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S U M M A R Y
A new kind of stacking scheme, based on the hypothesis testing of signal significance and
coherence, is proposed. The significance of stacked data is evaluated by running two kinds
of bootstrap resampling, one for standard bootstrap and the other for preparing noise stacks
by scrambling relative time-shifts between traces. This dual bootstrap procedure allows us to
formulate a two-sample problem for signal significance, which is shown to be more reliable
than standard bootstrap estimates. The statistics of noise obtained in dual bootstrap resampling
is also used when assessing the coherence of data with the empirical distribution function, in
which the effect of noise is deconvolved by rescaling. Unlike conventional non-linear stacks
such as Nth-root stack and phase-weighted stack, the new stack can recover signals even when
the signal-to-noise ratio (S/N) is low, and compared to simple linear stack, the number of
traces required for unambiguous signal detection is reduced by up to two orders of magnitude.
The new scheme, called dual bootstrap stack, could facilitate a range of geophysical data
processing when trying to detect subtle signals by stacking low S/N data.
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1 I N T RO D U C T I O N

Stacking is one of elementary data processing techniques for noise
reduction and signal detection. Its use has a long history in active-
source seismology (e.g. Yilmaz 1987; Sheriff & Geldart 1995) but
has also become common in the passive-source counterpart (e.g.
Shearer 1991; Rost & Thomas 2002). The premise of stacking
comes from the statistics for the average of a random sample. Sup-
pose that X1(t), X2(t), . . . , Xn(t) represent time-series data recorded
at n receivers. They may be regarded as the sum of two components
as

Xi (t) = Y (t) + Zi (t), (1)

where Y denotes a signal component, which does not vary across
receivers, and Zi is a noise component, which is assumed here
as a random variable with zero mean and variance σ 2

N. The so-
called linear stack is a simple arithmetic average of Xi(t), which has
expectation and variance as

E[X (t)] = E

[
1

n

n∑
i=1

Xi (t)

]
= Y (t), (2)

and

var[X (t)] = 1

n2

n∑
i=1

var(Zi ) = σ 2
N

n
. (3)

As the number of receivers increases, therefore, the standard devia-
tion of the noise component decreases in proportion to n−1/2. Unlike

filtering, stacking allows noise reduction without attenuating signal
even when signal and noise are in the same frequency range.

A fairly large n is required, however, to reduce noise sufficiently
when the signal-to-noise ratio (S/N) is low. In reference to eqs (1)–
(3), S/N is defined in this paper as

S/N ≡ max(|Y |)
σN

. (4)

Fig. 1 shows synthetic seismic data with n = 40 and with S/N
ranging from 10 to 0.5. The signal component of the synthetic data is
composed of four Ricker wavelets with the peak frequency of 0.2 Hz,
so the power of signal is contained largely in the frequency range of
0.1–0.4 Hz. The first and third Ricker wavelets are centred at 10 and
35 s, respectively, and their amplitudes are set to fluctuate from trace
to trace by 1 and 30 per cent, respectively. This intrinsic amplitude
variability is not formulated in eq. (1) for the sake of simplicity;
it is introduced to make the synthetic example more realistic but
does not affect the overall trend of stacking performance because
the range of S/N considered here is fairly wide. The second wavelet,
with an intrinsic amplitude variability of 5 per cent, has a constant
moveout, migrating from 10 to 30 s through the traces. The fourth
wavelet is centred at 50 s and has a different type of amplitude
variability, flipping between positive and negative polarities; this
wavelet is used to demonstrate the performance of stack for an
incoherent data set. The noise component of the synthetic data is
prepared by generating Gaussian white noise by a pseudo-random
number generator, bandpass-filtering it through the range of 0.1–
0.5 Hz, and then adjusting its root-mean-square amplitude to match
a given S/N. Because both signal and noise share the same frequency
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2024 J. Korenaga

Figure 1. Performance of linear and non-linear stacks on synthetic data with the signal-to-noise ratio of (a) 10, (b) 2, (c) 1 and (d) 0.5. The signal component
of the data is the same for all cases; only the amplitude of the noise component is different. Three non-linear stacks, Nth-root stack with the power of 3 (NRS),
phase-weighted stack with the order of 2 (PWS) and dual bootstrap stack (DBS), are shown with linear stack (in grey).
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range, filtering cannot be used for noise reduction. It can be seen
that, in the case of n = 40, residual noise after stacking has non-
trivial amplitudes when S/N becomes lower than ∼2. Also, being
simple averaging, linear stack can exhibit substantial amplitudes for
an incoherent data set, regardless of S/N (Fig. 1, t = 50 s).

These deficiencies can be alleviated to some extent by non-linear
stack such as Nth-root stack (NRS; Muirhead 1968; Kanasewich
et al. 1973; McFadden et al. 1986) and phase-weighted stack (PWS;
Schimmel & Paulssen 1997). NRS is defined as

XNRS = sgn(V )|V |N , (5)

where sgn(x) is a sign of x and

V = 1

n

n∑
i=1

sgn(Xi )|Xi |1/N . (6)

The power N is usually an integer greater than 1. Taking Nth root
reduces the amplitude differences of samples, and as a result, co-
herent samples (i.e. samples with the same sign) would survive in
NRS whereas incoherent samples would be considerably attenuated
(Fig. 1). PWS achieves a similar effect by utilizing the phase infor-
mation of the analytic signal corresponding to given data. There is
no practical difference between the performance of these two non-
linear stacking schemes (Fig. 1); PWS is slightly more involved
because one has to calculate the analytic signal by the Fourier trans-
form. Throughout this paper, NRS is done with the power of 3, and
PWS is done with the order of 2; results shown in this paper remain
virtually the same with different exponents.

These non-linear stacks, however, perform well only when S/N
is greater than ∼1. They rely on the coherence of samples, so when
data are dominated by the noise component (i.e. S/N < 1), the
overall coherence decreases, reducing the power of signal and noise
altogether in the stack (Figs 1c and d). Herein lies a dilemma. In
terms of recovering the amplitude of signals, simple linear stack
still provides good results, but with an insufficient number of low
S/N traces, it does not reduce noise sufficiently, so signal detec-
tion would be unreliable. Linear stack is also vulnerable for in-
coherent data. NRS or PWS can reduce random noise as well as
incoherent signals efficiently even with a relatively small num-
ber of samples, but they do not preserve signal power when S/N
is low.

The purpose of this paper is to introduce a new stacking scheme,
which can mimic the performance of NRS and PWS even for low
S/N data. The new scheme is based on statistical hypothesis testing,
and because of its use of two kinds of bootstrap resampling, it is
referred to as dual bootstrap stack (DBS) in this paper. In what
follows, the new scheme is first described using the synthetic data
shown in Fig. 1. More systematic tests of the new scheme are
then presented, and its performance is quantified in comparison
with linear stack, NRS and PWS. An example with real seismic
data is also given. Possible extensions of DBS are discussed at
the end.

2 M E T H O D

The new stacking scheme is implemented by scaling linear stack on
the basis of two statistical hypothesis tests, the one for the signifi-
cance of a stacked result, and the other for the coherence of samples
to be stacked. Though previous non-linear stacks such as NRS and
PWS do not distinguish between these issues, they are different
statistical problems and thus are better handled separately. Before
describing the new method and relevant statistics, however, it may

be instructive to first consider a standard statistical approach based
on bootstrap resampling (e.g. Efron 1982). In this approach, the ac-
tual data set X1, X2, . . . , Xn is regarded as an empirical distribution
function (EDF), from which a bootstrap replicate X∗

1 , X∗
2 , . . . , X∗

n

can be constructed by randomly sampling n times with replace-
ment. By generating a large number of bootstrap replicates, one can
estimate a probability distribution function for the sample average
X , based on which confidence intervals may be drawn. Calculating
bootstrap confidence intervals for stacked data is common in seis-
mology (e.g. Revenaugh & Meyer 1997; Margerin & Nolet 2003;
Hutko et al. 2008).

The number of bootstrap replicates has to be on the order of 103

for accurate confidence intervals (e.g. Efron & Tibshirani 1993), and
the 95 and 99 per cent confidence intervals based on 2000 bootstrap
replicates for the synthetic data presented in Section 1 are shown
in Fig. 2. Based on such probability distribution, one may devise a
weighted stack as

Xα = X max

{
0, 1 − p[sgn(X

∗
) �= sgn(X )]

α

}
, (7)

where p stands for probability and α is the critical significance
level. For α = 0.01, for example, the weighted stack takes zero
amplitude if more than 1 per cent of bootstrap averages X

∗
have a

different sign than the original average X . Two examples, X 0.05 and
X 0.01, are shown in Fig. 2; whereas this weighting scheme fails to
reduce the incoherent data stack around t = 50 s, it does remove a
substantial fraction of residual noise elsewhere without attenuating
the peak amplitude of the true signal. Bootstrap-based weighting
thus appears to be promising, though its performance is not quite
satisfactory for low S/N data. Even with the tight significance level
of α = 0.01, noise removal is not perfect, and as more systematic
tests will show (Section 3), the residual noise level of this weighting
scheme is as high as ∼20–30 per cent. When the size of a random
sample is not large, it is possible for the majority of the sample
to have the same sign, resulting in false statistical significance by
bootstrap resampling.

Fortunately, the significance of stacked data can be assessed more
reliably by formulating an appropriate two-sample problem. The co-
herence of samples can be evaluated by formulating another kind of
statistical test. The new stacking scheme, DBS, is a doubly weighted
stack based on these statistical tests as

XDBS = X w1 w2, (8)

where w1 and w2 denote weighting factors based on, respectively,
signal significance and coherence. In what follows, how to compute
these weighting factors are explained in turn.

2.1 Significance of stacked data

Stacking in its simplest form is merely calculating the mean of a
sample. If the stacked data X is different from zero, then, testing
its statistical significance is equivalent to asking whether the non-
zero X is obtained by chance or not. Testing the significance of
a non-zero mean is a classical problem in statistics, and examples
in textbooks are often taken from pharmaceutical applications, in
which the effect of a new drug is tested by comparing the statistics
of a treatment group with that of a control group. In the same
spirit, the significance of stacked data may be better quantified not
by looking at the statistics of X alone, but by comparing it to the
statistics of noise. Estimating the statistics of noise, however, is
challenging for at least two reasons. First, it is nearly impossible
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Figure 2. Linear stack (thick solid) with bootstrap confidence intervals (thin for 95 per cent and dotted for 99 per cent) for the synthetic data shown in Fig. 1.
The weighted stack according to eq. (7) is shown for α = 0.05 and α = 0.01.

to tell a priori which part of data contains only noise when S/N is
low, but without being able to do so, the statistics of noise cannot
be estimated. Secondly, this difficulty is even more compounded by
the non-stationary nature of signal-generated noise in seismic data.

A control group can still be prepared for stacking, by scrambling
relative time-shifts between different traces (Fig. 3). If there is a
signal contained in a given data set, the original (zero) time-shift
between traces is optimal to stack the signal, and by randomizing
the time-shift, the signal would be lost by stacking. In other words, a
noise stack can easily be generated just by scrambling traces. This is
somewhat reminiscent of block resampling and phase scrambling,
both of which are used for the bootstrap resampling of time-series
data (e.g. Davison & Hinkley 1997). One may note that, if the origi-
nal data set contains a signal with non-zero moveout (e.g. the one in
the range of t = 10–30 s in Fig. 1a), there is a finite probability for it

to be aligned straight in a scrambled set so that a supposedly noise
stack can yield a clear signal. This does not pose a problem because
a two-sample test for this case would indicate that the original stack
does not contain a statistically significant signal, which coincides
with a desired diagnosis.

There are an infinite number of ways to scramble traces and
generate a noise stack. It may thus be done most conveniently by
incorporating it into bootstrap resampling. That is, we create a large
number of noise stacks by repeating trace scrambling. The signifi-
cance of stacked data can then be assessed by testing a null hypoth-
esis that the original stack and these noise stacks are drawn from the
same distribution. By combining the standard bootstrap procedure
for testing such a two-sample problem (Efron & Tibshirani 1993)
with trace scrambling, a bootstrap test statistic for stacking at the
time of t0 may be implemented as follows:
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Figure 3. The significance of a normal stack (a) can be assessed by com-
paring it to some kind of noise stack, which can be generated by scrambling
relative time offsets between traces as shown in (b).

(1) Randomly draw n integers, i1, i2, . . . , in, from {1, 2, . . .
, n} with replacement, and construct a bootstrap replicate, X∗

b =
{Xi1 (t0), Xi2 (t0), . . . , Xin (t0)}.

(2) Randomly draw n real numbers, r1, r2, . . . , rn, from the
interval [−1, 1], and construct a scrambled bootstrap replicate,
Z∗

b = {Xi1 (t0 + T r1), Xi2 (t0 + T r2), . . . , Xin (t0 + T rn)}, where T
is the maximum period for time-shifting. Also calculate its mean
and call it Z

∗
b.

(3) Combine the above two replicates to form a data set of size
2n and randomize its order. Call the first n data x∗ and the remaining
n data z∗.

(4) Evaluate the difference between the means of x∗ and z∗ as

D(X∗
b) = x∗ − z∗. (9)

(5) Repeat (1)–(4) B times and approximate the achieved signif-
icance level by

p1 =
{

#{D(X∗
b) > Dobs}/B, if Dobs > 0,

#{D(X∗
b) < Dobs}/B, otherwise,

(10)

where #{·} denotes the number of occurrences for a given condition
and the observed value of the statistic is given by

Dobs = X − 1

B

B∑
b=1

Z
∗
b. (11)

Here, X is the mean of X = {X1(t0), X2(t0), . . . , Xn(t0)}, and Dobs

measures how this linear stack deviates from the background noise
level.

In the standard bootstrap procedure as considered at the beginning
of this Method section, the n data in a bootstrap replicate generated
in the step (1) are simply stacked, and this step is repeated B times
to estimate the probability distribution function of a stack. In the
dual bootstrap procedure above, the n data in the bootstrap replicate
is randomly mixed with another n ‘noise’ data generated in the
step (2), and the stack of the first n and that of the second n are
compared in the step (3). This mixing with noise data is a key in the
two-sample test. If the observed stack X is statistically significant,
such significance would be destroyed by the random mixing with
noise data in the step (3), leading to a low p1 value in the step (5).
Conversely, if the observed stack is indistinguishable from noise, it
is likely for the bootstrap statistic D(X∗

b) to have a similar value to
the observed value Dobs, so the probability of the null hypothesis p1

would become high; the observed stack would then be judged to be
statistically insignificant as expected.

A weighted stack based on this two-sample test may be defined
as

XTS = Xw1, (12)

where the weight w1 is equal to max(0, 1 − p1/α) and α is the critical
significance level (typically set to 1 or 5 per cent) below which the
null hypothesis is rejected. An example using the synthetic data with
S/N of 1 is shown in Fig. 4. Only the portion of data up to t = 45 s
is considered here because the coherence of data is out of the scope
of the two-sample test and will be treated separately (Section 2.2).
In this example, the number of bootstrap replicates B is 2000, the
maximum period T is 20 s and the critical significance level is set to
0.01. The true signals centred at t of 10 and 35 s are largely retained
whereas residual noise in the linear stack is completely removed by
this weighting. The residual noise that was difficult to remove on the
basis of bootstrap confidence intervals (Fig. 2b) is clearly identified
as insignificant by the two-sample test (Fig. 4c).

The above weighted stack has three control parameters, α, T and
B. The critical significance level α should reflect the user’s desired
level of confidence in signal detection; lower α leads to a more
stringent significance test. The maximum period for scrambling T
should be chosen to be large enough with respect to the dominant
period of signals to be detected. Obviously, too small T results in
trivial scrambling, so there would not be much difference between
X∗

b and Z∗
b. As long as T is greater than the dominant period of

signals (about a few seconds in the case of the synthetic data shown
in Fig. 1), the weighted stack would yield similar results (Fig. 5),
though T should not be too large for the two-sample testing to cope
with the non-stationary nature of noise. Note that for this scrambling
to work effectively, expected signals must not be characterized by
two or more drastically different frequencies. In other words, data
have to be band-limited, which can easily be achieved by filtering.

Given that the two-sample testing involves the estimate of a prob-
ability distribution, the number of bootstrap replicates B should be
on the order of 103. A convergence test with the synthetic data
indicates, however, that B could be on the order of 102 to obtain
reasonable results (Fig. 6). This is probably a case-dependent issue,
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Figure 4. (a) Weighting of linear stack according to the two-sample test (eq. 12) using the synthetic data shown in Fig. 1(c). Thin horizontal lines for p1 and
w1 denotes their entire range, that is [0,1]. Grey vertical bars correspond to (b) t = 10 s and (c) 20.9 s, at which the histogram of the test static D is given.
Arrows denote the location of Dobs.

warranting a more careful look in specific applications in future,
because an order-of-magnitude reduction in computation may be
achieved by properly choosing B.

2.2 Statistical measure of coherence

An incoherent data set does not mean a statistically insignificant
signal, so a different statistical measure is needed if one wants to
attenuate the influence of such data on a stacked result. How NRS
and PWS attenuate incoherent data is based simply on the statistics

of signal polarity. A data set is said to be coherent when the majority
of data have the same polarity, and such statistics can be depicted
most simply by the EDF of a given data set (Fig. 7)

F(x) = 1

n

n∑
i=1

H (x − Xi ), (13)

where H(x) is the Heaviside step function. A coherent data set may
thus be defined as a data set whose EDF is contained mostly in either
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Figure 5. Effect of varying the maximum period T for the weighted stack
considered in Fig. 4. The other control parameters are fixed as α = 0.01 and
B = 2000. Shown in grey is linear stack for comparison.

x > 0 or x < 0, and the significance level of the null hypothesis that
a given data set is incoherent may be computed as

p2 =
{

F(0), if X > 0,

1 − F(0), otherwise.
(14)

The direct use of EDF is appropriate, however, only for high S/N
data. When S/N is low, EDF becomes more diffuse as a result of
convolution with a noise EDF, and the distinction between coherent
and incoherent data sets is blurred (Fig. 7). NRS and PWS fail for
low S/N data for the same reason; the direct polarity statistics cannot
tell the coherence of a signal buried deep in noise.

One way to remedy the situation is to apply deconvolution. As-
suming Gaussian noise, the cumulative distribution function corre-
sponding to the signal–noise model of eqs (1)–(3) may be written
as

F(x) =
∫ ∞

−∞
H (ξ − Y )�(0,σ 2

N)(x − ξ ) dξ, (15)

where �(0,σ 2
N)(x) denotes the cumulative distribution function for

the normal distribution with zero mean and variance σ 2
N. When a

signal itself has the intrinsic variability of σ 2
S , it may be generalized

to

F(x) =
∫ ∞

−∞
�(Y,σ 2

S )(ξ )�(0,σ 2
N)(x − ξ )dξ, (16)

in which the signal variability is assumed to be Gaussian as well. It is
possible to deconvolve the normal cumulative distribution function
by the method of simulation extrapolation Stefanski & Bay (1996),
if an estimate on σ 2

N is available. The results of simulation extrap-
olation deconvolution are shown in Fig. 7 (dashed line), for which
σ 2

N is estimated by averaging the variances of scrambled bootstrap
replicates Z∗

b. It is found that the deconvolution works well only

Figure 6. Effect of varying the number of bootstrap replicates B for the
weighted stack considered in Fig. 4. The other control parameters are fixed
as α = 0.01 and T = 20 s. Shown in grey is linear stack for comparison.

when S/N is sufficiently high. The unsatisfactory performance may
be explained by an insufficient number of samples as well as an
inaccurate estimate of σ 2

N. Also, simulation extrapolation deconvo-
lution is unattractive from the perspective of computational cost; it
requires the computation of error-inflated cumulative distributions
and post-processing such as isotonic regression, which may be too
much to be conducted for each instance of t.

As a more computationally efficient and potentially more robust
alternative, the following rescaling of the EDF is considered:

F ′(x) = 1

n

n∑
i=1

H (x − X ′
i ), (17)

where

X ′
i = X + (Xi − X )

[
min(0, σ 2

X − σ 2
N)

σ 2
X

]1/2

, (18)

and σ 2
X denotes the variance of X. This rescaling is equivalent

to deconvolution, when both signal and noise follow the normal
distribution and when they are uncorrelated. That is, it tries to
recover a normal distribution with the mean of X and the variance
of σ 2

S , by scaling down the original spread of data. The minimum
function is used in the above to reject the case of σ 2

N being greater
than σ 2

X , which could happen if the estimate of noise variance by
trace scrambling is not accurate enough. The results of rescaling are
also shown in Fig. 7 (dotted line). Rescaling works particularly well
for coherent data sets (e.g. at t of 10 s) and, although not expected
to restore non-Gaussian cumulative distributions accurately, it still
serves the purpose to detect incoherent data sets (e.g. at t of 50 s)
because the extent of variance reduction tends to be limited for such
data, thereby leading to high p2 values.
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2030 J. Korenaga

Figure 7. Empirical distribution functions (solid) for the synthetic data of Fig. 1, at t = 10 s (left-hand column), 50 s (middle column) and 52 s (right-hand
column). Also shown are deconvolved distribution functions by simulation extrapolation (dashed) and rescaling (dotted).

2.3 Dual bootstrap stack

The implementation of DBS is now laid out in full. The weighting
factor w1 in eq. (8) is the same as in eq. (12), and w2 is equal
to max(0, 1 − p2/α), where p2 is calculated by eq. (14) but with
the rescaled EDF of eq. (17). Unless noted otherwise, DBS in this
paper is done with α of 0.01, T of 20 s and B of 2000. Its application
to the synthetic data is already shown in Fig. 1, and the details of
weighting can be seen in Fig. 8. Because the product w1w2 is what
matters, the second weight w2 is calculated only when w1 is non-
zero; otherwise it is set to unity. It can be seen that the incoherent
data around t of 50 s pass the significance test but fail the coherence
test.

It is also seen that an incoherent data set can sometimes pass
the coherence test when its amplitude is small (Fig. 8a, t = 52.5 s);
this is because the rescaling of EDF becomes sensitive to the sub-
tle balance between σ 2

X and σ 2
N (Fig. 7, right-hand side column).

Also, the weight w1 becomes zero where a signal itself approaches
zero, leading to the slight distortion of a weighted waveform even
when S/N is high. These minor deficiencies may be mended by
taking into account the temporal continuity of a detected signal
when computing weights. For example, where the product of the
weights w1w2 is mostly unity but is disrupted with occasional zero
values (e.g. t of 7–13 s in Fig. 8a), those zero weights may be
lifted to unity if corresponding linear stacks are of small ampli-
tude. Alternatively, one may want to apply an averaging filter to
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Figure 8. Step-by-step decomposition of dual bootstrap stack, using the synthetic data of Fig. 1. As in Fig. 4, thin horizontal lines for probabilities and weights
denote the interval [0,1]. DBS is shown with linear stack in grey.

smooth out a rapidly changing weight. Comparing different pos-
sibilities for better waveform preservation is not pursued here be-
cause the success of a particular implementation is likely to be case-
dependent.

Even in the present form, however, DBS suffices the purpose of
signal detection. DBS makes a clean separation between signal and
noise by keeping the entire amplitude of a stacked sum if it passes
two statistical tests and by setting it to zero otherwise. Though the
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2032 J. Korenaga

synthetic data used in this paper assume Gaussian noise, estimating
the statistics of noise by trace scrambling should be applicable to
non-Gaussian noise as well. An important notion is that, by ran-
domly time-shifting traces, it is easy to generate a physically mean-
ingless stack, which may be treated as a noise stack. The bootstrap
resampling itself is quite general, not restricted to Gaussian-based
statistics (e.g. Efron & Tibshirani 1993; Davison & Hinkley 1997).
Also in DBS, the statistics of noise is estimated at every time in-
stance by locally scrambling traces, so the non-stationarity of noise,
if present, can be automatically handled.

3 E S T I M AT E O N S I G NA L R E C OV E RY
R AT E A N D R E S I D UA L N O I S E L E V E L

The synthetic data used so far are of a fixed size (n = 40), and
only four cases are considered with one particular noise realization.
In this section, a more comprehensive test of DBS is conducted
by generating a range of synthetic data in a systematic manner.
Two kinds of tests, one on signal recovery and the other on noise
reduction, are considered.

For the signal recovery test, one Ricker wavelet with the peak
frequency of 0.2 Hz is embedded in a 30-s-long record, and as
done for the previous synthetic data, the Gaussian noise that is

band-limited in the range of 0.1–0.5 Hz is added. In this way, the
power spectra of signal and noise are completely overlapped, so
the synthetic data may be regarded to have been already filtered
and be devoid of easily removable noise components characterized
with frequencies outside the bandwidth of interest. Though only
one peak frequency is considered here, results to follow can be
translated to other cases with different peak frequencies simply by
rescaling the time axis. The synthetic data are thus of reasonably
general nature. For each of the permutations of the following three
parameters, 10 different synthetic data sets are created by using
different seeds for the generation of pseudo-random numbers: (1)
11 different S/N values ranging from 10 to 0.1, (2) four different
intrinsic signal variabilities (1, 10, 20 and 40 per cent), and (3) five
different sample sizes (20, 40, 80, 160 and 320). Thus, the total of
2200 different synthetic cases are prepared.

For each of these synthetic data, NRS, PWS and DBS are per-
formed, and the signal recovery rate is measured as

RS = max(XNLS)

max(Y )
, (19)

where NLS is either NRS, PWS or DBS. The use of the maximum
of a waveform here, instead of the power of the entire waveform,
reflects that waveform distortion is severe for low S/N (e.g. Fig. 1d).

Figure 9. Average signal recovery rate (eq. 19) as a function of the number of traces n, for (a) NRS, (b) PWS and (c) DBS. Only the case of σS = 0.01 is
shown here. Different line colours correspond to different signal-to-noise ratios.
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Figure 10. Data collapse for the signal recovery rate of DBS for the cases
of (a) σS = 0.01 and (b) σS = 0.4. As in Fig. 9, different line colours
correspond to different signal-to-noise ratios. Error bars denote one standard
deviation.

The recovery rate averaged over 10 random ensembles is shown in
Fig. 9 for the case of 1 per cent signal variability. The recovery
rates of NRS and PWS behave in a similar manner; both of them
fall below 0.5 when S/N is lower than unity, and this systematics
does not improve as the sample size increases. This is expected
because, when S/N is low, both NRS and PWS are dominated by
noise, and having a larger sample does not rectify the situation. The
performance of NRS and PWS actually slightly deteriorates with
increasing n, because the stack of a noisy data set is recognized
more conclusively as noise. In contrast, the recovery rate of DBS
improves with increasing n (Fig. 9c), and compared at the same n,
the recovery rate of DBS is almost always higher than those of NRS
and PWS.

The dependence of DBS recovery rate on the sample size and S/N
may be seen more clearly by performing data collapse, and as shown
in Fig. 10, all test results are found to lie approximately on a single

trend when plotted as a function of (S/N)n1/2. Nearly perfect signal
recovery is guaranteed when (S/N)n1/2 > 5, and signal detection
is possible when (S/N)n1/2 is greater than ∼2. This trend does not
change much even when the intrinsic signal variability σS is as high
as 40 per cent (Fig. 10b). The values of (S/N)n1/2 for the four cases
shown in Fig. 1 are, in order of decreasing S/N, ∼63, ∼13, ∼6
and ∼3. So the successful signal recovery by DBS in Fig. 1(d) is
not unexpected but not something always guaranteed.

The signal recovery test is done with a single wavelet, but based
on this, it is also possible to predict the recovery of relative am-
plitudes between different wavelets because DBS is a purely time-
domain method. The recovery of an individual wavelet depends
simply on (S/N)n1/2, where S/N is defined with the given wavelet.
If all wavelets under consideration have (S/N)n1/2 greater than ∼5,
therefore, their relative amplitudes would be retained nearly per-
fectly. This may be confirmed with the examples given in Fig. 1; a
single Ricker wavelet can be considered as one positive peak paired
with two negative peaks of about half an amplitude. The values of
(S/N)n1/2 for the negative peaks in the four cases shown in Fig. 1
are ∼28, ∼5.6, ∼2.8 and ∼1.4. So the waveform of the Ricker
wavelet is thus severely deformed in the last two cases.

Note that the signal recovery rate of linear stack is always unity
(or close to unity), but this does not mean that linear stack is bet-
ter. What is tested with these non-linear stacks is their ability to
distinguish between signal and noise. To detect signals unambigu-
ously in linear stack, residual noise should be sufficiently small;
for example, the 2σ -amplitude of stacked noise may need to be
less than 10 per cent of signal amplitude (i.e. 2σN/

√
n < 0.1S).

This requirement is equivalent to (S/N)n1/2 being greater than 20,
which is far more strict than that for DBS. In terms of the mini-
mum number of traces needed for signal detection, DBS requires
4–25 times (S/N)−2 whereas linear stack requires 400 times (S/N)−2.
It may be said that DBS is 20–100 times more effective than linear
stack.

The above signal recovery test would not be fully meaningful
without testing for the likelihood of a false alarm, that is, checking
the reliability of detected signals. In the second test, therefore, pure
noise data are stacked by NRS, PWS and DBS, and the root-mean-
square amplitude of stacking results is compared with that of linear
stack. The length of each trace is 60 s in this test, and 100 different
random ensembles with the band-limited Gaussian noise are created
for 5 different sample sizes (20, 40, 80, 160 and 320). The total of
500 synthetic noise cases are thus prepared, and the residual noise
level is measured as

RN =

⎡
⎢⎢⎣

∫
XNLS(t)2dt∫

X (t)2dt

⎤
⎥⎥⎦

1/2

. (20)

Results are summarized in Fig. 11, which also shows the result
for the standard bootstrap approach mentioned at the beginning
of Section 2. The residual noise level of DBS is found to be
only ∼1 per cent on average, regardless of the sample size; NRS
and PWS can achieve similarly low noise levels only when the sam-
ple size is sufficiently large (n > 100). As mentioned earlier, the
simple use of bootstrap confidence intervals results in high residual
noise levels. The consistently low noise level attained by DBS is
owing to the tight significance level (α = 0.01) used to reject the
null hypotheses on signal significance and coherence; linear stack
is simply weighted down to zero if it does not pass both of these
hypothesis tests.

 by guest on N
ovem

ber 14, 2013
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


2034 J. Korenaga

Figure 11. Residual noise level (eq. 20) as a function of the number of traces
n, for NRS (solid circle), PWS (open circle), DBS (star) and the bootstrap
approach of eq. (7) with α = 0.01 (square). Error bars denote one standard
deviation.

4 A N E X A M P L E W I T H R E A L DATA

How DBS performs with real seismic data is briefly discussed here,
by applying it to the computation of a slant stack (also known
as vespagram). The source is the event of 1991 December 17 at
0638 UT (latitude 47.39◦, longitude 151.50◦, depth 157 km and
magnitude mb of 5.8), and the receivers are the German Regional
Seismic Network and the Gräfenberg array. This source–receiver
pair is a familiar one in the study of the lowermost mantle (e.g.
Thomas et al. 2002) and is also used for vespagram examples in
a review article on array seismology by Rost & Thomas (2002).
It is thus deemed suitable for the comparison of the new stacking
scheme with the existing ones.

The data shown in Fig. 12(a) are bandpass-filtered through 0.1
and 0.5 Hz, aligned on the direct P arrival, and normalized to the am-
plitude of the first maximum of the arrival. The theoretical slowness
of the P arrival at the centre of the stations is 5.56 s deg−1. The direct
stack of the data as shown enhances the P arrival, whereas stacking
with different slownesses would enhance other arrivals if present.
In this range of epicentral distance, the PcP arrival is expected to
be very weak and is indeed barely visible, but the data also show a
conspicuous precursor called PdP, which is a reflection off the top
of the D′′ layer. The vespagram is computed with linear stack as
well as three non-linear stacks, NRS, PWS and DBS (Figs 12b–e).
As in the previous sections, NRS is done with the power of 3, PWS
with the order of 2 and DBS with α = 0.01, T = 20 s and B = 2000.
Using different settings for NRS and PWS would not modify the
results considerably; for the cases of NRS with the power of 4 and
PWS with the order of 4, see figs 5 and 10 of Rost & Thomas
(2002), respectively. The linear vespagram is characterized by poor
slowness resolution, which calls the significance of subtle features
into question. The NRS and PWS vespagrams have better slowness
resolution, and they also suggest that most of local maxima seen in
the linear vespagram are artefacts. The DBS vespagram has a con-
siderably sharper appearance than these conventional vespagrams,
because the stacked sum is set simply to zero if it does not pass
the two kinds of statistical tests. Though it is a minor point, a small

negative peak before the PdP arrival is stacked better by DBS than
by NRS and PWS, and given that all features in the DBS vespagram
are those have passed the two stringent hypothesis tests, even mi-
nor ones are significant at least statistically. Resolving the origin of
these small-scale signals, however, requires us to explore additional
data and also to experiment with other methods such as migration.
Indeed, a more interesting example can be created by applying DBS
to teleseismic migration, and it will be presented elsewhere.

5 D I S C U S S I O N

One obvious drawback of DBS is its computational cost. Compared
to linear stack, conventional non-linear stacks such as NRS are more
time-consuming only by a factor of 3 or so, but DBS is more costly
by three orders of magnitude. We can of course take the advan-
tage of cheap computational resources; the parallelization of DBS
is straightforward. Also, if one is willing to calculate bootstrap con-
fidence intervals to begin with, DBS would not appear so computa-
tionally expensive. Nevertheless, intensive bootstrap resampling at
every single point in the time axis may not be very appealing when
applying DBS to vespagram and migration, in which numerous
stacks have to be evaluated. As mentioned in Section 2.1, however,
the required number of bootstrap replicates B may not have to be
as high as 103, and this issue deserves careful consideration in each
application of DBS. Some kind of adaptive approach may also be
beneficial. For example, DBS may be done first with a small B, and
if p1 is found to exceed a threshold, DBS may be repeated with a
larger B. The tests with synthetic data described in Section 3 are
repeated with this adaptive approach (using the first B of 100, the
second B of 2000 and the critical p1 of 0.1), and it is found that the
signal recovery rate is slightly impaired with the critical value of
(S/N)n1/2 for guaranteed recovery going up from 5 to 6.7. At the
same time, the residual nose level turns out to be exactly zero for
all of the 500 noise cases, so there seems to be a trade-off between
signal recovery and noise reduction. At any rate, this preliminary
experiment suggests a promising direction towards more efficient
implementations of DBS. If B can be on the order of 100, paral-
lelized DBS on a PC with 20 cores (which has become commodities
in recent years) may be only several times slower than conventional
stacks. Also, what distinguishes DBS from the conventional stacks
is that the statistical significance of stacked signals is already es-
timated when the stack is completed. Its computational cost may
not be so high after all, if one considers the amount of additional
computational work to quantify the significance of conventional
stacks.

The two kinds of hypothesis tests considered in this paper are
motivated by the performance of NRS and PWS, and one could
formulate different hypothesis tests depending on the nature of a
problem at hand. The notion of using a hypothesis test to design
a weight provides a flexible framework to accommodate additional
requirements. For example, extending for three-component seismo-
grams (e.g. Kennett 2000) would be straightforward. Semblance or
phase weights cannot correctly measure correlation between com-
ponents when S/N is low, but the approach based on the EDF, which
would be 2-D in this case, can still be used if deconvolution by
rescaling is employed (Section 2.2).

NRS and PWS are sufficient when S/N is reasonably high, and
ignoring the issue of coherence, simple linear stack would be ad-
equate for low S/N data if a large number of traces are available.
An intermediate situation, characterized by a limited number of
low S/N data, is most troublesome but is also common. This is the
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Figure 12. (a) Seismogram section for the 1991 December 17 event as described in the text. Records have been aligned on the direct P arrival and normalized
to the amplitude of the first maximum of the arrival. The theoretical PcP arrival [based on IASP91 Kennett & Engdahl (1991)] as well as the empirical PdP
arrival (based on vespagram reading) are also shown as dashed lines. (b)–(e) Corresponding vespagram with linear stack, NRS, PWS and DBS. Stacked energy
is shown in the unit of dB, relative to the maximum energy of unity.

domain where the resolving power of DBS would be best appre-
ciated. Stacking is ubiquitous in active-source as well as passive-
source seismology, and the benefit of using DBS is yet to be exam-
ined in a variety of applications.
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