.1. Depositional Setting: Deep (Pelagic)
Versus Shallow

p0105Pelagic calcifiers predominantly consist of calcareous
nannoplankton, which evolved in the late Triassic (Norian,
~ 215 Ma, Bown et al., 2004) and planktonic foraminifera,
which evolved in the early Jurassic (Toarcian, ~ 183 Ma, Hart
et al., 2006). Both groups were originally restricted to
epicontinental seas, and then colonized the open ocean in the
Early Cretaceous (Roth, 1986). Subduction has destroyed
most pre-Jurassic oceanic crust, so deep-sea carbonates of
pre-Jurassic age rarely preserved (Martin, 1995; Ridgwell
2005). This evolution of planktonic calcifiers, commonly seen
as part of the Mid-Mesozoic Revolution of life on Earth
(Vermeij, 1977), caused a major reorganization of the global
carbon cycle by shifting the locus of carbonate deposition
from the continental shelves to the deep open ocean, so that
biologically driven carbonate deposition could provide
significant buffering of ocean chemistry and of atmospheric
CO2 from that time on (Zeebe and Westbroek, 2003; Ridg-
well, 2005).

p0110Jurassic through Cenozoic C-isotope records have been
derived mostly from pelagic carbonates (e.g., Scholle and
Arthur, 1980; Vincent and Berger, 1985; Shackleton, 1987;
Zachos et al., 2001, 2008; Cramer et al., 2009; Jenkyns, 2010),
either obtained by deep sea drilling in the oceans, where crust
younger than about middle Jurassic is present (Jenkyns et al.,
2002; Katz et al., 2005), or from land sections, many of which
are located in the Mediterranean region of Europe
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(e.g., Jenkyns, 2010). Such pelagic carbonates are dominantly
made up of carbonate secreted by planktonic organisms,
calcareous nannoplankton and planktonic foraminifera, with
a negligible contribution from benthic organisms (e.g., Milli-
man, 1993, Sarmiento and Gruber, 2006). For high-resolution
work, or analysis of indurated material from which single
fossils cannot be liberated, or to approximate the average
marine average d13C of the total carbonate produced and
preserved in the marine system, many researchers have been
using the bulk isotope record, which takes much less time to
produce (e.g., Shackleton and Hall, 1984; Shackleton, 1987;
Katz et al., 2005). The bulk record in pelagic carbonates is
dominated by carbonate secreted by the photosynthesizing
calcareous nannoplankton. Their carbonate gives an isotopic
value not typical for the waters in the surface mixed layer,
which outside the polar regions is limited to less than 100m,
but for the deeper thermocline (e.g., Bown et al., 2004).

p0115 From times prior to the Middle Jurassic, only shallow-
water (platform), near-shore carbonate is preserved (Martin,
1995; Ridgwell, 2005). For Middle Jurassic sediments and
younger, platform and pelagic carbon isotope records can
both be used for correlation, and commonly show very similar
records (Ferreri et al., 1997; Amodio et al., 2008). However,
in ancient carbonate rocks it may be difficult to discern the
original depositional environment and water mass sampled by
individual materials, either because diagenesis of the sedi-
ment has masked the origins, or because the ecological niche
of a particular fossil is not known. The multiple, complex
origins of fine-grained (micritic) carbonate can also frustrate
such efforts (e.g., Minoletti et al., 2005).

s0030 11.3.2. Bulk Versus Component

p0120 For pelagic sections, researchers have measured the carbon
isotope signatures of pelagic calcifiers living at different
depths in the surface waters, as well as benthic organisms, so
that insight can be obtained regarding the structure of the
thermocline, as well as oceanic productivity and circulation
(e.g., Vincent and Berger, 1985; Lynch-Stieglitz, 2003;
Ravizza and Zachos, 2003; Maslin and Swann, 2005). The
deep-sea benthic signal is closest to that of whole ocean DIC
(though potentially complicated by ocean circulation
patterns, Section 10.2), but benthic foraminifera are gener-
ally very rare, so producing benthic records is time-
consuming (Zachos et al., 2001, 2008; Cramer et al., 2009).
In the production of all records from individual or groups of
fossils, researchers must take into account the details of
biocalcification, with different species calcifying carbonate
with different offsets from isotopic equilibrium, so that
taxonomic knowledge is required (e.g., Rohling and Cooke,
1999; Katz et al., 2003). In addition, infaunal species reflect
pore water d13C in DIC in pore waters, hence should be
excluded from analysis (Zachos et al., 2001, 2008; Cramer
et al., 2009).

p0125Preservation of foraminifera in some Paleogene through
Middle Cretaceous sediments is excellent and allows analyses
of separate species (Wilson and Norris, 2001), but more
commonly Paleogene and older sediments are too lithified for
separation of single species, and bulk samples of pelagic
carbonate must be analyzed (Scholle et al., 1980 ½AU3�; Jenkyns,
2010). Some studies, for example of the Jurassic, have
analyzed isolated macroscopic skeletal components such as
belemnites, but large skeletal materials commonly give
scattered data, even when screened for diagenetic alteration
(Podlaha et al.,1998; Jenkyns et al., 2002). Detailed
morphological analysis of shells (e.g., Cretaceous ammo-
nites) is needed to reliably detect diagenesis, which may
affect isotopic values even in specimens with good visual
preservation (Cochran et al., 2010).

p0130In Paleozoic platform carbonates, the skeletal components
most commonly isolated for analysis are brachiopods,
composed of low-Mg (magnesium) calcite (e.g., Popp et al.,
1986; Grossman et al., 1991, 1993, 2008; Brand, 1982, 2004;
Wenzel and Joachimski, 1996; Veizer et al., 1999; Mii et al.,
1999). Brachiopod workers differ in their approaches to
sampling, reflecting the complex multi-layered nature of the
shell, taxonomic differences, and taphonomic differences, i.e.,
the variable preservation states encountered (e.g., Carpenter
and Lohmann, 1995; Veizer et al., 1999; Grossman et al.,
2008). Taxonomic influences (“vital effects”) on brachiopod
d13C have been recognized when systematic paleontology is
combined with isotope analysis (e.g., Mii et al., 1999; Batt
et al., 2007). For instance, the Carboniferous brachiopod
Composita has a consistently heavier carbon isotope compo-
sition than associated species (Mii et al., 1999).

p0135Others have analyzed bulk carbonate from Paleozoic
shallow-water platform settings, either because preserved
macrofossils were absent, or to maximize stratigraphic reso-
lution (e.g., Ripperdan et al., 1992; Joachimski and Buggisch,
1993; Saltzman et al., 1998; 2000; Payne et al., 2004; Maloof
et al., 2005). Precambrian carbonates lack macroscopic skel-
etal components, so only analysis of bulk materials is possible
(e.g., Knoll et al., 1986; Derry et al., 1992; Hoffman et al.,
1998; Halverson et al., 2006; Fike et al., 2006; Li et al., 2009).
Bulk sampling, which typically targets fine-grained (micritic)
carbonate, can be carried out by microdrilling in order to
isolate small amounts of material (i.e., 0.5e10 mg) and avoid
obvious secondary veins, while at the same time providing
enough material to be confident of a homogeneous sample.
Disc or ball mills are less selective but generate large amounts
of powder (~ 10e100 g) so that d13Ccarb can be measured, as
well as other proxies (e.g., strontium, sulfur, organic carbon).

s003511.3.3. Diagenesis

p0140The potential of diagenesis to alter primary d13C values must
be evaluated on a case by case basis (Marshall, 1992; Cochran
et al., 2010). In samples collected from outcrops (in contrast
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to samples recovered by ocean or continental drilling),
isotopically light carbon (12C) may be introduced in meteoric
waters containing DIC from oxidized organic matter. Mete-
oric diagenesis can alter carbonate towards more negative
d13C, with varying magnitude of the effect. In general,
meteoric water diagenesis results in lowered d18O as well as
d13C values, and correlation between the two is thus
commonly observed in samples affected by diagenesis
(Knauth and Kennedy, 2009; Cochran et al., 2011½AU4� ). Some
workers report preservation of original trends even below
major exposure surfaces (e.g., Halverson et al., 2006),
whereas others indicate alteration to more negative d13C
beneath exposure surfaces (e.g., Allan and Matthews, 1983;
Lohmann, 1988; Algeo et al, 1992). Negative d13C shifts have
been combined with other geochemical parameters to identify
exposure surfaces in cases when the geologic evidence is
subtle or cryptic (Railsback et al., 2003).

p0145 The incorporation of 12C derived from oxidized organic
matter must be ruled out before an observed negative d13C
excursion can be considered a primary signal. Such incor-
poration is most common in sediments with a low CaCO3

content (e.g., Bralower et al., 1997; Zachos et al., 2005).
Reliable results for pelagic carbonate d13C trends were
obtained when the ratio of carbonate carbon to organic carbon
in the sediments was high, suggesting that a ratio of
approximately > 7:1 may be a useful cutoff point (Scholle
and Arthur, 1980).

s0040 11.3.4. Global Versus Local Water Mass
Signals

p0150 Carbonates from epicontinental seas record DIC values from
water masses that did not have unrestricted circulation with
the open ocean (Section 11.2; e.g., Patterson and Walter,
1994; Holmden et al., 1998; Immenhauser et al., 2002). This
restriction allows larger amplitude and/or higher frequency in
d13C variability than the global ocean reservoir, which might
at least in part explain the observation that Cretaceous and
Cenozoic curves (Figures 11.6 and 11.7) generated from
pelagic carbonates record less variability than curves gener-
ated from epicontinental sea carbonates (Figure 5 in Fal-
kowski 2003; Figures 11.2e11.6). Comparison of Jurassic
and younger platform carbonate records with those of pelagic
carbonates, however, indicates that the larger variability in
older records cannot be completely explained in this way,
because curves from platform carbonates strongly resemble
coeval pelagic curves (Ferreri et al., 1997; Mutti et al., 2006;
Amodio et al., 2008).

p0155 Furthermore, epicontinental sea carbonates may contain
low-Mg, high-Mg calcite, and aragonite, which fractionate
carbon differently (Romanek et al., 1992), and potentially
superimpose low amplitude (~1&) trends through time, as
observed in recent, mineralogically complex, platform
carbonates (Gischler et al., 2009). However, even for time

periods when epicontinental seas were particularly wide-
spread and local water mass d13C differences well docu-
mented (e.g., the Ordovician period), distinct d13C trends and
large excursions are still recognizable and can be correlated
globally (e.g., Patzkowsky et al., 1997; Ainsaar et al., 1999;
Young et al., 2005; Panchuk et al., 2005).

p0160The above considerations pose significant challenges to
the use of d13C records as a global correlation tool, particu-
larly for periods when the amplitude of variation is low
(Figures11.2e11.7). For d13C excursions larger than 1e2 per
mille, broad-scale correlations may be confidently applied if
independent age control is available. However, if variations in
absolute magnitudes of excursions are observed locally, it
may be difficult to distinguish unconformities (i.e., parts of
the record not represented in the sediments) from the effects
of local epicontinental carbon cycling (e.g., Hirnantian;
Brenchley et al., 2003; Melchin and Holmden, 2006a). Even
for relatively young sediments (Paleocene/Eocene), minor
unconformities may make detailed correlations difficult
(e.g., McCarren et al., 2008).

p0165In summary, d13Ccarb integrates the combined influence of
diagenesis, mineralogical variability, vital effects depending
upon the calcifying organisms, and vertical and/or horizontal
water mass differences depending upon productivity and
ocean circulation, so that one must be cautious in identifying
“global” trends or excursions based on a limited number of
d13C data points. For bulk epicontinental carbonate analyses,
a margin of uncertainty of ~1& may be assumed (e.g.,
Halverson et al., 2006), for species-specific Cenozoic curves
~0.5 & (Zachos et al., 2001, 2008; Cramer et al., 2009).

s004511.4. CORRELATION POTENTIAL
AND EXCURSIONS

p0170The following discussion briefly summarizes the major
features and sources of data for the d13C curves in Figures
11.2e11.7. We do not discuss the use of d13Ccarb stratigraphy
on timescales of a few tens of thousands of years (orbital
timescales) as routinely used in studies of the Plio-Pleistocene
ice ages (Maslin and Swann, 2005), but increasingly for
detailed stratigraphy of older time periods.

p0175Archean through Mesoproterozoic: A Precambrian
marine carbonate isotope database was published by Shields
and Veizer (2002), and its Archean to Mesoproterozoic
portion is plotted in Figure 11.2. More detailed curves for
parts of this time period have become available more recently,
but the difficulties of compiling these records are many. There
is a growing consensus regarding the pattern of changes,
beginning with the positive Lomagundi carbon isotope
excursion at ~ 2.22e2.058 Ga (Bekker et al., 2006; Mel-
zehnik et al., 2007). Following this period of anomalously
high d13C, values for the Paleoproterozoic are mostly
between ~0& to �3&, and then ~0& to þ2& in the late
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Paleoproterozoic (Wilson et al., 2010). Relatively stable d13C
at ~0� 2& characterizes much of the Mesoproterozoic
(Buick et al., 1995; Knoll et al., 1995; Frank et al., 2003; Xiao
et al., 1997; Kah et al., 2001½AU5� ; Brasier and Lindsay, 2000;
Bartley and Kah, 2004; Chu et al., 2007). Chu et al. (2007)
correlated a rise in d13C at ~ 1250e1300 Ma between China
and sections in Russia and Canada (Bartley et al., 2001; Frank
et al., 2003; Bartley and Kah, 2004). Kah et al. (1999) sug-
gested that the moderately positive values between ~ �1.0
and þ4.0 &, characteristic of the interval between 1300 and
800 Ma, could be useful for broad time correlation, when
compared with earlier Mesoproterozoic (values near 0&) and
younger Neoproterozoic sections with values >þ5&.

p0180 Neoproterozoic: A Neoproterozoic d13Ccarb composite
was published by Halverson et al. (2006), and updated in
Halverson et al. (2007) (Figure 11.2). In addition to the data
of Halverson et al. (2006), data from Fike et al. (2006) and
Maloof et al. (2005) were included to complete the Neo-
proterozoic up to the base of the Cambrian. The carbon
isotopic record of the Neoproterozoic is extremely volatile,
with the lightest d13C values and largest net shifts of the
entire geologic timescale. This time is considered a period of
very large climatic swings, with fluctuations between
“Snowball Earth” with glaciation extending to low latitudes
and “Super Greenhouse” episodes, linked to variability in
the carbon cycle and atmospheric CO2 levels (Allen and
L’Etienne, 2008).

p0185 The precise number of excursions remains the subject of
debate, reflecting in part the lack of independent biostrati-
graphic constraints. As mentioned above, we can feel confi-
dent about carbon isotopic stratigraphy only after evaluation
of independent stratigraphic evidence. In the compilation of
Halverson et al. (2007), a large negative excursion prior to
800 Ma (Bitter Springs Stage) is followed by a period of
heavy values between þ5 and þ10& that lasts for ~75
million years. Values fall spanning the Sturtian glaciation
(~ 711.5 Ma; Macdonald et al., 2010) before rising again to
levels observed prior to the glaciation. The negative shift
across the Marinoan glaciation (~ 635.2 Ma; Macdonald
et al., 2010) is similar to that in the Sturtian, but the return to
heavy values is slower, and the subsequent positive mid-
Ediacaran d13C excursion is more transient. Values drop for
the fourth time across the Gaskiers glacial interval (Shuram
anomaly; e.g., Fike et al., 2006; Grotzinger et al., 2011), and
then rise to around þ5& before falling again across the
Precambrian-Cambrian boundary (Grotzinger et al., 1995;
Condon et al., 2005).

p0190 Cambrian: The Cambrian curve (Figure 11.4) is
compiled fromMaloof et al. (2005), Dilliard et al. (2007), and
Saltzman (2005). The Lower Cambrian is characterized by
considerable volatility throughout. At least two large positive
shifts between ~535 and 525 Ma are known from sections in
Morocco (Maloof et al., 2005) and Siberia (Kouchinsky et al.,
2007), and younger excursions have a lower amplitude

(Brasier and Sukhov, 1998). A significant negative excursion
is apparent near the Epoch 2e3 boundary (Stage 4e5
boundary) (Montanez et al., 2000; Zhu et al., 2006; Dilliard
et al., 2007) and there may be a younger event in the Drumian
(Howley and Jiang, 2010). The Steptoean Positive carbon
Isotope excursion (SPICE) at about ~ 495 Ma of the Paibian
Stage (Furongian Epoch) is one of the best known d13C
excursions on a global scale, and has been documented in
sections in North America, China, Australia, Siberia and
Kazakhstan (Saltzman et al., 1998; Glumac and Walker,
1998; Saltzman et al., 2000; Saltzman et al., 2004;
Kouchinsky et al., 2008), and in the d13C of organic matter in
Baltica (Ahlberg et al., 2009) and Avalonia (Woods et al.,
2011). The d13Corg shows a smaller excursion that peaks
earlier than the shift in d13Ccarb (Saltzman et al., 2011). The
final stage of the Furongian is characterized by relatively low
variability associated with trilobite extinction events
(e.g., Ripperdan et al., 1992; Saltzman et al., 1995).

p0195Ordovician: The Ordovician compilation is from five
different sources, including published and some unpub-
lished data (Saltzman et al., in prep) (Figure 11.3). Rela-
tively steady values with small excursions are recognized
during the Tremadocian (Buggisch et al., 2003; Saltzman,
2005) and low amplitude and low frequency shifts are
observed for the Floian, Dapingian and Darriwilian in
Argentina (Buggisch et al., 2003), North America (Saltz-
man, 2005; unpublished) and China (Munnecke et al.,
2011). Most of this Early to Middle Ordovician time period
is characterized by unusually light values (below 0&).
Positive shifts to values above 0& occur near the base of
the Dapingian and in the mid-Darriwilian (Buggisch et al.,
2003; Ainsaar et al., 2010; Saltzman et al., in prep). Two
positive excursions occur in global records in the lower
Katian and Hirnantian (Brenchley et al., 1994; Ainsaar
et al., 1999, 2010; Patzkowsky et al., 1997; Kump et al.,
1999; Finney et al., 1999 ½AU6�; Kaljo et al., 2001; Saltzman and
Young, 2005; Bergström et al., 2006, 2009, 2010; LaPorte
et al., 2009; Young et al., 2010; many others). The Hir-
nantian d13Ccarb positive excursion, occurring during
a period of global cooling and glaciation, reaches peaks
near þ7& globally (e.g., Nevada and Estonia; Kump et al.,
1999; Finney et al., 1999; LaPorte et al., 2009; Young et al.,
2010). Both the Katian and Hirnantian d13Ccarb excursions
are recorded in d13Corg (Patzkowsky et al., 1997; LaPorte
et al., 2009), but their timing and magnitudes may differ
(Young et al., 2008, 2010; Delabroye and Vecoli, 2009).
The basic shape of the d13C curves from brachiopod and
bulk rock studies agree well in records from the Upper
Ordovician (e.g., Brenchley et al., 1994; Marshall et al.,
1997; Finney et al., 1999; Kump et al., 1999),

p0200Silurian: The Silurian compilation (Figure 11.4) is from
ten different sources. The Llandovery Series is characterized
by low-amplitude variability with several small positive
d13Ccarb excursions in the early Aeronian, late Aeronian, and
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early Telychian as well as a significant negative shift near the
Aeronian-Telychian boundary (Põldvere, 2003; Melchin and
Holmden, 2006½AU7� ; Munnecke and Männik, 2009; Gouldey

½AU8� et al., submitted). Considerable data exist from the island of
Gotland for the Sheinwoodian through Ludfordian stages
(Wenlock and Ludlow) (Samtleben et al., 1996, 2000; Bickert
et al., 1997; Wenzel and Joachimski, 1996; Azmy et al., 1998;
Wigforss-Lange, 1999; Kaljo et al., 2003; Munnecke et al.,
2003; Jeppsson et al., 2007) and three prominent positive
excursions are recognized (the Ireviken, Mulde and Lau
events). The Ireviken event is associated with extinctions, and
has been recognized in brachiopods and micrite (bulk rock)
from coeval horizons from the Silurian of Gotland (Sweden)
(Cramer et al., 2010; Figure 11.8). Data from North America
and Arctic Canada confirm the shifts in the early Sheinwoo-
dian (Ireviken), Homerian and middle Ludfordian (Saltzman,
2001; Cramer and Saltzman, 2005). The Pridoli appears to be
a relatively stable period in the curve (Kaljo et al., 1997;
Azmy et al., 1998) until a positive excursion just before the
boundary with the Devonian (Hladikova et al., 1997; Saltz-
man, 2002b). The basic shape of the d13C curves from
brachiopod and bulk rock studies agrees well in records from

the Silurian (e.g., Wenzel and Joachimski, 1996; Bickert
et al., 1997; Azmy et al., 1998; Saltzman, 2001).

p0205Devonian: The Devonian compilation (Figure 11.4) is
from seven different sources. Carbon isotope curves tied to
conodont zones are known from Europe (Buggisch and Joa-
chimski, 2006; van Geldern et al., 2006) and North America
(Saltzman, 2005). A large positive excursion is recognized
across the base of the Devonian Lochkovian Stage in North
America, Europe, and Australia (Hladikova et al. 1997;
Saltzman, 2002; Buggisch and Joachimski, 2006). Values fell
in the mid-Lochkovian before reaching a broad peak in the
Pragian. Emsian values were low, and then gradually
increased before a significant negative shift in the late (not
terminal) Givetian, which occurred before a series of higher
amplitude positive excursions in the early to middle Frasnian,
associated with the falsiovalis, punctata, hassi, and jamieae
conodont zones (Yans et al., 2007; Racki et al., 2008). The
excursions across the Frasnian-Famennian boundary, associ-
ated with a major extinction episode (e.g., Joachimski and
Buggisch, 1993; Joachimski, 1997; Joachimski et al., 2002)
were followed by a terminal Devonian positive excursion
(Hangenberg) (Brand et al., 2004; Buggisch and Joachimski,

f0045 FIGURE 11.8 Carbonate carbon (d13Ccarb) isotope data from Got-

land, Sweden (Cramer et al., 2010). The italic lower-case ‘c’ bisected

by a thin gray line represents the base of the Wenlock Series as defined

by the LAD of O. polinclinata polinclinata. Each data point represents

the average of three or more brachiopod samples. This composite

figure is synthetic in its representation of unit thickness because each

stratigraphic unit varies across the island and data were collected from

over 50 localities with a maximum distance of over 60 km. The onset

of the early Sheinwoodian (Ireviken) d13Ccarb excursion (open circle)

occurs in this composite between Datum 3 and Datum 6 of the Ireviken

Event (precisely at Datum 4).

234 The Geologic Time Scale 2012

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter

TNQ Books and Journals Pvt Ltd. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

10011-GRADSTEIN-9780444594259



2006; Kaiser et al., 2008; Cramer et al., 2008; Myrow et al.,
2010). The basic shape of the d13C curves from brachiopod
and bulk rock studies agrees well in records from the Late
Devonian Frasnian-Famennian boundary interval (Joachim-
ski and Buggisch, 1993; van Geldern et al., 2006). However,
some Devonian excursions are poorly known or are yet to be
documented globally (e.g., Buggisch and Joachimski, 2006;
van Geldern et al., 2006; Myrow et al., 2010).

p0210 Mississippian and Pennsylvanian (Figure 11.5): The
Mississippian compilation is from Saltzman (2005), with data
from Batt et al. (2007) from the upper Visean and Serpu-
khovian (Chesterian). The Pennsylvanian curve is from
Saltzman (2003). The Tournaisian Stage contains a positive
excursion (Mii et al., 1999), with the heaviest values (~þ7&)
recorded in multiple sections in Nevada (Saltzman, 2002a)
and a smaller peak (~ þ5&) recorded in Europe (Saltzman
et al., 2004). A negative shift in the Serpukhovian (Saltzman,
2003; Batt et al., 2007) occurred before the rise of values
across the base of the Pennsylvanian, although thicker
sequences show multiple excursions in the Chesterian (Wynn
and Read, 2007). No other prominent shifts are known
globally, and the curve is characterized by high frequency,
low amplitude variability in the Great Basin (Saltzman,
2003). As discussed in the section on global and local water
mass signals above, Panthalassian values from western North
America appear to be lighter than Tethyan values (Mii et al.,
1999; Veizer et al., 1999; Saltzman, 2003; Buggisch et al.,
2011).

p0215 Detailed Upper Mississippian (Chesterian) bulk rock d13C
curves show generally good agreement with values from the
secondary shell layers of associated brachiopods (Batt et al.,
2007). Other brachiopod layers (e.g., tertiary prismatic
layers), however, and taxa (Composita) show an offset from
bulk carbonate and secondary shell layers by as much as 2 to
5& (Batt et al., 2007). Lower Mississippian bulk carbonate
and brachiopod calcite d13C curves from widely separate
geographic regions reveal a large positive excursion that can
be independently biostratigraphically correlated (Mii et al.,
1999; Saltzman et al., 2000; Saltzman, 2002, 2003).

p0220 Permian: The Permian compilation (Figure 11.5) is from
Tierney et al. (in prep), Buggisch et al. (2011) and Korte et al.
(2004). Brachiopod data from the Ural Mountains (Grossman
et al., 2008) and unpublished data from bulk rock studies in
China and Nevada show significant shifts in the Asselian-
Sakmarian and across the Artinskian-Kungurian boundary
intervals (Buggisch et al., 2011; Tierney et al., unpublished).
The Middle Permian Guadalupian Series is characterized by
heavy values in China, North America (Texas) and Japan
(Korte et al., 2005a; Isozaki et al., 2007; Buggisch et al.,
2011), with a negative excursion in the Capitanian (Wignall
et al., 2009; Bond et al., 2010). Lopingian values are generally
high (~ þ5&) with two very large negative shifts in the
Permian-Triassic boundary interval, which have been corre-
lated to major extinctions (Jin et al., 2000; Korte et al., 2004;

Payne et al., 2004; Yin et al., 2007; Xie et al., 2007; Riccardi
et al., 2007; Algeo et al., 2007a, b; many others). The basic
shape of the d13C curves from brachiopod and bulk rock
studies agrees well in records from the Permian (Korte et al.,
2005a; Isozaki et al., 2006 ½AU9�).

p0225Triassic: The Triassic compilation (Figure 11.6) is from
Payne et al. (2004) (up to the Carnian), and Veizer et al.
(1999) and Korte et al. (2005b). The lowermost Induan Stage
(Griesbachian-Dienerian) shows values generally increasing
overall, but punctuated by one or two excursions (e.g., Payne
et al., 2004; Galfetti et al., 2007; Horacek et al., 2007).
Curves for the Olenekian (Smithian-Spathian) show
extreme variability with positive shifts approaching þ8& in
some regions, and intervening negative shifts near �4&
(e.g., Hauser et al., 2001; Payne et al., 2004; Galfetti et al.,
2007; Horacek et al., 2007). Following a positive shift in the
early Anisian Stage, relatively stable values appear to char-
acterize the rest of the Middle Triassic, with values falling
towards the end of the Late Triassic (e.g., Preto et al., 2009).

p0230Jurassic: The Jurassic compilation (Figure 11.6) is from
Katz et al. (2005), except for the period from 175 to 164 Ma,
which is from Jones, 1992 ½AU10�(compiled in Veizer, 1999). A
positive d13Ccarb excursion to values between þ5 and þ6&
occurred in the earliest Jurassic (Hettangian) in Italy (Van de
Schootbrugge et al., 2008), although this well-defined
excursion is not resolved in the lower-resolution compilation
of Katz et al. (2005) that was used for Figure 11.3. The
positive Triassic-Jurassic boundary excursion is also observed
in separate studies of d13Corg from shales (Williford et al.,
2009; Whiteside and Ward, 2011) and is also present in the
carbonate carbon compilation of Dera et al. (2011). A nega-
tive excursion across the Triassic-Jurassic boundary is also
recognized (Pálfy et al., 2001; Hesselbo et al., 2002; Korte
et al., 2009; but see also Van de Schootbrugge et al., 2008)
and modeled as resulting from the Central Atlantic Magmatic
Province (CAMP) eruptions and related methane release in
a positive feedback loop with warming (Beerling and Berner,
2002).

p0235Another well-studied period of d13C changes occurs in the
Late Pliensbachian-Early Toarcian, where a large positive
excursion (Jenkyns, 1985, 1988) is preceded (Littler et al.,
2010), and punctuated by negative excursions in both marine
and terrestrial sequences (Hesselbo et al., 2000, 2007;
Jenkyns et al., 2002; Hermoso et al., 2009). The Early Toar-
cian positive excursion is associated with excess global
organic carbon burial during an Oceanic Anoxic Event
(Jenkyns et al., 2002, Jenkyns, 2010). A negative d13C
excursion in some Lower Toarcian sections has been
proposed to be a result of sampling in restricted seaways (van
de Schootbrugge et al., 2005; McArthur et al., 2008), but has
also been interpreted as resulting from the release of methane
from gas hydrates (Hesselbo et al., 2000, 2007). The younger
Jurassic Aalenian through Bajocian contains small shifts
(e.g., Bartolini et al., 1999; Sandoval et al., 2008; Dera et al.,
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2011), and the Oxfordian contains significant positive and
negative excursions (e.g., Jenkyns et al., 2002; Gröcke et al.,
2003; Weissert and Erba, 2004; Katz et al., 2005). Smaller
changes are recognized throughout the Kimmeridgian-
Tithonian (Bartolini et al., 1999; Schouten et al., 2000).

p0240 Cretaceous: The Cretaceous compilation (Figure 11.7) is
from Katz et al. (2005), and shows positive excursions
marking all Oceanic Anoxic Events (e.g., Jenkyns, 2010). The
Berriasian stage d13C curve is relatively stable before
a significant positive excursion (called the Weissert Event or
Late Valanginian Oceanic Anoxic Event, Jenkyns, 2010),
which occurred in the Valanginian (Weissert and Erba, 2004;
Westermann et al., 2010). Values decrease across the base of
the Hauterivian, but the Katz et al. (2005) compilation does
not resolve the positive excursion which has been described
from the uppermost Hauterivian Faraono Oceanic Anoxic
Event (Jenkyns, 2010). A major positive excursion in the
early Aptian (Scholle and Arthur, 1980; Weissert and Erba,
2004) is associated with Oceanic Anoxic Event 1a (Selli
Event). A more complex positive excursion, possibly
including several peaks, spans the late Aptian to early Albian
and is associated with Oceanic Anoxic Event 1b (the Paquier
Event; Jenkyns, 2010) .

p0245 A well known and widely documented global positive
shift in carbon isotope values occurs across the Cenomanian-
Turonian boundary (named the Bonarelli Event), correlates
with Oceanic Anoxic Event 2, and has been observed in
carbonate and organic matter (Scholle and Arthur, 1980;
Arthur et al., 1987; Sageman et al., 2006; Weissert et al.,
2008; Barclay et al., 2010). This event has been documented
at many locations, including the Western Interior of the US,
boreal shelf seas (UK), western Tethys (Tunisia), and Tethys
(Italy) (e.g., Erbacher et al., 2005). Several records are high
resolution, recognizing orbital fluctuations (Lanci et al.,
2010). The d13Ccarb and d13Corg excursions differ somewhat
in magnitude and possibly in timing, but in general the
records can be well correlated (e.g. Arthur et al., 1988;
Erbacher et al., 2005). In some sections, the positive carbon
isotope excursion is preceded by smaller negative events
(Jenkyns et al., 2010). The remainder of Upper Cretaceous is
characterized by relatively minor variability (e.g., Jarvis
et al., 2006).

p0250 Cenozoic: The Cenozoic compilation of bulk isotope
d13C values is from Katz et al. (2005), the most compre-
hensive bulk compilation (Figure 11.7). This record shows
reasonable similarity to the higher resolution benthic fora-
miniferal records shown in the compilation of Zachos et al.,
2008 (Figure 11.7). After a large positive shift in the middle
Paleocene, a major negative CIE (duration ~ 170 kyr)
occurred across the Paleocene-Eocene boundary interval,
associated with the extensively documented Paleocene-
Eocene Thermal Maximum (PETM) (Zachos et al., 2001,
2008; Sluijs et al., 2007). This event is considered by some to
represent a weak version of the Cretaceous Oceanic Anoxic

Events, with emission of isotopically light carbon from lith-
osphere into the atmosphere-ocean leading to rapid global
warming (Jenkyns, 2010). Several smaller negative excur-
sions associated with warming (hyperthermal events) have
been recognized in the upper Paleocene-lower Eocene
(Cramer et al., 2003; Lourens et al., 2005; Zachos et al.,
2010), but are not resolved in the Katz et al. (2005) record.
The benthic record shows that these events, lasting overall
30e40 kyr, are global, but they are not resolved in
Figure 11.7, where they show as a broad region of overall low
values in the lower Ypresian (e.g., Westerhold et al., 2011).

p0255Globally recognized positive carbon isotope excursions
occur in the lowermost Oligocene just above the Eocene-
Oligocene boundary (Figure 11.7), across the Oligocene-
Miocene boundary (Figure 11.7), and in the middle Miocene
(Burdigalian), before values become progressively lighter
beginning in about the middle Miocene (Katz et al., 2005).
These three positive excursions are all correlated with posi-
tive excursions in oxygen isotopes in the same samples,
indicative of episodes of global cooling and expansion of ice-
sheets on Antarctica (Shackleton and Kennett, 1975; Savin,
1977; Berger et al., 1981; Miller et al., 1987; Zachos et al.,
2001, 2008; Cramer et al., 2009). Benthic foraminiferal
values for late Miocene through Recent show a broad range
(�1 to þ1.5), reflecting the differences in deep waters of the
Pacific and Atlantic oceans, as the modern circulation pattern
and aging pattern developed at that time (Cramer et al., 2009).
A vast literature exists for Cenozoic d13Ccarb measurements,
and the reader is referred to the compilations of Zachos et al.
(2001, 2008) and Cramer et al. (2009) for references and
discussion of globally documented shifts and excursions.

s005011.5. CAUSES OF CARBON ISOTOPE
EXCURSIONS

p0260Interpretation of carbon isotope excursions in terms of global
climate change is a topic of great interest, because of its
potential relevance for understanding direct and indirect
effects of future, anthropogenic climate change (such as
ocean acidification and deoxygenation) and for estimating
climate sensitivity of increasing atmospheric CO2 levels,
(e.g., NRC, 2011). Several episodes of extinction and/or rapid
evolutionary turnover have been speculated as having resul-
ted from an abrupt rise in temperature, caused by a rapid
influx of CO2 into the atmosphere from volcanogenic and/or
methanogenic sources, leading to an accelerated hydrological
cycle, increased continental weathering, enhanced nutrient
discharge to oceans and lakes, intensified upwelling and
increased organic productivity, as well as widespread oceanic
anoxia and acidification. These episodes range from the
termination of Snowball Earth episodes in the Neoproterozoic
(Kennedy et al., 2008), to the Permo-Triassic extinction
(Berner, 2002; Erwin, 2006; Retallack and Jahren, 2008;
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Kidder and Worsley, 2010½AU11� ), the Jurassic-Cretaceous Oceanic
Anoxic Events, as well as the Paleocene-Eocene Thermal
Maximum (Cohen et al., 2007; Dunkley-Jones et al., 2010;
Jenkyns, 2010).

p0265 There has been considerable debate regarding how high
productivity can be sustained over geologic time scales
(e.g., several hundred thousand years for most OAEs) to
potentially cause positive d13C excursions (e.g. Kump and
Arthur, 1999). To achieve anoxia in the deeper waters,
replenishment of O2 from the surface must be slower than the
rate of decomposition of organic matter, seeming to imply
sluggish vertical circulation. However, export of organic
matter from the photic zone required to use the available
oxygen can imply high productivity in the surface waters,
particularly in cooler time periods in Earth history, in which
high latitude, deep water formation incorporates high initial
oxygen concentrations in sinking water masses compared to
warmer climate (e.g., Hotinski et al., 2001). High produc-
tivity surface waters in turn can imply vigorous circulation
because the supply of nutrients from land is very small
compared that from upwelling of nutrient-rich intermediate
and deeper waters (e.g., Hay, 2008). A possible way to
reconcile sustained high productivity with sluggish circula-
tion has been that the carbon to phosphorus (C/P) ratio of the
buried organic matter may have increased due to the spread
of anoxia, which lowers rates of iron oxide formation and
associated scavenging of P (e.g., Van Cappellen and Ingall,
1994; Schrag et al., 2002; Mort et al., 2007). Under such
circumstances, nitrogen fixation should also increase to
counterbalance loss of N to denitrification in anoxic waters
(e.g., Murphy et al., 2000; Anbar and Knoll, 2002; Kuypers
et al., 2004; Saltzman, 2005).

p0270 Increased preservation of organic matter under certain
conditions (e.g., anoxia, high sedimentation rates) can also
increase organic matter burial independent of primary
production (Bralower and Thierstein, 1984; Sageman et al.,
2003; Meyers et al., 2005; Cramer and Saltzman, 2005). In
addition, adsorption of carbon compounds onto clay-mineral
surfaces may have been an important variable in organic
matter burial (Kennedy et al., 2002), although this is
controversial for some time periods (e.g., Tosca et al., 2010).
Finally, changes in the d13C of the globally integrated
weathering (riverine) flux have been proposed as being at
least as a partial cause for some d13C excursions that are not
obviously linked to relatively high burial rates of organic
matter (e.g., Kump et al., 1999; Melchin and Holmden,
2006a, b).

s0055 11.6. CONCLUSION

p0275 In conclusion, the carbon isotopic record is of great value, not
only in stratigraphic correlation, but also has the potential to
assist us in unraveling the development of Earth’s climate,
evolution of its biota, and carbon dioxide levels in the

atmosphere. Our present knowledge, however, is limited,
because our interpretation of the global carbon isotope record
depends on our understanding of the global carbon cycle,
which decreases with increasing age of the records. Not only
do we lack information on physicochemical parameters, such
as ocean circulation (Hay, 2008), but many features of the
present global carbon cycle are linked to the present state of
biotic evolution. For instance, the increased abundance of C4
plants in the late Miocene may have affected the carbon
isotopic composition of the oceans and atmosphere (Derry
and France-Lanord, 1996; Kump and Arthur, 1999; Cerling
and Ehleringer, 2000).

p0280The evolution and proliferation of pelagic calcifiers in the
Jurassic through Early Cretaceous thoroughly changed the
global carbon cycle and made it possible to buffer the satu-
ration state of the oceans (e.g., Zeebe and Westbroek, 2003;
Ridgwell, 2005). Evolution of land plants in the Devonian,
and the great expansion of the terrestrial biosphere in the
Carboniferous, must have affected carbon storage as well as
weathering of silicate minerals, which takes up CO2 from the
atmosphere (e.g., Berner, 1990; Royer et al., 2001). Evolu-
tion of multicellular calcifying invertebrates in the early
Phanerozoic (e.g., Knoll and Carroll, 1999; Narbonne, 2010)
led to major changes in carbon secretion in the oceans, as
well as making it possible to select specific organisms for
isotope analysis. Oxygenation of atmosphere and oceans as
the result of the evolution of photosynthesis constitutes the
largest change in the carbon cycle during Earth history,
possibly occurring in steps, at 800e542Ma and 2300 Ma
(Fike et al., 2006).

p0285Considerably more research is necessary, for example,
before we can confidently evaluate whether the Neo-
proterozoic carbon isotope record can indeed be interpreted
as reflecting the functioning of an unfamiliar carbon cycle
(Rothman et al., 2003, Fike et al., 2006), or reflects diagenetic
processes (Knauth and Kennedy, 2009; Derry, 2010), and
before we can confidently use the carbon isotope record to its
full potential.
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Multi-carbonate component reconstruction of mid-carboniferous

(Chesterian) seawater delta C-13. Palaeogeography, Palaeoclimatology,

Palaeoecology 256, 298e318.

Beerling, D.J., Berner, R.A., 2002. Biogeochemical constraints on the

Triassic-Jurassic boundary carbon cycle event. Global Biogeochemical

Cycles. doi: 10.1029/2001GB001637.

Bekker, A., Karhu, J.A., Kaufman, A.J., 2006. Carbon isotope record for the

onset of the Lomagundi carbon isotope excursion in the Great lakes

area, North America. Precambrian Research 148, 145e180.

Berger, W.H., Vincent, E.S., Thierstein, H.R., 1981. The deep-sea record:

major steps in Cenozoic ocean evolution. SEPM Spec. Pub. 32,

489e504.

Bergström, S.M., Saltzman, M.R., Schmitz, B., 2006. First record of the

Hirnantian (Upper Ordovician) d13C excursion in the North American

Midcontinent and its regional implications. Geological Magazine 143,

657e678.

Bergström, S.M., Schmitz, B., Rong, J., Young, S., Saltzman, M.R., 2009.

First documentation of the Ordovician Guttenberg d13C excursion

(GICE) in Asia: chemostratigraphy of the Pagoda and Yanwashan

formations in southeastern China. Geological Magazine, 1e11.

doi:10.1017/S0016756808005748.

Bergström, S.M., Young, S.A., Schmitz, B., 2010. Katian (Upper Ordovi-

cian) d13C chemostratigraphy and sequence stratigraphy in the United

States and Baltoscandia: A regional comparison. Palaeogeography,

Palaeoceanography, Palaeoclimatology (in press). doi:10.1016/

j.palaeo.2010.02.035.

Berner, R.A., 1990. Atmospheric carbon dioxide levels over Phanerozoic

time. Science 249, 1382e1386.

Berner, R.A., 2001. Modeling atmospheric O2 over Phanerozoic time.

Geochimica et Cosmochimica Acta 65, 685e694.

Berner, R.A., 2002. Examination of hypotheses for the Permo-Triassic

boundary extinction by carbon cycle modeling. Proc. Natl. Acad. Sci.

USA. 99, 4172e4177.

Berner, R.A., 2003. The long-term carbon cycle, fossil fuels and atmospheric

composition. Nature 426, 323e326.

Bickert, T., Paetzold, J., Samtleben, C., Munnecke, A., 1997. Paleoenvir-

onmental changes in the Silurian indicated by stable isotopes in

brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica

Acta 61, 2717e2730.

Bond, D.P.G., Wignall, P.B., Wang, W., Izon, G., Jiang, H.S., Lai, X.L.,

Sun, Y.D., Newton, R.J., Shao, L.Y., Vedrine, S., Cope, H., 2010. The

mid-Capitanian (Middle Permian) mass extinction and carbon isotope

record of South China. Palaeogeography, Palaeoclimatology, Palae-

oecology 292, 282e294.

Bown, P.R., Lees, J.A., Young, J.R., 2004. Calcareous nannoplankton

evolution and diversity through time. In: Thierstein, H.R., Young, J.R.

(Eds.), Coccolithophores From Molecular Processes to Global Impact.

Springer, Amsterdam, pp. 481e508.

Bowring, S.A., Erwin, D.H., Jin, Y.G., Martin, M.W., Davidek, K.,

Wang, W., 1998. U/Pb zircon geochronology and tempo of the end-

Permian mass extinction. Science 280, 1039e1045.

Bralower, T.J., Thierstein, H.R., 1984. Low productivity and slow deep-

water circulation in mid-Cretaceous oceans. Geology 12, 614e618.

Bralower, T.J., Thomas, D.J., Zachos, J.C., Hirschmann, M., Röhl, U.,
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Abstract:

Variations in the 13C/12C value of total dissolved inorganic carbon (DIC) in the world’s oceans through time have been

documented through stratigraphic study of marine carbonate rocks (d13Ccarb). This variation has been used to date and

correlate sediments. The stratigraphic record of carbon isotopes is complex because the main process fractionating 12C

from 13C is photosynthesis, with organic matter depleted in the heavy isotope (13C). The carbon isotope record (on the

geological timescales considered here) is to a large extent defined by changes in the partitioning of carbon between

organic carbon and carbonate, and therefore linked directly to the biosphere and the global carbon cycle. This chapter

summarizes d13Ccarb variations through geologic time compiled from multiple literature sources. Materials analyzed for

curve-construction differ between authors and between geological time periods, and one should carefully consider whether

skeletal carbonate secreted by specific organisms or bulk carbonate has been used in evaluating or comparing carbon

isotope stratigraphic records. Mid-Jurassic through Cenozoic curves have been mainly derived from pelagic carbonates,

and exhibit low amplitude d13Ccarb variability (from �1 to þ4&) relative to curves for the earlier part of the record (from

�3 to þ8 & for the Phanerozoic, from �15 to þ15& for the Proterozoic and Archean). The Mid-Jurassic and older

curves are dominantly based on data from platform carbonates, which show greater variability and more spatial

heterogeneity. The different character of carbon isotope curves derived from older platform carbonates as compared to

younger pelagic records may reflect primary and/or diagenetic processes, difference in paleoenvironments, difference in

calcifying organisms, or inherent changes in the global carbon cycle with geologic time and biotic evolution (e.g., changes

in reservoir size).
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