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[1] The planform of sublithospheric convection is studied
by a 3-D linear stability analysis of longitudinal rolls in the
presence of vertical shear. Rayleigh numbers up to 106 are
considered. The transition Rayleigh number over which
longitudinal rolls are unstable is derived as a function of
surface velocity. Effects of nonlinear vertical shear are
shown to be insignificant unless nonlinearity becomes
extreme. Our results are in good agreement with previous
studies, except at high Rayleigh numbers where the
meaning of roll stability becomes ambiguous owning to
inherently time-dependent convection. When applied to
small-scale convection in the upper mantle, our results
suggest that the roll stability is very sensitive to plate
velocity if the upper mantle viscosity is relatively high
(�1020 Pa s); Richter rolls may be expected only beneath
fast-moving plates such as the Pacific plate. INDEX
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1. Introduction

[2] Recent high-resolution tomography of the Pacific
upper mantle [e.g., Katzman et al., 1998] has revived
theoretical interest in the dynamics of sublithospheric con-
vection [Korenaga and Jordan, 2002a, 2002b, 2003]. One
important issue regarding sublithospheric convection is its
three-dimensional convective pattern; a theoretical under-
standing of possible planforms is valuable with regard to the
geophysical detection of small-scale convection. The plan-
form of sublithospheric convection is believed to be strongly
affected by the presence of vertical shear associated with
plate motion [e.g., Richter, 1973]. To minimize the interfer-
ence with the background flow, convection cells tend to
align themselves in parallel with the direction of background
flow. The dynamics of small-scale convection is completely
decoupled from the large-scale flow in the perfect alignment
of such longitudinal convection rolls [e.g., Jeffreys, 1928].
The critical Rayleigh number for marginal stability is the
smallest for such planform [Ingersoll, 1966]. The planform

of finite-amplitude convection is a more complicated matter;
there is some critical intensity of shear, over which longi-
tudinal rolls are stable [e.g., Clever and Busse, 1977].
Because of its relevance to atmospheric and oceanographic
sciences as well as engineering applications, the physics of
thermal convection with vertical shear has been studied by
a number of scientists [e.g., Hathaway and Somerville,
1986; Domaradzki and Metcalfe, 1988; Clever and Busse,
1992]. Naturally enough, most of previous studies have
focused on the dynamics of low Prandtl number fluid. The
Prandtl number is the ratio of momentum diffusivity to
thermal diffusivity; a low Prandtl number means that heat
diffuses very quickly compared to velocity.
[3] The Prandtl number of the Earth’s mantle is essentially

infinite (�1024), and there are only a few studies on the
planform of infinite Prandtl number convection with vertical
shear. An early numerical investigation was presented by
Richter [1973] for low Rayleigh numbers, which was later
extended to higher Rayleigh numbers by laboratory experi-
ments [Richter and Parsons, 1975]. Longitudinal rolls in
mantle convection are thus often referred as ‘‘Richter rolls’’.
Their main objective was, however, to characterize the
response time of convective planform to a change in surface
velocity, and less attention was paid to the stability condition
for longitudinal rolls. Cserepes and Christensen [1990]
studied the stability of Richter rolls using 3-D numerical
calculations, but the parameter space they explored is limited.
[4] Thus, we do not have yet a scaling law for the

planform of small-scale convection in the Earth’s mantle.
Furthermore, the type of vertical shear considered in Richter
and Parsons [1975] and Cserepes and Christensen [1990]
corresponds to a complete return flow in the upper mantle,
and we want to know the stability condition in more general
circumstances. In order to derive such a general scaling law,
we conduct a 3-D linear stability analysis of 2-D steady-
state convection with Rayleigh numbers up to 106. The
relevance of this stability analysis to the planform of
convection is the following. At the onset of convection
(i.e., marginally stable state), we already know that in the
presence of vertical shear, the planform should be dominated
by longitudinal rolls [Ingersoll, 1966]. An important ques-
tion is the stability of these longitudinal rolls with respect to
various three-dimensional perturbations that are generated
by the evolution of incipient convection to finite-amplitude
convection. If our stability analysis indicates that longitudi-
nal rolls are unstable to such perturbations for a given
vertical shear, then, the planform of fully-evolved convec-
tion is expected to deviate from longitudinal rolls and most
likely become multimodal [e.g., Busse and Whitehead,
1971]. The initiation of sublithospheric convection prevents
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further thickening of oceanic lithosphere, so the height of
convection system is expected to be nearly constant, which
justifies the use of 2-D convection rolls as a reference state in
our stability analysis.
[5] Because strong temperature dependency of mantle

rheology results in a nearly isoviscous convection beneath a
rigid lid [e.g., Solomatov, 1995], we limit ourselves to
constant viscosity in the following analysis. Weakly vari-
able viscosity in sublithospheric convection probably has
some additional effects on stability. Our results serve as the
reference and the limiting case, which will be required to
quantify the effect of variable viscosity.

2. Theoretical Formulation

[6] A fluid with infinite Prandtl number is bounded above
and below by rigid horizontal boundaries, and temperature is
fixed at Ts on the top and at T0 on the bottom. Consider
longitudinal convection cells aligned in parallel with one of
the horizontal axes (hereinafter the y-axis). A unit aspect
ratio is assumed for a convection cell. The aspect ratio of 2-D
steady-state convection bounded by rigid surfaces is very
close to unity near marginal stability [Chandrasekhar,
1981]. Because its cross section does not depend on y, its
steady-state dynamics can be described generally by 2-D
functions, such as u0(x, z) for velocity and q0(x, z) for
temperature. By denoting background vertical shear by
V(z), the complete 3-D velocity field can be expressed as

u0 x; zð Þ ¼ u0 x; zð Þ;V zð Þ;w0 x; zð Þ½ �: ð1Þ

The 2-D vector field, (u0, w0), is generated by thermal
buoyancy corresponding to q0, and we assume that V is
generated by boundary conditions and/or a lateral pressure
gradient. Length and time are normalized by a system depth,
D, and a diffusion time,D2/k, respectively, where k is thermal
diffusivity. Velocity is thus normalized by k/D. Temperature
is normalized by �T(�T0 � Ts). Superscript * denotes
normalized variables. The convection system is characterized
by two non-dimensional parameters, the Rayleigh number
and the Peclet number. The former is defined as

Ra ¼ ar0g�TD3

km0
ð2Þ

where a is the coefficient of thermal expansion, g is
gravitational acceleration, r0 is reference density at T0, and
m0 is fluid viscosity. The Peclet number is nondimensiona-
lized velocity based on thermal diffusion. A general
expression for vertical shear, with the surface velocity of
V0* and the bottom velocity of 0, is the following Couette
flow solution:

V* zð Þ ¼ V0* 1� cð Þz*þ c z*ð Þ2
h i

; ð3Þ

where c = C/V0*, and an external pressure gradient is
included in C. A linear shear profile corresponds to c = 0.
For a complete return flow, c = 3. We call V0*(=V0D/k) the
surface Peclet number.
[7] The outline of the present linear stability analysis is

similar to that of Korenaga and Jordan [2001, section 5.1].
Only key information is given here. Among the governing
equations for infinite Prandtl number thermal convection, a
temporal derivative appears only in the energy equation, and

a stability analysis can be formulated by perturbing this
energy balance [e.g., Busse, 1967; Clever and Busse, 1977;
Korenaga and Jordan, 2001]. Assuming the temporal
evolution of perturbation temperature as q* / exp(lt*),
and using a finite-dimensional approximation, one can
construct an eigensystem with eigenvalues l. The stability
condition for the longitudinal rolls is given by
max[Re(l)] < 0, i.e., the growth exponent is negative.
[8] 2-D steady-state solutions, u0*, w0*, and q0*, are

obtained numerically by iterating between the Stokes flow
equation and the steady-state energy equation (see Figure 5a
of Korenaga and Jordan [2001] for examples of q0*).
Because a steady-state solution does not depend on the
y-coordinate, a general 3-D perturbation in our model can
be decomposed into the sum of single-mode perturbations,
each of which has a fixed y-coordinate wavenumber, y.
Such single-mode temperature perturbation may be
expressed as

q* ¼
X
k;l

bkl
cos kpx*ð Þ
sin kpx*ð Þ

� �
sin lpz*ð Þ cos yy*ð Þ

sin yy*ð Þ

� �
; ð4Þ

where k and l are positive integers, except that k = 0 must be
included for cos(kpx*) to make a complete set of
perturbation modes. Because a steady-state solution and
the above general perturbation share the same kind of
periodic symmetry, the eigensystem can be decoupled into
two subsystems, the one with symmetric modes (i.e., with
cos (kpx*) terms) and the other with antisymmetric modes
(with sin (kpx*) terms). The largest eigenvalue for the
antisymmetric system turns out to be zero, corresponding to
standing perturbation [Busse, 1967], so we will consider the
symmetric system only. No further simplification can be
made except for some special cases. When V* = 0 or y = 0,
for example, the subsystems can be further decoupled into
even k + l modes and odd k + l modes, due to the rotational
symmetry of a steady-state solution. The cos(yy) modes and
the sin (yy) modes are also decoupled in the case of linear
shear. A solution for a 3-D perturbation velocity corre-
sponding to the above normal-mode temperature perturba-
tion is derived by Busse [1967], and the eigensystem can be
constructed analytically once the steady-state temperature is
expressed in terms of Fourier coefficients.
[9] The symmetric-mode eigensystem is solved using all

modes with k + l < N, starting with N = 15 and increasing N
until convergence is achieved. Our criterion for conver-
gence is, if jRe(lN)j < 1, jRe(lN�2 � lN)j < 0.01, and
otherwise, jRe(lN�2 � lN)/Re(lN)j < 0.01.

3. Results

[10] For each 2-D steady-state solution, a growth expo-
nent, max[Re(l)], was first calculated as a function of
wavenumber y. The 3-D stability of the given 2-D solution
was then determined by taking the maximum of this wave-
number-growth exponent curve. Because of the possibility
of multiple local maxima, we made a systematic grid search
for y = 0–20 with �y = 0.5 to identify an interval
containing the global maximum, and used Brent’s method
[Press et al., 1992] to locate lmax with the tolerance of 0.01
in y. This procedure was repeated for Ra = 103.6–106 and
V0* = 0–103. For most cases convergence is attained with
N < 30. Results for linear shear are shown in Figure 1. Note
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that 3-D perturbations are always more unstable than purely
2-D perturbations. An abrupt change in y at lmax seen for
large V0* (Figure 1b) is caused by moving from a maximum
at y = 0 (i.e., 2-D limit) to another maximum at y > 0. The

2-D limit indicates that 2-D convection becomes inherently
time-dependent for Ra > �5 � 105 [e.g., Korenaga and
Jordan, 2001]. Vertical shear cannot affect this time depen-
dency because the influence of shear vanishes in the
eigensystem at y = 0. For each V0* there exists a transition
Rayleigh number over which lmax becomes positive. The
stability regime of longitudinal rolls is bounded by this
transition Rayleigh number (Figure 1c).
[11] Results for nonlinear shear profiles with c = 1, 3,

and 10 are also shown in Figure 1c. The stability diagram
for c = 1 is almost identical with the linear case, and the
difference between c = 1 and 3 is also small. The effect of
nonlinearity becomes significant only with very large c,
which does not appear to be realistic for mantle flow
beneath oceanic plates.

4. Discussion and Conclusion

[12] One way to verify our stability analysis of longitu-
dinal rolls is to test its consistency with previous studies,
though the number of appropriate data to be compared is
very small as noted earlier. Richter and Parsons [1975]
reported 31 pairs of the Rayleigh number and the Peclet
number, for which stable longitudinal rolls were observed.
They did not report unstable pairs. Because their experi-
ments were designed to study the transient behavior of
longitudinal rolls, it would have been difficult, with their
experiment setup, to distinguish between a truly unstable
condition and a stable condition with a very long transient
timescale. Cserepes and Christensen [1990] reported one
stable pair and one unstable pair. For Ra < 3 � 105, these
data can be explained fairly well by our stability diagram
(Figure 2). A few minor discrepancies observed within this

Figure 1. 3-D stability of 2-D steady-state convection in
the presence of linear shear (c = 0). The maximum growth
exponent and the corresponding out-of-plate wavenumber
are shown in (a) and (b), respectively. Note that the stability
curve for purely 2-D perturbations (solid line in (a)) limits
the 3-D stability of longitudinal rolls. An abrupt change in y
at lmax seen for large V0* is caused by moving from a
maximum at y = 0 (i.e., 2-D limit) to another maximum at
y > 0. (c) The transition Rayleigh number for stable to
unstable longitudinal rolls is plotted as a function of the
surface Peclet number.

Figure 2. Comparison with previous work. The stability
regime for c = 3 is shaded. Solid circles are stable pairs of
Ra and Pe from Richter and Parsons [1975]. Solid and open
triangles are stable and unstable pairs, respectively, from
Cserepes and Christensen [1990]. Dashed box indicates the
parameter space relevant to small-scale convection in the
upper mantle. See text for discussion.
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range of Ra is probably owing to (1) experimental error in
Ra (�5%) and Pe (�10%) [Richter and Parsons, 1975],
(2) the use of a free-slip bottom and a small computational
domain in the work of Cserepes and Christensen [1990],
and (3) the use of a unit aspect ratio in our stability analysis
whereas slightly smaller aspect ratios are expected for
convection with high Ra. Note that the unstable pair of
Cserepes and Christensen [1990] (open triangle) is also
inconsistent with the nearby stable pairs of Richter and
Parsons [1975] (Figure 2).
[13] On the other hand, stable rolls observed at Ra > 4 �

105 with surface Pe lower than 103 clearly indicate the
inadequacy of our linear stability analysis at high Rayleigh
numbers. However, we also note that the definition of
‘stable rolls’ becomes vague at high Rayleigh numbers.
For Ra > �5 � 105, a steady-state solution no longer exists
(Figure 1a), so time-independent longitudinal rolls cannot
exist. Indeed, what Richter and Parsons [1975] observed at
Ra  1.4 � 105 is ‘approximate’ longitudinal rolls, in which
each roll evolves with time (see Figure 9 of Richter and
Parsons [1975]).
[14] Temperature variations associated with sublitho-

spheric small-scale convection are of the order of 100 K,
and the viscosity of sublithospheric mantle is probably in
the range of 1019–1020 Pa s [King, 1995; Korenaga and
Jordan, 2002b]. With a = 3 � 10�5 K�1, r0 = 3300 kg m�3,
g = 9.8 m s�2, k = 10�6 m2 s, and D = 560 km (assuming
the steady-state lithospheric thickness of 100 km), the
Rayleigh number for small-scale convection in the upper
mantle is of the order of 105–106. These upper-mantle
values also indicate that the Peclet numbers of 102 and
103 are equivalent to the plate velocities of �0.6 cm yr�1

and �6 cm yr�1, respectively. Our stability diagram sug-
gests that, if the Rayleigh number for small-scale convec-
tion is less than 4 � 105, whether Richter rolls form or not is
very sensitive to plate velocity. For Ra = 105, for example,
stable rolls form if plate velocity is greater than �1 cm yr�1.
For Ra = 3 � 105, however, the minimum plate velocity for
stable rolls becomes as high as �5 cm yr�1. In this case,
Richter rolls may be expected only beneath fast-moving
plates such as the Pacific plate. For higher Rayleigh
numbers, the definition of roll stability becomes nebulous
as discussed above. On the basis of the work of Richter and
Parsons [1975], the sensitivity to plate velocity appears to
decrease considerably for Ra > 4 � 105; for this range of the
Rayleigh number, (time-dependent) Richter rolls may form
even if plate velocity is only 1 cm yr�1.
[15] By focusing on a simple situation (i.e., isoviscous

and unit aspect ratio), we are able to conduct a comprehen-
sive 3-D stability analysis. Considering the extent of
parameter space we need to explore, we do not expect that
this approach works similarly well for more realistic vari-
able viscosity cases, for which numerical simulation may be

preferable. Our results will be useful as a solid benchmark
when conducting a scaling analysis with such simulation
studies.
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