
Geophysical Journal International
Geophys. J. Int. (2014) 196, 1706–1723 doi: 10.1093/gji/ggt475
Advance Access publication 2013 December 17

G
JI

S
ei

sm
ol

og
y

Teleseismic migration with dual bootstrap stack

Jun Korenaga
Department of Geology and Geophysics, Yale University, New Haven, 06520 CT, USA. E-mail: jun.korenaga@yale.edu

Accepted 2013 November 21. Received 2013 November 18; in original form 2013 September 19

S U M M A R Y
A recently developed stacking scheme called dual bootstrap stack (DBS) is applied to teleseis-
mic migration, using deep earthquakes in South America as sources and USArray as receivers.
Built with statistical tests for signal significance and coherence, DBS can achieve a clean sep-
aration of signal and noise, and unlike conventional non-linear stacks such as Nth-root stack
(NRS) and phase-weighted stack (PWS), it can recover signals even when the signal-to-noise
ratio is lower than unity. Migration results with DBS are compared with those with linear
stack, NRS and PWS, and DBS-based migration is shown to be able to detect weak, small-
scale scatterers that cannot be imaged by NRS and PWS and cannot be confidently identified
by linear stack. Based on migration results reproducible among multiple data sets, a number of
small-scale scatterers are suggested to exist in the top 400 km and the bottom 1500 km of the
mantle in the study region. Though being time-consuming, teleseismic migration with DBS
is suggested to be a promising tool to map out a variety of hitherto undetected small-scale
heterogeneities in the mantle.
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1 I N T RO D U C T I O N

Seismic migration is an imaging technique in which seismic energy
recorded at surface receivers is projected back to its origin in the
subsurface, using a background velocity structure. The technique
was originally developed in exploration geophysics (e.g. Yilmaz
1987; Sheriff & Geldart 1995), and its adaptation to natural earth-
quake data is known as teleseismic migration (e.g. Revenaugh 1995;
Freybourger et al. 2001; Rost & Thomas 2002; Thomas et al.
2004; Chambers & Woodhouse 2006; Hutko et al. 2008; Lay &
Garnero 2011). As it directly uses the entire waveform of seismic
data, migration has a potential to achieve the highest spatial resolu-
tion allowed by the given data.

The stacking of time-shifted seismic records constitutes the es-
sential part of migration. Linear stack, which is equivalent to taking
the arithmetic mean, is most commonly used in teleseismic migra-
tion, but it could suffer from high residual noise when the number
of seismic traces to be stacked is not sufficiently large for a given
signal-to-noise ratio (S/N). The noise level can be lowered by us-
ing non-linear stacks such as Nth-root stack (NRS; Muirhead 1968;
Kanasewich et al. 1973) or phase-weighted stack (PWS; Schimmel
& Paulssen 1997). Kito & Krüger (2001), for example, used a vari-
ant of PWS when constructing a migration image for the lowermost
mantle beneath the southwestern Pacific. These non-linear stacks,
however, cannot detect signals when S/N is lower than unity. Re-
cently, a new kind of non-linear stack, called dual bootstrap stack
(DBS), has been developed to overcome these deficiencies of con-
ventional stacks (Korenaga 2013). DBS is based on the hypothesis
testing of signal significance and coherence, and it can work well
even with a limited number of low S/N records.

The purpose of this paper is to demonstrate the performance of
teleseismic migration with DBS, through an example with USArray
data. The structure of the paper is as follows. After explaining a
migration procedure with DBS, the nature of seismic data sets used
in this study is described. Migration results with a single data set are
presented first, and the advantage of DBS over conventional stacks
is discussed. Though it is found that the probability of random
noise to align as a signal is rather high in migration, the effect of
such false signals can be minimized by focusing on reproducible
signals among multiple data sets. Results based on 10 different
data sets suggest the presence of numerous small-scale scatterers
concentrated in the top 400 km and the bottom 1500 km of the
mantle in the study region. The paper is closed by discussion on
remaining issues on teleseismic migration with DBS.

2 M E T H O D

2.1 Basic migration procedure

Suppose that seismic energy radiated from an earthquake is received
by Nr seismic stations, whose data are denoted as Di(t) with i =
1, 2, . . . , Nr. Here, t denotes time. For each of Ng nodes distributed
in the subsurface, then, a corresponding migration energy may be
defined as

E j = max
[{

S
[
A(i, j)W (t)Di (t − to

i + t t
i − t t

i j )
]}2

]
,

j = 1, 2, . . . , Ng, (1)

where to
i is the observed arrival time of a reference phase at the ith

station, t t
i is the theoretical arrival time of the same phase, t t

i j is the
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Migration with dual bootstrap stack 1707

theoretical traveltime from the hypocentre to the ith station through
the jth node, W(t) is a window function, A(i, j) is a weighting factor to
take into account the radiation pattern of forward scattering and the
operator S denotes stacking of Nr traces. Here each node is assumed
to serve as a potential isotropic point scatterer. The window function
may be defined as

W (t) =
{

1 if t ≥ 0 and t ≤ �t

0 otherwise,
(2)

where �t is a dominant period for seismic events under concern.
For a regional array at a large epicentral distance, the weighting
factor is nearly constant, and it may be set to unity for simplicity.

The calculation of theoretical traveltimes is done with a given
reference earth model. In this study, I will focus on P-to-P single
scattering, so the reference phase is direct P, and the traveltime cal-
culation is done solely with the compressional velocity information
of a reference model. Migration for other types of scattering is of
course possible with modifying the reference phase and/or the trav-
eltime calculation. In eq. (1), the differential traveltime with respect
to the reference phase, t t

i j − t t
i , is used to minimize the effect of

3-D velocity variations unaccounted for by an assumed reference
model.

2.2 Dual bootstrap stack

In this study, the stacking operator S in eq. (1) can be any of the
following: linear stack, NRS, PWS and DBS. Among them, DBS
is the most recent, so how it works is briefly summarized here; for
a full description, see Korenaga (2013). DBS is a doubly weighted
stack defined as

SDBS[Xi (t)] ≡ w1(t)w2(t)X (t), (3)

where X (t) denotes the arithmetic mean of {Xi(t); i = 1, 2, . . . , Nr},
w1(t) is a weighting coefficient determined by a hypothesis test for
signal significance and w2(t) is another coefficient determined by a
test for signal coherence. Linear stack can be recovered by setting
both coefficients to unity. The first weighting is calculated as

w1 = max(0, 1 − p1/α), (4)

where p1 is the probability for the null hypothesis that a given
stack is indistinguishable from a noise stack, and α is the critical
significance level below which the null hypothesis is rejected. The
second weighting is calculated similarly as

w2 = max(0, 1 − p2/α), (5)

where p2 is the probability for the null hypothesis that a given
data set is incoherent. In calculating these probabilities, bootstrap

resampling is conducted in two different ways, first with the original
data set, and second with trace scrambling to generate noise stacks.
Based on a number of tests with synthetic data (Korenaga 2013),
the critical significance level is set to 0.01, the number of bootstrap
replicates is set to 103 and the maximum period of trace scrambling
is set to 20 s. That is, if either of the two null hypotheses has a
probability higher than 1 per cent, a stack will be weighted down to
zero, and time-shifts used for trace scrambling are randomly chosen
from between −20 and 20 s.

As demonstrated by Korenaga (2013), DBS allows signal de-
tection even when S/N is low, by exploiting the statistics of noise
estimated by trace scrambling. Compared to linear stack, the num-
ber of traces required for clear signal identification is smaller by
up to two orders of magnitude. Also, unlike linear stack, DBS can
reject incoherent signals. Non-linear stacks such as NRS and PWS
work well only when S/N is higher than unity, because they are
based on the polarity statistics of data as a whole. When data are
dominated by noise (i.e. S/N is lower than unity), these conventional
non-linear stacks fail to identify a stacked signal as a true signal.
This weakness of NRS and PWS remains even if the number of
traces is large (see fig. 9 of Korenaga 2013).

The superior performance of DBS, however, comes with com-
putational cost. The two weighting coefficients, w1 and w2, are a
function of time, so at every sample in a given time-series, bootstrap-
based hypothesis tests need to be conducted. As the number of nodes
in a 3-D target volume is typically on the order of 106, teleseismic
migration with DBS would be extremely time-consuming if the
original implementation of DBS is directly employed. Noting that
only the maximum of stacked energy is important in eq. (1), how-
ever, some acceleration is possible. A linearly stacked waveform in
a given window typically has only a few local maxima, and DBS
may be considered only for those maxima. This local-maxima ap-
proach can reduce the computational cost by about one order of
magnitude, and it is adopted in this study.

3 DATA

From four deep events in South America and the USArray network,
10 different data sets are prepared as shown in Table 1. The con-
figuration of USArray is time-dependent, so restricting the spatial
extent of each receiver array in a similar manner (Fig. 1) makes it
more straightforward to compare results from different data sets.
Also, for such subarrays with limited aperture, the migration pro-
cedure of eq. (1) can be simplified by setting the weighting factor
A(i, j) to unity.

A bandpass filter with the corner frequencies of 0.1 and 0.5 Hz
was applied to broad-band seismic data, and data were resampled

Table 1. Data sets used in this study.

ID Source USArray station range Nr
a

1 2005 March 21/12:23:54.09, (24.98◦S, 63.47◦W), z = 579 km, Mw 6.9 32◦N–40◦N, 130◦W–113◦W 58
2 2006 September 22/02:32:25.64, (26.87◦S, 63.15◦W), z = 598 km, Mw 6.0 32◦N–40◦N, 125◦W–115◦W 114
3 ” 40◦N–50◦N, 125◦W–115◦W 89
4 2006 November 13/01:26:35.87, (26.05◦S, 63.28◦W), z = 572 km, Mw 6.8 30◦N–38◦N, 125◦W–110◦W 92
5 ” 38◦N–43◦N, 125◦W–110◦W 125
6 ” 43◦N–50◦N, 125◦W–110◦W 99
7 2008 September 3/11:25:14.45, (26.74◦S, 63.23◦W), z = 570 km, Mw 6.3 37◦N–48◦N, 125◦W–115◦W 148
8 ” 42◦N–49◦N, 116◦W–105◦W 205
9 ” 30◦N–42◦N, 120◦W–110◦W 171

10 ” 28◦N–42◦N, 110◦W–100◦W 335
aNumber of seismic stations.
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1708 J. Korenaga

Figure 1. Locations of the events (stars) and stations (smaller symbols) for data used in this study. Symbols for stations are as follows: data set #1 (yellow
circle), #2 (blue circle), #3 (blue triangle), #4 (green circle), #5 (green triangle), #6 (green diamond), #7 (red circle), #8 (red triangle), #9 (red diamond) and #10
(red hexagon). Ray paths of direct P waves are indicated by dashed grey curves, and PP bounce points are shown by crosses. Grey lines show plate boundaries,
and thick dashed lines denote the extent of a target volume for migration.

at every 0.1 s. The data of each station were then normalized by the
maximum amplitude of the direct P wavelet, and station data were
aligned by cross-correlating direct P wavelets. A seismic station was
rejected as too noisy if the root-mean-square amplitude before the
direct P arrival was greater than 0.15. The number of good stations
after this screening is listed in Table 1. The example of filtered data
from the data set #5 is shown in Fig. 2. Based on the duration of
the first main wavelet of direct P, the length of the time window for
stacking is set to 6 s (eq. 2).

With the resampling rate of 10 Hz, the number of samples per
trace in the stacking window is 60. The direct application of DBS
would thus require 60 calls of DBS per every node in the migration
volume. In the acceleration based on local maxima (Section 2.2),
DBS is calculated only at local maxima detected by linear stack. Be-
cause the number of local maxima in a 6-s-long stacked waveform
rarely exceeds 10 at any given node, this local-maxima approach
reduces the number of DBS calls by about one order of magni-
tude, thereby making DBS-based migration computationally more
feasible.

The choice of these particular data sets is somewhat arbitrary,
as the most important point to be addressed in this paper is the
relative performance of DBS with respect to convectional stacking
schemes, in the context of teleseismic migration. Which part of
the mantle is to be studied is a secondary issue. Still, some may
prefer to revisit a region with known heterogeneities. Previously
detected small-scale heterogeneities in the mantle (e.g. Kaneshima
& Helffrich 1999) are, however, based mostly on signals that can be
identified even before stacking, and such high-S/N signals do not
provide a critical test bed to compare different stacking schemes

(cf. fig. 12 of Korenaga 2013). As shown in this paper, the strength
and novelty of DBS-based migration is to be able to detect hitherto
undetected signals. The adopted data sets are appropriate in this
regard.

4 R E S U LT S W I T H S I N G L E DATA S E T

In this section, migration results with the data set #5 are presented.
The purpose of showing results with a single data set here is twofold;
the simplicity of the procedure involved facilitates the comparison
of different stacking schemes, and the results also highlight the
difficulty of avoiding false signals, even with DBS, when using only
one data set. The latter issue will be alleviated by using multiple
data sets, but it is important to first understand the nature of the
problem, which is particularly prominent in migration.

A target volume for migration, which is common to all cases
considered in this paper, spans from the surface to the core–mantle
boundary and is bounded between 30◦S and 50◦N and between
130◦W and 40◦W (Fig. 1). The volume is discretized horizontally
with an interval of 0.5◦ and vertically with an interval of ∼50 km.
The total number of nodes in the volume is ∼1.7× 106. For the theo-
retical calculation of traveltimes, the IASP91 earth model (Kennett
& Engdahl 1991) is used.

In what follows, migration results are shown first with data up to
240 s after the direct P (Section 4.1). DBS-based results indicate
the presence of a large number of blob-like small-scale scatterers,
and to eliminate the possibility that they are some kind of artefacts
introduced by the standard phases, migration results are repeated

 at Y
ale U

niversity on M
arch 22, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


Migration with dual bootstrap stack 1709

Figure 2. Vertical component data of data set #5, plotted in order of epicentral distance. For display, records have been aligned on the direct P arrival and
normalized to the amplitude of the first maximum of the arrival. Theoretical arrivals of PcP, pP, sP and PP (based on IASP91, Kennett & Engdahl 1991) are
shown as dashed lines. Masking of the standard phases (Section 4.2) is indicated by grey shading.

using only part of data bounded by P and pP (up to ∼120 s, Fig. 2;
Section 4.2). The small-scale scatterers are still seen with DBS. To
better understand the nature of these scatterers, two kinds of tests
are considered. A test with synthetic point scatterers is conducted
to analyse the extent of isochronal artefacts (Section 4.3), and this
analysis leads to a cluster analysis to estimate the minimum num-
ber of point scatterers. Another test is conducted with randomized
data to quantify the probability of false signal (Section 4.4), which
is shown to be rather high. This test underscores the importance
of verifying reproducibility using multiple data sets, which is the
subject of Section 5.

4.1 Migration with unmasked data

Migration results using data up to 240 s after the direct P are shown
at selected depths in Fig. 3, for the cases of linear stack, NRS,
PWS and DBS. Throughout this paper, NRS is done with the power
of 3, and PWS is done with the order of 2; results shown in this
paper remain the same with different exponents, because differ-
ent exponents affect waveforms but not the maximum energy. The
data length of 240 s was chosen here to include the PP phase, and
there is no fundamental restriction on data length. As expected, the
strongest migration energy with near-zero dB is observed along the

ray paths of direct P. The migration with linear stack is generally
characterized by a much higher energy level than those with non-
linear stacks, and numerous small-scale features seen in the former
are mostly absent from the latter, suggesting that these small-scale
features are artefacts. The most prominent artefact is the one caused
by the pP phase, which occurs about 120 s after the direct P (Fig. 2)
and is seen as an envelope around the direct P energy in the mi-
gration image (Fig. 3). Because the pP phase is of relatively large
amplitude, its artefact can be recognized even with the non-linear
stacks though it is much attenuated.

Grey shading in Fig. 3 denotes the region that cannot be probed
by P-to-P single scattering with 240-s-long data. Around the edges
of the migratable region, especially around the southern edge, high
migration energy can be seen with linear stack, NRS and PWS.
This high energy around the edges is another artefact caused by
the stacking of a relatively small number (<∼20) of station data,
because other stations are out of reach in terms of single scattering.
When the number of traces is too small, noise reduction by stacking
is not effective even with NRS and PWS. It is notable, therefore,
that this kind of artefact is entirely absent with DBS. This attests
to the efficacy of DBS in distinguishing clearly between signal and
noise based on stringent statistical tests.

Excluding the direct P image, the pP artefact, and edge artefacts,
migration results with conventional non-linear stacks (NRS and
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1710 J. Korenaga

Figure 3. Migration energy for data set #5 at selected depths, with different stacking schemes. From left to right-hand panels: linear stack, Nth-root stack
(NRS), phase-weighted stack (PWS) and dual bootstrap stack (DBS). Grey shading denotes the region that cannot by sampled by P-to-P single scattering with
data up to 240 s after direct P. ‘e.a.’ denotes edge artefacts. Arrows in DBS migration images point to some of small-scale features that are not detected by
NRS and PWS (and are hard to identify by linear stack because of other numerous migration artefacts). Migration energy is shown in the unit of decibel (dB),
that is, 10log10E, where zero dB corresponds to the migration energy of direct P.
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Figure 4. Same as Fig. 3 but with masking of the standard phases and with data up to 120 s after direct P. Pink arrows in DBS migration images are small-scale
features not previously seen with unmasked data.

PWS) contain no signal. The DBS-based migration, however, is
different, exhibiting quite a few small-scale features; that is, some
of numerous local maxima seen with linear stack are judged as
signal by DBS. NRS and PWS can detect signal only when S/N is

greater than unity, whereas DBS can when (S/N) n1/2, where n is
the number of traces, is greater than ∼2 (Korenaga 2013). In this
case, the number of traces is 125, so DBS can detect signal if S/N
is greater than ∼0.18. It is thus quite possible that these small-scale
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features imaged by DBS correspond to hitherto undetected seismic
heterogeneities in the mantle. To scrutinize the reliability of these
subtle signals, migration is repeated with more restricted data, as
shown next.

4.2 Migration with masked data

The standard phases such as P, PcP and pP are masked in the
seismic data by setting the amplitude to zero from 2 s before to 12 s
after the theoretical traveltime of each phase (Fig. 2). The depth
phases such as pP and sP, however, may not be entirely removed by
this masking if their coda waves are too prolonged, so to minimize
migration artefacts originating in the standard phases, the duration
of data is further limited to the first 120 s after P. The spatial extent
of the migratable region decreases accordingly.

Migration results with the masked data are shown in Fig. 4.
Those with NRS and PWS exhibit only edge artefacts with virtually
no signal, whereas that with DBS maintains most of small-scale
features seen in Fig. 3. Indeed, a close comparison between DBS
results with and without masking reveals that additional small-scale
features are detected with the masked data; they were not detected
as signal before because the stacking of subtle signals was disturbed
by the presence of the large-amplitude standard phases.

To quantify the magnitude of a detected signal with respect to
the background noise, an apparent S/N is calculated as

(S/N)ap =
(

E

R2 − E

)1/2

, (6)

where E is the migration energy and R is the root-mean-square
amplitude of corresponding data before stack. This is only a lower
bound for a true S/N because signal recovery by stacking is not
always perfect. For example, a true S/N of 1 would be reduced to
an apparent value of ∼0.4 and ∼0.07, respectively, with a signal
recovery rate of 0.5 and 0.1. For DBS results, the apparent S/N is
mostly below unity (Fig. 5a). The true S/N of those signals should
not much higher than unity, however, because such high S/N signals
should have been detected by NRS or PWS. In terms of the apparent
(S/N) n1/2, about half of detected signals are below the detection
limit of DBS (∼2, as determined by Korenaga 2013; Fig. 5b). Those
signals below the threshold clearly have the signal recovery rate
below unity. In other words, their true values of (S/N) n1/2 must be
higher than ∼2; otherwise they would not have been detected. The
apparent (S/N) n1/2 of 2 is thus a convenient threshold to identify
significant signal with high recovery rate, which in tern indicates
that true (S/N) n1/2 would be sufficiently high (∼5 or higher). With
this threshold, the migration energy of significant signals is greater
than −40 dB (Fig. 5b); that is, the amplitude of those signals is
greater than 1 per cent of the maximum amplitude of direct P.

4.3 Test with synthetic point scatterers

DBS can distinguish between signal and noise more reliably than
conventional stacks, but this does not mean that DBS-based migra-
tion is free of artefacts. All kinds of migration suffer from isochronal
artefacts to a varying degree, and DBS-based one is no exception.
Scattered waves recorded at different receivers would add up most
constructively when projected back to a true scattering point, but
similarly good backprojection can also be achieved at neighbouring
points having similar traveltimes to the receivers. In this study, the
collection of such neighbouring points is referred to as an isochronal

Figure 5. 2-D histograms for (a) apparent S/N and migration energy and (b)
apparent (S/N) n1/2 and migration energy, for DBS-based migration results
shown in Fig. 4. Dashed line in (b) denotes the critical value of 2.0, above
which signals are considered as significant; see text for details.

volume, and the smearing of a true point scatterer into its isochronal
volume is called isochronal artefact.

The extent of an isochronal volume varies with the location of a
scatterer and also with a source–receiver geometry. To understand
isochronal artefacts expected for the source–receiver geometry of
the data set #5, migration with synthetic data is conducted. Point
scatterers are placed at 30◦ by 20◦ and at the depths of 250, 850,
1450, 2050 and 2650 km (Fig. 6), and corresponding scattered
waves are simulated by embedding Ricker wavelets with the period
of 5 s. The number of point scatterers in the migratable region is
29 in total. Gaussian noise is then added, and the synthetic data are
processed by the same bandpass filter used for the real data. Two
kinds of data sets are produced, one with S/N of 1 and the other with
S/N of 0.5, and the maximum amplitude of Ricker wavelets (after
the bandpass filtering) is set to 0.0333 and 0.0167, respectively (i.e.
the corresponding migration energy of −30 and −36 dB). Data
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Migration with dual bootstrap stack 1713

Figure 6. Results of signal recovery tests with two types of synthetic data: S/N of 1 (left half) and S/N of 0.5 (right half). Migration results are shown at depths
ranging from 1350 to 1600 km, for the cases of NRS and DBS. The locations of true point scatterers at 1450 km are denoted by stars.

masking corresponding to the standard phases is applied as in the
previous section.

Migration results with the synthetic data are shown in Fig. 6 for
the depth of 1350–1600 km. Isochronal artefacts originating from

the scatterers located at the depth of 1450 km are seen in all of these
cross-sections. As noted earlier, migration with NRS suffers from
edge artefacts as well. For the synthetic data with S/N of 1, both
NRS and DBS show a similar distribution of isochronal artefacts,
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Figure 7. Isochronal artefacts and traveltime variance. The left-hand column is same as the second column of Fig. 6. The middle column shows migration
results with linear stack for comparison. The right-hand column is traveltime variance with respect to the nearest point scatterer. As in Fig. 6, the locations of
true point scatterers at 1450 km are denoted by stars.
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though the latter is characterized by better signal recovery. When
S/N is reduced to 0.5, NRS can barely detect embedded signals,
whereas DBS can recover most of signals along with isochronal
artefacts. These contrasting results between NRS and DBS are in
accord with the scaling of signal recovery derived by Korenaga
(2013). Results with PWS are virtually identical to those with NRS.
Note that most of small-scale blobs seen only in the DBS-based
migration images are part of the isochronal volumes associated
with the point scatterers.

Different scatterers have different spreads of isochronal artefacts,
and these migration images demonstrate that it is nearly impossible
to constrain the size of a point scatterer in case of the source–receiver
geometry used in this study. We may be able to constrain, however,
the minimum number of point scatterers needed to explain a given
migration image. Such information would still be useful when, for
example, one is interested in characterizing the degree of chemical
heterogeneity in the mantle.

To this end, isochronal volumes associated with the true scatterer
positions are calculated by means of traveltime variance (cf. Kito &
Korenaga 2010), which is defined at the jth node as

σ 2
t ( j) = 1

Nr

Nr∑
i=1

(t t
i j − t t

i jr
)2, (7)

where t t
i j is the theoretical traveltime from the hypocentre to the ith

station through the jth node (as in eq. 1), and the jrth node corre-
sponds to the nearest scatterer. The ‘nearest’ scatterer here means
the scatterer that yields the smallest traveltime variance. The trav-
eltime variance at all grid nodes (Fig. 7, right-hand column) is
calculated using the shortest path method (Moser 1991), in which
the scatterer nodes are treated as source and traveltime variance is
used as distance. Visual comparison between the DBS-based mi-
gration image and the traveltime variance suggests that isochronal
artefacts are seen where traveltime variance is small enough. This
is quantified by the correlation between traveltime variance and mi-
gration energy (Fig. 8); isochronal artefacts of significant amplitude
are characterized by σ 2

t < ∼ 10 s2. This critical traveltime variance
corresponds to the average traveltime difference of ∼3 s, which is
half the dominant period of the signal being stacked.

The migration energy is not always high even when traveltime
variance is small; quite a few nodes with σ 2

t < ∼ 10 s2 have the
energy lower than −40 dB (Fig. 8). This is because different combi-
nations of time-shifting can have the same traveltime variance, but
they can have different results for statistical tests on signal signif-
icance and coherence. In other words, strong isochronal artefacts
always have small traveltime variance, but not vice versa; when
there does exist a scatterer, only some fraction of its isochronal
volume would show up in a migration image because of noise. The
synthetic data here have the same scattered waveform for all traces,
but in reality, scattered waveforms are expected to exhibit direction-
dependent variations across traces, so an even smaller fraction of
an isochronal volume would be visible by migration. This tendency
would be enhanced with decreasing S/N. That is, as S/N decreases,
a smaller fraction of an isochronal volume would show up in a mi-
gration image, and which part of the isochronal volume would be
imaged becomes harder to predict, because it depends on how a
particular realization of noise interferes with the signal detection of
DBS.

These characteristics of isochronal artefacts suggest that hierar-
chical clustering (e.g. Defays 1977) may be suited to locate point
scatterers. Hierarchical clustering is a method of cluster analysis
that defines clusters in a hierarchical way based on a certain metric,

Figure 8. Covariation of traveltime variance and migration energy for DBS-
based migration with synthetic data for the case of (a) S/N of 1 and (b) S/N
of 0.5. These 2-D histograms are based on migration results at all depths
(i.e. including all of point scatters), not just for the depth range shown in
Figs 6 and 7.

which is a measure of distance between pairs of points. Travel-
time variance is a natural choice for such a metric, and traveltime
variance between two nodes, j1 and j2, is defined as

σ 2
t ( j1, j2) = 1

Nr

Nr∑
i=1

(t t
i j1

− t t
i j2

)2. (8)

In the agglomerative (bottom–up) hierarchical clustering, which is
adopted here, each significant node starts in its own cluster, and
pairs of clusters are merged with an increasing metric. At each step,
the two clusters separated by the smallest traveltime variance are
combined. The distance between clusters is based on complete link-
age, that is, the maximum traveltime variance between all possible
node pairs between two clusters.

The result of hierarchical clustering, using the DBS-based mi-
gration result for the case of S/N of 1, is shown in Fig. 9, and at
σ 2

t of 10 s2, the number of clusters is reduced down to ∼40, which
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Figure 9. Progression of hierarchical clustering with increasing traveltime
variance. At the beginning, all of ∼3000 significant nodes are their own
clusters, and at each step, the two clusters separated by the smallest traveltime
variance are combined, and the number of clusters decreases by one. The
result of DBS-based migration using the synthetic data with S/N of 1 (Fig. 6,
second column) is considered, and because of the high S/N, significant nodes
are defined here as the nodes with (S/N) n1/2 ≥ 10.

is reasonably close to 29, the number of true scatterers. For each
cluster, a centre node is defined as the average position of all nodes
contained in the cluster, and centre nodes for clusters at σ 2

t of 10 s2

are shown in Fig. 10 for the depth of 1350–1600 km. Scatterers a,
d, e and h are correctly recovered by this procedure, whereas other
scatterers are estimated to be at other depths; b, f and g are off by
50 km and i by 100 km. More than one centre node is sometimes
assigned to one scatterer (a, d, f and h), and some scatterers are
entirely missed (b and c). Given the complexity of the traveltime
variance space (Fig. 7), it would be unrealistic to expect a perfect
recovery of true scatterer locations. What is more important is that,
because of the complete linkage clustering, all nodes in each clus-
ter are guaranteed to be separated less than the critical traveltime
variance, which is consistent with the notion of isochronal volume.
In the example considered here, the number of significant nodes is
over 3000, but the number of clusters is only ∼40 at σ 2

t of 10 s2.
This clustering approach thus offers a convenient way to obtain ap-
proximate scatterer locations and estimate the minimum number of
point scatterers. Note that the critical traveltime variance, which is
set here as 10 s2, should be lowered for shorter period seismograms
and be raised for longer period ones.

4.4 Test with randomized data

The DBS-based migration image with the masked data (Fig. 4)
contains about 2000 nodes with apparent (S/N) n1/2 ≥ 2, and the
cluster analysis yields ∼280 clusters at σ 2

t of 10 s2. The depth
distributions of such significant nodes and clusters are shown in
Fig. 11 (solid line). Both distributions have a broad peak at the mid-
mantle level, but the cluster distribution is more skewed towards
shallow depths. This is because isochronal volumes are generally
larger in the lower mantle, that is, a large number of significant
nodes can be contained in just one cluster. When the volume of a
cluster is large, it could potentially contain more than one scatterer,
but determining whether it is the case or not is beyond the resolution
of the source–receiver geometry under consideration.

( )
Figure 10. Estimating true node locations from DBS-based migration im-
ages through hierarchical clustering. The left-hand column is same as the
second column of Fig. 6. Circles in the right-hand column denote the loca-
tions of the centre nodes of clusters at σ 2

t of 10 s2. See text for details.

The above estimate on the spatial distribution of point scatterers
involves (1) statistical tests on signal significance and coherence
in DBS, (2) screening with apparent (S/N) n1/2 and (3) minimiz-
ing isochronal artefacts through cluster analysis. Even after these
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Figure 11. The depth distributions of (a) significant nodes and (b) clusters at
σ 2

t of 10 s2, for DBS-based migration of data set #5. Solid line corresponds
to results from the original data set, while dashed line and grey shading
denote, respectively, the median and interquartile range of results from ten
randomized data sets.

procedures, however, false signals can still remain at large owing
to the very nature of migration. In migration, seismic records at
different stations are time-shifted and stacked in a variety of ways
because each of a large number of nodes in a migration volume
corresponds to one unique way of time-shifting. The number of
different time-shifting in migration is far greater than that in ves-
pagram, so even when input data are pure random noise, it is still
possible for random noise to be aligned as a coherent signal at some
nodes. When S/N is low, such a false signal is indistinguishable
from a true signal, at least by statistical tests implemented in DBS.

To evaluate the significance of false signals, DBS-based migra-
tion is repeated with randomized data sets. Each randomized data
set is prepared by trace-scrambling the original data set with the
maximum period of 20 s, in the same manner as noise stacks are
generated in DBS. Results based on 10 randomized data sets are
shown in terms of the depth distributions of significant nodes and
clusters (Fig. 11). At most depths, the occurrence of false signals is
high enough to cast a doubt on the reliability of the alleged signals
from the original data.

At this point, one may wonder why signals can show up from
the randomized data, which are prepared by trace-scrambling, that
is, the very method used in DBS to prepare noise stacks. This is

because it is easy to generate a noise stack locally, but not globally.
In DBS, the significance of a given stack is tested by comparing with
the stack of scrambled traces. If there is a coherent signal in a given
set of traces, it is easy to destroy them by trace-scrambling, and this
is the basis for DBS. However, if we take the scrambled traces as a
whole and consider migration with such randomized data, there is
still a possibility of having random noise to be aligned at a certain
node and look like a true signal.

The high probability of false signal is hard to avoid when trying
to image low S/N signals with migration. Significant nodes from
the original data may be just all false signals, or many of them could
still be real. It is difficult to prove either way with a single data set. If
most of significant nodes are false signals, however, they would not
be reproduced with other data sets. If weak signals keep showing
up in different data sets, then, it would lend more credence to their
significance. A test for reproducibility is thus described next.

5 R E S U LT S W I T H M U LT I P L E
DATA S E T S

DBS-based migration is conducted for other nine data sets as well,
using the same masking of standard phases and the first 120 s
after the direct P. Results are shown in Fig. 12 in terms of the
depth distributions of significant nodes and clusters at σ 2

t of 10 s2.
The number of significant nodes varies from ∼1000 (data set #6)
to ∼5000 (data set #8), and the average of 10 data sets is ∼3000.
The number of clusters shows a similar variation, with the average
of ∼380. The depth distribution of significant nodes varies con-
siderably among different data sets, but that of clusters exhibits a
common pattern, with a broad peak at ∼700 km depth. The probabil-
ity of false signal is also estimated by migration with randomizing
data, as done in Section 4.4, and for most data sets, the origi-
nal data yield a much larger number of significant nodes than the
randomized data for a substantial depth range (Fig. 12). This in-
dicates that the original data sets contain a certain number of true
signals, which are destroyed by trace-scrambling. This tendency be-
comes, however, less pronounced in terms of the number of cluster
nodes.

The reproducibility of these significant nodes is tested in the
following way. Each of significant nodes in a certain data set is
checked against all other data sets, and the number of supporting
data sets are counted. For example, a significant node with the du-
plicity of 5 means that the presence of a signal at the particular node
is confirmed by five different data sets. Given the highly incomplete
illumination of an isochronal volume by one source–receiver geom-
etry (as discussed in Section 4.3), nodes in different data sets are
considered to coincide if they are within the traveltime variance of
1 s2. Though the extent of an isochronal volume is better quantified
with σ 2

t of 10 s2, a tighter volume is used here for a conservative
measure of overlapping. Also, when checking for this overlapping,
the amplitude of the original node is replaced by that of a supporting
node, if the latter is greater, to compensate for incomplete signal
recovery due to low S/N. For example, if a node in data set #1 is
supported by a node in data set #2, and if the latter happens to have
a larger amplitude than the former, the amplitude of the former is
set to that of the latter. From the total of 10 data sets, about 2200
significant nodes are found to have the minimum duplicity of 5,
that is, supported by at least half of the data sets. The number of
nodes decreases with increasing duplicity: ∼1100, ∼380 and ∼80
for the minimum duplicity of 6, 7 and 8, respectively. All data sets
contribute to these reproducible nodes in a similar manner (Fig. 13,
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Figure 12. The depth distributions of (right-hand side) significant nodes and (left-hand side) clusters at σ 2
t of 10 s2, for DBS-based migration of all data sets

except #5 (which is shown in Fig. 11).

top row). Data set #5, which is considered in the previous section,
in fact contributes the largest number of nodes, suggesting that the
high probability of false signal (Fig. 11) alone does not readily mean
the low reliability of detected signals.

The depth distribution of the reproducible nodes is contrasting to
that of significant nodes in individual data sets. Instead of a broad
peak in the mid-mantle level, significant nodes are concentrated in
the top 400 km and the bottom 1500 km of the mantle (Fig. 13). This
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( ) ( )
Figure 13. Results of reproducibility test, for the minimum duplicity of 5 (left-hand side) and 6 (right-hand side). The top row shows the number of nodes
supported by each data set. The middle and bottom rows show the depth distributions of reproducible significant nodes and clusters at σ 2

t of 10 s2, respectively.
Dashed line and grey shading denote, respectively, the median and interquartile range of 1000 reproducibility test results using randomized data sets.

suggests that an impression from a single data set can be mislead-
ing, and that checking for reproducibility is a vital step to distin-
guish between true and false signals. Also, because the topology of
isochronal volumes can be complex, it is not easy to guess the dis-
tribution of reproducible nodes from individual depth distributions
(Fig. 12). For example, the high concentration of reproducible nodes
near the core–mantle boundary (Fig. 13, middle row) may seem to
be supported only by three data sets #1, #9 and #10 (Fig. 12, left-
hand column), but they are actually supported by other data sets
as well, but by significant nodes located at shallower depths. The
cluster analysis is conducted on these reproducible nodes, and the

number of clusters at σ 2
t of 10 s2 is ∼250, ∼90, ∼30 and ∼10,

respectively, for the minimum duplicity of 5, 6, 7 and 8. The depth
distribution of these clusters is similar to that of reproducible nodes
(Fig. 13). Calculating traveltime variance with multiple data sets is
more involved than that with a single data set. Consider the travel-
time variance between nodes j1 and j2. If the node j1 is supported by
data sets #1, #2, #3, #4 and #5, and the node j2 is supported by data
sets #2, #3, #4, #5 and #6, traveltime variance is calculated for each
of the common data sets (i.e. #2, #3, #4 and #5), and the largest
variance is adopted as σ 2

t ( j1, j2). This is consistent with the use of
the complete linkage in hierarchical clustering.
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Figure 14. Spatial distributions of reproducible nodes (white circles) and the centre nodes of clusters (red circles) with the minimum duplicity of 5, shown on
the P-wave tomography model of Simmons et al. (2012). Grey regions are out of reach by any of masked data sets used in this study. Depth sections are shown
at 100 km interval for the lower mantle, so only half of relevant sections are seen here.

The same test for reproducibility is applied to the migration re-
sults with randomized data. Because migration with a randomized
data set was repeated 10 times for each data set, there are in to-
tal 100 migration results with randomized data. For each data set,

one migration result is chosen randomly out of 10, and the repro-
ducibility of significant nodes is tested with the collection of 10
randomly chosen data sets. The total number of different combina-
tions of such data sets is 1010, but testing all of them is of course
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impractical. This procedure is thus repeated up to 1000 times to
obtain reasonably robust statistics, and results are shown in Fig. 13.
Unlike the case for an individual data set, the numbers of signifi-
cant nodes and clusters with the minimum duplicity of 5 are both
considerably smaller than those for the original data sets. Migration
with randomized data has zero reproducibility for depths less than
1000 km. Large isochronal volumes at greater depths allow even
false signals to sometimes overlap among different data sets, but the
level of reproducibility is only ∼25 per cent of the case of the real
data sets. These results suggest that requiring the minimum duplicity
of 5 or 6 can reduce the possibility of false signal to the extent that
the majority of the reproducible nodes may be rendered for physical
interpretation.

The spatial distribution of the significant nodes with the mini-
mum duplicity of 5 is shown in Fig. 14, together with the tomo-
graphic P-wave velocity model of Simmons et al. (2012). There is
no obvious correlation between those nodes and velocity anoma-
lies, though there is no reason to expect such correlation if, for
example, these scatterers represent crustal fragments subducted by
ancient plate tectonics. Nonetheless, the correlation issue needs to
be assessed more carefully by considering the extent of isochronal
volumes associated with these nodes. The reproducible nodes in the
upper mantle are all located near the sources, in the vicinity of the
subducting plate. The lack of such upper-mantle nodes beneath the
receivers may be because the variation of the scattering coefficient
in eq. (1) is neglected in this study. For scatterers in the upper mantle
beneath receivers, the aperture of the subarrays considered in this
study would be too wide to be treated with such simplified approach.
Still, it is remarkable is that the minimum number of point scatter-
ers needed to explain the DBS-based migration results is as many
as ∼100–200; the migratable volume for the data sets used in this
study is only ∼1.5 × 1010 km3, which is about 1.7 per cent of Earth’s
mantle. The average migration energy of the detected signals is on
the order of −20 to −30 dB with respect to the direct P (Fig. 15).
These signals are of course visible in linear stack as well (Fig. 4),
but they are surrounded by other numerous migration artefacts, and
given that they are not imaged by NRS and PWS (Fig. 4), these
subtle signals could easily be dismissed as noise in the framework
of conventional stacks. It is the signal detection capability of the
new stack that allows to bring out the presence of weak, small-scale
scatterers in the mantle. When dealing with such subtle signals, the
probability of false signal is particularly high for migration (Figs 11
and 12), but without detecting signals first, it is not even possible
to test them for reproducibility. Migration with NRS or PWS yields
almost no signal, so there is nothing to be tested for reproducibility.
Migration with linear stack is characterized by a large number of
high-amplitude artefacts almost everywhere, leading to numerous
seemingly ‘reproducible’ nodes; such high background noise level
would overwhelm the presence of true scatterers.

6 D I S C U S S I O N A N D O U T L O O K

6.1 Comparison with weighted migration schemes

PWS and DBS both apply weighting on linear stack results. In
PWS, weighting is calculated based on the similarity of the phase
components of individual traces, and in DBS, weighting is based
on statistical tests on signal significance and coherence. There are
other kinds of weighting specifically designed for teleseismic mi-
gration. Slowness-backazimuth-weighted migration (SBWM; Kito
et al. 2007) is one of them, and it may look similar to DBS-based mi-

Figure 15. Covariation of the depth and migration energy of (a) reproducible
nodes and (b) the centre nodes of clusters, for the minimum duplicity of 5
(open circle), 6 (blue circle) and 7 (red circle). The energy of a centre node
is calculated by taking the logarithmic average of the energy of all nodes in
a cluster.

gration. These two migration schemes are, however, fundamentally
different, so some clarification is due.

In SBWM, a migration image constructed by linear stack is
weighted according to the difference between the theoretical and
observed values of slowness and backazimuth. Traveltime calcula-
tion used in migration provides the theoretical values of slowness
and backazimuth for all nodes. The observed values of slowness and
backazimuth are estimated by computing a large number (∼103) of
stacks with a variety of slowness-backazimuth pairs around their
theoretical values and choosing the one with the highest migration
energy. Weighting is computed based on the following notion: The
smaller the difference between the theoretical and observed values
of slowness and backazimuth is, the more likely the node corre-
sponds to a true scatterer. Because the observed values of slowness
and backazimuth need to be estimated by conducting a large number
of stacks at each node, SBWM is computationally expensive; it is
in fact as costly as migration with the original DBS implementation
(i.e. without the local maxima acceleration).

Both SBWM and DBS-based migration conduct a large number
of stacks at each node, but the meanings of these stacks are differ-
ent. In DBS, traces are time-shifted ‘randomly’ to generate noise
stacks, against which the significance of the original stack is tested.
In SBWM, traces are time-shifted ‘gradually and systematically’ as
slowness and backazimuth used for stacking are varied from their
theoretical values. The migration energy of these stacks thus varies
gradually from the that of an original linear stack. If the maximum
of the migration energy takes place at the theoretical slowness and
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backazimuth, this is interpreted that the original linear stack con-
tains a reliable signal. Though this approach may appear sound and
seems to work in certain applications (e.g. Kito et al. 2007, 2008), it
would lead to interpreting all of well-isolated local maxima seen in
a linear migration image as true signals. This approach is thus not
suited for detecting subtle signals from low S/N data; being local
maxima is not equivalent to being statistically significant (compare,
for example, linear stack and DBS in Fig. 3).

DBS has three control parameters, whereas SBWM has only
two. The control parameters of DBS are, however, not of arbitrary
nature. The critical significance level should be based on one’s need
for statistical rigor (smaller value corresponds to more stringent
testing), the number of bootstrap replicates should be high enough
to achieve accurate statistical estimates and the maximum period of
trace scrambling should reflect the dominant period seen in a given
data set. In contrast, two control parameters in SBWM, one for
slowness weighting and the other for backazimuth weighting, are
rather ad hoc, and one needs to vary them to arrive at a ‘reasonable-
looking’ result.

Kito & Korenaga (2010) developed another scheme called cross-
correlation-weighted migration (CCWM), to imitate the perfor-
mance of SBWM with less computational cost by computing the
cross-correlation of traces. This scheme does not work well for low
S/N data either, because it is nearly impossible to extract mean-
ingful cross-correlation when S/N is low. It introduced, however,
the concept of using traveltime variance to quantify the extent of
an isochronal volume, which is shown in this paper to be useful to
minimize the effect of isochronal artefacts.

6.2 Origin of small-scale scatterers

When isochronal volumes are large, which is usually the case for
teleseismic migration with a regional array, it is difficult to discuss
the shape of a scatterer. Nonetheless, the clusters of the reproducible
nodes are seen to congregate at some depths, for example, 2500 and
2800 km (Fig. 14), and because the effect of isochronal artefacts
is mostly removed through the cluster analysis, these assemblies of
clusters may indicate the presence of relatively coherent structures.
At the same time, the majority of the clusters are more dispersed, and
for them, their migration energy is the only clue for their physical
origin.

As shown in Fig. 15, most of the reproducible nodes have the
migration energy in the range of −20 to −30 dB; the amplitude of
scattered waves is 10–3 per cent of the direct P wave. Perhaps the
simplest approach to interpret such relative amplitude is to assume
scattering by a spherical heterogeneity. In general, the amplitude of
a scattered wave is direction-dependent, so for the sake of simplicity,
I focus on the maximum amplitude here. For P-to-P scattering, it
may be expressed as (e.g. Miles 1960; Gubernatis et al. 1977)

max|�1| = V

4πr

ω2

α2
0

∣∣∣∣ δρρ0
− δλ + 2δμ

λ0 + 2μ0

∣∣∣∣ ∼ V

2πr

ω2|δα|
α3

0

, (9)

where �1 is the amplitude of a scattered wave with respect to a
unit-amplitude primary wave, V is the volume of a spherical hetero-
geneity, r is the distance between the heterogeneity and a receiver,
ω is the angular frequency of a seismic wave, α0, ρ0, λ0 and μ0 are,
respectively, the P-wave velocity, density and two Lamé parameters
of the ambient medium and δα, δρ, δλ and δμ denote corresponding
perturbations due to the heterogeneity. For a plausible range of ve-
locity perturbation, the radius of the spherical scatterer correspond-
ing to the observed range of the migration energy is found to be on

Figure 16. Radius of a spherical scatterer as a function of P-wave veloc-
ity perturbation, expected from the migration energy at the level of −20
to −30 dB. Assuming the mid-mantle condition, r and α0 are set to 5000 km
and 12 km s−1, respectively. The cases of two frequencies (f of 0.5 and
0.2 Hz) are shown.

the order of 100 km (Fig. 16). As eq. (9) assumes Rayleigh scat-
tering (the size of a scatterer being much smaller than wavelength),
the estimate shown in Fig. 16 must be regarded as a lower bound.
When the size of a scatterer is comparable with wavelength (the Mie
scattering regime), the predicted amplitude would become smaller
than indicated by eq. (9), because of the interference between the
wave fields from different parts of a heterogeneity (e.g. Wu & Aki
1985). Taking into account such a finite volume effect would not
be worthwhile, because the assumption of a spherical heterogeneity
is already too simplistic and actual scatterers are expected to have
more complicated shapes. This order-of-magnitude estimate on the
likely size of scatterers would still be useful, however, when con-
sidering the implication of such velocity heterogeneities for mantle
dynamics and terrestrial magmatism (e.g. Korenaga 2008).

6.3 Future directions

Judging from the example given in this study, DBS-based migra-
tion appears promising for detecting hitherto undetected (or disre-
garded) weak signals. The disadvantage of being much more time-
consuming than conventional stacks is probably compensated by
its superior performance in signal detection. The deterministic de-
tection of small-scale scatterers in the mantle has so far relied on
scattered waves with reasonably high amplitudes, which can already
be identified in seismic traces before stacking, and this limitation
on signal strength has restricted us mostly to spatially coherent
features such as lateral discontinuities and dipping reflectors (e.g.
Kawakatsu & Niu 1994; Kaneshima & Helffrich 1999; Vanacore
et al. 2006; Kaneshima & Helffrich 2010; Niu 2013). By applying
DBS to a range of array methods such as vespagram and migration,
we can now start mining the vast wealth of teleseismic data for a
variety of small-scale features in the mantle.

In this study, the procedure of teleseismic migration was kept
simple to highlight the effects introduced by using DBS in place of
conventional stacks. With the source–receiver geometry used in this
study, the neglect of radiation pattern is reasonable for imaging the
deep mantle, but properly calculating A(i, j) in eq. (1) would become
important when imaging the upper mantle beneath the receiver array
or when using a wider receiver array. Similar efforts would be
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essential when handling a source array. Assuming a 1-D reference
earth model for traveltime calculation may be justifiable because of
the use of differential traveltime, but how migration results would
differ by using a 3-D velocity model needs to be seen. The data
used are also highly limited; only a 120-s-long section bounded
by P and pP was searched for P-to-P single scattering. This is
to minimize the possibility of a false alarm by reducing the input
data to a bare minimum, but with adequate care, more aggressive
approaches should become possible. In this study, multiple data
sets were processed separately, and the individual results were used
to test the reproducibility of detected signals. Alternatively, one
may combine all data sets into one and process it by double-beam
forming (e.g. Krüger et al. 1996; Scherbam et al. 1997). This may
reduce the probability of false signal, but at the same time, using
only one data set would not allow a reproducibility test. Which is
better is yet to be seen, and there may be other possibilities. In any
case, it seems warranted to accumulate more worked examples with
DBS by exploring and experimenting further.
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