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Abstract

A significant fraction of super-Earths and sub-Neptunes are thought to experience an extreme loss of volatiles
because of atmospheric evaporation in the early stages of their life. Though the mechanisms behind the extreme
mass loss are not fully understood, two contenders have been widely discussed: photoevaporation from X-ray and
ultraviolet irradiation and core-powered mass loss. Here, it is shown that both mechanisms occur, but with different
timescales, and that atmospheric loss can take place over three regimes. In the first regime, a planet has very high
internal temperatures arising from its high-energy formation processes. These high temperatures give rise to a fully
convecting atmosphere that efficiently loses mass without much internal cooling. The second regime applies to
planets with lower internal temperatures, so a radiative region forms, but the photosphere still remains outside the
Bondi radius. Hence, mass loss continues to depend only on the internal temperatures. Planets with the lowest
internal temperatures are in the third regime, when the photosphere forms below the Bondi radius and mass is lost
primarily because of X-ray and ultraviolet irradiation. This paper provides the first unifying framework for
modeling atmospheric evaporation through the life span of a planet.

Unified Astronomy Thesaurus concepts: Mini Neptunes (1063); Super Earths (1655); Star-planet interactions
(2177); Exoplanet evolution (491); Exoplanet atmospheres (487); Planetary interior (1248)

1. Introduction

Atmospheric evaporation is the process through which gases
are lost from planetary atmospheres. This can occur through a
variety of mechanisms, including thermal effects (e.g.,
Jeans 1925; Spitzer 1949; Chamberlain 1962), mechanical
impact erosion (e.g., Cameron 1983; Ahrens 1993; Genda &
Abe 2005; Schlichting et al. 2015), coronal mass ejections
(e.g., Cohen et al. 2011; Hazra et al. 2022), X-ray and
ultraviolet (XUV) irradiation (e.g., Watson et al. 1981; Kasting
& Pollack 1983; Yelle 2004; García Muñoz 2007; Tian 2015;
Kubyshkina et al. 2018a; Modirrousta-Galian et al. 2020) and
high interior temperatures (Biersteker & Schlichting 2019, 2021;
Gupta & Schlichting 2019). Modeling suggests that the last two
mechanisms are most dominant because of the large amount of
available energy to drive atmospheric outflow (e.g., Ginzburg
et al. 2016; Micela et al. 2022). Most studies investigating the
effects of atmospheric evaporation have employed idealized
conditions, such as only XUV irradiation (e.g., Erkaev et al.
2007; Murray-Clay et al. 2009; Owen & Wu 2013) or only
interior energy influencing mass loss (e.g., Biersteker &
Schlichting 2019, 2021; Gupta & Schlichting 2019). However,
these mechanisms are not mutually exclusive and can trigger
atmospheric outflow within their respective timescales. Eval-
uating the contribution of each mechanism requires a
comprehensive and self-consistent model for atmospheric
evaporation. The objective of this paper is to build such a
model so that the evolutions and histories of super-Earth and
sub-Neptune exoplanets can be constrained. We focus only on
super-Earths and sub-Neptunes because their atmospheres
constitute a small fraction of their total mass (e.g., Ikoma &
Hori 2012; Lopez & Fortney 2014), so their geophysical and
atmospheric conditions need to be considered concurrently

when modeling mass loss. Larger bodies, like gas giants,
require different physics because they are composed mostly of
hydrogen, and thus the significance of geophysical conditions
is unclear (e.g., Helled & Stevenson 2017).
In this paper, we model the rate of atmospheric evaporation

of exoplanets as a function of their properties, such as their
surface and equilibrium temperatures, as well as the XUV flux
they are exposed to. It will be shown that atmospheric
evaporation can be categorized under three regimes. Regime
one applies to the hottest exoplanets with, as suggested for
Earth (e.g., Cameron & Benz 1991; Cameron 1997; Canup
2008; Karato 2014; Nakajima & Stevenson 2015; Lock et al.
2018), very high surface temperatures immediately after
formation (>10,000 K). Under such conditions, a primordial
atmosphere can be fully convecting from its base to the Bondi
radius (i.e., the radius at which the atmosphere is no longer
gravitationally bound; Ginzburg et al. 2016) if it satisfies a
minimum mass requirement (see Section 4.1). Regime two
applies to planets with lower internal temperatures when a
radiative region forms at the top of the atmosphere, but the
photosphere (the section of the planet’s atmosphere where the
optical depth of thermal photons, τth, is 2/3) is still located
outside the Bondi radius. The entire atmosphere is therefore
optically thick, so XUV photons have no influence on mass
loss (see Section 6). Planets with even lower internal
temperatures are in regime three, during which the photosphere
is located beneath the Bondi radius and gas between the Bondi
radius and the photosphere is optically thin. XUV photons will
therefore become a major source of heating that will lead to
photoevaporation. In our model, we assume a constant
atmospheric composition and therefore do not include
processes such as volcanism (e.g., O’Rourke & Korenaga
2012), late accretion (e.g., Marchi et al. 2018), or the
entrainment and subsequent mixing of surface materials in
the atmosphere (e.g., Moll et al. 2017). Tidal and centrifugal
effects (e.g., Modirrousta-Galian et al. 2020) are also not
included. This treatment is sufficient for our purposes because
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it allows us to isolate and constrain the loss of primordial gases
from super-Earth and sub-Neptune exoplanets due to internal
energy and stellar irradiation. Further complexity can be
incorporated in future studies. In what follows, we first describe
the terms and parameters used in our model. We then describe
our theory, summarize our results, and compare our findings
with other models in the literature. This paper concludes with a
summary of our findings.

2. Nomenclature

The following isentropic relations for an ideal gas will be
assumed for the temperature profile of a convecting gas:
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where T is the temperature, P is the pressure, ρ is the density,
and γ is the heat capacity ratio cp/cv. Equation (1) assumes a
calorically perfect gas, where γ is constant. In real systems,
however, γ is not constant because it changes with temperature,
pressure, and the composition of the gas (e.g., Burm et al.
1999; Capitelli et al. 2008, 2009). Indeed, a more accurate
prescription may be incorporated by, for example, adopting the
equation of state of a hydrogen−helium mixture (e.g.,
Militzer 2013; Becker et al. 2014), as well as including the
effects of condensation (e.g., Nakajima et al. 1992). Whereas
such additions provide a more realistic description of planetary
physics, they do not negate the main point of this study, that is,
mass-loss models must reflect the evolving thermodynamic
conditions of planetary interiors. Furthermore, large uncertain-
ties in observable features (e.g., mass, radius, and atmospheric
composition), together with our rudimentary understanding of
exoplanet interiors, imply that the precise parameter choices
used in this paper matter little. To this end, our theoretical
framework focuses on unifying geodynamical and atmospheric
principles in the context of atmospheric evaporation, constitut-
ing a starting point for more thorough treatments in future
studies.

When discussing atmospheric evaporation, it is necessary to
define the top and bottom boundaries of the atmosphere. The
bottom boundary is given by the interface between the
atmosphere and the surface of the condensed section of the
planet, whereas the upper boundary is the smallest of the Bondi
radius, the Hill sphere, and the exobase. After the proto-
planetary disk has dissipated, the Bondi radius is given by
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with G, Mn, kB, μB, and TB being the gravitational constant,
planetary mass, Boltzmann’s constant, and mean molecular
mass and temperature at the Bondi radius, respectively. A more
complex formulation is required if the protoplanetary disk is
extant because the velocity of the planet and gaseous
environment need to be considered concurrently (e.g.,
Armitage 2014). In this study, we begin tracking the rate of
atmospheric evaporation after the protoplanetary disk has
dissipated, so Equation (2) applies. The Bondi radius is defined

as the location where the average gas particle achieves escape
velocity and is therefore no longer gravitationally bound (e.g.,
Ginzburg et al. 2016). An alternative name for this radius is the
sonic point (e.g., Parker 1964). The Hill sphere (also known as
the Roche lobe radius or the first and second Lagrange points)
is defined as the region in space where an astronomical body is
gravitationally dominant,
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where a and M* are the semimajor axis and stellar mass,
respectively. Equation (3) applies only to a planet with a
significantly smaller mass than its host star and with a near-
circular orbit. The exobase is defined as the location where the
mean free path of a particle is greater than the local scale
height, so gases beyond this location become collisionless and
no longer follow the ideal gas equation. This radius is given by
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where Tx is the exobase temperature that is given by the models
of Bates (1951, 1959); d is the mean kinetic diameter of local
particles that is defined as p -ln2 1 2( ) for a pure gas, with l
being the mean free path of a particle; and n is the particle
number density. The kinetic diameter is larger than the atomic
diameter, which is defined by the electron shell, because it
describes the area of influence of the particle.
The Bondi radius, Hill sphere, and exobase all depend on the

planetary mass, which we assume is well approximated by the
mass of the central condensed section of the planet. We make
this assumption because formation models (e.g., Ikoma &
Hori 2012) and atmospheric models (e.g., Lopez & Fortney
2014) suggest that most super-Earths and sub-Neptunes form
with atmospheres that are ∼1% of their total planetary masses.
We therefore consider Earth-like planets with primordial
atmospheres that have a negligible mass compared to the
central condensed part. It is common to refer to this central
section as the core in the exoplanetary literature, but in Earth
and planetary sciences this term refers to the metallic section
beneath the silicate mantle of a planet. To avoid confusion, we
call the central condensed part the planetary nucleus, whereas
the metallic center of this nucleus is referred to as the metallic
core. The total planetary mass and the mass of the nucleus will
be used interchangeably because we focus on planets with
primordial atmospheres that have a negligible mass compared
to the mass of the nucleus.
Beyond the exobase, a gas becomes collisionless and can no

longer accelerate during its adiabatic expansion. If the exobase
were therefore smaller than RB and RHi, the atmosphere would
not be hydrodynamic and mass loss would occur through the
inefficient process of Jeans escape (see Appendix A.1 for
derivation),
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The planets of interest to this study have primordial atmo-
spheres and are warm or hot, so they undergo hydrodynamic
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mass loss. The exosphere must therefore be larger than RB or
RHi, so Rx is not relevant to this study and will thus not be
further discussed. Combining Equation (2) with Equation (3)
and solving for the Bondi temperature gives the temperature
condition for the Bondi radius to be smaller than the Hill
sphere:
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where γ0 (with a value of 4/3) is the reference heat capacity
ratio. The planets of interest to this study have high Bondi
temperatures because of their large interior luminosities and the
high XUV irradiation they are exposed to, so Equation (6) is
generally satisfied. We will therefore use the Bondi radius as
the upper limit for the atmosphere.

Throughout this paper, we make use of the optical depth
(also known as optical thickness) that can be expressed as a
function of the opacity of the medium dτ= ρ(r)κdr, where ρ is
the density and κ is the opacity. The optical depth applies to
any wavelength and not just optical photons (380− 700 nm).
In this study, we distinguish between the optical depths of
thermal and XUV photons. Gases usually have wavelength-
dependent opacities, so a region where a gas is optically thick
to photons of a particular wavelength, such as XUV photons
(τXUV� 2/3), may not be optically thick to photons of another
wavelength, like thermal photons (τth< 2/3). Tables 1 and 2 in
Appendix A.6 summarize the terms, parameters, and constants
used in this paper. All equations, terms, parameters, and values
use the International System of Units (SI).

3. Overview and General Setup

In this section, we outline our findings and include the
general assumptions underlying our theoretical framework.

Each of the three regimes described in our model corresponds
to different internal thermodynamic conditions, with regime
one being the hottest and regime three being the coldest (see
Figure 1). The radiative−convective boundary lies outside the
Bondi radius in regime one, so the atmosphere is fully
convecting. In regime two, the radiative−convective boundary
is below the Bondi radius, so that radiation is the most efficient
energy transfer mechanism in the upper sections of the
atmosphere. A thermosphere has still not formed because of
the high internal temperatures, so XUV irradiation does not
contribute to atmospheric evaporation. A planet enters into
regime three at even lower temperatures, where it develops a
thermosphere in which conduction is the main source of energy
transport. A full description of each regime can be found in
Sections 4−6.
The internal energy of a planet comes from four sources: (1)

radiogenic heating, (2) tidal heating, (3) the accretionary energy
of the primordial atmosphere, and (4) the accretionary energy
of the nucleus (for a review on planetary heat sources, see
Hussmann et al. 2010). Each of the abovementioned mechan-
isms acts on a different timescale, which depends on the
configuration of the system. The conditions immediately after
formation are most relevant to this study because it is when a
planet is hottest and the host star is most active, leading to the
highest mass loss. It can be shown that the first three
mechanisms are less significant by evaluating their magnitudes
in the initial stages of a planet’s life.
Using a galactic chemical evolution model, Frank et al.

(2014) estimated the typical radiogenic heating of Earth-like
exoplanets. According to their estimate, the heat flow from the
decay of 40K, 232Th, 235U, and 238U is at most 2Wm−2, which
is sufficient to raise surface temperatures by only one hundred
kelvin. Tidal heating is sensitive to the initial conditions of the
planet, such as its eccentricity, orbital distance, and the mass of
the star and planet. Jackson et al. (2008) suggested that heat
fluxes rarely exceed 1000Wm−2, corresponding to a surface
temperature of 2000 K. The accretionary energy of the

Figure 1. Schematic diagram showing planetary nuclei with overlying atmospheres exhibiting the three regimes of atmospheric evaporation. Regime one is for a fully
convecting atmosphere. Regime two is for a convecting and radiative atmosphere. Regime three is for a convecting, radiative, and conducting atmosphere. Internal
temperatures decrease from left to right. Diagram not to scale.

3

The Astrophysical Journal, 943:11 (27pp), 2023 January 20 Modirrousta-Galian & Korenaga



atmosphere is minor compared to that of the central nucleus
because the atmospheres of super-Earths and sub-Neptunes
constitute only a small percentage of the total planetary mass
(Ikoma & Hori 2012; Lopez & Fortney 2014). Regarding the
accretionary energy of the nucleus, planets with masses
comparable to Earth and greater are thought to undergo a
giant impact phase in which they collide and fuse with large
planetary embryos, releasing massive amounts of energy in the
process (e.g., Benz et al. 1986; Kokubo & Ida 1998; Kokubo
et al. 2000; Elser et al. 2011). Simulations suggest that initial
surface temperatures can exceed 10,000 K (e.g., Cameron &
Benz 1991; Cameron 1997; Canup 2008; Karato 2014;
Nakajima & Stevenson 2015; Lock et al. 2018), which is
significantly higher than what is achievable with the afore-
mentioned mechanisms. We therefore focus only on the
accretionary energy of the central nucleus. Whereas our
framework does not explicitly include the mechanical effects
of impact-induced atmospheric loss, simulations suggest that
only a small fraction (∼10%) of the atmosphere would be
removed (e.g., Cameron 1983; Ahrens 1993; Genda &
Abe 2005; Schlichting et al. 2015), and the effect of this
removal on the subsequent evolution can easily be evaluated by
simply reducing the atmospheric mass. We therefore assume
that the mechanical effects of the impact are quenched in a
geologically negligible timescale, and equilibrium conditions
apply from the beginning of our simulation. We will treat the
initial surface temperature as a free parameter because the
accretionary energy of the nucleus depends on the history of
planetary accretion.

In our initial model setup, we consider a planet with an
entirely molten mantle and an optically thick gravitationally
bound primordial atmosphere (see Figure 4). Our objective is to
build a general atmospheric evaporation model instead of
analyzing a specific planet or group of planets, so we leave the
planetary properties as free parameters. Because atmospheric
evaporation is dictated by the conditions at the Bondi radius,
the Bondi density (ρB) and temperature (TB) will be found to
evaluate the mass-loss rate. The other bulk parameters, such as
the mass of the nucleus, atmospheric mass, and equilibrium
temperature, are assumed to be known. Because the cooling
rate can only be quantified by knowing the conditions of the
magma ocean, we provide a prescription for modeling secular
cooling in the following section.

3.1. Modeling Secular Cooling

Our simulation starts with a planet in a very hot initial state
that cools gradually. It is necessary to model the top boundary
layer of the magma ocean, the bottom boundary layer of the
atmosphere, and the optical depth of the atmosphere to
calculate the cooling rate. In the following sections, we
describe our numerical prescription for modeling the boundary
layers and optical depth of the atmosphere.

3.1.1. Magma Ocean Boundary Layer

The top boundary layer of the magma ocean is the means
through which the planetary nucleus cools. We adopt the
classical Rayleigh−Bénard convection scaling of Nu∝ Ra1/3

in this paper, with Nu and Ra being the Nusselt and Rayleigh
numbers, respectively (Malkus 1954; Priestley 1954;
Howard 1966). The heat flux through the magma ocean

boundary layer can be parameterized as (Solomatov 2015)
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where kmb is the thermal conductivity (∼2WK−1 m−1; Lesher
& Spera 2015), ρmb is the density (∼4000 kg m−3; Solomatov
2015), Ts is the surface temperature of the magma ocean, Tmb is
the temperature at the bottom of the surface boundary layer of
the magma ocean, gmb is the gravitational acceleration, αmb is
the volumetric thermal expansion coefficient (∼5×10−5 K−1;
Solomatov 2015), and ηmb is the dynamic viscosity (∼0.1 Pa s;
Solomatov 2015). For the specific heat of the mantle, we adopt
a constant value of cp,mb= 5000 J K kg−1, which includes
pressure and temperature effects, as well as the enthalpy of
crystallization (Miyazaki & Korenaga 2019). The energy
balance equation is therefore

p=M c
dT
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where the heat flux from the metallic core is ignored because it
is generally small (Stevenson et al. 1983; O’Rourke et al.
2017). In the context of atmospheric evaporation, Tmb is the
most fundamental parameter of the planet’s internal state
because it is a measure of the available energy to drive outflow.
The temperature at the bottom of the convecting section of the
atmosphere, Tab, is found by determining the temperature
contrast across the magma and atmospheric boundary layers.
Because the flux through the boundaries is not known a priori,
the temperature contrasts are calculated through iteration. After
Tab is known, the conditions at the Bondi radius can be
determined through the relevant model for the regime the
atmosphere is in.

3.1.2. Atmospheric Boundary Layer

The conditions of the thin atmospheric boundary layer above
the surface of the magma ocean are described by
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with α being the volumetric thermal expansion coefficient, η
the dynamic viscosity, k the thermal conductivity, Racr the
critical Rayleigh number (∼103), and Fs the surface heat flux.
The viscosity and thermal conductivity are given by Chapman–
Enskog theory (Chapman & Cowling 1970):
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Equations (9) and (10) can be solved for the temperature
contrast and the boundary layer thickness:
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3.1.3. Optical Depth

Atmospheres have a thermal blanketing effect that retards the
cooling rate of the central nucleus (Mizuno et al. 1980; Matsui
& Abe 1986; Abe 1997; Lupu et al. 2014). Conservation of
energy requires that the heat flow through the top boundary
layer of the magma ocean and the bottom atmospheric
boundary layer matches the outward radiation through the
atmosphere. In this section, we describe our model for
determining the optical depth of the atmosphere, with which
thermal blanketing and radiative cooling are calculated during
each regime of atmospheric evaporation. We begin with the
temperature approximation for an irradiated gray atmosphere
with an outward heat flux (Guillot 2010)
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T* and R* are the star’s effective temperature and radius,
respectively, and A is the Bond albedo of the planet (e.g.,
Modirrousta-Galian et al. 2021). We evaluate Equation (15) at
the Bondi radius for regime one, whereas in regimes two and
three it is evaluated at the radiative−convective boundary.

For regime one, Equation (15) is solved for the outward flux
at the Bondi radius,
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with σ being the Stefan−Boltzmann constant and τB the optical
depth at the Bondi radius. The parameter τB can only be
evaluated by considering the equation of state of the escaping
winds. Two idealized cases can be conceived: adiabatic and
isothermal outflowing gas. The adiabatic solution is given by
(see Appendix A.2 for derivation)
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and the isothermal solution is (Parker 1964)
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In real systems, the velocity of outflowing gases will be
located between the adiabatic and isothermal curves shown in
Figure 2. The limiting behavior of the adiabatic and isothermal
cases is Î u rln 1 2[ ( ) ]. By incorporating this limiting
behavior into the equation for mass conservation (i.e.,
r r=ur u R2

B B B
2), it can be shown that r Î - r 2( ) for both

cases. This suggests that the optical depth at the Bondi radius
may be approximated as
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where Cw is a correction factor that is found as follows. There
are two equations for the optical depth of an atmosphere, one
for a hydrodynamic gas and the other for a hydrostatic one. The
hydrodynamic approximation is given by Equation (20), and

Figure 2. The velocity of outflowing winds for the adiabatic (solid) and isothermal (dashed) cases. The radius and velocity have been divided by their corresponding
values at the Bondi radius, respectively.
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the hydrostatic case has an exact solution given by (see
Appendix A.3 for derivation)
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Equations (20) and (21) apply above and below the Bondi
radius, respectively. Continuity requires both equations to
match at the Bondi radius, so Cw≡ 2/γ. Equations (20) and
(17) therefore become
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respectively.
For regimes two and three, Equation (15) is solved for the

outward heat flux at the radiative−convective boundary,
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The radiative−convective boundary is the location where the
outward heat flux is equal to the incoming radiant flux from the
star, so from Equation (15) one gets

s
t + =

+
F T
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4

2

3

2 3

4
. 25rcb rcb eq
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The temperature at the radiative−convective boundary is found
by combining Equations (25) and (15),

=
+

T T
2 3

2
, 26rcb eq

1
4
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⎛
⎝

⎞
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which can be inserted into Equation (24),

t
s=

+
+

F T
2 3

3 2
. 27rcb

rcb
eq
4 ( )

The optical depth at the radiative−convective boundary, τrcb, is
found by integrating dτ= ρ(r)κdr across the atmosphere and
escaping winds.

3.2. Opacity Treatment

We adopt a gray atmospheric model with constant thermal
and XUV opacities. Gas opacities are temperature, density, and
wavelength dependent, with chemistry (Freedman et al. 2014),
ionization (Chadney et al. 2022), and free-floating grains
(Henning & Stognienko 1996) further increasing their
uncertainty. XUV opacities are relevant only when internal
temperatures are low enough for the planet to experience XUV-
induced photoevaporation (Section 6), so we adopt a constant
value of 105 m2 kg−1 (converted from the cross-sectional area
data of molecular hydrogen in Figure 7 of Chadney et al. 2022)
because thermal effects are probably minor. Thermal opacities
are, however, expected to vary through the evolution of the
planet. Immediately after the last giant impact, surface
temperatures are high enough for bound-free, free–free, and
Thompson scattering opacities to apply (Hayashi et al. 1962;
Cox & Tabor 1976). At lower temperatures, the opacity is
dominated by hydrogen anions (Wishart 1979) and grains
(Henning & Stognienko 1996). We choose an average value of
1 m2 kg−1, which is intermediate between the very high
opacities arising from the high initial temperatures and
densities (∼103 m2 kg−1; Iglesias & Rogers 1996; Rogers
et al. 1996) and the lower opacities when temperatures and
densities are lower (∼10−3 m2 kg−1; Henning & Stog-
nienko 1996; Freedman et al. 2014). Adopting different values
for the opacity does not invalidate the findings of this study,
that is, there are three regimes of atmospheric evaporation for
super-Earths and sub-Neptunes. The existence of regime one is

Figure 3. The minimum mass required for an atmosphere to be optically thick at the Bondi radius and therefore be allowed to convect throughout, as a function of the
mass of the nucleus and the surface temperature. The dashed and dotted lines are for the lower and upper temperature limits shown in Equation (33), respectively.
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independent of the opacity of the atmosphere, as demonstrated
in our model description in Section 4. The formation of regime
two (Equation (33)) is also independent of the opacity. Regime
three is the only regime whose existence depends on both
opacities; the thermal opacity sets the location of the photo-
sphere, and the XUV opacity determines how many ionizing
photons are absorbed in the thermosphere. Therefore, the
choice of opacity will only alter the model details, such as the
temperature and pressure profiles and the effects of thermal
blanketing, but not the main findings.

3.3. Cloud Formation

The high internal temperatures immediately after a giant
impact will inhibit condensation. Whereas clouds can form
from any condensable species, SiO and SiO2 are the most
probable candidates for hot exoplanets (Schaefer et al. 2012;
Ito et al. 2015). Water clouds are not possible because
condensation cannot occur above its critical point temperature
of 647 K, which is significantly lower than the temperatures of
interest to this study. The thermodynamic data of Chase et al.
(1985) indicate that thermal decomposition is favored for
an Si−O gas mixture above 6000 K, with the critical point
temperature being approximately 6300 K (Iosilevskiy et al.
2013; Connolly 2016; Xiao & Stixrude 2018). Condensation is
therefore not possible above 6000 K. At lower temperatures,
silicate clouds will form only if the vapor pressure is lower than

the partial pressure:

P T fP, 28v ( ) ( )

where Pv(T) and f are the vapor pressure and mole fraction of
the species of interest, respectively. As previously stated, we do
not consider atmospheric enrichment mechanisms in this paper.
The parameter f is therefore set by the composition of the
nebular gas that formed the primordial atmosphere, which is
negligible and of the order 10−5 for silicon (Lodders 2003,
2010). The inclusion of atmospheric enrichment mechanisms
will be left for future studies, so we do not include cloud
formation in this paper.

4. Regime One: Fully Convecting Atmosphere

In this regime, we model the atmospheric evaporation rates
in the immediate aftermath of the last giant impact when the
mechanical atmospheric waves have dissipated. The extreme
temperatures of regime one allow for a fully convecting
atmosphere because the Bondi radius lies within the radiative
−convective boundary. Because the photosphere is always
located at the radiative−convective boundary or above (in
optically thin regions, radiation is more efficient than
convection), the atmosphere must be optically thick. Our
model for regime one is structured as follows. In Section 4.1,
we explain the requirements for regime one to occur. In
Section 4.2, we describe our atmospheric model. In Section 4.3,

Figure 4. The expected temperature profile of the planet during regime one. Temperature and distance are not to scale; TB, Tab, Ts, Tmb, and Tcmb are the temperatures
at the Bondi radius, top of the atmospheric boundary layer, surface of the nucleus, top of the convecting magma ocean, and metallic core−magma ocean boundary
layer, respectively. R with the relevant subscript marks the radius at which each temperature is defined.
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we show that radiative cooling is negligible during regime one,
so mass loss will be the major mechanism that modifies the
temperature profile of the planet.

4.1. Regime One Requirements

An atmosphere must satisfy a minimum mass requirement
for it to be optically thick at the Bondi radius and therefore to
be allowed to enter regime one, where it is fully convecting.
We begin by considering a highly luminous planet with an
atmosphere that is marginally below the minimum mass
requirement. The atmosphere will therefore be fully radiative,
with its density distribution below the Bondi radius approxi-
mately following the barometric formula (Lente & Ősz 2020).
Evaluating the barometric formula at the Bondi radius gives

r r
m

= - -
GM

k T R R
exp

1 1
, 29s

n

s
B

B B B
( )⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

where ρs is the density of gas at the base of the atmosphere.
Above the Bondi radius, the density distribution is given by the
steady-state solution of an adiabatic wind (Equation (18) and
conservation of mass). At the Bondi radius, the adiabatic
solution gives (see Equation (45))

r
g

k
=

R3
. 30B

th B
( )

Combining Equations (29) and (30),

p
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⎝

⎞
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⎤
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Which is plotted in Figure 3. In addition to the minimum
mass requirement, there is also a temperature requirement.
Total atmospheric convection (from Rab to RB) occurs only
when convection is the most efficient energy transfer mech-
anism in the atmosphere. The transition temperature (i.e., from
convection to radiation) is the location where the radiative heat
component is equal to the outward heat flux, as shown in
Equation (25). The transition temperature is therefore

=
+

T T
2 3

2
. 32B eq

1
4

( )⎜ ⎟
⎛
⎝

⎞
⎠

The temperature at the bottom of the convecting atmosphere is
found by following the adiabat (Equation (37)) to the radius
Rab. Combining this with the maximum temperature at which
an atmosphere remains gravitationally bound, we obtain the
temperature range relevant to regime one:

+

< <

g g
g

m

g
m

- + -T

T . 33

GM

k R

GM
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2
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4

B ab
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B ab

( )
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The right-hand side is found by rearranging Equation (2) for
the temperature and setting the Bondi radius equal to the radius
Rab.

4.2. Atmospheric Model

We begin with the equation for hydrostatic equilibrium

r= -
dP

dr
g, 34( )

where g is the gravitational acceleration. For a convecting
unsaturated (i.e., cloudless) ideal gas, ρ and P are related by the
previously mentioned isentropic relations (Equation (1)), which
can be combined with r m= P k TB B B B¯ ( ) to get

m
= -

gdP

dr

P

k T

P

P

GM

r
. 35nB

B B B
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We assume that the atmospheric mass is negligible compared to
the total planetary mass, and we use the bulk mean molecular
mass m̄ because the entire atmosphere is well mixed in this
regime. We integrate both sides and solve for P/PB:

g
g
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Using the relations of an isentropic gas, we may also derive the
temperature profile of a fully adiabatic atmosphere:
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By setting T= Tab and r= Rab, the Bondi temperature is found:

g
g
g

m
=

-
-

-
T T

GM

k R

2

3

1
. 38n

B ab
B ab

( )⎜ ⎟
⎛
⎝

⎞
⎠

Using the isentropic gas relations with Equation (36), the
density profile is found as

r r
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The atmospheric mass is therefore
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Rearranging Equation (40) for ρB gives the Bondi density:
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Finally, the mass-loss rate at the Bondi radius may be
calculated as

px r=M R u4 , 42B 1 B
2

B B ( )

where uB is the speed of sound,

g
m

=u
k T

, 43B
B B ( )

and ξ1 is the efficiency of mass loss, which is one-half because
half of all particles are scattered radially outward.
A planet will lose energy through mass loss (i.e., decreasing

the gravitational potential energy) and radiative cooling. The
balance of these two effects will play a critical role in the
evolution of the interior temperature profile of a planet and in
the amount of mass loss taking place. As shown in the
following section, this balance is found by comparing the
equation for radiative cooling in regime one (Equation (23))
with the energy loss from atmospheric outflow.
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4.3. Critical Atmospheric Mass for Regime One

To determine the importance of radiative cooling in
influencing the evolution of a planet during regime one, we
compare Equation (23) with the loss of energy from atmo-
spheric evaporation (see Appendix for derivation),

p
»F

GM M

R4
. 44n a

ml
B
3


( )

Figure 5 shows the ratio of the mass-loss and radiative cooling
energy fluxes for different parameter choices. The mass-loss
energy flux is always significantly larger than that of radiative
cooling.

As shown in Figure 5, radiative cooling is small compared to
the effects of mass loss. If radiative cooling is taken to be
negligible, the atmosphere will remain in a fully convective
state until the density at the Bondi radius is low enough for the
optical depth to equal two-thirds:

t
g
k r» =R

2 2

3
. 45B th B B ( )

Equation (45) can be combined with Equation (41) to find the
critical mass at which the atmosphere will form a radiative
region,
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where 1 and 3 are regimes one and three, respectively.
Regime two will not be traversed because it requires the planet
to have lower internal temperatures while the atmosphere
remains optically thick. This is not possible because, as
evidenced by Figure 5, mass loss is substantially greater than
cooling so that the atmosphere becomes optically thin before
the interior has had enough time to cool. Figure 6 shows the
final atmospheric mass of an exoplanet in regime one with
initial temperature Tmb. After reaching this critical mass, the
atmosphere will form a radiative layer with a photosphere.

Though it has been shown that radiative cooling is negligible
in regime one, it is still incorporated in our simulations. Our
approach is to first set the temperature of the magma ocean,
with which the temperature across the top magma ocean
boundary layer (Equation (7)), the temperature across the
bottom atmospheric boundary layer (Equation (13)), and the
temperature at the Bondi radius (Equation (38)) are found
through iteration to attain self-consistency. Through the Bondi
radius temperature, the outward heat flux is calculated with
Equation (23), which is then used to determine the temperature
decrease of the magma ocean with Equation (8). The process is
then repeated to track the thermal evolution of the magma
ocean.

5. Regime Two: Formation of a Radiative Layer

In the following, we describe the physics of regime two. In
Sections 5.1 and 5.2, we explain why regime two is
intermediate between regime one and regime three, that is,
why it is cold enough for a radiative region to form (i.e., the
radiative−convective boundary lies within the Bondi radius)

but too hot for a photosphere (where τth= 2/3). The
atmosphere will no longer follow an adiabatic temperature
profile through to the Bondi radius because a radiative region
forms above the radiative−convective boundary, where the
temperature is set by radiative equilibrium (see Figure 7). In
Section 5.3, we describe our strategy for modeling the
temperature and density profiles of the atmosphere to find the
conditions at the Bondi radius, with which the mass-loss rate
can be found.

5.1. Regime Two Requirements

A radiative region forms in regime two, so internal
temperatures are below those given in Equation (33). We
therefore focus on temperatures of

g

g
g
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Because regime two is still too hot for a photosphere to form,
the density of the Bondi radius must be higher than that of the
photosphere. The latter condition can be expressed in terms of a
minimum Bondi temperature that is found by solving
Equation (22) for an optical depth of 2/3,

k mr
g

>T
GM

k

6
. 48n

B
th B

2
B

( )

The corresponding basal atmospheric temperature at which
Equation (48) occurs depends on the mass of the nucleus and
atmosphere and on the thermodynamic conditions of the
interior.

5.2. The Importance of XUV Irradiation in Regime Two

XUV-driven mass loss can occur only above the photo-
sphere; below it, the atmosphere is optically thick to thermal
photons, so the Stefan−Boltzmann law holds. In other words,
any XUV photons absorbed below the photosphere will cause
the local gas to heat up and radiate the excess energy like a
blackbody. The inefficiency of XUV-induced heating in
optically thick regions can be demonstrated through the
following example. Consider a planet orbiting a star that has
zero brightness in its XUV bands. The effective flux of the
planet would be given by the Stefan−Boltzmann law

s=F T . 49eff eff
4 ( )

Adding the XUV component results in a temperature increase

s+ = + DF F T T , 50eff XUV eff
4( ) ( )

whence

D
= + -

T

T

F

F
1 1. 51

eff

XUV

eff

1
4

( )⎜ ⎟
⎛
⎝

⎞
⎠

The maximum temperature change will occur when the planet
has no internal energy, so the effective flux is caused entirely
by stellar irradiation. In this limiting case, the ratio of the XUV
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and effective fluxes is defined by the luminosity of the host star
at different wavelengths,

D
= +

-
-

T

T

L

L L
1 1, 52

eff

XUV

bol XUV

1
4

( )⎜ ⎟
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⎝

⎞
⎠

where Lbol is the bolometric luminosity (the total luminosity of
the star not including the emission of neutrinos). Even when a
star is very young and brightest in its XUV bands, the
luminosity ratio is at most ∼10−3 (Vilhu & Walter 1987; Penz
et al. 2008; Penz & Micela 2008). The maximum value of
ΔT/Teff is therefore of the order 10

−4, so the influence of XUV
irradiation on the temperature can be ignored below the
photosphere. We therefore do not incorporate the effects of
XUV irradiation in this regime.

5.3. Atmospheric Model

In a similar manner to our approach in Section 4, we will
find the density and temperature at the Bondi radius to estimate
the mass-loss rates. In this regime, a radiative region will form
from the radiative−convective boundary Rrcb to the Bondi
radius RB. The radiative−convective boundary is located where
the outward heat flux is equal to the radiant flux (see
Equation (32))

=
+

T T
2 3

2
. 53rcb eq

1
4

( )⎜ ⎟
⎛
⎝

⎞
⎠

The density at the radiative−convective boundary is found in a
similar manner to Equation (39), but by changing the boundary
conditions from those corresponding at the Bondi radius to

Figure 5. The ratio of the mass-loss and radiative cooling heat fluxes as a function of the magma ocean temperature for different masses of the nucleus. For each case,
the atmospheric mass is 1% of the total planetary mass.

Figure 6. The atmospheric mass as a function of the magma ocean temperature and the mass of the nucleus at which the Bondi radius becomes optically thin and
energy can be efficiently lost through radiation.
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those at the radiative−convective boundary:
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The temperature profile is found by adapting Equation (37),
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which can then be solved for the radius of the radiative
−convective boundary,
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Combining Equations (53), (54), and (56) removes the
dependency on Rrcb and Trcb,
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Equation (57) gives the density profile in the convective section
of the atmosphere (from Rab to Rrcb), so it is not applicable to
the radiative section (from Rrcb to RB). Above the radiative

−convective boundary and below the photosphere, the
atmosphere is approximately isothermal because any major
temperature anomaly will be radiated away through blackbody
radiation. The greatest temperature difference is found by
evaluating Equation (15) at its extrema. The smallest value is
when F= 0, and the largest value occurs when the radiative
heat component equals the outward heat flux (Equation (26)).
The difference between these extrema is less than 20%.
Because we focus on hot planets with large outward heat
fluxes, thermal deviations will be significantly smaller than the
theoretical maximum of 20%. Under the isothermal assump-
tion, the density profile is given by the barometric formula
(Lente & Ősz 2020), which is derived in the following. We
start with the equation for hydrostatic equilibrium, and we
replace the density with the pressure by using the ideal gas
equation

m
= -

dP

dr
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k T
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r
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which can be integrated and solved for the density,
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Figure 7. The expected temperature profile of the planet during regime two. Temperature and distance are not to scale; TB, Trcb, Tab, Ts, Tmb, and Tcmb are the
temperatures at the Bondi radius, radiative−convective boundary, top of the atmospheric boundary layer, surface of the nucleus, top of the convecting magma ocean,
and metallic core−magma ocean boundary layer, respectively. R with the relevant subscript marks the radius at which each temperature is defined.
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The dependency on Trcb and Rrcb can be removed by
substituting in Equations (53) and (56), leading to
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Equations (57) and (60) apply when ρ� ρrcb and ρ< ρrcb,
respectively, so the governing equation for the density is given by

The density at the radiative−convective boundary is found by
rearranging
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The density at the Bondi radius can then be found with ρrcb and
Equation (60), allowing for an estimation of the mass-loss rate
using Equation (42).

To track the thermal evolution of the planet, we adopt the
same strategy as with regime one, except that we solve for the
conditions at the radiative−convective boundary instead of the
Bondi radius. Equation (27) provides the outward heat flux,
with which planetary cooling is determined using Equation (8).

6. Regime Three: XUV-induced Photoevaporation

In regime three, the atmosphere is cold enough for the
radiative−convective boundary and photosphere to form below
the Bondi radius. The atmosphere is thus convecting from its
base to the radiative−convective boundary, radiative from the
radiative−convective boundary to the photosphere, and con-
ducting from the photosphere to the Bondi radius (i.e., the
thermosphere; see Figure 8). In Section 6.1, we describe the
requirements for regime three. In Section 6.2, we show how to

model the conducting profile of the thermosphere to find the
conditions at the Bondi radius, with which the XUV-induced
mass-loss rate is found. In Section 6.3, we describe a procedure
for modeling mass loss during regime three, in which the loss
of hydrogen is limited by diffusion through the atmosphere.

6.1. Regime Three Requirements

The temperature profile of a chemically homogeneous
atmosphere composed of an ideal gas is given by the most
efficient heat flow mechanism. Above the photosphere, there is a
steep temperature gradient because energy cannot be efficiently
lost through radiation (the gas is optically thin) or convection

(the gas is stably stratified if it is gravitationally bound), so
conduction is the only major heat-loss mechanism available
(Spitzer 1949; Chamberlain 1962; Gross 1972). A planet will
therefore transition from regime one or two to regime three when
its Bondi radius is equal to or larger than the photosphere. This
will occur when the optical depth at the Bondi radius is equal to
2/3 (see Equation (45)). As explained previously, this condition
can be expressed as a Bondi radius temperature,


k mr
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, 64n
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with the corresponding basal atmospheric temperature, depend-
ing on the mass of the nucleus and atmosphere, and the
thermodynamic conditions of the interior.

6.2. Atmospheric Model

In this regime, atmospheric evaporation is driven by XUV
irradiation. The region above the photosphere is called the
thermosphere and can be modeled in two ways: as a static gas
(Chamberlain 1962; Gross 1972; Horedt 1982) or a hydro-
dynamic one (Sekiya et al. 1980; Watson et al. 1981; Zahnle &
Kasting 1986; Yelle 2004; Lammer et al. 2013). The static
approach has been shown to adequately model the thermo-
spheric profile of Earth (Bates 1951, 1959; Kelly et al. 1983;
Hedin et al. 1991; Gusev et al. 2006; Emmert et al. 2021), but it
predicts temperatures that are implausibly high when applied to
primordial atmospheres (Gross 1972; Horedt 1982). As first
proposed by Öpik (1963), if the thermospheric temperatures
exceed the critical temperature m g=T GM k r2 n B( ), the
atmosphere becomes transonic so that the static model is no
longer applicable all the way to the XUV absorption radius
RXUV. It has therefore become common to model the thermo-
spheres of exoplanets with the hydrodynamic approach,
predicting significantly lower temperatures (e.g., Kubyshkina
et al. 2018a, 2018b). In this paper we adopt the static
conduction model of Gross (1972), but only until the Bondi
radius, where gases become hydrodynamic. Beyond the Bondi
radius, gases cool from their adiabatic free expansion, so our
atmospheric model has its highest temperatures at the Bondi
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radius. This is a different approach from the one adopted by
Gross (1972), who assumes that the temperature keeps
increasing until the XUV absorption radius RXUV. Figure 9
shows a schematic drawing of our approach when compared
with Gross (1972) and a standard hydrodynamic approach.

We adopt a conductive temperature profile for the thermo-
sphere,

p
-

=
Q L

r
k

dT

dr4
, 65XUV

2
( )

where the left-hand side describes the energy balance, with
QXUV being the incoming XUV luminosity, L being the cooling
rate, and the denominator of the fraction being the area; the
right-hand side is the conduction equation. The above equation
assumes that the heat flux through each layer of the upper
atmosphere is constant. This assumption is justified because the
energy contribution from XUV irradiation vanishes with
optical depth as follows (Sekiya et al. 1980):

t t
t

-
+

F

F 0

exp

1 2
, 66XUV

XUV
( )

( )
( ) ( )

where τ scales almost linearly with distance. In other words,
the energy contribution from absorbed XUV photons below the
Bondi radius scales as Î - rexp[ ( )], whereas the energy
contribution from conduction from the Bondi radius downward

scales as Î r1( ). In addition, Gross (1972) showed that
cooling is negligible because gas below the XUV absorption
radius RXUV is optically thick to XUV photons, so the
reemission of an XUV photon will probably result in a
subsequent reabsorption elsewhere in the vicinity. Setting
L= 0 and expressing QXUV as p xR FB

2
XUV XUV transforms

Equation (65) to

x p p=R F r k
dT

dr
4 , 67XUV B

2
XUV

2 ( )

where ξXUV is an efficiency factor accounting for the fraction of
incoming XUV photons that get absorbed and heat the local
gas. The thermal conductivity can be expressed as a function of
the temperature C T C

1 2, where C1 and C2 are constants (see
Equation (11) and Table 2), so

x
=

dT

dr

F R

C T r4
. 68

C
XUV XUV B

2

1
22

( )

The efficiency factor ξXUV may be expressed as a function of
two components:

x x x= , 69XUV 2 3 ( )

Figure 8. The expected temperature profile of the planet during regime three. Temperature and distance are not to scale; TB, Tp, Trcb, Tab, Ts, Tmb, and Tcmb are the
temperatures at the Bondi radius, photosphere, radiative−convective boundary, top of the atmospheric boundary layer, surface of the nucleus, top of the convecting
magma ocean, and metallic core−magma ocean boundary layer, respectively. R with the relevant subscript marks the radius at which each temperature is defined.
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where ξ2 is the absorption efficiency of XUV energy by the
gas. This is found by solving the following integrals:

ò

ò
x

x
=





E E t dE

E t dE

,

,
, 702

XUV

XUV

( ) ( )

( )
( )

where ξ(E) is the heating efficiency of an ionizing photon with
energy E (Dalgarno et al. 1999) and  E r,( ) is the shape of the
stellar XUV spectrum as a function of energy and time (Locci
et al. 2019). The time dependency of the spectrum is estimated
with

= +    E t t E t E, , 71so so ha ha( ) ( ) ( ) ( ) ( ) ( )

where  Eso( ) and  Eha( ) are the soft and hard components of
the XUV bands, respectively, and so and ha are coefficients
that evolve with time (Micela 2002). Using the spectral data
from Raymond & Smith (1977), Locci et al. (2018, 2019)
solved the above integral and found that ξ2; 0.8.

The parameter ξ3 accounts for the fraction of the deposited
energy that is used in the dissociation of atomic and molecular
hydrogen. We define ξ3 as

x =
- Dhf H

hf
, 723

¯
¯ ( )

where h is Planck’s constant, f̄ is the average frequency of an
XUV photon ( »hf 20 eV¯ ), and ΔH is the enthalpy of
ionization. The extreme-ultraviolet (EUV) absorption cross

section of hydrogen is three orders of magnitude higher than
that for X-ray photons (e.g., Spitzer 1978), so EUV photons
contribute more to heating at the highest sections of the
thermosphere. X-ray photons would, however, penetrate
deeper into the atmosphere and heat the regions closer to
the photosphere more than EUV photons (Kubyshkina et al.
2018a). We do not include the energy dilution from the
absorption of X-rays by heavier species because our model
assumes primordial atmospheres with no further atmospheric
enrichment (see Sections 1 and 3.3). We therefore include
ionization arising from both energy bands. We consider the
ionization of atomic hydrogen only; incorporating molecular
hydrogen, photochemistry, other chemical impurities, and the
possibility of nonthermodynamic equilibrium (Dewan 1961;
Fridman 2008) are beyond the scope of this paper. The total
enthalpy of an atomic hydrogen plasma is (Capitelli et al.
2008)

= + + - +H X k T X E XI
5

2
1 1 , 73B H H( ) ( ) ( )

where X is the ionization degree, IH is the ionization energy of
atomic hydrogen, EH is the electronic energy of atomic
hydrogen

= -


E I 1
1

, 74H H 2
( )⎛

⎝
⎞
⎠

Figure 9. Schematic drawing showing the difference between the model of Gross (1972; gray dotted line), the typical results from hydrodynamic models (black solid
line), and our approach (black dashed line). T0 and R0 are the bottom reference temperature and radius, RB,s and TB,s are the Bondi radius and temperature predicted by
our approach, RB,h and TB,h are the Bondi radius and temperature predicted by hydrodynamic models, and RXUV and TXUV are the radius and temperature at the XUV
absorption region, respectively. The conditions at the Bondi radius (RB) define the mass-loss rate, so we do not consider any altitudes above it in our theory.
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and  is the principal quantum number. The enthalpies of
nonionized gas at zero kelvin and at a finite temperature are

=H E0 75ni H( ) ( )

and

= +H T k T E
5

2
, 76ni B H( ) ( )

respectively, so

= +H T H k T0
5

2
. 77ni ni B( ) ( ) ( )

By performing a similar manipulation for fully ionized gas
(subscript i), one arrives at

= + - DH T H k T I0 5 , 78i i B H( ) ( ) ( )

where ΔIH is an ad hoc correction that accounts for the
Coulomb interaction of other ions and electrons (Griem 1962;
Capitelli & Molinari 1970; Capitelli et al. 2008; Zaghloul
2008, 2009). The enthalpy change from ionization is

D = D + - DH T H k T I0
5

2
, 79B H( ) ( ) ( )

where

D = -H I E0 . 80H H( ) ( )

Assuming that before ionization all gas particles are in their
ground state, that is, the principle quantum number is 1, we have
EH= 0 and D = = ´ -H I0 2.178 10 JH

18( ) (13.595 eV). The
variable ΔIH is given by Griem (1962),
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where Zj is the atomic number, qβ is the charge of an electron, n
is the number density, N is the number of species present (i.e.,
one for a pure gas), ε0 is the permittivity of free space, and εr is
the relative permittivity. For atomic hydrogen N= 1, Z1= 1
and εr; 1. Through further manipulation, Equation (81)
becomes

DI I
XP

T
52 , 82H H 2

1
2

 ( )⎛
⎝

⎞
⎠

which can be shown to always be negligible by considering the
lower and upper bounds of the thermosphere at the photosphere
and Bondi radius, respectively. At the photosphere, the XUV
optical depth is very high, so the degree of ionization X is
dictated by thermal collisions, which is adequately modeled by
the Saha equation (Saha 1920, 1921; Fridman 2008). For
typical photospheric conditions, the degree of ionization is
vanishingly small, so ΔIH is negligible. At the Bondi radius,
ionization occurs because of incoming XUV photons so that X
approaches one, though pressures are very low and tempera-
tures are high, so ΔIH is also negligible. ΔIH is therefore
several orders of magnitude smaller than the ionization energy

of hydrogen and is thus ignored. The efficiency is therefore

x =
- -

=
-

hf I k T

hf
T T

T
, 83

3
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2 B

1

2

¯

¯
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x x=
-T T

T
, 84XUV 2

1

2
( )

where T1 and T2 are constants of value 2.97× 104 K and
9.28× 104 K, respectively. Equation (84) sets an upper limit
for the mass-loss efficiency because it does not consider the
absorption of XUV photons by escaping winds. This effect is,
however, probably minor because escaping winds are mostly
composed of ionized atomic hydrogen (i.e., free protons;
Kubyshkina et al. 2018b) that cannot absorb photons. Free
protons cannot absorb photons because it would violate energy
and momentum conservation. Equation (68) can therefore be
expressed as

x
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-dT

dr

T T
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Integrating the above equation with the lower and upper limits
at the photosphere and Bondi radius, respectively, leads to the
following:
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where mi is the ionized mean molecular weight (0.5 amu) and
2F1 is the hypergeometric function, which does not deviate
much from unity. It is therefore possible to approximate 2F1
with the first two terms of its power series so that
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Equation (87) can be solved through iteration. The density
profile is found by combining Equation (85) with the equation
for hydrostatic equilibrium:
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which can be solved to give
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The hypergeometric function was again replaced by the first
two terms of its power approximation, and the pre-exponential
parameters and numbers come from the definition of the
photosphere (see Appendix A.5). Because the conditions at the
Bondi radius are now known, the mass-loss rate can be
estimated with

px r px r» +M R u R u3 . 90B 1 B
2

B B XUV 1 B
2

B B th ( ) ( ) ( )

Equation (90) assumes that one-fourth of the planet’s surface
area is exposed to XUV irradiation whereas the other three-
fourths experiences mass loss due to thermal energy. Figure 10
shows the ratio of the XUV component divided by the thermal
component of Equation (90).

Our strategy for modeling the thermal evolution of the planet
during regime three (with and without the diffusion limit) is
identical to that of regime two. After setting the initial magma
ocean temperatures, we use Equations (7) and (13) to find the
temperature at the base of the atmosphere (i.e., above the top
boundary layer of the magma and bottom boundary layer of the
atmosphere). Using Equation (27), we find the outward heat
flux, which is then used in Equation (8) to track planetary
cooling.

6.3. Diffusion-limited Loss

XUV-induced photoevaporation preferentially removes hydro-
gen relative to other species because of its low mass. Heavier
species are lost by gaining escape velocity through continuous
collisions with the lighter hydrogen (Hunten et al. 1987;
Zahnle et al. 1990; Chassefière 1996; Luger & Barnes 2015).

The preferential loss of hydrogen occurring at the Bondi radius
will briefly generate a local compositional gradient that will
trigger the diffusive transport of hydrogen from the deeper
layers. Diffusion would be the only mechanism that can
restock the locally depleted hydrogen because the thermo-
sphere is stably stratified. The above prescription would
indicate that there must exist an equilibrium between the
diffusive transport of hydrogen and its loss at the Bondi radius.
In the early stages of regime three when the internal
temperatures can still be high, eddy diffusion will be the
dominant form of mass transport above the photosphere,
whereas molecular diffusion would dominate if a heterosphere
forms after sufficient cooling.

6.3.1. Eddy Diffusion Limit

The eddy diffusion limit applies when the molecular
diffusion coefficient, D, is smaller than the eddy diffusion
coefficient, Kzz, at every location above the photosphere.
Whereas the molecular diffusion coefficient is well constrained,
the eddy diffusion coefficient is uncertain. Above Earth’s
tropopause, mixing occurs because of gravitational waves
breaking and releasing potential energy that leads to mechan-
ical mixing (e.g., Lindzen 1971, 1981). Lindzen (1971)
suggested that wave breaking should result in an eddy diffusion
coefficient that scales with the square root of the inverse
pressure. Parmentier et al. (2013) found the same pressure
dependency from their 3D simulations of exoplanet atmo-
spheres, whereas Charnay et al. (2015) proposed that an
exponent of −2/5 produced more accurate results. They
suggest that in close orbiting exoplanets, the strong temperature
contrast between the dayside and nightside gives rise to
global horizontal winds that also contribute to mixing.
For a convecting system, the eddy diffusion coefficient scales
with −1/3 (see Equation (92) below), whereas it scales
with −1/2 for gravitational wave breaking, explaining the
intermediate value of −2/5 used in their model. On Earth,
the eddy diffusion coefficient increases until the location where
gravitational waves break, after which the pressure trend of
the eddy diffusion coefficient reverses (e.g., Shimazaki 1971;

Figure 10. The ratio of the XUV component divided by the thermal component of Equation (90). The ratio approaches 1 at higher magma ocean temperatures and then
becomes 0 when the system transitions into regime two.
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Kirchhoff & Clemesha 1983; Lübken 1997; Vlasov & Kelley
2015). Because horizontal convection also contributes to
mixing on hot exoplanets, it is uncertain whether a reversal
will occur, so we adopt the eddy diffusion relation proposed by
Charnay et al. (2015),
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P

P
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where Krcb is the eddy diffusion coefficient at the radiative
−convective boundary given by Gierasch & Conrath (1985),
Ackerman & Marley (2001), and Lupu et al. (2014),
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and λ is the mixing length. Equation (92) is derived by
assuming that gases are inviscid and well described by mixing-
length theory. Because the mixing length is poorly constrained,
it is generally assumed to be equal to the scale height. There
are, however, two major issues with this assumption. First, the
scale height and mixing length are two separate concepts, and
second, they have different dependencies. A more reasonable
approach may be to use the scaling arguments provided by
atmospheric models, or to apply Kolmogorov theory. Accord-
ing to the atmospheric models of Smith (1998) and Charnay
et al. (2015), the mixing length is approximately 1/10 of the
scale height. A similar result is attained from Kolmogorov
theory (Kolmogorov 1941a, 1941b), stating that most energy
transfer (and hence most mass transfer) is from eddies that are
of the order 1/10 the length scale (i.e., the energy-containing
range; Pope 2000). The length scale is comparable to the scale
height because coherency can only be maintained in relatively
isobaric regions. The molecular diffusion coefficient is given
by Chapman–Enskog theory (Chapman & Cowling 1970), and
it scales as

=
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where pressure can change by many orders of magnitude,
whereas the temperature changes by at most one, so the
molecular diffusion coefficient can also be approximated as
only depending on the pressure,
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Here Drcb is the molecular diffusion coefficient at the radiative
−convective boundary given by Chapman & Cowling (1970),
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For the eddy diffusion limit to apply, it is necessary for the
eddy diffusion coefficient to be greater than the molecular
diffusion coefficient at the Bondi radius

>K D . 96B B ( )

If the above inequality is satisfied, the eddy diffusion limit can
be found by considering the boundary conditions at the
photosphere. Below the photosphere temperatures decrease

with height (e.g., Parmentier & Guillot 2014), whereas above
the photosphere they increase owing to the conductive
temperature profile (e.g., Bates 1951, 1959). This suggests
that there must exist a boundary where dT/dr= 0, which is
where the diffusion limit is evaluated. We adopt the same
formulation as Fick’s first law of diffusion but for eddy
diffusion at the photospheric boundary

r
= -F K

d
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, 97pH ( )

where the temperature is treated as a constant because dT/
dr= 0 at the boundary. By inserting hydrostatic equilibrium,
one gets
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with p being the scale height at the photosphere. The eddy-
diffusion-limited mass flow is
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6.3.2. Molecular Diffusion Limit

If Equation (96) is not satisfied, molecular diffusion will
become the limiting factor for mass loss (Hunten 1973; Kasting
& Pollack 1983; Zahnle & Kasting 1986; Zahnle et al. 2019,
2020; Catling et al. 2001). The equation for the molecular-
diffusion-limited mass loss is similar to Equation (99), but with
the eddy diffusion coefficient replaced by the molecular one, as
well as all parameter values being given by the conditions at
the turbopause (i.e., the location where Kzz=D) and not the
photosphere:

p
r

=


M R D4 . 100a t t
t

t

2 ( )

7. Representative Results

Having described our atmospheric, interior, and mass-loss
framework, we now provide some representative results, which
we compare with other approaches in the literature. Figure 11
shows the predicted atmospheric evaporation rates as a function
of the surface temperature for an exoplanet that is three times
the mass of Earth with a metallic core-mass fraction of 26%,
covered by a primordial (hydrogen-rich) atmosphere that is 1%
of the total planetary mass with an equilibrium temperature of
500 K and being exposed to an XUV radiant flux of
0.1Wm−2. Our results (with and without the diffusion limit)
are compared with the predictions of the energy-limited
(Watson et al. 1981), core-powered mass-loss (Biersteker &
Schlichting 2019, 2021), and hydro-based models (Kubyshkina
et al. 2018a, 2018b). The gray regions mark the typical
uncertainty of the hydro-based and energy-limited models. As
shown by Figure 11, our model without the diffusion limit
(thick solid line) falls within the uncertainty of the hydro-based
model for the low temperature range (regime three). The solid
line with the circles in regime three accounts for the eddy
diffusion limit discussed in Section 6.3.1. The molecular
diffusion limit does not apply anywhere in the atmosphere
because it has not formed a heterosphere. The hydro-based
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model diverges in regime two because it assumes that mass loss
depends always on the photospheric radius to the third or fourth
power, which becomes very large and migrates outside the
Bondi radius at high temperatures. The hydro-based model is
an analytic fit to fluid dynamical simulations of the thermo-
sphere (i.e., above Rp), with the sections below the photosphere
being modeled a priori and coupled through Markov Chain
Monte Carlo algorithms (Fossati et al. 2017). In other words,
the hydro-based model assumes a thermosphere, and it is
therefore not applicable to regimes one and two, in which a
thermosphere does not exist. Because the hydro-based model is
designed for regime three, it should not be employed for
regimes one and two.

The energy-limited model,

px
=M

R R F

GM K
, 101a

p

n

el XUV
2

XUV ( )

depends linearly on the photospheric radius. It is assumed to
have a constant heating efficiency of ξel= 0.1− 0.4 (shown by
the gray uncertainty in Figure 11), with K being the reduction
factor, which is of the order unity. The parameter RXUV is the
XUV absorption radius, which is sometimes assumed to be
synonymous with the XUV photosphere (i.e., τXUV= 2/3; e.g.,
Murray-Clay et al. 2009). This assumption is not always
justified because it is valid only when the XUV photosphere
lies within the Bondi radius. When an atmosphere is
experiencing hydrodynamic outflow, the XUV absorption
radius is given by the Bondi radius because it is the highest
point in the atmosphere (see Section 6). Not recognizing this
distinction leads to implausibly high thermospheric tempera-
tures (Gross 1972; Horedt 1982). The energy-limited model
predicts mass-loss rates lower than ours by several orders of
magnitude in regimes one and two. It is, indeed, well

documented that the energy-limited approach underestimates
the mass-loss rate for hydrodynamic atmospheres (e.g., García
Muñoz 2007; Lammer et al. 2013; Kubyshkina et al.
2018a, 2018b; Krenn et al. 2021) because it does not
adequately implement stellar thermal irradiation and interior
energy. In regime three, the diffusion of hydrogen limits mass
loss, so our model with diffusion predicts lower mass-loss rates
than the energy-limited approach (see also Zahnle et al. 2019).
The core-powered mass-loss model does not rely on the

photospheric radius and instead depends on the Bondi radius or
the radiative−convective boundary. Ginzburg et al. (2018) use
two equations for modeling mass loss: (1) the Bondi-limited
mass-loss approach (our Equation (42)), and (2) an energy-
limited approach (not to be confused with the energy-limited
XUV model, given by Equation (101)):

p
=M

R F
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4
. 102a

n

rcb
3

rcb ( )

Equation (102) assumes that mass loss is limited by the amount
of energy required to do work against gravity in restocking the
lost mass at the Bondi radius by transporting gas from the
radiative−convective boundary upward. The mass-loss rate is
estimated by adopting the minimum value of Equations (42)
and (102). The above formulation is hard to justify even if
matter needs to be restocked in the upper sections of the
atmosphere. When an atmosphere loses mass, it will experience
an adiabatic expansion because the mass deficit at the Bondi
radius will cause hydrostatic equilibrium to no longer be
satisfied. The atmosphere will decompress, by using potential
energy to do work against gravity in transporting mass to the
Bondi radius. The decompressed atmosphere will then assume
its new equilibrium thermal structure. This process is

Figure 11. The predicted atmospheric evaporation rates as a function of the surface temperature for an exoplanet that is three times the mass of Earth with a core-mass
fraction of 26%, a primordial (hydrogen-rich) atmosphere that is 1% of the total planetary mass, and an equilibrium temperature of 500 K, experiencing an XUV
radiant flux of 0.1 W m−2. The black solid (with circles), thick black solid, dashed, dashed–dotted, and dotted lines are for our model with and without the diffusion-
limited mass loss included, the energy-limited model (Watson et al. 1981), the core-powered model (Biersteker & Schlichting 2019, 2021), and the hydro-based model
(Kubyshkina et al. 2018a, 2018b). The gray regions mark the typical uncertainty of the hydro-based and energy-limited models. Regime one was modeled with
Equation (42), where the radius, density, and temperature (for calculating the velocity in Equation (43)) were given by Equations (2), (41), and (38), respectively.
Regime two uses Equations (61) and (63) for the density and Equation (32) for the temperature. The mass-loss rate in regime three without the diffusion limit (w/o D.
L.) was estimated with Equation (90), where the density and temperature were given by Equations (89) and (87), respectively. The mass-loss rate in regime three with
the diffusion limit (D.L.) was given by Equation (100), with the density and eddy diffusion coefficients given by Equations (A17) and (92), respectively.
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independent of the mass of the nucleus because all the energy
will come from the decompression of the atmosphere. Energy
cannot come from the nucleus because the atmosphere is
optically thick (see Figure 5). The core-powered mass-loss
model predicts lower mass-loss rates than our model (i.e.,
Ginzburg et al. 2018; Biersteker & Schlichting 2019, 2021)
because of the adoption of this upper limit.

The applicability of the hydro-based and energy-limited
models is restricted to regime three, whereas the core-powered
mass-loss model is better suited for regime two. The above-
mentioned models do not consider the different regimes that an
atmosphere assumes under different thermodynamic condi-
tions. Figure 12 shows how the radius and temperature profile
of a planet with a primordial atmosphere (with the planetary
properties equal to those used in Figure 11) change as a
function of the surface temperature, as well as illustrating the
three regimes of atmospheric evaporation. In regime one, the
atmosphere is very hot and fully convecting, so the Bondi
radius is small. In regime two, a radiative section has formed,
but the atmosphere is still optically thick, so XUV irradiation
cannot efficiently heat the atmosphere. The atmosphere there-
fore assumes the equilibrium temperature set by stellar
irradiation, resulting in a large Bondi radius. In regime three,
the photosphere has migrated beneath the Bondi radius, so the
top sections of the atmosphere are optically thin, and XUV
heating becomes important. High thermospheric temperatures
lead to a contraction of the Bondi radius because gases become
hydrodynamic at lower altitudes. The regime a planet is in
depends mainly on the mass of the nucleus and atmosphere, as
well as the interior temperatures. However, because mass loss
and radiative cooling do not occur concurrently (the former is
greater than the latter as shown in Figure 5), a planet is unlikely
to transition from regime one to two but more likely to
transition from regime one to three or from regime two to three.
Figure 13 shows the atmospheric evolution of 3 and 9 M⊕
planets with different internal thermodynamic properties,
respectively. Indeed, the 3 M⊕ planets experience total
atmospheric loss in short time frames, whereas the 9 M⊕

planets can survive for billions of years when the diffusion
limit is considered. In other words, planets with greater masses
are more likely to keep their primordial atmospheres even after
their highly energetic formations and exposure to high-energy
irradiation from their host stars than lower-mass planets. The
atmospheric mass evolution shown in Figure 13 is calculated as
follows. Starting with the mantle potential temperature, Tmb,
the temperature at the bottom of the convecting atmosphere Tab
is found. The Bondi radius properties, such as the density and
temperature, are then evaluated depending on the planet’s
regime. The mass-loss rate and cooling rate are then found,
with which the conditions of the nucleus and atmosphere are
updated. The algorithm is then repeated until the simulation is
finished.

8. Discussion

8.1. Interpreting Our Results

The two most cited mass-loss mechanisms for the bimodal
distribution of exoplanet radii are XUV-induced photoevapora-
tion and core-powered mass loss. The former mechanism is
usually thought to be more consistent with data because it can
explain the radius distribution and the sub-Jovian desert, that is,
the lack of planets with large radii at very close distances to
their host stars (e.g., Fulton et al. 2017; Owen & Lai 2018). The
core-powered mass-loss model cannot explain the sub-Jovian
desert because it is independent of external heat sources; this
has been used as a justification for ignoring the internal heat
flux as a source of mass loss. However, the discovery of young,
low-mass exoplanets with densities lower than cold hydrogen
(i.e., super-puffs; Benatti et al. 2019, 2021; Libby-Roberts et al.
2020) has provided renewed support for the core-powered
mass-loss model because only with high internal luminosities
can such enlarged radii be attained (Lopez & Fortney 2014). In
other words, a combination of photoevaporation and core-
powered mass loss is required for the bimodal distribution, sub-
Jovian desert, and super-puff presence to be explained. Our
atmospheric evaporation model is the first to unify both

Figure 12. 2D plot showing how the Bondi radius and temperature profile of a planet, with the same properties as those given in Figure 11, change with surface
temperature. The solid, dashed–dotted, and dotted lines are for the Bondi radius, photosphere, and radiative−convective boundary, respectively. The darker area
encased between the dashed–dotted and solid lines in regime three is the thermosphere.
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mechanisms for estimating the mass-loss rate of super-Earth
and sub-Neptune exoplanets. This combination gives rise to
unforeseen emergent properties, such as the three regimes of
atmospheric evaporation. Our findings provide a strikingly new
outlook in which photoevaporation and core-powered mass
loss are not competing explanations but integral parts of the
evaporation history of exoplanets.

Regime one applies only to planets with very hot interiors
and guarantees an almost total atmospheric loss. Regime two is
for planets with cooler interiors when mass loss is still driven
by internal energy but the atmosphere has developed a radiative
region. Regime three is for planets with even lower
temperatures when mass loss occurs primarily from XUV
irradiation. Whereas regime three can last for billions of years
(evidenced by observations of highly irradiated exoplanets with
hydrogen-rich atmospheres), regimes one and two are transient
because of the extreme mass loss that occurs as a consequence
of high surface temperatures (see the left panel of Figure 13).
As shown by Figure 6, planets with greater masses require
higher magma ocean temperatures to be in regime one, which is
less likely because radiative cooling takes place between each
giant impact (Schubert et al. 1986; Sossi et al. 2022). It is
therefore more probable for super-Earths and sub-Neptunes
with smaller masses to be in regimes one or two than more
massive ones, so greater mass-loss rates are expected. Not only
are more massive planets less prone to total evaporation, but
they are also more likely to accrete larger atmospheres (e.g., Ida
& Lin 2004, 2005; Ikoma & Hori 2012). This suggests that for
very low mass exoplanets the probability of hosting a
primordial atmosphere is close to 0, whereas for exoplanets
with large enough masses the probability approaches 1. There
must therefore be a critical mass at which half of all planets
have primordial atmospheres. Evidence for this critical mass
comes from the bimodal distribution of exoplanet radii where
the first (1.3 R⊕) and second maxima (2.4 R⊕) are consistent
with planets lacking and having primordial atmospheres,
respectively (e.g., Owen & Wu 2017; Modirrousta-Galian
et al. 2020). Mass measurements are unavailable for most
planets in the radius distribution, so the critical mass can only
be inferred indirectly through modeling. For example, the first
maximum at 1.3 R⊕ and the minimum point at 1.75 R⊕ are

consistent with planets of mass 3 M⊕ and 8–9 M⊕, respectively
(e.g., Lehmer & Catling 2017; Owen & Wu 2017; Jin &
Mordasini 2018). The critical mass must be bound by this
range because masses below would not lie in the second
maximum, whereas masses above would likely experience
runaway gas accretion (e.g., Stevenson 1982; Ikoma et al.
2000). Further constraints on this critical mass are crucial for
understanding the evolution of super-Earths and sub-Neptunes.
Our model provides a plausible explanation where low-mass
exoplanets are likely in regime one or regime two and
experience extreme mass loss, and massive planets that just
experience regime three can hold onto their primordial
atmospheres through geological time. Determining the location
of the critical mass requires simulations and will therefore be
left for future studies.

8.2. On the Possibility of Ice-rich Mantles

It has been suggested that sub-Neptunes may be rich in ices,
such as Jupiter’s moon Europa and Saturn’s moon Enceladus
(e.g., Zeng et al. 2019; Mousis et al. 2020; Venturini et al.
2020). Our theoretical framework would still apply to planets
with such properties, though the numerical values of the
parameters would have to be changed. Atmospheric evapora-
tion would still be dominated by hydrogen loss in the early
stages of a planet’s life because of the thermal decomposition
of water into hydrogen and oxygen at the high temperatures
after a giant impact. In other words, the atmosphere would
experience outflow as prescribed by regimes one and two at
high enough magma temperatures. XUV-induced photoeva-
poration (i.e., regime three) would occur after sufficient cooling
if a hydrosphere reforms because water can absorb XUV
photons and ionize (e.g., Johnstone 2020). The fundamental
physics of our approach would therefore still apply to planets
even if they are ice-rich.

8.3. Model Limitations

A major advantage of our model is that it is analytic, so it
can provide insights into planetary science, without being
obscured by the details of numerical modeling. There are,
however, some disadvantages that warrant discussion. In the

Figure 13. The atmospheric evolution of 3 and 9 M⊕ planets with different internal thermodynamic properties. Left: the black solid, gray dashed, and black dashed–
dotted lines are for 6000 K with diffusion limit, 6000 K without diffusion limit, and 10,000 K with no difference between the diffusion and no diffusion limit cases,
respectively. Right: the dashed, dashed–dotted, solid, and dotted lines are for 6000 K with and without the diffusion limit and 10,000 K with and without the diffusion
limit, respectively.
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following, we list the atmospheric and geophysical limitations
of our framework.

8.3.1. Atmospheric Model Limitations

Our model assumes an ideal gas with constant opacity, heat
capacity ratio, composition, and no chemistry. Real systems
are, however, dynamic, as can be seen by the geological history
of the terrestrial planets in our solar system. Adopting a more
complex numerical prescription, such as an atmospheric
general circulation model (e.g., Leconte et al. 2013; Lefèvre
et al. 2021), wavelength-dependent opacities (e.g., Fortney
et al. 2007; Nettelmann et al. 2011), and a comprehensive
atmosphere-interior chemical model (e.g., Kite et al. 2020; Ito
& Ikoma 2021), would increase the accuracy of our model,
though it would be computationally demanding. As of writing,
more detailed atmospheric evaporation simulations do not
include the three regimes within their framework because they
assume a priori that a thermosphere exists and mass loss is
always driven by XUV irradiation (e.g., Kubyshkina et al.
2020). Our analytic framework provides a stepping stone for
more thorough mass-loss models by showing that the evolving
thermodynamic conditions of planetary interiors will influence
the mass-loss mechanism taking place.

8.3.2. Geophysical Model Limitations

One reason for our nebulous understanding of the conditions
after giant impacts is the poorly constrained equations of state
of materials under extreme conditions (e.g., Jing & Karato
2008, 2011; Lock & Stewart 2017). In this paper, we used
the reference values for the magma ocean conditions of
Solomatov (2015) with the specific heat from Miyazaki &
Korenaga (2019). However, the extent to which these values
are valid for very high temperature conditions is uncertain.
For example, the viscosity of magma typically follows the
empirical Vogel–Fulcher–Tammann law (Dingwell et al.
2004). Extrapolating this law suggests that its viscosity could
be less than that of water at the extreme conditions after giant
impacts. Such low viscosities would influence the magma
cooling timescale, as well as potentially being outside the
domain of the classical 1/3 scaling of convection (e.g., Iyer
et al. 2020). Furthermore, the standard density of the magma
ocean used may not be representative of the conditions of all
super-Earths and sub-Neptunes because (1) higher-mass
planets probably have denser magma oceans because of their
greater internal pressures and gravities and (2) the geochem-
istry of the magma oceans may differ substantially from those
of Earth (e.g., Rouan et al. 2011; Modirrousta-Galian et al.
2021). Because our model is analytic, it is straightforward to
replace the chosen reference values with any future improved
data sets.

9. Conclusion

In this paper we present our self-consistent atmosphere-
interior model that considers internal heat from the cooling
nucleus and stellar irradiation (thermal and XUV), for the
atmospheric evaporation of super-Earths and sub-Neptunes.
We have shown that there are three regimes of atmospheric
evaporation that depend on the mass of the nucleus and
atmosphere, as well as the internal thermodynamic conditions.
Regarding the long-standing debate on whether XUV irradia-
tion or core-powered mass loss is responsible for the

atmospheric evaporation of super-Earths and sub-Neptunes,
our theory indicates that they both play important roles but with
different timescales. Regimes one and two occur immediately
after the last giant impact if the magma ocean temperatures are
high enough, when mass loss is efficient but cooling is not
because the atmosphere is optically thick. The atmosphere will
therefore remain in that regime until the photosphere migrates
below the Bondi radius, allowing a thermosphere to form in the
upper sections of the atmosphere. Because the thermosphere is
optically thin, XUV photons become a major heat source and
the primary mechanism leading to mass loss in regime three.
Our model provides a comprehensive framework describing the
circumstances at which photoevaporation and core-powered
mass loss occur. Indeed, the framing of the question should not
be whether one mechanism is responsible or the other, but
rather when one mechanism is active versus the other.
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80NSSC19M0069 issued through the Science Mission Direc-
torate and the National Science Foundation under grant EAR-
1753916. This work was also supported in part by the facilities
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Appendix

A.1. Derivation of Jeans’s Mass Loss

The Jeans’s escape particle flux is (Catling & Kasting 2017)
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To convert Equation (A1) to the mass-loss rate, the surface area
and mean molecular weight are multiplied to give
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where the density at the exosphere is found by equating the
mean free path of a particle with the local scale height
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=

´ + -

m m
p

m m

M

1 exp . A4

a
GM

d k T

GM

k T R

GM

k T R

2 n x x

x

n x

x x

n x

x x

2
B

1
2

B B

 ( )
( ) ( ) ( )

A.2. Derivation of Adiabatic Flow

The velocity solution for an ideal, isentropic, continuous,
and compressible gas is found by solving the continuity
equations. Consider a gas flowing through a diverging
frictionless pipe; the conservation of mass, momentum, and
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the isentropic equation of state are
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mass and integrating gives
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where the area, , has been substituted with 4πr2, and the
speed of sound, c, has been replaced with the speed of sound at
the Bondi radius, uB.

A.3. Derivation of Hydrostatic Optical Depth

The equation for the optical depth is

t
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which can be multiplied by the equation for hydrostatic
equilibrium to give
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Evaluating the above equation and inserting the ideal gas
equation gives
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A.4. Derivation of Energy Flux from Mass Loss

Consider a parcel of gas located at the Bondi radius. The loss
of gravitational potential energy in moving the parcel of gas
from the Bondi radius to the gravitational extent of the planet is
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where RHi is the Hill sphere. The Hill sphere is usually very
distant, such as for Earth, where it is 230 R⊕ from its center of
mass, so it can be ignored in energy calculations. The above
equation therefore becomes
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and converted into the heat flux by dividing through by the
surface area of the Bondi radius,

p
F

GM

R
M

4
, A16n

aml
B
3

  ( )

A.5. Derivation of the Photospheric Density

Starting from Equation (A12) and inserting τ= 2/3,
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Equation (A17) is only valid for atmospheres that are in regime
three. Equation (22) can be used to find the photospheric radius
and density with the knowledge that r Î - r 2( ) if the
atmosphere is in regime one or two:
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A.6. Tables

Tables 1 and 2 summarize the terms, parameters, and
constants used in this paper.
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Table 1
Subscript Meanings

Subscript Description

0 Conditions at zero pressure or reference conditions

a Atmosphere

ab Top of the atmospheric boundary layer

bol Bolometric

B Bondi radius

c Crystallization

cmb Metallic core–mantle boundary layer

cr Referring to the critical Rayleigh number

n Nucleus

eff Effective

eq Referring to the equilibrium temperature of the planet

EUV Extreme-ultraviolet

H Referring to hydrogen

ha Referring to the hard component of the XUV bands

Hi Referring to the Hill sphere

i Ionized

li Liquidus

mb Bottom of magma ocean boundary layer

ml Mass loss

mo Magma ocean (as a whole)

ni nonionized

p Photosphere

pl Planetary mass (or the mass of the nucleus)

rcb Radiative−convective boundary

s Magma ocean surface

so Referring to the soft component of the XUV bands

t Turbopause

th Referring to thermal photons

v Vapor pressure

w Referring to the outflowing winds

x Exobase

XUV X-ray and ultraviolet

⊕ Earth

e Sun

∗ Host star

23

The Astrophysical Journal, 943:11 (27pp), 2023 January 20 Modirrousta-Galian & Korenaga



Table 2
Parameters and Constants

Parameter Description Value Units Source

a Semimajor axis L m L

A Bond albedo L L L

Å Angstrom 10−10 m L

 Area L m2 L

amu Atomic mass unit 1.661 × 10−27 kg L

au Astronomical unit 1.496 × 1011 m L

α Volumetric thermal L K−1 L
expansion coefficient

αmb Volumetric thermal 5 × 10−5 K−1 Solomatov (2015)
expansion coefficient of

magma ocean boundary layer

C1 Conductivity constant one 4.00 × 10−2 L L

C2 Conductivity constant two 0.5 L L

cp Specific heat at constant L J kg−1 K−1 L
pressure

cp,mb Specific heat of magma 5000 J kg−1 K−1 Miyazaki & Korenaga (2019)
ocean boundary layer

 Time coefficient L L Locci et al. (2018, 2019)

d Kinetic diameter of particle L m L

D Molecular diffusion coefficient L m2 s−1 Chapman & Cowling (1970)

E Energy L J L

ε0 Permittivity of free space 8.854 × 10−12 m−3 kg−1 s4 A2 L

εr Relative permittivity for a gas ∼1 L L

ξ1 Scattering mass-loss efficiency 0.5 L This work

ξ2 Fraction of incident XUV 0.8 L Locci et al. (2018, 2019)
irradiance absorbed

ξ3 The fraction of energy Equation (83) L This work
not used for ionization

ξel Energy-limited efficiency 0.1 − 0.4 L Locci et al. (2018, 2019)

ξXUV Total XUV mass-loss Equation (84) L This work
efficiency

f Mole fraction L L L

f̄ Average frequency of 4.836 × 1015 s−1 L
XUV photons

F Energy flux L W m−2 L

g Gravitational acceleration L m s−2 L

G Gravitational constant 6.674 × 10−11 m3 kg−1 s−2 L

h Planck’s constant 6.626 × 10−34 m2 kg s−1 L

H Enthalpy L J L

 Scale height L m L

I Ionization energy of 2.178 × 10−18 J L
atomic hydrogen

k Thermal conductivity L W m−1 K−1 L

kmb Thermal conductivity of the 2 W m−1 K−1 Lesher & Spera (2015)
magma ocean boundary layer

K Reduction factor ∼1 L Erkaev et al. (2007)

Kzz Eddy diffusion coefficient L m2 s−1 Gierasch & Conrath (1985)
Charnay et al. (2015)

kB Boltzmann’s constant 1.381 × 10−23 m2 kg s−2 K−1 L
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Table 2
(Continued)

Parameter Description Value Units Source

κth thermal opacity of 1 m2 kg−1 L
molecular hydrogen

Cook & Metzger (1964)
κXUV XUV opacity of 105 m2 kg−1 Lee et al. (1976)

molecular hydrogen Backx et al. (1976)
Spitzer (1978)

Chadney et al. (2022)

l Mean free path of particle L m L

L Luminosity or cooling rate L W L

M Mass L kg L

n Particle number density L m−3 L

 Principal quantum number L L L

η Viscosity L Pa s L

ηmo Viscosity of magma ocean 0.1 Pa s Solomatov (2015)

σ Stefan−Boltzmann constant 5.670 × 10−8 W m−2 K−4 L

P Pressure L Pa L

ρ Density L kg m−3 L

ρmo Density of magma ocean 4000 kg m−3 Solomatov (2015)

QXUV Incoming XUV luminosity L W

qβ Electron charge 1.602 × 10−19 C L

R or r Radius L m L

 Regime L L L

Ra Rayleigh number L L L

Racr Critical Rayleigh number 1000 L L

 Shape of the XUV bands L s−1 Locci et al. (2018, 2019)

t Time L s L

T Temperature L K L

T1 Temperature constant one 2.97 × 104 K This work

T2 Temperature constant two 9.28 × 104 K This work

τ Optical depth L L L

μ Particle mass L kg L

u Average radial wind velocity L m s−1 L

λ Mixing length L m L

γ Heat capacity ratio 5/3 L L

γ0 Reference heat capacity ratio 4/3 L L

X Degree of ionization L L L

Z Atomic number L L L
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