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SUMMARY

The physics of thermomechanical coupling of the continental lithosphere and its
surrounding mantle is studied using a simple hydrodynamic model in which a fluid is
heated from below and is bounded by rigid side walls. Rayleigh numbers up to 106 are
considered. A series of finite-element stability analyses is employed to characterize
systematically the nature of convective instability in such a system. The marginal
stability of a bounded fluid is increased not only by the rigid boundary condition on
side walls, but also by heat conduction across side walls. The planform of convection
at the marginal state is 3-D, having convective rolls aligned perpendicular to side walls.
The characteristics of non-linear convection at supercritical Rayleigh numbers are
investigated by first calculating 2-D steady-state solutions and then applying 2-D and
3-D stability analyses. The 2-D stability analysis shows that the presence of side walls
significantly reduces the transition Rayleigh number for time-dependent convection, and
the 3-D stability analysis shows that heat conduction through side walls strongly prefers
3-D convective motion. Finally, the characteristics of 3-D convection are analysed through
the 3-D single-mode approximation. Both 2-D and 3-D single-mode solutions demon-
strate that conducting side walls reduce the strength of convection at low Rayleigh
numbers but have a negligible influence at higher Rayleigh numbers. We therefore
propose that the basal topography of the continental lithosphere can modulate the
convective planform efficiently in the upper mantle.
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1 INTRODUCT ION

Multiple spatial and temporal scales are inferred for mantle

convection, such as: (1) global-scale flow represented by plate

tectonics (e.g. Hager & O’Connell 1981; Bunge et al. 1998);

(2) thermal plumes originating in boundary layer instabilities at

the core–mantle boundary (e.g. Whitehead 1988); and (3) small-

scale convection in the upper mantle driven by surface cooling

(e.g. Richter 1973b; Solomatov & Moresi 2000). Mantle con-

vection is considered to be the fundamental cause for a number

of geological phenomena. In particular, decompressional mantle

melting associated with convective upwelling is the major source

of magmatic activities on the Earth. Understanding the pattern

of multiscale convection is thus intimately related to resolving

the driving mechanism of terrestrial magmatism. Our primary

interest in this paper is to understand the nature of small-

scale convection and its relevance to top boundary conditions

imposed by geological structure such as continent–ocean

heterogeneity.

The thickness of the Earth’s lithosphere (used as a cold and

mechanically strong surface layer throughout this paper) varies

significantly on a global scale, especially in association with the

continental lithosphere, as inferred from global seismic tomo-

graphy (e.g. Montagner & Tanimoto 1991; Zhang & Tanimoto

1993; Su et al. 1994; Ritzwoller & Lavely 1995), as well as

regional seismic studies (e.g. Jordan 1988; Grand 1994; Gaherty

& Jordan 1995; Simons et al. 1999), and a change in lithospheric

thickness of as large as 200 km is common at continent–ocean

boundaries. Characterizing sublithospheric convection with such

a variable thickness of lithosphere is important in under-

standing how near-surface structure can interact with mantle

convection (e.g. Anderson 1998a). A strong spatial association

between continental margins and flood basalts, for example,

led Anderson (1994) to suggest that the lithosphere plays the
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principal role in the dynamics of exceptionally voluminous

volcanism, as opposed to a more common explanation based

on deep-seated mantle plumes (e.g. Richards et al. 1989; White

& McKenzie 1989; Hill et al. 1992). Compared with mantle

plumes, however, the importance of a heterogeneous top

boundary on mantle convection has attracted less attention,

and the number of geodynamical studies into this problem has

been limited.

The main objective of this paper is to derive scaling

laws that will be useful in assessing how the characteristics

of mantle convection can be affected by the structure of the

top boundary, on the basis of steady-state solutions. The

thick continental lithosphere has both thermal and kinematic

effects on small-scale convection in the adjacent asthenospheric

mantle. We will study the influence of vertical boundaries on

a convecting fluid, to understand the essence of the strongly

varying basal topography of the lithosphere on the underlying

mantle convection. A simple hydrodynamic model of a fluid with

both horizontal and vertical rigid boundaries will be analysed

systematically using a series of stability analyses and will be

characterized by several scaling laws such as the Rayleigh

number–Nusselt number relationship. After reviewing pre-

vious studies regarding heterogeneous boundary conditions

in Section 2, our model configuration is described in detail in

Section 3. The effects of side walls on marginal stability are

studied using the variational method in Section 4. The charac-

teristics of 2-D finite-amplitude convection at supercritical

Rayleigh numbers are then investigated using perturbation

analyses in Section 5. The effects of three-dimensionality on

finite-amplitude convection is investigated in Section 6, where

the 3-D single-mode approximation is introduced. Finally,

the relevance of our study to mantle dynamics and terrestrial

magmatism is discussed in Section 7.

2 PREV IOUS STUDIES

A few authors have considered the influence of a variable

lithospheric thickness through a perturbation approach (Busse

1978; Zhang & Busse 1997), but this type of treatment is limited

to a small amplitude of thickness variation with respect to

the vertical scale of a convective system. Although the Earth’s

mantle has a depth extent of about 3000 km, a proper vertical

scale for the convective interaction with near-surface structure

may be that of the upper mantle. The mantle viscosity structure

is very likely to be layered, the lower mantle being more viscous

than the upper mantle (Hager et al. 1985; Forte & Mitrovica

1996; Simons & Hager 1997), and an endothermic phase trans-

ition at the base of the upper mantle may retard material

flux (Honda et al. 1993; Tackley et al. 1993; Solheim & Peltier

1994; Tackley 1995). Although it is now widely perceived that

neither the layered viscosity structure nor the endothermic

phase change is sufficient to completely isolate the convection

system of the upper mantle from that of the lower mantle

with regard to global-scale mantle circulation, one should still

recognize that they can significantly influence convective motion

with short wavelengths. Convection beneath the lithosphere

driven by surface cooling [also known as ‘rigid-lid convection’

(Solomatov 1995)] is indeed characterized by short-wavelength

structure (e.g. Davaille & Jaupart 1993). In this paper we will

focus on this type of ‘small-scale’ convection in the upper mantle

(that is, with a length scale smaller than 500 km); one should

not confuse this with global-scale upper-mantle convection

isolated from the lower mantle (e.g. Richter &McKenzie 1981),

which now seems to be unlikely on the basis of recent seismic

tomography studies (e.g. van der Hilst et al. 1997).

For such small-scale convection, the thickness variation of

the lithosphere (such as the variations expected at continent–

ocean transitions) would exceed the valid range of linear

approximations in the perturbation analyses. The influence

of a sharp spatial variation in boundaries on a convective

system is a highly non-linear problem. It has been considered

with some specific model geometries, such as for convection

due to slab cooling (Rabinowicz et al. 1980; Nataf et al. 1981;

Christensen 1983) and for convection due to cratonic litho-

sphere or rifting-generated lithospheric necking (e.g. Richter

1973a; Elder 1976; Mutter et al. 1988; Keen & Boutilier 1995;

King & Anderson 1998). Because these studies focus on specific

geological problems, it is difficult to extract the general effects

of a heterogeneous top boundary. Moreover, an initial-value

approach is common in these convection studies (Mutter

et al. 1988; Keen & Boutilier 1995; Boutilier & Keen 1999), so

their results depend critically on a particular choice of initial

conditions.

3 MODEL CONFIGURAT ION

Because our approach to the investigation of the influence of

the continental lithosphere is very different from previous ones,

and also because for some readers it may not be clear how our

model configuration is relevant to the actual mantle system, a

detailed explanation as well as justification are given below.

The geometry of the model boundaries is 2-D. As shown in

Fig. 1, while a fluid is bounded laterally in one of the horizontal

coordinates (x, hereafter called the in-plane coordinate), its

extent is infinite in the other horizontal coordinate (y, the out-

of-plane coordinate). This model configuration is motivated

by the fact that a stepwise change in lithospheric thickness

associated with a continent–ocean transition can be reasonably

approximated as a linear feature for the scale of upper-mantle

convection. A fluid is heated from below, that is, the surface

and the bottom temperature are fixed at zero and some positive

temperature, DT, respectively. Convective motions in such

systems are not necessarily 2-D, and we will investigate both

2-D and 3-D cases. The aspect ratio of the model domain, r, is

defined as the width of the domain divided by its depth, and

several different aspect ratios will be considered.

The side walls have both kinematic and thermal effects on

convection, through their mechanical and thermal boundary

conditions. In all cases, all boundaries are rigid (i.e. no slip).

Two different thermal boundary conditions, i.e. ‘conducting’

and insulating, are applied to the side walls to determine their

contrasting effects. For the ‘conducting’ side walls, a linear

temperature profile is imposed along the side walls. A linear

profile (as opposed to any other temperature variation) is chosen

to preserve the top–bottom symmetry of the system. For the

same reason, a rigid lower boundary is assumed, though this

may also be justified by the possible jump in viscosity at the

base of the upper mantle.

The mantle ‘fluid’ is assumed to have an infinite Prandtl

number and uniform viscosity. We also employ the Boussinesq

approximation to the conservation equations of mass and

momentum, and use the finite-element method to solve

viscous momentum equations and thermal advection–diffusion

equations.
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Though temperature dependence is important for the rheology

of the upper mantle in general (e.g. Karato & Wu 1993), in

this study we are concerned with the regime of rigid-lid con-

vection (e.g. Solomatov 1995), which can be well described

as being nearly isoviscous convection. The activation energy

for temperature dependence is so high (>100 kJ molx1) that

most of temperature variation is confined within a nearly

rigid, top thermal boundary layer. The expected temperature

variation associated with sublithospheric small-scale convection

is probably not greater than 100 K, and the corresponding

viscosity variation should be smaller than 10 (Davaille &

Jaupart 1993). The use of uniform viscosity therefore does not

invalidate the applicability of our study to small-scale con-

vection in the Earth’s mantle. With a temperature perturbation

of 100 K and an asthenospheric viscosity of 1019–1020 Pa s,

the Rayleigh number for small-scale convection in the upper

mantle is of the order of 105–106, so we will consider Rayleigh

numbers up to 106. To resolve thermal boundary layers

accurately, uniform 2-D quadrilateral elements with a non-

dimensional size of 0.02r0.02 are used to discretize the model

domain.

Convection stability of a fluid layer heated from below and

cooled from above in a rectangular cylinder was studied by

Velte (1964) for 2-D marginal stability with conducting side

walls and by Frick & Clever (1982) for steady-state finite-

amplitude convection with insulating side walls. Other than these,

our solutions for finite-amplitude convection and correspond-

ing stability analyses are a new contribution. We note that the

rectangular geometry used in this paper has often been employed

with a different thermal boundary condition (differential hori-

zontal heating) to investigate the efficiency of convective heat

transfer between two vertical walls at different temperatures

(e.g. Ravi et al. 1994; Le Quere & Behnia 1998), which is a

classical problem in fluid dynamics first studied by Batchelor

(1954).

This model geometry has no direct analogue in the actual

mantle convection system. We are interested in quantifying

how different this system with side walls is from the classical

model of an infinite horizontal layer, which can also be seen as

a limiting case. By systematically characterizing the deviation

from the classical model, we can generalize the influence of

lithospheric side walls on small-scale convection. It is this

deviation that we regard as being the most important. The

virtue of our approach lies in its simplicity and comprehensive-

ness, not in an effort to simulate realistic complexity in mantle

convection.

4 EFFECTS OF S IDE WALLS ON
MARGINAL STAB IL ITY

The equations for infinite-Prandtl-number thermal convection

are governed by the Rayleigh number. The critical Rayleigh

number corresponds to the onset of convection, and it plays a

fundamental role in various scaling laws, such as the relation-

ship between the Rayleigh number and the amplitude of con-

vection (e.g. Chandrasekhar 1981). The critical Rayleigh number

varies with different boundary conditions. A fluid bounded by

rigid horizontal boundaries, for example, has a higher critical

Rayleigh number (y1708) than that with free-slip boundaries

(y657); a fluid becomes less prone to convect when a free-slip

condition is replaced by a rigid condition. A similar argument

can be made for the addition of vertical side walls to a con-

vective system, and some increase in the critical Rayleigh number

is expected. Since the separation of variables is impossible

when a fluid is bounded by both rigid horizontal and vertical

boundaries, we will employ the variational method to obtain

approximate critical Rayleigh numbers (e.g. Davis 1967;

Charlson & Sani 1971; Chen 1992).

4.1 Variational formulation

The non-dimensionalized first-order perturbation equations for

the marginally stable state are:

(1) conservation of mass

+ . u ¼ 0 ; (1)

(2) conservation of momentum

�+Pþ +2u� Ra hez ¼ 0 ; (2)

(3) conservation of energy

wþ +2h ¼ 0 , (3)

Figure 1. (a) Schematic drawing for sublithospheric convection beneath

continental lithosphere with a variable thickness. A large variation in

thickness with a relatively short wavelength may be expected beneath a

suture zone, where asthenospheric mantle is bounded by adjacent thick

cratonic lithosphere. (b) An idealized hydrodynamic model considered

in this study, to investigate the nature of sublithospheric convection

within a domain enclosed by a box in (a).
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where u is the normalized velocity, w is its vertical component,

P is the normalized pressure, ez is a unit vector in the upward

direction and h is the temperature perturbation from a linear

conductive thermal profile, normalized using DT. The spatial

scale is normalized with a system height of d, and the velocity

scale is normalized with k/d, where k is the thermal diffusivity.

The Rayleigh number, Ra, is defined as

Ra ¼ aorg*Td3

ik
, (4)

where a is the thermal expansivity, rr is a reference density,

g is the gravitational acceleration and m is the viscosity. For

some specific values of Ra, the governing equations with the

boundary conditions given above allow a non-zero solution,

and the critical Rayleigh number is the minimum of such a

solution family such as

Rac ¼ min
h,w“

ð
V

h+2hdV

�
ð
V

hw“ dV
, (5)

where ŵ is the vertical velocity field corresponding to the given

temperature field, h, with unit Rayleigh number. This is the

temperature-based variational formulation for the marginally

stable state (Chandrasekhar 1981). The use of a unit velocity

field requires that all boundary conditions are homogeneous,

which is satisfied by our model configuration.

Using a finite-dimensional approximation such as

h ¼
Xn
i¼1

bihi , (6)

w“ ¼
Xn
i¼1

biw“ i , (7)

where hi are trial functions, the variational statement leads to

the following eigenvalue problem:

A� ¼ jD� , (8)

where

Aij ¼
ð
V

hiw“ jdV , (9)

Dii ¼
ð
V

hi+2hidV , (10)

j ¼ Ra�1 : (11)

Both A and D are positive-definite, so all eigenvalues are

real and positive. The critical Rayleigh number corresponds

to the largest eigenvalue, lmax. We choose the temperature trial

functions, hi, as

hi ¼ sinðpinxÞ cosðtyÞ sinðqinzÞ (12)

for conducting side walls, and

hi ¼ cosðpinxÞ cosðtyÞ sinðqinzÞ (13)

for insulating side walls. pi and qi are non-negative integers and

y is a real number. The smallest qi is always unity. The smallest

pi is unity except for the case of 3-D stability with insulating

side walls, for which the smallest pi is zero. A velocity field

corresponding to a temperature trial function is calculated using

a finite-element solver for Stokes flow (e.g. Hughes 1987). Its

root-mean-square error with our mesh discretization is expected

to be less than 0.2 per cent (Moresi et al. 1996). Since the matrix

D can be calculated analytically, only 2-D numerical integration

is required to calculate the matrix A.

4.2 Results for 2-D perturbations

We use all possible trial functions with y=0 and pi+qijN,

where N denotes the maximum mode of the finite-dimensional

approximation. The variational solution is merely an upper

bound for the true critical Rayleigh number, so that N must

be increased until convergence is obtained. Convergence is

defined here such that a relative change between solutions

for N and N+2 does not exceed 0.1 per cent. Monotonic

convergence is guaranteed in the variational method, and

we found that N<10 is usually sufficient (e.g. Fig. 2). A

Figure 2. Example of convergence in the variational method.

(a) Approximate critical Rayleigh numbers for 2-D perturbations

with conducting side walls are shown for different numbers of modes.

(b) Percentage differences from critical Rayleigh numbers calculated

with N=14 are shown for N=2–10 as a function of the aspect ratio.

Note that the differences are reduced by about an order of magnitude

as the number of modes is increased by two. Solutions obtained with

N=10 have a less than 0.01 per cent difference for aspect ratios smaller

than 3.
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comparison with the critical Rayleigh numbers calculated by

Velte (1964) for the conducting case shows a difference of about

0.5 per cent in general, which is consistent with the expected

accuracy from our finite-element discretization. Since we are

mainly interested in the first-order characteristics of stability

curves for relatively small aspect ratios, this level of accuracy is

sufficient.

The stability curves for 2-D perturbations are presented in

Fig. 3(b) as a function of the aspect ratio, for insulating and

conducting side walls. For conducting side walls, the critical

Rayleigh number is 32 980, 5050 and 2397 at r=0.5, 1.0 and

2.0, respectively. The case with no side walls has a critical

Rayleigh number of 1708 (at a wavelength of y2; see Fig. 3a),

so the influence of the side walls on marginal stability is almost

insignificant for aspect ratios greater than 2. The divergent

character of the stability curves for small aspect ratios is also

evident in the stability curve for a layer of fluid with an infinite

horizontal extent, if the latter is plotted as a function of a

given perturbation wavelength (Fig. 3a). This indicates that

the increase in the critical Rayleigh number for a narrower

channel simply results from wavenumber selection imposed by

a small aspect ratio. At a given aspect ratio, the critical Rayleigh

number for conducting side walls is always larger than that for

insulating side walls. Because the insulating boundary con-

dition is a natural boundary condition, which is automatically

satisfied in the variational formulation, the trial function space

in the variation formulation associated with the insulating case

is larger than that with the conducting case (Charlson & Sani

1970). Therefore, the critical Rayleigh number of the conduct-

ing case is always an upper bound for that of the insulating

case. A more physical explanation may be given by consider-

ing the role of thermal diffusion in convection. Because con-

ducting side walls enhance thermal diffusion compared with

insulating ones, and because thermal diffusion tends to hinder

convection, the critical Rayleigh number is larger for the cases

with conducting side walls than those with insulating ones.

The inflections in the stability curves, which are more clearly

observed for the insulating case, correspond to changes in the

number of convective rolls and indicate the composite nature of

the stability curves (e.g. Davis 1967).

4.3 Results for 3-D perturbations

Because of the infinite horizontal extent in the out-of-plane

coordinate, a general 3-D perturbation in the model can be

decomposed into a sum of single-mode perturbations, each of

which has a fixed out-of-plane wavenumber. 3-D Stokes flow

generated by a single-mode perturbation in the temperature

field can be calculated efficiently by 2-D finite-element pro-

cedures (see Appendix A). Stability curves as a function of the

out-of-plane wavenumber were calculated for each value of

the aspect ratio (Fig. 4a), and by taking the minimum of each

stability curve, the final 3-D stability curve was constructed as a

function of aspect ratio (Fig. 4b).

For the reason stated above regarding the relative size of

function space, critical Rayleigh numbers for 3-D perturbations

are always smaller than those for 2-D perturbations. The out-

of-plane wavelength at which a stability curve takes the mini-

mum is always finite, varying from y1 to y2 for aspect ratios

between 0.25 and 2.0, showing that, in the most stable con-

vective pattern, convective rolls are aligned perpendicular to

side walls. Because of the increased degree of freedom allowed

by out-of-plane convection, there should be a negligible influence

of the in-plane wavenumber selection imposed by the aspect

ratio. The calculated stability curves therefore reflect the effect

of wall friction along the sides of convective rolls. It is interest-

ing, therefore, that the most stable out-of-plane wavelength is

close to 1 for aspect ratios of less than 0.5; a strong influence of

wall friction seems to prevent otherwise stable cellular con-

vection with a wavelength ofy2. Nonetheless, this wall friction

has a much weaker influence on the critical Rayleigh number

than the mode selection in the in-plane coordinate, as seen from

a drastic decrease in the 3-D critical Rayleigh number at small

aspect ratios.

5 2 -D F IN ITE -AMPL ITUDE
CONVECT ION IN A BOUNDED FLUID

For supercritical Rayleigh numbers, thermal convection becomes

highly non-linear and generally time-dependent. One way to

Figure 3. Critical Rayleigh numbers for 2-D perturbations. (a) Rac for the classical case with an infinite horizontal extent is plotted as a function of

wavelength (solid lines). Overlaid symbols are solutions obtained by our variational method. (b) Rac for a fluid heated from below and bounded by

2-D rigid side walls is plotted as a function of model aspect ratio. Open diamonds denote variational solutions for insulating side walls, and solid

squares for conducting side walls.
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characterize such a convective system is to conduct fully time-

dependent calculations and calculate some statistical measures

from them. Alternatively, the characteristics of convection past

marginal stability may be succinctly represented by those of

steady-state solutions if they exist. We take the latter approach

because steady-state solutions can be quickly obtained using

the temperature under-relaxation method (Christensen 1984).

A stability analysis is then applied to steady-state solutions,

because they could be artificially stabilized by the relaxation

method. This steady-state solution approach supplemented with

a stability analysis provides a concise summary for the nature

of supercritical convection, and it can efficiently determine a

transition to time-dependent convection. Most of our analyses

in this section are restricted to a purely 2-D framework. A 3-D

stability analysis will be conducted at the end to test the validity

of this 2-D assumption.

5.1 Perturbation analysis

With the Boussinesq approximation, the governing equations

for the convective system with a supercritical Rayleigh number

are comprised of: the equation of mass conservation, eq. (1);

the equation of momentum conservation, which is the same as

eq. (2) except that the perturbation temperature h is replaced by

the total temperature T; and the equation of energy conservation,

LT
Lt

þ u .+T ¼ +2T : (14)

A temporal derivative appears only in the energy equation, so a

steady-state solution can be obtained by dropping the first term

of the left-hand side of eq. (14) ab initio, with an initial guess

for a steady-state temperature field, and iterating between the

Stokes flow equation and the modified energy equation until

convergence is attained. A purely implicit method is used to

solve the steady-state energy equation (e.g. Hughes 1987).

Rapid convergence is possible by temperature under-relaxation

during iterations (Christensen 1984). We start with an under-

relaxation factor of 0.5, which is gradually increased whenever

convergence is not obtained in given iterations. As a criterion

for convergence, we use a root-mean-square difference of

0.05 per cent in the velocity fields of consecutive iterations.

Convergence obtained in the under-relaxation method does

not necessarily mean that a resultant ‘steady-state’ solution

is stable. If a high degree of under-relaxation is required for

convergence, for example, it is generally the sign of an unstable

solution. A solution is called stable if it can maintain its

structure against any kind of perturbation. The stability of a

steady-state solution can be tested by integrating the time-

dependent energy equation (14) with an explicit time-stepping

method (e.g. Christensen 1987; Hansen & Ebel 1988), or by a

perturbation analysis described below (e.g. Busse 1967), which

is more quantitative and complete.

Denoting steady-state temperature and velocity fields by T0

and u0, respectively, the energy equation for a perturbed state

may be expressed to first order as

Lh
Lt

¼ �u0 .+h� u .+h0 þ +2h , (15)

where h is the deviation from the steady-state temperature and

u is the perturbation velocity field generated by h (eq. 2). For

a real steady-state solution, any kind of initial perturbation

temperature must decay to null. Assuming an exponential time

dependence for perturbation temperature such as hyexp(st),
and using the same finite-dimensional approximation as in

eqs (6) and (7), the above perturbation equation leads to the

following eigenvalue problem:

A� ¼ pB� , (16)

where

Aij ¼
ð
V

½hi+2hj � hiðu0 .+Þhj � hiðuj .+Þh0�dV , (17)

Bii ¼
ð
V

h2i dV : (18)

Although B is diagonal, A is non-symmetric, so eigenvalues

are generally complex numbers. The maximum real part of

the eigenvalues, which is called a growth exponent, determines

the stability of the steady-state solution under consideration;

a steady-state solution must have a negative growth exponent.

The temperature trial functions are the same as eqs (12) and

(13) except for the following: the smallest pi is zero for both

2-D and 3-D stability with insulating side walls. Even though

the trial functions with the form of eq. (13) do not generate

Figure 4. Critical Rayleigh number for 3-D perturbations. (a) Rac as a function of the out-of-plane wavelength, 2p/y, is plotted for insulating

(dashed) and conducting (solid) cases, at aspect ratios of 0.25–2.0. (b) Rac is plotted as a function of the aspect ratio. Thick solid and dashed lines are

3-D Rac for conducting and insulating cases, respectively. Also shown as thin curves are 2-D Rac. The grey horizontal line denotes Rac for the system

with an infinite horizontal extent (y1708).
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any velocity field in the 2-D framework for pi=0, the 2-D

perturbation analysis must include the modes with pi=0

because of their coupling with the steady-state solution.

5.2 Stability for 2-D perturbations

Without any formal analysis, a qualitative understanding of

stability may be obtained from the structure of a steady-state

temperature field (Fig. 5). Whereas the rigid boundary condition

on side walls does not strongly alter the temperature field, the

influence of the conducting boundary condition is significant;

the steady-state solution with a Rayleigh number of 105 for

conducting side walls, for example, seems very unlikely to be

stable. As in the variational formulation for the critical Rayleigh

number, the number of trial functions used in the perturbation

analysis must be increased until convergence is attained for

a growth exponent. Because the perturbation equation is not

self-adjoint, monotonic convergence is not guaranteed. Never-

theless, we found that a finite-dimensional approximation with

N/r=10–15 is usually sufficient for convergence.

Since the system of steady-state convection is non-linear,

a steady-state solution is generally non-unique. For example,

at least three different modes of a steady-state solution, i.e.

one odd mode and two even modes (Fig. 6a), can be found

by using an appropriate initial guess in the temperature under-

relaxation method. The two even modes share the same stability

curve owing to their symmetrical relation. Note that the

dominant horizontal wavenumber for the even modes shown in

Fig. 6 is 2p, whereas that for the odd mode is p. The odd mode

is the fundamental mode in this case of r=1. This explains the

instability of the even-mode solutions forRa less than 1.8r104.

The stability of the even modes over the odd mode for Ra of

2.3r104–7r104 arises from the interaction with conducting

side walls. In this range of Rayleigh numbers, the left–right

symmetry in the imposed temperature profile on the side walls

makes the even-mode solutions more stable. Despite these

differences, the first-order behaviour of these growth exponents

as a function of the Rayleigh number is similar, especially in

the transition from a stable or moderately unstable regime to

a very unstable regime (Fig. 6b). We chose to use the odd-

mode solutions for r=0.5 and 1.0 and the even-mode solutions

for r=2.0; that is, we tried to obtain steady-state convection

cells with an aspect ratio close to unity. It is not always

easy to obtain a solution with arbitrary symmetry because of

our approach with the finite-element method, and the above

strategy is based on the robustness of solutions in terms of the

temperature relaxation method.

Growth exponents as a function of the Rayleigh number

are shown in Fig. 7 for three different aspect ratios (0.5, 1.0

and 2.0) and for conducting and insulating boundary con-

ditions. Also shown is the stability curve for the case of no side

wall (i.e. a reflecting boundary condition at the sides) with a

unit aspect ratio. Regardless of the type of thermal boundary

condition on the side wall, the transition to an unstable regime

is abrupt. The Rayleigh number that marks this transition

to time-dependent solutions is sometimes called the critical

Rayleigh number of the second kind (e.g. Busse 1967). The

Rayleigh number of the second kind is larger for insulating

side walls, and it is bounded by the limiting case of no side

wall, which becomes unstable at a Rayleigh number of 4r105

(e.g. Mitrovica & Jarvis 1987). The influence of side walls on

stability may be seen more systematically when the Rayleigh

Figure 5. Temperature contour plots for examples of 2-D steady-state convection, for: (a) no side-wall case; (b) insulating side-wall case; and

(c) conducting side-wall case, at Ra=104 (top panel), Ra=4r104 (middle panel) and Ra=105 (bottom). The contour interval is 0.1.
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number is normalized with the system’s own critical value

(Fig. 7). That conducting side walls are more destabilizing than

insulating side walls can be understood in terms of thermal

boundary layer instability. Following Howard (1966), we define

the local Rayleigh number as

Ral ¼
aorg*Tlh

3

ikr
,(19)

where DTl is the temperature difference across a thermal

boundary layer of thickness h. Because the conducting boundary

condition leads to a thicker thermal boundary layer (e.g. Fig. 5),

the local Rayleigh number is higher for conducting side

walls than for insulating side walls at a given global Rayleigh

number. Thus, the effects of a conducting side wall on thermal

convection can be summarized by the two kinds of critical

Rayleigh numbers, that is, a higher critical Rayleigh number

and a lower transition Rayleigh number, compared with an

insulating side wall. In other words, conducting side walls

reduce the system’s convective potential and, at the same time,

increase the tendency for time-dependent convection.

5.3 Characteristics of 2-D convection in a bounded
fluid

Two kinds of measures are used to characterize the strength of

convection. The first one is the Nusselt number defined as

Nu ¼ qd

k*T
, (20)

where q is the heat flux averaged over a horizontal boundary

and k is the thermal conductivity. Nu is the non-dimensional

heat flux scaled by the conductive heat flux at a given tem-

perature difference. A higher Nusselt number indicates more

efficient heat transport realized by convection. The second

measure of the strength of convection is the maximum vertical

velocity. Our choice of a vertical velocity component rather

than a horizontal velocity component is due to its relevance to

terrestrial magmatism. When a vertical movement of mantle

results in decompressional melting at shallow depths, vertical

velocity becomes a critical parameter affecting the melt

production rate. For high Rayleigh numbers where no stable

Figure 6. Non-uniqueness of steady-state solutions. (a) Temperature contour plots for examples of steady-state solutions for conducting side walls

with an aspect ratio of 1, obtained at Ra=104 and 5r104. (b) Growth exponents for the above steady-state solutions are plotted as a function of Ra.

Open circles and solid squares denote the stability curve of the odd- and even-mode solutions, respectively.
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steady-state solution exists, we conducted fully time-dependent

calculations with an explicit time-stepping method. Starting

from an artificial steady-state solution obtained by the temper-

ature under-relaxation method, the system was integrated for a

unit thermal diffusion time, which is equivalent to y103–104

time steps for the range of Rayleigh numbers considered.

Typically, the system reached its stationary state (i.e. a steady

state in the time-averaged sense) within the first 0.1 diffusion

time, and the time-averaged values of the Nusselt number and

vertical velocity were then calculated for these stationary-state

solutions. Results are presented in non-dimensionalized values,

as well as dimensionalized ones scaled by relevant parameters

appropriate for convection in the upper mantle: d=600 km,

k=10x6 m2 sx1, k=3.3 W mx1 Kx1 and DT=1300 K.

For Rayleigh numbers in the range 104–106, the average

Nusselt number and maximum vertical velocity are plotted in

Fig. 8, for both conducting and insulating side walls. The case

of no side wall is also shown as a reference. As expected from

the extra constraints on convective motion imposed by side

walls, both the Nusselt number and the vertical velocity are

smaller in the bounded cases. The influence of the side walls is

systematic—the system with a larger aspect ratio almost always

shows higher values. Heat flux at a rigid boundary is essentially

determined by the thickness of a thermal boundary layer, so

that the very low Nusselt numbers for the conducting case with

the Rayleigh number less than 105 result from the imposed,

fixed-temperature condition on the vertical boundaries. For

the Rayleigh number close to 106, the Nusselt numbers of the

bounded cases are almost equal to that of the unbounded

convection. This weakening of the side-wall effect on heat

transfer at higher Rayleigh numbers has also been detected

by theoretical and experimental studies on the relationship

between Nu and Ra for convection bounded by insulating side

walls (e.g. Frick & Clever 1982). Even for conducting side

walls, the tendency to thicken thermal boundary layers and

thus to lower the Nusselt number becomes negligible at higher

Rayleigh numbers; a thick thermal boundary layer imposed

by conductive side walls becomes unstable and is constantly

destroyed, so the time-averaged Nusselt number increases.

In contrast, the vertical velocity is persistently affected by

the presence of side walls. There is little difference between the

different thermal boundary conditions. For an aspect ratio of

1.0, for example, about a factor of 2 reduction in the maximum

vertical velocity can be observed for both kinds of side walls,

up to the highest Rayleigh number we considered. One might

expect that a scaling law for vertical velocity should behave

similarly to that for heat flux, which is indeed the case for

convection in an infinite horizontal layer (e.g. McKenzie et al.

1974). From this perspective, the observed discrepancy in the

two scaling laws may be puzzling. This, however, can be under-

stood by considering the kinetic energy budget. For a stationary

state, the velocity is determined mainly by the balance between

Figure 7. 2-D stability of 2-D steady-state convection. Growth exponents are shown for three aspect ratios (circle, r=0.5; diamond, r=1;

and triangle, r=2) as a function of Ra, for (a) conducting side walls and (b) insulating side walls. The dashed curve denotes the stability curve for the

limiting case with no side wall. Stability curves scaled with the system’s own critical Rayleigh numbers are shown in (c) and (d).
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the potential energy release and the energy dissipation at bound-

ing surfaces (e.g. Chandrasekhar 1981). Whereas the growth of

a horizontal thermal boundary layer is limited by the local

Rayleigh number so that the Nusselt number becomes little

affected by side walls, the kinematic effect of side walls is

persistent. In other words, even though Nu is proportional to

the square root of the convective velocity, as boundary layer

theory predicts (e.g. Turcotte & Schubert 1982), the coefficient

of this proportionality is different for side walls with a different

aspect ratio. Nu must also be proportional to nhwm, where
h denotes the temperature deviation from the horizontally

averaged temperature and nm denotes horizontal averaging.

Therefore, the persistent influence of side walls on w and not on

Numeans that h becomes more correlated with w as the Rayleigh

number increases; this is consistent with the observation that

high Nu is maintained by the convective destabilization of the

thermal boundary layer.

One of the features of a stationary-state solution that is

not evident in these scaling laws is the nature of temporal

variability. Fig. 9 shows examples of stationary state solutions

for the conducting side walls at two different Rayleigh numbers.

For Rayleigh numbers slightly exceeding the transition value

for time dependence, the temporal variation of observables such

as the Nusselt number and the total kinetic energy is quasi-

periodic with small amplitudes (Fig. 9a). As clearly seen from a

series of snapshots of the temperature field, time dependence

originates in boundary layer instabilities. Instabilities form

near side walls, where the thermal boundary layer is thickest,

and they grow inwards into the model domain. As the Rayleigh

number increases, this periodic character diminishes, and more

random, higher-frequency variation dominates with much larger

amplitudes (Fig. 9b). It still appears that time dependence is

controlled by instabilities at thermal boundary layers, but their

occurrence is no longer limited to the vicinity of side walls.

A simple relation between the scale of time dependence

and the Rayleigh number may be derived based on boundary

layer theory, following the approach taken by Howard (1966).

A thermal boundary layer becomes unstable when its local

Rayleigh number reaches a threshold, Rad,

Ral ¼ Rad (21)

The growth of a thermal boundary layer can be approxi-

mated as half-space cooling, so its thickness hmay be expressed

as h*2
ffiffiffiffiffi
it

p
, where t is time. The corresponding temperature

difference across the boundary layer is half of the total

temperature difference across the entire model depth, DT/2.
Eqs (4), (19) and (21) can then be solved for the period, tc, over

which boundary layer instability repeats. The solution may be

expressed as

tc

d2=i
¼ Rad

4Ra

� �2=3

*
25

Ra2=3
, (22)

where we have assumed an Rad of y500 (Parsons & McKenzie

1978). Fig. 10 shows the power spectra of Nusselt numbers

in the case of conducting side walls, for a range of Rayleigh

numbers. Regardless of the aspect ratio of the bounded region,

there is a broad agreement between the above, order-of-

magnitude prediction and the actual measurements, in terms

of the highest frequency excited. The effect of side walls is to

Figure 8. Characteristics of 2-D stationary-state convection, in terms of Nusselt number (top panel) and maximum vertical velocity (bottom panel),

are plotted for: (a) conducting and (b) insulating cases. Open symbols denote measurements from steady-state solutions, and solid symbols those from

time-dependent solutions. Three aspect ratios (r=0.5, 1 and 2) are considered. The dashed curve denotes the limiting case with no side wall. The

statistics of time-dependent solutions are also used for the limiting case with Ra>4r105, where no steady-state solution exists (Fig. 7).
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lower the transition Rayleigh number for time-dependent

behaviour, and the periodicity of boundary layer instability is

simply related to the actual Rayleigh number itself, not to that

scaled by the system’s own critical Rayleigh number.

5.4 Stability for 3-D perturbations

The stability analysis of 2-D steady-state solutions can be

extended to a full 3-D perturbation analysis, in a manner

similar to the 3-D marginal stability analysis. For each 2-D

steady-state solution, a growth exponent was first calculated as

a function of the out-of-plane wavenumber, and its maximum

value was then taken to determine the 3-D stability of the given

2-D solution. For the conducting case, the growth exponent

is always positive from the marginally stable state, and it

increases rapidly as the Rayleigh number increases (Fig. 11a).

The stability curve for the insulating case shows a very different

dependence on the Rayleigh number (Fig. 11b). The growth

exponent is generally much smaller than that of the conduct-

ing case, and it becomes negative for a certain range of the

Rayleigh number. The growth exponent is negative for Ra of

103.85–104.5 with an aspect ratio of 1.0, and for Ra of 103.45–104.4

with an aspect ratio of 2.0. The stability curve for an aspect

ratio of 0.5 shows a gradual decrease as the Rayleigh number

increases, but it never becomes zero for the range of Rayleigh

number we have studied. This limited stability of a 2-D solution

was also observed for convective systems with an infinite

horizontal extent for Ra less than 104.35 (Busse 1967; Clever &

Busse 1974). In most cases, the most unstable wavenumber lies

Figure 9. Example of 2-D time-dependent convection, with conducting side walls and a unit aspect ratio. The time series of the surface Nusselt

number and the total kinetic energy are shown with snapshots of the contoured temperature field. (a) Ra=105.1 and (b) Ra=105.7.

Figure 10. Spectral characterization of time-dependent convection in

terms of the surface Nusselt number. The power spectrum of temporal

variations in surface Nusselt numbers is plotted for a range of Rayleigh

numbers. Solid lines denote the case of r=0.5, and grey lines denote the

case of r=1. A theoretical estimate based on boundary layer theory is

also shown.
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between p and 2p for the Rayleigh numbers we have investi-

gated, and there is an overall increasing trend with increasing

Rayleigh number.

Based on a comparison of stability curves for the two

different thermal boundary conditions on side walls, we see

that heat conduction through side walls has a large effect on the

pattern of convection. In the marginal stability analysis, 3-D

perturbations are always more destabilizing than 2-D pertur-

bations, regardless of the thermal boundary condition, so that

the negative growth exponents calculated for 3-D perturbations

in systems with insulating side walls may be surprising. We note

that, even for conducting side walls, single-mode 3-D pertur-

bations are not always destabilizing if the out-of-plane wave-

number is sufficiently large (>2p); we see in Fig. 11(a) that the

growth exponent is decreasing towards zero as the wavenumber

increases. Negative growth exponents for some 2-D steady-state

solutions for insulating side walls result from their stability

even for low out-of-plane wavenumbers. Conducting side walls

are more relevant to geophysical applications, however, and

our stability analysis demonstrates that 3-D convective motion

is fundamentally important for thermal convection bounded by

conducting side walls. In the next section, therefore, we will

investigate the nature of such a 3-D convection.

6 3 -D CONVECT ION IN A BOUNDED
FLUID

Instead of solving a fully 3-D convection problem, we employ

a single-mode approximation to the out-of-plane coordinate.

Only one characteristic wavenumber is considered to represent

convective cells aligned perpendicular to side walls. The 3-D

single-mode approximation, conceptually similar to the mean-

field approximation (Malkus 1954; Herring 1963), reduces

the dimension of the system by one, so fewer computational

resources are required compared with a fully 3-D case. Though

the details of a single-mode solution, of course, depend on the

prescribed out-of-plane wavenumber and are expected to be

different from those of a fully 3-D solution, the 3-D single-

mode approximation is an efficient way to evaluate the effect of

the increased degree of freedom on domain-wide observables

such as the Nusselt number. Care must be taken, however, not

to overinterpret our results, because it is known that the Nusselt

number based on a 2-D mean-field solution is systematically

higher than that of a fully 2-D solution (Quareni et al. 1985;

Quareni & Yuen 1988). Olson (1987) ascribed this systematic

bias to the fact that the vertical velocity and temperature

in the out-of-plane coordinate are perfectly correlated in 2-D

Figure 11. 3-D stability of 2-D steady-state convection, for (a) conducting side walls and (b) insulating side walls. In the top panels, the growth

exponent s in the case of a unit aspect ratio is plotted as a function of the out-of-plane wavenumber y, at several Rayleigh numbers (given on

the graph). The maximum growth exponent and the corresponding out-of-plane wavenumber are shown in the middle and bottom panels, respectively,

for three aspect ratios.
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mean-field solutions. The effect of this perfect correlation should

be somewhat reduced in our 3-D single-mode solutions, in which

the basic-field temperature is 2-D and has its own velocity field.

We will discuss several caveats for using the 3-D single-mode

approximation in a subsequent section, by comparing with a

fully 3-D solution.

In all calculations, we use the out-of-plane wavenumber of p,
which corresponds to cellular convection with a unit aspect

ratio. Only a conducting boundary condition is considered for

side walls.

6.1 3-D single-mode approximation

We apply a single-mode approximation with a particular

wavenumber, y, for the out-of-plane coordinate, y:

Tðx, y, zÞ ¼ Tðx, zÞ þ hðx, zÞ cosðtyÞ (23)

for a temperature field,

Pðx, y, zÞ ¼ Pðx, zÞ þ pðx, zÞ cosðtyÞ (24)

for a pressure field, and

uðx, y, zÞ ¼ Uðx, zÞ þ u1ðx, y, zÞ (25)

for a velocity field, where

Uðx, zÞ ¼ ðUðx, zÞ, 0, W ðx, zÞÞ (26)

and

u1ðx, y, zÞ

¼ ðu1ðx, zÞ cosðtyÞ, o1ðx, zÞ sinðtyÞ, w1ðx, zÞ cosðtyÞÞ : (27)

We call T(x, z) the basic-field temperature and h(x, z) the

deviation temperature. A similar nomenclature is used for

the pressure and velocity. The system of thermal convection

equations can then be written as:

(1) conservation of mass

LU
Lx

þ LW
Lz

¼ 0 , (28)

Lu1
Lx

þ to1 þ
Lw1

Lz
¼ 0 ; (29)

(2) conservation of momentum

�+Pþ +2U� RaTez ¼ 0 , (30)

�+p cosðtyÞ þ +2u1 � Ra h cosðtyÞez ¼ 0 ; (31)

(3) conservation of energy

LT
Lt

þU
LT
Lx

þW
LT
Lz

þ 1

2
u1

Lh
Lx

� to1hþ w1
Lh
Lz

� �

¼ L2T
Lx2

þ L2T
Lz2

, (32)

Lh
Lt

þU
Lh
Lx

þW
Lh
Lz

þ u1
LT
Lx

þ w1
LT
Lz

¼ L2h
Lx2

� t2hþ L2h
Lz2

: (33)

Because the basic-field velocity and the deviation velocity are

completely decoupled in the equations of mass and momentum

conservation, they are solved separately using a 2-D Stokes-flow

solver and a 3-D single-mode Stokes-flow solver, respectively,

for given temperature fields. A 2-D finite-element procedure has

been developed to solve the equations of energy conservation,

and its implementation is presented in Appendix B. Using these

finite-element solvers, a steady-state solution can be obtained

with the temperature relaxation method in the same manner

as for 2-D convection. For all Rayleigh numbers from 104 to

106, steady-state solutions are easily obtained with a moderate

relaxation factor. We do not attempt to investigate their stability,

because they are likely to be artificially stabilized by the imposed

symmetry in the out-of-plane coordinate.

6.2 Results

By inspecting the above equations, it can be shown that basic-

field and deviation temperature fields must have the same type

of reflecting symmetry with respect to a vertical plane. Because

the most fundamental mode in deviation temperature is even

[i.e. sin(px) sin(pz)], even-mode solutions are generally preferred

over odd-mode solutions, and indeed odd-mode solutions have

much weaker velocity fields. Because of its cos(yy) dependence,
the odd-mode out-of-plane temperature field corresponds to

convection cells with an interchanging direction of convection.

Such a planform of convection is expected to be unstable,

and we were able to obtain odd-mode solutions only at low

Rayleigh numbers (y104) by the temperature under-relaxation

method. There are two equivalent, stable, even-mode solutions,

i.e. cooling and heating modes (e.g. Fig. 6), and only cooling-

mode solutions are presented here, considering their relevance to

the cooling effect of the cratonic lithosphere on upper-mantle

convection, which is our primary interest. In general, the heat

flux at the top and bottom boundaries can be different for even-

mode solutions, and we take a logarithmic average of the top

and bottom Nusselt numbers. Similarly, a logarithmic average

of the absolute values of maximum upward and downward

vertical velocities is calculated as a second measure of con-

vective strength. This averaging eliminates the dependence of

the following results on our choice of cooling- or heating-mode

solutions.

Examples of temperature fields are shown in Fig. 12, and

their 3-D rendition is shown in Fig. 13 with velocity fields. At

an Ra of 104, reflection symmetry with respect to a horizontal

plane is nearly maintained, so the difference between cooling

and heating modes is small. Convective motion is almost

entirely driven by the deviation temperature at this low Rayleigh

number. As Ra increases, the degeneration of the two even-

mode solutions disappears, and complex interactions between

the basic-field and deviation temperature are observed. Higher

Ra leads to a thinner thermal boundary layer, and because

of the conducting boundary condition, a thermal boundary

layer also develops along the side walls. This confinement of

buoyancy to the vicinity of the model boundaries generates a

centre upwelling in the basic-field velocity.

The average Nusselt number and average maximum vertical

velocity of these steady-state solutions are summarized in Fig. 14.

For comparison, values for the case of no side wall, obtained

using 2-D mean-field and fully 2-D calculations are also shown.

As already noted, 2-D mean-field solutions consistently over-

estimate the Nusselt number (Fig. 14a); a similar overestimation

of Nu by 3-D single-mode calculations may explain why some

of our values for a bounded fluid exceed the values of the

unbounded case. Though an accurate estimate of the side-wall

effect on the heat flux is thus difficult to obtain from 3-D single-

mode solutions, we can infer that the side-wall effect on heat
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transfer is negligible for Ra greater than 105, based on a gross

similarity among different aspect ratios. The Rayleigh number

that marks this transition is about an order of magnitude lower

than that for 2-D convection (Fig. 8a). Maximum vertical

velocities in 3-D single-mode solutions (Fig. 14b) are approxi-

mately 50 per cent higher than those in 2-D solutions (Fig. 8b),

regardless of the aspect ratio. The maximum velocity in the case

of an aspect ratio of 2 slightly exceeds that of the limiting

no side-wall case for Ra larger than 2r104, and this may again

be due to the single-mode approximation. We may argue,

however, that the influence of the single-mode approximation

does not significantly degrade the velocity estimate. Because

a fluid is not bounded in the out-of-plane coordinate, the

observed 50 per cent increase in velocity compared with the

purely 2-D case is what we may expect as a result of increasing

the system’s dimension from two to three, based on a balance

between potential energy release and energy dissipation along

rigid boundaries.

We define the 2-D basic-field kinetic energy as

KEbf ¼
ð
V

ð
udyð
dy

0
BB@

1
CCA

2

dV ¼
ð
V

ðU2 þW 2ÞdV : (34)

The ratio of the 2-D basic-field kinetic energy to the total

kinetic energy (Fig. 14c) shows the systematic influence of

the aspect ratio. This ratio is a good measure of the two-

dimensionality of a 3-D flow field. At an Ra of 106 and with a

unit aspect ratio, for example, basic-field convection involves

more than 50 per cent of the total kinetic energy, and the total

temperature field shows that a sheet-like upwelling at the model

centre dominates the convective system (Fig. 13). Because

only one out-of-plane mode is treated in our 3-D single-mode

calculation, this does not necessarily mean that a sheet-like

upwelling is preferred to a cylindrical plume. A cylindrical

plume involves a wide range of wavelengths, so it cannot be

represented by our single-mode approximation.

6.3 Comparison with fully 3-D solutions

The 3-D single-mode approximation is only about twice

as expensive both in computation time and memory usage,

compared with a purely 2-D calculation. Because of this

computational efficiency, it is a useful reconnaissance tool to

evaluate the significance of 3-D convective motion. The use of

the 3-D single-mode approximation is justified, however, only

when the convective planform is expected to be dominantly

linear. For example, applying the single-mode approximation

when a hexagonal cell pattern is expected would be awkward.

In addition, as we have already noted, one needs to be careful

when interpreting 3-D single-mode solutions as they are merely

a crude approximation of full three-dimensionality. Thus, it is

desirable to compare 3-D single-mode solutions with equivalent

fully 3-D solutions, to obtain some quantitative estimates on the

reliability of the single-mode approximation. To this end, we

conducted fully 3-D calculations for the case of conducting side

walls with r=1.0. We used a full multigrid 3-D convection

code, the implementation of which is similar to that of Moresi

& Gurnis (1996) (the mixed formulation with the pressure

correction algorithm) and Zhong et al. (2000) (the full multigrid

method with the consistent projection scheme). Assuming an

even-mode solution, only half a domain (0jxj0.5, 0jyj1.0

and 0jzj1.0) is modelled with 16r32r32 uniform trilinear

elements. The system was integrated until it reached its steady

state based on several measures of convection such as heat flux

and maximum velocity. The range of Ra that we report here

Figure 12. Example of 3-D single-mode convection, bounded by conducting side walls with a unit aspect ratio. The out-of-plane wavenumber is

set as p. For Ra=104, 105 and 106, basic-field and deviation temperature fields are shown along with slices at y=0 and 1. Contour intervals are 0.1,

except for the deviation temperature field, for which intervals are 0.05.
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is 104–105, for which the grid resolution is considered to be

sufficiently fine. Grid refinement would be necessary to treatRa

higher than 105, for which the system also begins to exhibit a

time dependence, requiring the integration of many time steps

to obtain an accurate temporal average.

The results of fully 3-D calculations are shown in Fig. 15. As

expected, it is found that the 3-D single-mode approximation

consistently overpredicts the Nusselt number (Fig. 15a). The

degree of overprediction is, however, much smaller than that of

the 2-D mean-field approximation (Fig. 14a); the error in the

Nusselt number is 6–9 per cent on an absolute scale andy7 per

cent on a logarithmic scale. This suggests that correlation

between the vertical velocity and the temperature perturbation

in the 3-D single-mode approximation is more realistic owing

to the increased degree of freedom (i.e. two-dimensionality) for

the basic field. In turn, the maximum vertical velocity is shown

to be consistently underpredicted by the single-mode approxi-

mation (Fig. 15b). Though the prediction error on the absolute

scale increases from y3 per cent at Ra=104 to y9 per cent

at Ra=105, the error on the logarithmic scale is consistently

smaller than 2 per cent. Despite these promising results on Nu

and the maximum vertical velocity, the single-mode approxi-

mation behaves poorly in terms of flow patterns as Ra

increases. The proportion of the basic-field component in the

total kinetic energy (KEbf/KEtotal) increases almost linearly with

Ra in fully 3-D solutions, whereas it starts to increase rapidly

forRa>104.5 in the single-mode approximation (Fig. 15c). From

the perspective of 3-D solutions, one can see that the fully 3-D

flow field remains symmetric for upwelling and downwelling

even at an Ra of 105 (Fig. 15e), and that this symmetry is

maintained by exciting higher out-of-plane modes. This suggests

that the kinetic energy corresponding to higher modes in fully

Figure 13. Perspective rendition of 3-D single-mode convection for Ra=104, 105 and 106. The domain of 0jxj0.5, 0jyj1.0 and 0jzj1.0 is

shown, in its front view (left) and back view (right). Temperature contours are at a 0.1 interval. Velocity arrows are also shown, and their scale is

normalized to the maximum value at each Ra.
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3-D solutions is carried by the 2-D basic field in the 3-D single-

mode approximation. Having only one out-of-plane mode,

therefore, tends to exaggerate the two-dimensionality of the

total 3-D flow field. It is interesting that, despite this important

difference in flow patterns, the effects of 3-D convective

motion on Nu and convective velocity are well captured by the

single-mode approximation.

7 D I SCUSS ION

In our idealized model configuration, the influence of side walls

is maximized. In the Earth, the continental lithosphere does not

extend to the base of the upper mantle, and the variation in

thickness is more diffuse, so that our study can be taken as a

limiting case. We believe that this study is a necessary step

towards a comprehensive understanding of small-scale mantle

convection. A wide variety of lithospheric structure along

continental margins is expected on the Earth, and site-specific

modelling with realistic rheology is of course important. Our

understanding of mantle rheology and of initial and boundary

conditions is, however, often very limited. The purpose of a

modelling study is to understand causes and consequences inter-

weaved in a complex physical system. Conducting a large number

of sets of convection simulations with different combinations

of material properties, initial and boundary conditions, and so

on, may only lead to the intractable proliferation of solutions

without a comparable gain in understanding. A systematic study

with more simplified models, therefore, must also be employed,

which can provide a guideline in interpreting more complex

models. These types of theoretical studies were beneficial to

the development of the theory of (global-scale) mantle con-

vection in the past, but such an approach has not been widely

appreciated in the studies of small-scale convection.

For a conducting side wall, we used a linear thermal profile,

because it is the simplest choice and retains reflection sym-

metry, which facilitates the calculation of steady-state solutions

and stability analyses. It is obvious from the variational

formulation that heat conduction at side walls always results in

a higher critical Rayleigh number compared with insulation,

regardless of the shape of the imposed temperature profile. In

a strongly convecting regime, however, the influence of con-

ducting side walls may be significantly modified by specifying

different temperature profiles. Rabinowicz et al. (1980) and

Nataf et al. (1981), for example, investigated the effect of a

uniformly cold side wall, and found that lateral cooling led to

the generation of convection cells with a wide aspect ratio.

Their studies were designed to model cooling by a subducting

slab, and efficient heat transfer at a side wall can result in

additional negative buoyancy to overcome side-wall resistance.

In this regard, our linear temperature profile minimizes the

cooling effect of a geological side wall. Our primary interest,

however, is in studying the effect of a thick, cratonic lithosphere

on mantle convection, not the effect of slab cooling. Because

of low continental heat flow and a high concentration of radio-

genic elements in the continental crust, the estimated thermal

structure of the cratonic lithosphere only suggests a moderate

cooling effect of cratonic side walls adjacent to an astheno-

spheric mantle (Jordan 1988; Rudnick et al. 1998). The linear

thermal profile used in this study, therefore, does not limit the

application of our results to small-scale mantle convection

associated with a cratonic lithosphere.

The effect of a cratonic lithosphere on mantle convection has

been studied recently by King & Anderson (1995, 1998), with

the focus on the relative importance of small-scale, edge-driven

convection to large-scale background convection. Most of their

calculations are limited to instantaneous Stokes flow generated

by a few types of prescribed temperature fields. Their con-

clusions thus depend strongly on the nature of the background

temperature field. For example, a strong upwelling from the

base of the cratonic lithosphere towards the thin lithosphere, as

Figure 14. Characteristics of 3-D single-mode convection bounded by

conducting side walls. The out-of-plane wavenumber is p. (a) Average

Nusselt number and (b) average maximum velocity are plotted with

open symbols for three aspect ratios (circle, r=0.5; diamond, r=1; and

triangle, r=2). The dashed curve denotes the classical case with no side

wall and the dotted curve denotes its 2-D mean-field approximation.

(c) The proportion of basic-field kinetic energy (KEbf/KEtotal) is plotted

as a function of the Rayleigh number.
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observed in their model, is a variant of classical Rayleigh–

Bénard convection deformed by the top rigid boundary. Their

temperature field is designed to place a wide convection cell

beneath a continent–ocean boundary, and the coincidence

of upwelling and a continent–ocean boundary should not be

taken as being the effect of a cratonic lithosphere. Several time-

dependent calculations in King & Anderson (1998) show that

calculated Stokes flow does not sustain the initial temperature

field. The influence of large-scale background flow is unarguably

important for the study of small-scale convection, and a more

self-consistent approach to generating pre-existing large-scale

flow is necessary to draw some general conclusions.

The present study focuses on the stationary state of con-

vection. It is thus useful to constrain the expected status of the

mantle, in the absence of a temporal change in boundary

conditions such as deformation of the lithosphere. Transient

mantle dynamics caused by changes in boundary conditions,

such as rifting-related convection (Mutter et al. 1988; Keen

& Boutilier 1995; Boutilier & Keen 1999), has usually been

studied with apparently innocuous initial conditions; the

asthenospheric mantle is assumed to be initially isothermal

and static. An asthenospheric mantle subject to surface cool-

ing (and some mode of heating from below), however, must

be convecting, and our study suggests that the distribution

of a thick continental lithosphere can organize the pattern of

such a convection, preferring convective rolls aligned perpen-

dicular to continent–ocean boundaries. This may be relevant to

some previous speculations concerning the effect of cratonic

keels on mantle convection, based on the spatial association

between cratons and continental flood basalt provinces

(Anderson 1994) and between continental margins and

hotspots (Vogt 1991; Anderson 1998b). Frequent occurrences

of voluminous magmatism during continental break-ups may

have originated in the combination of such modulated upper-

mantle convection and slow surface rifting (e.g. Korenaga et al.

2000).

Figure 15. Results of fully 3-D calculations. Conducting side walls with an aspect ratio of 1.0 are used. (a) Average Nusselt number; (b) average

maximum velocity; and (c) KEbf/KEtotal are plotted as a function ofRa (solid circles). A 3-D single-mode approximation is also plotted for comparison

(open circles). A perspective rendition is also shown as in Fig. 13 for (d) Ra=104 and (e) Ra=105.
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8 CONCLUS IONS

To understand the effect of lithospheric thickness variation on

mantle convection, we have investigated a simple convection

system in which a fluid is bounded by rigid side walls. Both

conducting and insulating boundary conditions on side walls

are considered to isolate kinematic and thermal effects. First,

2-D and 3-D marginal stability analyses show that heat con-

duction at side walls always reduces convective instability and

generally favours convective rolls aligned perpendicular to

side walls. The strength of thermal convection is characterized

by the surface heat flux and the maximum vertical velocity

for supercritical Rayleigh numbers. The presence of side walls

becomes negligible for the heat flux at higher Rayleigh number,

owing to the instability of thermal boundary layers, but its

influence on the velocity is shown to be persistent. The nature

of convective stability is then assessed by 2-D and 3-D stability

analyses of 2-D steady-state solutions. Within a purely 2-D

framework, side walls enhance the tendency towards time-

dependent convection. The periodicity in a stationary state is

related to the development of boundary layer instability, and

it scales simply with the Rayleigh number. The 3-D stability

analysis reveals the contrasting effects of the side-wall thermal

boundary conditions on the planform of convection; conduct-

ing side walls strongly prefer 3-D convective motion. Finally,

the characteristics of 3-D convection bounded by conduct-

ing side walls are thus studied through the 3-D single-mode

approximation, and results indicate that side-wall effects are

reduced in 3-D convection, for both heat transfer and vertical

velocity, compared with the 2-D results. Comparison with fully

3-D solutions suggests that the 3-D single-mode approximation

is an efficient tool for investigating the domain-wide charac-

teristics of the 3-D convective motion such as the Nusselt

number and maximum vertical velocity, though the approxi-

mation tends to underestimate the three-dimensionality of the

flow structure. This study suggests that a thick, cratonic litho-

sphere may have a modulating effect on the planform of small-

scale convection in the upper mantle, without significantly

reducing the intrinsic convective strength.
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APPENDIX A : F IN ITE - ELEMENT
FORMULAT ION FOR 3 -D S INGLE -MODE
STOKES FLOW

Following the notation adopted by Hughes (1987), the Galerkin

formulation of the equations of Stokes flow, eqs (1) and (2),
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may be expressed as

Kd ¼ F , (A1)

where K, d and F are a stiffness matrix, a velocity vector and a

force vector, respectively. The stiffness matrix and the force

vector are constructed by summing all elemental contributions:

K ¼ A
nel

e¼1
ðkeÞ, F ¼ A

nel

e¼1
ðfeÞ , (A2)

where A denotes the finite-element assembly operator, and ke

and fe are the stiffness matrix and force vector of the eth

element. Since the degree of freedom is three, ke has dimensions

3nenr3nen, where nen is the number of element nodes. Using

the following subscripts,

p ¼ 3ða� 1Þ þ i , q ¼ 3ðb� 1Þ þ j ,

1ƒa, bƒnen , 1ƒi , jƒ3 ,

element stiffness matrices may be further decomposed as

kepq ¼ eTi k
e
abej , keab ¼ �kab þ ��kab , (A3)

where the penalty formulation is assumed in the second

expression. Now introducing a 3-D flow field with a single

wavenumber of y in the out-of-plane coordinate (note that we

set the out-of-plane coordinate as the third coordinate in this

formulation),

u1ðx, y, zÞ

¼ ðu1ðx, zÞ cosðtyÞ, w1ðx, zÞ cosðtyÞ, o1ðx, zÞ sinðtyÞÞ ,

(A4)

the explicit form of element stiffness matrices can be obtained

as follows:

�kab,11 ¼
ð
)e

kð2Na,1Nb,1 þNa,2Nb,2 þ t2NaNbÞd) , (A5)

�kab,12 ¼
ð
)e

kNa,2Nb,1d) , (A6)

�kab,13 ¼ �
ð
)e

ktNaNb,1d) , (A7)

�kab,21 ¼
ð
)e

kNa,1Nb,2d) , (A8)

�kab,22 ¼
ð
)e

kðNa,1Nb,1 þ 2Na,2Nb,2 þ t2NaNbÞd) , (A9)

�kab,23 ¼ �
ð
)e

ktNaNb,2d) , (A10)

�kab,31 ¼ �
ð
)e

ktNa,1Nbd) , (A11)

�kab,32 ¼ �
ð
)e

ktNa,2Nbd) , (A12)

�kab,33 ¼
ð
)e

kðNa,1Nb,1 þNa,2Nb,2 þ 2t2NaNbÞd) , (A13)

and

��kab,11 ¼
ð
)e

jNa,1Nb,1d) , (A14)

��kab,12 ¼
ð
)e

jNa,1Nb,2d) , (A15)

��kab,13 ¼
ð
)e

jtNa,1Nbd) , (A16)

��kab,21 ¼
ð
)e

jNa,2Nb,1d) , (A17)

��kab,22 ¼
ð
)e

jNa,2Nb,2d) , (A18)

��kab,23 ¼
ð
)e

jtNa,2Nbd) , (A19)

��kab,31 ¼
ð
)e

jtNaNb,1d) , (A20)

��kab,32 ¼
ð
)e

jtNaNb,2d) , (A21)

��kab,33 ¼
ð
)e

jt2NaNbd) , (A22)

where Na is an element shape function and Ve is the domain of

the eth element. Element force vectors are calculated as

fe ¼
ð
)e

Naf id)þ
ð
!e
h

Nahid!�
X
q [ gg

kepqg
e
q , (A23)

where fi is an element body force vector, (0, Rah, 0), hi is a

traction boundary condition specified at Ch
e, and gq

e is a velocity

boundary condition.

APPENDIX B : F IN ITE - ELEMENT
FORMULAT ION FOR THE 3 -D S INGLE -
MODE ENERGY EQUAT ION

Treating basic-field temperature, T, and deviation temperature,

h, collectively as a 2-D vector field, d, the Galerkin formulation

of 3-D single-mode energy conservation eqs (32) and (33) may

be expressed as

M _dþ Kdþ F ¼ 0 , (B1)

where M,K and F are the capacity matrix, the stiffness matrix

and the force vector. As in Appendix A, they are constructed

using element matrices and vectors. Element capacity matrices,

me, have dimensions 2nenr2nen, and they may be expressed as

me
pq ¼ eTi m

e
abej , (B2)

where

me
ab,11 ¼

ð
)e
ðNa þ pÞNbd), me

ab,22 ¼
ð
)e

NaNbd) , (B3)

with zero off-diagonal components. p is the stream-line Petrov–

Galerkin shape function defined as in Brooks & Hughes (1982),

p ¼ iadðUNa,1 þWNa,2Þ , (B4)

where kad is artificial diffusion determined by the basic-

field velocity field. Similarly, element stiffness matrices may be
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expressed using nodal submatrices as

kepq ¼ eTi k
e
abej , (B5)

and

kab,11¼
ð
)e

½ðNa þ pÞðUNb,1 þWNb,2Þ þNa,1Nb,1 þNa,2Nb,2�d) ,

(B6)

kab,12 ¼
1

2

ð
)e
Naðu1Nb,1 þ w1Nb,2 � tv1NbÞd) , (B7)

kab,21 ¼
ð
)e

Naðu1Nb,1 þ w1Nb,2Þd) , (B8)

kab,22 ¼
ð
)e
½ðNa þ pÞðUNb,1 þWNb,2Þ þNa,1Nb,1

þNa,2Nb,2 þ t2NaNb�d) : (B9)

Note that we only have to apply the Petrov–Galerkin method to

the basic-field temperature, because the single-mode deviation

velocity does not cause artificial oscillations in the thermal

advection. Element force vectors are calculated from tem-

perature boundary conditions, gq
e, and heat flux boundary

conditions, hi, as

fep ¼
X
q [ gg

kepqgq �
ð
!e
h

Nahid! : (B10)
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