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Abstract

Understanding the factors that contribute to U-Pb discordance in zircon is essential for interpreting isotopic data
and for assessing the validity of concordia intercept ages. Modification caused by interaction with metamorphic fluids
is often cited as a primary means by which significant or even complete isotopic resetting of U-Pb systematics in
zircon might be achieved under subsolidus conditions. We present a field example from the Napier Complex, east
Antarctica, in which a Palaeoproterozoic (2450-70 Ma) zircon population interacted locally with an Early Palaeozoic
(498 £ 1.7 Ma) aqueous fluid at upper-amphibolite facies conditions. Conventional ion microprobe analysis of
sectioned and polished grain surfaces indicates that fluid interaction resulted in minor disturbance of U and Pb in
zircons (both normal and reverse discordance) with limited displacement along a chord with a lower intercept that
coincides with the timing of fluid infiltration. In contrast, ion probe ‘drilling’ or depth profiling into unpolished
natural zircon crystal surfaces revealed extensive disturbance of U-Pb systematics, to depths of ~0.2 um, with near-
surface ages consistent with the timing of fluid influx at ~498 Ma. Although zircon underwent some radiogenic Pb
redistribution during fluid interaction, infiltrating fluids resulted in minimal grain-scale isotopic modification of
zircon. Based on ion probe depth profiling results, we propose that limited normal discordance observed in the
conventional ion microprobe zircon analyses, in this case, is controlled by an analytical mixture of reset and/or
recrystallised zircon along penetrative micro-fracture networks with that of adjacent unaffected zircon. We also
suggest that the observed reverse discordance is genuine, resulting from localised intra-grain net accumulations of
radiogenic Pb. We conclude that the isotopic response of zircon, in this case, is controlled by the interaction of an
aqueous metamorphic fluid, of low to moderate salinity, resulting in sub-micrometre depth scale isotopic modification
at natural crystal faces and along penetrative micro-fracture networks, and that grain-scale isotopic modification was
negligible. Therefore, we urge caution when considering regional chronological interpretations that appeal to
significant zircon isotopic resetting caused exclusively by metamorphic fluid interaction at upper-amphibolite facies
conditions. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Zircon U-Pb geochronology has proven invalu-
able in assessment of the temporal evolution of
numerous igneous and high-grade metamorphic
terranes worldwide. In many cases, particularly
in metamorphic rocks, U-Pb isotope systematics
of zircon often exhibit significant departures from
concordia. Proper understanding of the processes
that generate discordance in natural settings, and
the extent to which they operate, is necessary in
order to correctly interpret isotope data and to
assess the validity of concordia intercept ages
[1,2].

Researchers have long recognised that mobili-
sation of radiogenic Pb (Pb*), and less commonly,
U, from and within zircon can result in discord-
ance [1-6]. Classic interpretations of U-Pb dis-
cordance emphasised both episodic Pb loss in re-
sponse to younger geological events [3] and
longer-term diffusive Pb* loss [4]. Experimental
work, however, indicates that Pb diffusion within
pristine crystalline zircon even at elevated temper-
atures is extremely lethargic which suggests that
volume diffusion is unlikely to be the sole mech-
anism responsible for Pb* loss in most geological
environments [7,8]. Hence, the current consensus
is that for significant Pb* loss to occur in zircon,
various additional factors, such as o-radiation
damage, are important and often essential prereq-
uisites [2,8-11].

Metamorphic fluids have been widely inferred
to enhance mobility of Pb* in zircon, resulting in
isotopic discordance [9,11,12]. Empirical studies
confirm that, in the presence of hydrothermal flu-
ids, mobility of Pb and, in some cases, U from
zircon is a complex function of fluid composition,
pressure, temperature, time and, particularly, the
degree of radiation-induced lattice damage [9,13-
15]. Based on conventional U-Pb zircon analysis
and HF etching studies, Krogh and Davis [11]
speculated that zircon alteration and Pb* loss
was focussed along fractures and grain surfaces.
They further proposed that zircon alteration and
zircon discordance were strongly controlled by

fluid interaction at the crystal surface and along
penetrative fractures. Friend and Nutman [16] ex-
amined zircon behaviour during interaction with
an assumed CO,-rich granulite-facies metamor-
phic fluid in a field context and concluded that
U-PDb systematics, in pristine to slightly damaged
zircon, remained essentially unaffected. In con-
trast, Hogdahl et al. [12] demonstrate that highly
radiation damaged Palacoproterozoic zircons al-
most completely lost accumulated Pb* during
Caledonian-age low-temperature saline fluid inter-
action. Although other field studies imply that
interaction with transient metamorphic fluids fa-
cilitates substantial Pb* loss in zircon resulting in
partial to complete isotopic resetting [11,17-20], it
is often difficult to confidently demonstrate the
relationship of fluid infiltration with zircon iso-
topic modification. Furthermore, fluid composi-
tions considered responsible for zircon modifica-
tion in field settings are often uncertain. Isolating
the effects of fluid interaction from other compli-
cating factors such as deformation, which in the
presence of fluids is known to facilitate Pb mobil-
ity [21], is also problematic. These uncertainties
often necessitate extrapolation of well-defined em-
pirical studies to the geological environment, as
there are few field-based studies that explicitly ex-
amine zircon isotopic systematics with respect to
fluids of known composition. This raises impor-
tant issues. What is the magnitude, nature and
length scale of zircon isotopic disturbance when
exposed to infiltrating fluids, of known composi-
tion, under elevated metamorphic conditions in
real geological environments?

In this contribution, we document an example
of an Archaean orthogneiss which experienced
fluid infiltration during the Early Palaeozoic. We
show that introduction of an aqueous, low-salin-
ity fluid, under static upper-amphibolite facies
conditions, resulted in limited grain-scale isotopic
disturbance of a pre-existing zircon population
hosted within the orthogneiss. Furthermore, we
propose that the observed isotopic disturbance is
largely controlled by extensive isotopic resetting
and/or recrystallisation along penetrative fracture
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surfaces to depths on the sub-micrometre scale
and by internal redistribution of Pb* enhanced
by fracture-controlled fluid access.

2. Geological setting

The Napier Complex, east Antarctica (Fig. 1)
experienced ultra-high-temperature regional meta-
morphism (UHT > 1000°C) during the Archaean
[22], conditions which effectively dehydrated the
terrane. Southwestern areas of the complex, in-
cluding Tonagh Island (the location of this study,
Fig. 1), were subsequently dissected by narrow
early Palacozoic felsic pegmatite swarms [23,24]
and associated parallel quartz veins. Adjacent to
such pegmatites (Fig. 2), spectacular zones or sel-
vedges of upper-amphibolite facies metasomatic
alteration are common [23]. The alteration sel-
vedges are the product of rehydration and recrys-
tallisation of the host protolith as a result of fluid
infiltration accompanying pegmatite emplace-
ment. No pervasive deformation of the host lith-
ology accompanied pegmatite emplacement or
fluid infiltration. Tonagh Island, typical of the
Napier Complex, is dominated by orthopyrox-
ene-bearing felsic orthogneiss [25,26]. Within this
host lithology, the alteration selvedge (samples
28/6, 28/1 and 28/2; Fig. 2) is characterised by re-
placement of UHT orthopyroxene by hornblende,
biotite and epidote-bearing assemblages (see Ap-

—67°South

50 km

Fig. 1. Location of Tonagh Island (black) within Archaean
Napier Complex (after Sheraton et al. [25]). Location of Mt
Sones (discussed in text) is also shown (black). Inset: Loca-
tion of Napier Complex within Antarctic continent.

pendix), resulting primarily from the addition of
H,O. In contrast, the protolith (sample 27; Fig. 2)
witnessed only minor development of biotite and
hornblende fringes on orthopyroxene and on il-
menite—magnetite pairs, indicating greatly reduced
fluid interaction distal from the pegmatite. Com-
parison of zircons from relatively unaffected
Archaean protolith and from zones of fluid-rock
interaction adjacent to pegmatites permits de-
tailed assessment of the physical and isotopic dis-
turbance that might be experienced by zircon dur-
ing upper-amphibolite facies fluid infiltration.
Analysis of pegmatite equilibrium mineral assem-
blages permits pressure and temperature estimates
during fluid infiltration to be determined together
with fluid compositional information. This setting
provides a tightly constrained field example where
the effects of a fluid, of known composition, on
zircon can be assessed and examined.

3. Methods

3.1. Mineral compositions, imaging and P—T—fluid
estimations

Mineral composition determinations and back-
scattered electron (BSE) imaging (Fig. 3) were
done using the JEOL JXA-8600 electron micro-
probe located at Yale University, employing
wavelength dispersive spectrometers, a range of
natural and synthetic standards, and ¢(pz) matrix
corrections. Analytical conditions for all phases
except zircon were 15 kV accelerating voltage,
15 nA beam current, a 10 um beam spot for mus-
covite and biotite and a 5 um beam spot for gar-
net and feldspars. A focussed beam (~2 um) and
50 nA beam current were used for zircon. Pres-
sure-temperature estimates were calculated using
THERMOCALC v3.0 [27]. Biotite from the alter-
ation selvedge and pegmatite were used to esti-
mate log(amo/aucr), loglamrolagr-) and HCI®
and HF° molalities using the methods of Zhu
and Sverjensky [28].

3.2. Crystal size distribution analysis

Crystal size distribution analysis [29] was con-
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Orthopyroxene-bearing
felsic orthogneiss

Alteration selvedge

7] Early Palaeozoic
1 pegmatite

@ sample location

Fig. 2. Photograph and sketch map of alteration selvedge within Archaean orthopyroxene-bearing felsic orthogneiss adjacent to
early Palaeozoic pegmatite, Tonagh Island, Napier Complex. Note conspicuous ‘bleach’ zone adjacent to pegmatite. The visible
outer boundary of alteration selvedge indicates pyroxene-out isograd in host orthogneiss. Alteration selvedge cross-cuts UHT
gneissosity and lithological contacts at high angle and clearly does not represent primary lithological features. Samples 28/6, 28/1
and 28/2 are 10 mm, 160 mm and 300 mm respectively from left margin of the pegmatite. Photographer facing east, geologist for

scale, location lat. 67°05'37.3"S, long. 050°17°09.8"E.

ducted on in situ zircons from both altered and
unaltered domains to assess the extent of physical
dissolution or growth of zircon as a consequence
of fluid interaction. Zircon short and long axis
measurements were conducted optically using a
petrographic microscope with an actuated x-y
stage using a calibrated eye piece. Short axis mea-
surements were used in the determination of crys-
tal size distributions according to the methods of
Peterson [29], where n=number of crystals per
unit volume with length =L, (L=L-S, S is a
scaling factor to convert L which is a 2-D mea-
surement of the short axis into an estimate of the

3-D short axis value, Fig. 4). As scaling is a func-
tion of crystal shape, we used a representative
prism with axis dimensions, a=0.4; b=0.4; c=1.

3.3. Ion microprobe U-Th—Pb analysis

Zircons were extracted using standard heavy
liquid and magnetic techniques from both the
protolith and hydrated selvedge (Fig. 2). Mona-
zites were extracted from the pegmatite (sample
29) in a similar manner. No zircon was detected
in the pegmatite. Zircon and monazite grains
selected for conventional spot analysis were
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Fig. 3. BSE images of representative zircon morphologies.
Annotated ages are 2YPb/”®Pb ages; scale bar in all im-
ages=100 um. (a) Sample number 28/2, grain 3 (disc 1),
note zoned ~2600 Ma core (labelled ‘A’), overgrown by
faintly zoned mantle (labelled) and outer rim (labelled).
Analysis point ‘B’ (~2526 Ma) rejected due to overlap with
significantly older core. (b) Sample 28/1, grain 5 (disc 7).
Finely zoned core (reset to ~2423 Ma?) overgrown by man-
tle and outer rim (labelled), outer rim appears to truncate
mantle. (c) Sample 28/6, grain 15 (disc 7). Homogeneous an-
hedral grain with negligible zoning.

mounted in epoxy together with standards, then
sectioned, polished, and coated with Au. BSE
imaging was conducted to assess internal zircon
structure and to facilitate selection of analysis
sites (Fig. 3).

Additional grains were selected for depth profil-
ing measurements and epoxy-mounted such that
morphologically identifiable crystal faces coin-
cided with the analysis surface. The analysis sur-
face was ultrasonically cleaned and Au-coated
without further processing. Depth profiling mea-
surements performed here differed from conven-
tional spot analysis only in the sense that long-
duration (~45 min) ion drilling was performed
on unpolished grain boundaries to obtain a spa-
tial record of U-Pb isotopic variation versus
depth relative to natural crystal faces on the
sub-micrometre to micrometre length scale.

U-Pb ion microprobe analyses on zircon, and
U-Th-Pb analyses on monazite, were conducted
using UCLA’s CAMECA IMS 1270, and employ-
ing previously published analytical protocols
[30,31]. Lead isotopic ratios were corrected using
measured 2**Pb as proxy for common Pb. Rela-
tive sensitivity factors for U/Pb and Th/Pb were
determined using AS-3 zircon and 554 monazite
respectively. Data reduction and processing were
performed using in-house UCLA software (ZIPS
v2.4.1; C.D. Coath, 2000) and ISOPLOT v2.3 of
Ludwig [32]. Uranium and Th concentrations
were estimated semiquantitatively by comparing
U/**Zr,0 and/or Th/**Zr,0 in the unknowns rel-
ative to values obtained from the standards [33].
Errors ellipses shown in Figs. 5-7 are at the lo
level, whereas weighted mean and intercept ages
are quoted at the 2c level and include U decay
constant uncertainties.

4. Results
4.1. P-T—fluid composition estimations

For H,O-saturated conditions, average pres-
sure—temperature estimates using the pegmatite
assemblage (garnet, biotite, muscovite, K-feld-
spar, plagioclase and quartz; Table 1) are 8.1
kbar and 684°C. Fluid-absent calculations yield
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8.0 kbar and 666°C. These results are identical at
the 26 level (minimum uncertainties * ~30°C,
+ ~ 1.5 kbar), suggesting that the infiltrating fluid
was dominated by H,O. This conclusion is also
supported by the absence of calcite or other car-
bonate-bearing phases, either within the pegmatite
or in the alteration selvedges. At these P-T con-
ditions, log(amo/ancr) and log(apro/ayg-) values
calculated for biotite from the hydrated zone are
2.9-3.2 and 2.4-2.7 respectively (Table 2). Values
obtained from biotite from the pegmatite are 2.2—
2.6 and 2.5-2.7 respectively. To estimate the mo-
lality of HCI° and HF®, we assumed an activity of
H,O of ~1, and that the activities of HCI° and
HF° were approximately equal to their molalities
(e.g., aucr = ynucre where the activity constant, ¥
is ~ 1 for a neutral aqueous species). Estimates of
HCI° and HF° molality range from 6 to 20 10~4
and 2 to 4 X 1073, respectively within the hydrated
zone. These essentially overlap with molalities of
HCI° and HF° calculated from the pegmatite bio-
tites (3-6X107% and ~2.5X1073, respectively).
These small molalities do not account for the total
halogen budget of the fluid, but they clearly in-

Table 1
Mineral compositions used in P-T estimates

Sample 29 pegmatite

K-feldspar plagioclase garnet rim muscovite biotite

Si0, 65.67 65.30 36.51 45.83 34.46
TiO, 0.00 0.00 0.00 0.07 1.26
AL O3 18.95 21.55 20.61 33.69 18.99
FeO? 0.02 0.02 32.24 2.81 25.90
MnO 0.00 0.00 7.42 0.00 0.13
M¢gO 0.00 0.00 1.56 0.59 5.53
CaO 0.29 2.66 1.27 0.01 0.01
Na,O 2.92 10.00 0.00 0.43 0.00
K,O 12.30 0.19 0.00 10.31 9.20
Total  100.15 99.72 99.61 93.75 95.48
Oxygens 8 8 12 22 22

Si 2.99 2.88 2.99 6.24 5.40
Ti 0.00 0.00 0.00 0.01 0.15
Al 1.02 1.12 1.99 5.41 3.51
Fe 0.00 0.00 221 0.32 3.40
Mn 0.00 0.00 0.52 0.00 0.02
Mg 0.00 0.00 0.19 0.12 1.29
Ca 0.01 0.13 0.11 0.00 0.00
Na 0.26 0.86 0.00 0.11 0.00
K 0.72 0.01 0.00 1.79 1.84
Sum 4.99 4.99 8.01 14.00 15.61

4 All Fe as FeO.

dicate a typical low- to moderate-salinity meta-
morphic fluid with low F content [28,34].

4.2. Zircon morphology

Zircons from both the relatively unaltered and
the hydrated protolith have similar morphologies.
Most common are euhedral to subhedral, clear to
honey-coloured grains, ~100 to ~250 um in
length, that have aspect ratios of ~2-3. Under
BSE imaging, sectioned grains may exhibit frac-
tured well-defined cores which may contain dif-
fuse micrometre-scale oscillatory zoning (Fig.
3a,b). Typically, core regions are overgrown by
a volumetrically dominant mantle, which, al-
though generally homogeneous (Fig. 3a,b), may
exhibit oscillatory zoning at the micrometre scale.
The mantle may cross-cut the core regions (Fig.
3a) but more typically shows a conformable rela-
tionship with the cores. A narrow (<20 um),
low-U rim (dark in BSE and bright in CL) is
typically visible on many euhedral sectioned zir-
cons (Fig. 3a) and may cross-cut delicate oscilla-
tory zoning present in the mantle. Another major
population consists of anhedral spherical glassy
‘gem-like’ pinkish grains (Fig. 3c; also described
by Black et al. [35] from Mt Sones; Fig. 1), up to
20-500 um in diameter, which display minimal
structural development, and lack a clearly defined
euhedral core or micrometre-scale oscillatory zon-
ing, although some coarse (10-20 um) zoning may
be present.

Crystal size distribution analysis [29] results
(presented in Table 3 and illustrated in Fig. 4)
indicate that there is no statistically meaningful
difference in the lengths of zircon short axes
between the alteration selvedge (69.5f6 um;
n=484) and the protolith (69.6 =8 um; n=143).
These results imply that: (1) there was minimal
physical resorption or Ostwald ripening of zircon
during fluid interaction; and (2) no substantial,
micrometre-scale growth of early Palaeozoic zir-
con occurred either as rims on Palaeoproterozoic
crystals or as new grains. Visual observations of
in situ and mounted zircon grains support these
assessments. Hence there is no indication that the
infiltrating fluids caused grain-scale growth or dis-
solution modifications in zircon.
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4.3. Pegmatite monazite U-Th—Pb ages

Weighted mean U-Pb (23 analyses) and Th-Pb
(17 analyses) ages determined from 12 monazite
grains from the pegmatite are identical within er-
ror (sample 29; Fig. 2). These include 2°°Pb/?**U,
207ppb2B U, and 2%Pb/2?Th ages of 499.7+3.4
Ma, 496+£2.9 Ma and 498 £ 1.7 Ma respectively
(Table 4a,b; Fig. 5). Based on the criteria of [36],
it is not valid to calculate a U-Pb concordia age
from these data even though all estimates are
identical at the 2 level. Hence we simply accept
the 2Pb/?3>Th age of 498+ 1.7 Ma as the best
estimate of the timing of pegmatite emplacement
and fluid infiltration.

4.4. Zircon U-Pb systematics

4.4.1. Spot analysis results from sectioned grains
U-Pb analyses of sectioned zircons from the

12+
In(n,) = 10.583(+/-0.58)

protolith zircon
short axis size distribution

7 Lmean =0.0069555 (+/-0.00083) cm

*=0.954

(| Forprisma=0.4,b =04, c = 1 relative axis cimensions afer Poterson [20] ~
T T T T T

In(ng) = 11.0995(+/-0.40) @
N

alteration selvedge zircon
short axis size distribution

Lmean = 0.0069548 (+/-0.00056) cm J
=0978 N

For prism a = 0.4, b = 0.4, ¢ = 1 relative axis dimensions after Peterson [29].

000 001 002 003 004 005 006 007

L (cm, corrected for 3d)

Fig. 4. (a) Short axis crystal size distribution diagrams (after
[29]) for zircon populations from protolith, average grain size
for this population is 69.6+8 um. (b) Alteration selvedge;
average grain size for this population is 69.5+6 pum. Error
envelopes are at the 95% confidence limit.
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Fig. 5. Conventional concordia diagram showing zircon U-
Pb isotope data from alteration selvedge. Regression line is
an error-weighted regression with intercepts at 401 =190 Ma
and 2477.3+9.4 Ma. Monazite U-Pb data from pegmatite
(sample 29) are plotted on concordia for reference (inset),
but are not included in the lower intercept determination.
Bootstrap average of U-Pb data is indicated by the dashed
grey ellipse in the enlargement of the zircon data. Selected
zircons arrowed and discussed in text.

protolith and altered selvedge are presented on
conventional concordia diagrams (Figs. 5 and 6)
and tabulated in Tables 5 and 6. Oscillatory-
zoned cores (Fig. 3a) occasionally record older
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Fig. 6. Conventional concordia diagram showing zircon U-
Pb isotope data from protolith. Regression line is an error-
weighted regression with intercepts at 307+3%/_,,0 Ma and
2491.0+7.7 Ma. Bootstrap average of U-Pb data is indi-
cated by the dashed grey ellipse in the enlargement of the
zircon data. Selected zircons arrowed and discussed in text.
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ages (>2600 Ma). The details, isotopic data and
regional implications of these older cores will be
presented elsewhere.

4.4.1.1. Alteration selvedge

In total, 31 analysis sites were investigated on
23 zircon grains from the alteration selvedge.
Analyses were generally obtained from the rel-
atively unstructured, volumetrically dominant
mantle regions (Fig. 3a,b), but also include cores.
The latter generally exhibit elevated U contents
with similar 227Pb/?%°Pb ages to those of the meta-
morphic mantles. Fig. 5 illustrates the spot zircon
U-Pb analyses from the alteration selvedge, to-
gether with U-Pb data for monazites from the

Table 2
Biotite analyses used in HCI® and HF*® calculations

Wall rock biotite Pegmatite

biotite

28/5  28/5  28/6  28/6 29 29
SiO, 35.60 3554 3544 3513 3436 34.62
TiO, 482 437 419 433 1.64 1.80
AL O3 14.62 1427 1495 1487 18.38 18.68
FeO? 2295 2470 2431 2412 26.04 26.20
MnO 047 042 051 048 0.10 0.08
MgO 8.01 779 7.38 722 5.67 5.26
CaO 0.06 0.05 0.08 0.06 0.0l 0.00
BaO 028 027 033 026 0.0l 0.05
Na,O 0.06 0.09 0.06 004 0.07 0.04
K,O 923 912 931 924  9.13 9.27
F 0.16 026 024 0.19 0.122 0.095
Cl 0.01 0.02 0.03 0.04 0.184 0.209
(0=Cl, F) —0.07 —0.11 —0.11 -0.09 —0.09 —0.09
H,0P 386 3.82 3.83 3.83 3.83 3.83
Total 100.05 100.60 100.57 99.71 99.44 100.04
Si 506  5.08 507 505 496 497
Ti 052 046 045 047 0.18 0.19
Al 245 241 252 252 313 3.16
Fe 273 295 2091 290  3.15 3.15
Mn 0.06 0.05 0.06 0.06 0.0l 0.01
Mg 1.70 1.66 1.57 1.55 1.22 1.13
Ca 0.01 0.01 0.01 0.01 0.00  0.00
Ba 002 0.02 0.02 002 0.00 0.00
Na 0.02  0.03 0.02 0.0l 0.02 0.0l
K 1.68 1.66 1.70 1.70 1.68 1.70
F 0.070 0.117 0.110 0.087 0.056 0.045
Cl 0.003 0.004 0.007 0.009 0.045 0.051
OH 3.665 3.644 3.647 3.677 3.687 3.665

Structural formulas based on 22 oxygens.
2 All Fe as FeO.
b H,0 estimated based on oxygen stoichiometry.

pegmatite. Uranium contents, while typically
moderate (~400-700 ppm), were as high as
~2200 ppm in core regions. Thorium contents
varied between ~ 100 and 400 ppm but reached
~ 1500 ppm in core regions. An important aspect
of the isotopic data for zircon presented in Fig. 5
is the spread of discordance, ranging from ~ 92%
normal to ~ 110% reverse discordance (individual
concordance calculated after [15]). Based upon the
statistical criteria of Ludwig [36], these data do
not represent a concordant population, therefore
a concordia age cannot be calculated. However,
an error-weighted regression [32] performed using
these zircon data yielded an upper intercept age of
2477.3£9.4 Ma with an imprecise lower intercept
age of 401190 Ma (n=31, MSWD=2.3). A
bootstrap statistical analysis [37] of these data
from the alteration selvedge is indicated by the
dashed ellipse (Fig. 5) that represents the 26 un-
certainty on the pooled average.

4.4.1.2. Protolith

Zircon U-Pb analyses from the anhydrous pro-
tolith consisted of 25 analyses from 15 zircon
grains, primarily from unstructured metamorphic
mantles (Fig. 3a,b) and anhedral grains (Fig. 3c)
with generally elevated Th/U. Uranium contents
are typically ~300-600 ppm and Th contents
~400-900 ppm. When compared to the zircon
results from the hydrated zone, analyses from
the protolith show a reduced spread of discord-
ance. The data yield an upper intercept age of
2491.0£ 7.7 Ma and an imprecise lower intercept
of 30713%/_5,0 Ma (n=25, Monte Carlo regres-
sion; Fig. 6). A bootstrap analysis of these data
from the unaltered protolith is indicated by the
dashed ellipse (Fig. 6), representing the 26 uncer-
tainty on the pooled average. The lower intercept,
while highly imprecise, is within 26 of the value
obtained from zircons from the alteration sel-
vedge.

4.4.2. Ion drilling results from unpolished natural
crystal faces
U-Pb depth profiling of a single zircon from
the alteration selvedge (sample 28/6) is presented
on a conventional concordia diagram (Fig. 7a)
and tabulated in Table 7a,b. In order to assess
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Table 3
Zircon crystal size distribution data

Zircons from alteration selvedge Zircons from protolith

size fraction No. of crystals size fraction No. of crystals

(1m) (1m)

0-24 5 0-24 7
25-29 2 25-29 0
30-34 23 30-34 10
35-39 12 35-39 7
40-45 53 4045 14
45-50 9 45-50 6
50-55 70 50-55 29
55-60 14 55-60 4
60-65 50 60-65 14
65-70 11 65-70 0
70-75 55 70-75 9
75-80 10 75-80 7
80-85 50 80-85 11
85-90 5 85-90 1
90-95 25 90-95 9
95-100 2 95-100 0
100-105 38 100-105 3
105-110 1 105-110 2
110-120 12 110-120 3
120-125 11 120-125 2
125-130 1 125-130 0
130-135 4 130-135 1
135-140 1 135-140 0
140-150 2 140-150 0
150-160 8 150-160 1
160-170 4 160-170 1
170-200 2 170-200 0
200-210 3 200-210 1
>210 1 >210 1
Total 484 Total 143
Total area  255.8085 cm? Total area  100.3580 cm?

changing isotopic information with respect to
depth relative to the crystal surface, these data
are presented as single cycle analyses. It should
be stressed that when interpreting depth profiling
data, the uncertainties on single cycle analyses are
individually larger than would be obtained on a
statistically pooled mean on an isotopically homo-
geneous analysis site. However, despite this re-
duced precision, valuable near-surface isotopic in-
formation, as a function of depth, can be
obtained. Two depth profile runs are presented,
the first (Table 7a, total number of cycles=14,
no rejections) was conducted on a pre-sputtered
surface (120 s). Pre-sputtering was initially con-
ducted in order to ‘clean’ surface contamination

and to remove the conductive Au coat. The sec-
ond depth profile run (Table 7b, total number of
cycles =40, 32 analyses accepted; several deeper
analyses were rejected due to sample charging
and decreasing analytical precision) was con-
ducted on a non-pre-sputtered surface. Pit depths
were measured using a profilometer and, based on
cumulative analytical run times, a calibration of
the sputter rate was determined to be 0.56-0.85
um/h (average 0.71 um/h) for the depth profiling
session analytical conditions.

Fig. 7 shows the combined results from the pre-
sputtered and non-pre-sputtered depth profiles. A
relatively simple, near concordant, population of
ages is obtained from the pre-sputtered analysis
(28/6.6.2.1), yielding a concordia age [36] of
1806 + 34 Ma, strongly suggesting a period of zir-
con growth, or of complete isotopic resetting, at
this time. In contrast, the non-pre-sputtered depth
profile (28/6.6.2.3) illustrates that the very near-
surface zircon (0 to ~0.06 um, Fig. 7b) shows
near complete resetting at ~ 500-700 Ma (lower
intercept 608 £ 77 Ma) with a Th/U ~0.1 and an
elevated U content (~ 1000 ppm). With increas-
ing depth, individual analyses progressively track
along a chord toward a upper intercept of
1931 £56 Ma with generally decreasing U con-
tents (to ~ 150 ppm) and increasing Th/U, to a
maximum analysis depth of ~0.5 um. This upper
intercept broadly correlates with zircon having a
concordia age of 1806 34 Ma derived from anal-
ysis 28/6.6.2.1. If these two data sets are regressed
together (Fig. 7a) a lower intercept of 558 =75
Ma and an upper intercept of 1882 £41 are ob-
tained, with no excess scatter (MSWD =0.92).
Fig. 7b illustrates an important point in that the
depth scale of significant zircon modification at
~ 500 Ma is small, at around 0.06 pm.

It should be noted that an U-Pb zircon age of
~ 1800 Ma has not been previously documented
from the Napier Complex. In situ ion probe Th-
Pb ages on monazite from the protolith (as man-
tles on pre-existing apatite; Carson and Ague,
unpublished data) and several chemical Th—U-to-
tal Pb isochron ages from monazite and xenotime
elsewhere within the Napier Complex [38,39] pro-
vide independent confirmation of an isotopic dis-
turbance at about this time. The geological signifi-
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Monazite Th-Pb isotope results
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Age (Ma) % Radiogenic 2%Pb* ®  Date\
sample#.grain#.spot#
208Pb/232Th +a ZOSPb/ZSZTh +
502.4 3.10 0.0252 0.00016 99.7 2000-07Sept\ 29.gr10.spl
498.8 3.24 0.0250 0.00016 99.6 2000-07Sept\ 29.gr10.sp2
496.9 2.48 0.0249 0.00013 99.8 2000-07Sept\ 29.gr11.spl
500.7 2.80 0.0251 0.00014 99.6 2000-07Sept\ 29.gr11.sp2
503.5 2.55 0.0252 0.00013 99.7 2000-07Sept\ 29.gr12.spl
501.9 2.54 0.0251 0.00013 99.7 2000-07Sept\ 29.grl.spl
498.1 2.43 0.0250 0.00012 99.8 2000-07Sept\ 29.gr3.spl
499.8 2.68 0.0250 0.00014 99.8 2000-07Sept\ 29.gr3.sp2
499.5 2.76 0.0250 0.00014 99.8 2000-07Sept\ 29.gr4.spl
494.2 2.74 0.0248 0.00014 99.8 2000-07Sept\ 29.gr4.sp2
498.6 2.55 0.0250 0.00013 99.7 2000-07Sept\ 29.gr5.spl
497.0 2.65 0.0249 0.00013 99.8 2000-07Sept\ 29.gr6.spl
500.9 291 0.0251 0.00015 98.6 2000-07Sept\ 29.gr6.sp2
500.7 2.84 0.0251 0.00014 99.7 2000-07Sept\ 29.gr7.spl
486.1 4.98 0.0243 0.00025 99.8 2000-07Sept\ 29.gr7.sp2
500.0 3.20 0.0251 0.00016 99.8 2000-07Sept\ 29.gr8.spl
492.8 3.26 0.0247 0.00017 99.8 2000-07Sept\ 29.gr9.sp2

4 Uncertainties listed at the 1o level.

b Correction for common Pb made using the measured 2**Pb/>*Pb ratio.

cance of this isotopic ‘event’ remains speculative.
However, for the purposes of this contribution,
the important issue is that the very near-surface
zircon was profoundly affected at ~ 500 Ma (to a
depth of ~0.06 um) and the age and geological
significance of the sub-surface zircon (~ 1800 Ma)
is not particularly relevant. Further discussion of
the significance of the ~ 1800 Ma age will be
addressed elsewhere.

5. Discussion

5.1. Spatial extent of disturbed U-Pb systematics
in zircon during fluid infiltration

The ion probe depth-profiling technique, when
applied to natural crystal surfaces, provides a
powerful means to assess the near-surface isotopic
composition of zircon at a far higher spatial res-
olution than that possible with conventional ion
probe analysis of sectioned grains. In this case,
the method provides fundamental information re-
garding the depth scale of isotopic modification or
zircon recrystallisation on surfaces exposed to in-

filtrating aqueous fluids during upper-amphibolite
facies conditions. These results indicate (Fig. 7a,b)
that near-complete isotopic resetting (or growth
of a sub-micrometre-scale film of new zircon)
was observed at the near surface (0-0.06 um)
and depth scale of ‘modified’ zircon with respect
to the crystal surface is of the order of ~0.20-
0.25 um (Fig. 7b).

Krogh and Davis [11] demonstrated that zircon
can exhibit high solubility (during HF exposure)
along internal fractures and grain boundaries, and
concluded that such domains are susceptible to
alteration by fluid interaction. Furthermore, they
concluded that zircon discordance is strongly cor-
related with the presence of such alteration do-
mains. Air abrasion techniques [40] seek to elim-
inate potentially altered fractured zircon grains
and suspect surface layers, resulting in whole
grain zircon dissolution U-Pb ages that are con-
siderably more concordant and displaced toward
the upper intercept. It was surmised from these
observations that outer layers of zircon and inter-
nal micro-fractures were loci of preferential Pb*
loss [11,40]. The techniques then available did not
permit direct isotopic measurement of zircon
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grain surfaces and such conclusions were based on
the response of the U-Pb system after removal of
the material thought to be affected by Pb* loss.
By conducting ion probe depth profiling of natu-
ral zircon crystal surfaces, we provide the first
known direct isotopic measurement of the materi-
al that would be removed during air abrasion zir-
con preparation [40], and show that such material
can provide valuable geological information. We
further elaborate on the potential significance of
these findings below (Section 5.3).

5.2. Significance of the normal and reverse
discordance revealed in conventional spot
analysis

Uranium-lead analysis of sectioned zircons
from the alteration selvedge display a spread of
reverse and normal discordance (92-110%), dis-
tributed about concordia, along a discord that
has a lower intercept of 401 £190 Ma (Fig. 5).
Zircon analyses from the protolith (Fig. 6) display
similar though less pronounced behaviour. Upper
intercept ages from the alteration selvedge
(2477.3+£9.4 Ma) and the comparatively unal-
tered protolith (2491.0+7.7 Ma) are identical at
the 20 level. We interpret these results to record a
Palaeoproterozoic episode of zircon growth and/
or extensive isotopic disturbance that has been
previously reported in isotopic studies throughout
the Napier Complex (e.g. [35]). Although a lower
intercept age based exclusively on the zircon
data from the alteration selvedge is imprecise
(401 £190 Ma), pointing to disturbance near the
Proterozoic-Palacozoic boundary, the timing of
pegmatite emplacement and aqueous fluid influx
has been independently established at 498 £1.7
Ma. It is logical to conclude that the lower inter-
cept recorded by the discordant zircon data devel-
oped in response to this event at ~ 500 Ma dur-
ing which elevated metamorphic conditions (8
kbar and 675°C) prevailed.

We believe that the observed normal and re-
verse discordance is a geologically meaningful fea-
ture on the basis of the following: (1) the number
of discordant analyses from the altered domain
exceeds the number expected beyond 26 of the
mean, assuming a normal distribution for a con-
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Fig. 7. (a) Conventional concordia diagram showing zircon
U-Pb isotope data from depth profiling on zircon from sam-
ple 28/6. Regression line is an error-weighted regression with
intercepts at 558 75 Ma and 1882+ 41 Ma, using combined
data from analyses 28/6.6.2.1 and 28/6.6.2.3. Individual re-
sults are shown as enlargements; upper left, analysis 28/
6.6.2.1 (pre-sputtered analysis site), has a concordia age of
1806 £ 34 Ma; lower right, analysis 28/6.6.2.3 (no pre-sputter
prior to analysis), shows a discordant array from 608+ 77
Ma to 1931£56 Ma. (b) Age (Ma) versus analytical ion
probe pit depth (um) relative to zircon crystal surface calcu-
lated using a mean sputter rate of 0.71 wm/h. Measured
elapsed analysis time (s) shown on upper scale. Individual
single cycle 2°Pb*/?33U and 207Pb*/>*U ages shown, error
bars are 1. Note that the maximum depth of zircon signifi-
cantly modified at ~500 Ma is ~0.20-0.25 um.

cordant population, suggesting that the discord-
ance cannot be accounted for by scatter due to
experimental uncertainty alone; (2) analyses from
both standard and unknown zircons define a sim-
ilar range of UO"/U™" values minimising potential
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bias produced by an inappropriate UOT/U™ vs
Pb*/UT calibration of Pb/U relative sensitivity;
and (3) the moderate U contents associated with
discordant results from the mantle region appear
too low to produce the structural damage re-
quired to cause discordance simply by producing
differential ionisation efficiencies of Pb and U rel-
ative to the standard [41-43]. While this latter
consideration appears potentially applicable to
the relatively ‘high-U’ cores, we wish to emphasise
that the lower intercept indicated by our results
coincides with a known geological episode, which
seems to rule out such an effect. Specifically, dis-
cordance resulting from differential sputtering ef-
ficiency of Pb and U relative to the standard will
produce a chord that extends through the origin
[42,43].

Normal discordance observed in U-Pb studies
of zircon is commonly attributed to either some
degree of open system behaviour, typically partial
Pb* loss from the zircon due to geological distur-
bance, or, as is sometimes the case with whole
grain dissolution isotopic techniques, the physical
mixing of an older zircon component with a
younger overgrowth. Zircon discordance can
also be generated by open system behaviour of
U. Although U mobility has been documented
in several experimental studies on zircon (e.g.
[8,13]), in general, data on the open system behav-
iour of U within pristine and metamict zircon are
sparse (e.g. [44]), and, where available, suggest
that U mobility is up to four orders of magnitude
less than that of Pb (e.g. [8]) under similar con-
ditions. Whilst acknowledging that U open system
behaviour can potentially contribute to the devel-
opment of zircon U-Pb discordance, we maintain,
in the following discussion, that open system Pb
behaviour will be the primary contributor to the
development of zircon discordance.

Reverse discordance has been subject to consid-
erable debate. In their review of reverse discord-
ance in both conventional and ion probe U-Pb
studies of natural zircon, Mattinson et al. [6] dif-
ferentiated between two scenarios to account for
reverse discordance in zircon, one representing a
real physical phenomenon, the other, the result of
the analytical artefacts which we have eliminated
as possibilities. The first focuses on the internal

intra-grain redistribution of Pb* from ‘high-U do-
mains’ to ‘low-U domains’ within the zircon, re-
sulting in localised net Pb* excess, a term coined
‘internal reverse discordance’ [6]. This process was
well illustrated in a detailed ion probe study by
Williams et al. [S] who concluded that the extreme
(up to ~150%) reverse (and normal) discordance
exhibited by a single 3950 Ma zircon from Mt
Sones in the Napier Complex (Fig. 1) was due
to localised net Pb* gain (or loss) within the zir-
con at the sub-micrometre scale. This conclusion
was based primarily on unusual fluctuations in Pb
count rates during analysis acquisition which were
not mirrored by variations in U or Th. Williams
et al. [5] also noted a direct correlation in Pb/U
ages with 207Pb/?%Pb ages, the detection of which
was greatly facilitated by the extreme discordance
observed and by the relatively old lower intercept
(~2000 Ma), effectively resulting in greater ‘sep-
aration’ of Pb/Pb and Pb/U ages along the discor-
dant array. It should be stressed that extent of
discordance under discussion here is far smaller
(92-110%) than that reported by Williams et al.
[5] and this, combined with a Early Palaeozoic
lower intercept, renders detection of correlation
between Pb/U and Pb/Pb ages difficult at best.
Nevertheless, we have detected significant com-
positional (and potential isotopic) heterogeneity
within or adjacent to the ion probe analysis sites
of our zircons using BSE imaging and wavelength
dispersive electron probe analysis. Fig. 8a-d
shows BSE images of three fractured, relatively
high-U cores. Although the ion probe analysis
sites shown in Fig. 8a—d are near concordant, frac-
ture-controlled(?) compositional heterogeneity is
clearly evident on the 1-10 um scale. Electron
probe analysis of the distinct semicontinuous,
localised, ‘bright’ regions indicate that they con-
tain ~3000-6000 ppm U, ~3000 ppm Pb and
~500-5000 ppm Th with Th/U values compara-
ble or identical to those obtained by ion probe. In
contrast, the ‘darker’ areas have far lower U, Th
and Pb contents that are at or below detection
limits (estimated at ~190, ~190 and ~ 500
ppm, U, Th and Pb respectively; J. Eckert, per-
sonal communication). The apparent relationship
between internal fractures and localised regions of
elevated U and Pb (Fig. 8a—d) and the highly ir-
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regular distribution of such regions clearly suggest
these features formed after zircon crystallisation.

Lee and Tromp [45] concluded that character-
istic patterns of radial and concentric fractures in
zircon that are similar to those we observe are due
to self-induced volume expansion of radiation-
damaged domains. The fractures shown in core
regions and the radial fractures in outer regions
(Fig. 8a—d) probably resulted from such a fractur-
ing mechanism. Lee and Tromp [45] also con-
cluded that U and Pb susceptibility to remobilisa-
tion from fractured domains is substantially
enhanced by increased permeability and efficient
fluid access to zircon interiors. Enhanced fluid
access and fluid-mediated Pb and U diffusion
along penetrative micro-fractures, acting together
with thermal annealing processes, affecting struc-
turally damaged areas [44] may account for the
observed irregular distribution of U and Pb with-
in zircon, shown in Fig. 8a—d. Whilst these obser-
vations and results do not conclusively indicate
decoupling of uranogenic Pb from its parent with-
in domains of fracture-related U and Pb enrich-
ment, any remobilisation of U and Pb conceivably
would present a potential opportunity for decou-
pling and for the development of significant dis-
cordance on a sub-micrometre scale.

A number of reverse and normal discordant
analyses (Table 5) are from such fractured, rela-
tively ‘high-U’ cores (~ 800-2200 ppm U), imply-
ing correlation between U content and degree of
discordance (Table 5). Whilst this relationship is
not always observed, it does support the general
contention that enhanced Pb redistribution may
be facilitated by increased structural damage, fluid
access and localised thermal annealing [2,44,45]
during fluid-saturated upper-amphibolite facies
metamorphism. It should noted, however, that
several ion probe sites that display marked dis-
cordance display no readily apparent fracture-
controlled compositional heterogeneity (Fig. 8e,f).

5.3. Interpretation of U-Pb systematics

The spread of discordance illustrated by the
zircon population in Figs. 5 and 6 resulted from
disturbance during a much younger event (~ 500
Ma) than that in the case described by Williams et

al. [5] from Mt Sones (Fig. 1). As the lower inter-
cept for the normal and reversely discordant data
presented in Figs. 5 and 6 is non-zero and coin-
cides with a real geological event, we concluded
above that the observed reverse discordance is
genuine and not an analytical artefact. What
process or mechanism may have produced the
observed spread of discordance in the sectioned
zircon (Figs. 5 and 6)? Published diffusion coeffi-
cients for Pb in gem-quality zircon [7,8] imply that
at temperatures around 675°C, wholesale volume
diffusion of Pb* in pristine zircon would be insuf-
ficient to account for localised net gain or loss of
Pb* across the length scale of the ion beam anal-
ysis site (20-30 um diameter). As highlighted pre-
viously, micro-fractures, lattice dislocations and
other crystal defects, o-radiation damage, espe-
cially in the presence of metamorphic fluids,
have been widely suggested to greatly enhance
Pb diffusion within zircon, and these factors
might contribute to isotopic discordance [7-
15,44-46]. Depth profiling results (Fig. 7) indicate
that significant isotopic disturbance, or growth of
a sub-micrometre-scale film of new zircon, was
restricted to ~0.20-0.25 um depth with respect
to the crystal surface, and near complete resetting
was observed only at the extreme near-surface (0—
0.06 um) environment. These observations pro-
vide a suitable proxy for assessing the degree of
isotopic disturbance that might exist along pene-
trative micro-fractures observed within analysed
zircons. If the presence of strongly reset or new
zircon of ~ 500 Ma age is common along surfaces
exposed to the infiltrating metamorphic fluid,
such as penetrating micro-fracture networks, nor-
mal discordance, as indicated in Figs. 5 and 6,
may represent an analytical mixture of reset or
new zircon along micro-fractures with adjacent
unaffected zircon, which is schematically illus-
trated in Fig. 9b. Similarly, reverse discordance
may be attributed to internal Pb* redistribution
with localised enrichment of Pb* [5,6], on the mi-
crometre to sub-micrometre scale, facilitated by
fluid-enhanced diffusion along internal micro-
fracture networks and annealing of radiation
damaged domains (Fig. 9b). The inference of frac-
ture networks controlling internal Pb (and U) re-
distribution (Fig. 8a—d) within core regions during
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fluid infiltration also lends support to the above
model. We conclude that the isotopic response of
zircon appears to be strongly controlled by the
interaction of an aqueous fluid, of low to moder-
ate salinity, along penetrative micro-fracture net-
works, during prevailing upper-amphibolite facies
conditions.

5.4. Grain-scale Pb redistribution

Overall, however, on the grain scale, one would
expect that zircon would tend to either remain a
closed system or, more likely, lose some accumu-
lated Pb* during geological disturbance (though
this may not be necessarily always so [6]). Whole
grain dissolution analyses of zircon, therefore,
would be concordant, or, to some degree, nor-
mally discordant. We might, therefore, expect
that a pooled average of the U/Pb data (n=31
from the alteration selvedge; n =25 from the pro-
tolith; Tables 1 and 2) may be considered a rea-
sonable approximation to grain-scale analysis,
and should lie on concordia or be normally dis-
cordant. Bootstrap replications of the U/Pb data
provide an average of the available data. These
calculations, shown in Figs. 5 and 6 as shaded
ellipses, indicate that average zircon data, from
both the alteration selvedge and the protolith,
are concordant at the 2¢ level. These results con-
firm that the overall net Pb loss from both zircon
populations (alteration selvedge and protolith)
has been minor; if Pb loss had been significant
on the grain scale, we might expect the bootstrap
average of these data to fall below concordia.

6. Conclusions

This study examines zircon isotopic response to
fluids at elevated metamorphic conditions in a
well-defined field setting using both sectioned zir-
con and depth profiling ion probe techniques. Us-
ing conventional ion probe techniques on sec-
tioned zircons, we conclude that zircons hosted
within Archaean protolith that interacted with
an Early Palaeozoic aqueous fluid, during upper-
amphibolite facies conditions, experienced /limited
net loss and gain of Pb* at the subgrain scale,

resulting in discordance of 92-110%. At the grain
scale, Pb* loss was negligible. In contrast, depth
profiling ion probe techniques on natural crystal
faces reveal extensive disturbance of near-surface
zircon (0-0.25 um) during the Early Palacozoic.
Important aspects of this study are that the P-T
conditions and fluid composition to which the
zircons were exposed is well constrained, potential
effects due to pervasive deformation on zircon
systematics are insignificant, and that the relation-
ship between fluid influx at upper-amphibolite fa-
cies conditions and near-surface zircon isotopic
response is unequivocal.

Although growth of new zircon during fluid
infiltration is reported for certain conditions
[47], many studies appeal to metamorphic fluids
as a means by which zircon isotopic systematics
might be easily disturbed, resulting in Pb* loss
with complete or significant isotopic resetting.
Although such conclusions are supported by the
majority of experimental studies on variably radi-
ation-damaged zircon, our field-based study indi-
cates that significant grain-scale isotopic resetting
was not achieved during infiltration of a low-sa-
linity aqueous fluid, under static upper-amphibo-
lite facies conditions. Infiltrating fluids probably
have to operate in concert with other factors, such
as pervasive deformation [19], in order to induce
wholesale grain-scale isotopic modification in zir-
con. Isotopic modification is instead controlled by
penetrative micro-fracture networks permitting
enhanced fluid access, resulting in resetting/recrys-
tallisation/growth along penetrative fracture sur-
faces and crystal faces. Our findings support the
conclusions and suggestions of several previous
studies (e.g. [11,20,40]), however, this study uti-
lises direct isotopic measurement of zircon crystal
surfaces in support of our conclusions. We advo-
cate caution should be exercised when considering
geochronological interpretations that rely on ex-
tensive zircon resetting during aqueous fluid-rock
interaction at elevated metamorphic grade.
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Fig. 8. BSE images of selected zircon core regions (a—d) and whole grains (e,f). Scale bar =100 um, except where indicated; anal-
ysis sites (ion probe=Ilarge ellipses; electron probe=small open circles) and 2°°Pb/?)’Pb ages are indicated. (a) Zircon analyses
28/1.d1.gr3, spl and sp4 have U contents (ion probe measurements) of 902 and 1047 ppm respectively. (b) Enlargement of
dashed area indicated in panel a, note in particular the association of fractures with enrichment of U, Pb and Th (unlabelled ar-
rows), linear features are surface scratches from polishing. (c) Zircon analysis 28/1.d1.grl5, splr=1176 ppm U. (d) Zircon analy-
sis 28/2.d7.grl, spl =877 ppm U. (e) Zircon analysis 28/2.d1.gr14, sp2=785 ppm U. (f) Zircon analysis 28/1.d7.gr5, sp2=705
ppm. Although analyses shown in panels a and ¢ are mildly discordant (98-101%), in core regions irregular compositional hetero-
geneity are clearly visible in panels a—d as mottled light (elevated U and Pb) and dark regions (U and Pb poor regions); a rela-
tionship with internal fractures and observed compositional variability is clearly discernible. In contrast, analyses indicated in
panels e and f, which are significantly discordant (93% and 107% respectively), show no readily apparent compositional or inter-
nal structural features that might contribute to the observed discordance.
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Fig. 9. (a) Schematic diagram summarising the features of
zircon morphology (illustrating core, mantle and outer rim
as discussed in the text) and near-surface chronological archi-
tecture as determined from depth profiling ion probe analy-
sis. The majority of analyses from sectioned grains preserve
200pp/207Ph ages between 2446 and 2518 Ma (Tables 5 and
6), although several core analyses record °Pb/>’Pb ages
~2626 Ma (Carson, unpublished data). The surface region
is characterised by a near-surface film of reset/recrystallised
or new zircon at the sub-micrometre scale, ~500 Ma in age,
underlain by a horizon of ~ 1800 Ma of undetermined thick-
ness. (b) Highly schematic micro-fracture-based model for
yielding discordant ion probe analysis; normal discordance
may result from analytical mixing of zircon of ~500 Ma
age immediately adjacent to micro-fractures with that of sur-
rounding unaltered zircon of ~2480 Ma. Reverse discord-
ance may result from migration of Pb* from high-U domains
(=high Pb*) into low-U domains (=low Pb*) along micro-
fractures, which may locally fortuitously result in unsup-
ported Pb* accumulations, on the scale of an ion probe anal-
ysis.
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Appendix. Petrology and whole rock geochemistry
Petrology

Pyroxene-bearing quartzo-feldspathic orthog-
neiss, the protolith in this study, is a common
lithology on Tonagh Island. The unit is light
brown- to buff-coloured, massive in outcrop
with a well-developed gneissosity defined by 1-
10 mm scale discontinuous quartzo-feldspathic
segregations. At the sampling location, the visible
alteration extends 1 m either side of the pegmatite
(sample 29), illustrated in Fig. 2. The protolith is
equigranular (~0.5-1 mm) and comprised of
quartz (~33% mode), alkali-feldspar (~ 16%:;
Org9Abg) and plagioclase (~22-25%; ~ Anjzg)
and subhedral mesoperthite (~22% with 48:52
ratio of plagioclase to alkali feldspar). Orthopyr-
oxene (3-5%; Xge ~0.49) and clinopyroxene
(=1%) occur as dispersed subhedral grains, with
rare development of discontinuous fringes of
hornblende. Magnetite-ilmenite pairs (~ 1%
mode) are rarely mantled by unorientated biotite.
Accessory apatite (= 1%) occurs as dispersed sub-
hedral grains. Monazite growth on apatite may be
present.

The visible transition in the field from buff-col-
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oured to light grey orthogneiss marks the pyrox-
ene-out isograd (Fig. 2). Just within the visible
alteration selvedge, pyroxene is pseudomorphed
by aggregates of hornblende—quartz. Biotite coro-
nas on magnetite-ilmenite pairs are well-devel-
oped, as are isolated aggregates of unorientated
biotite. Hornblende reaches maximum mode at
~4% then decreases in abundance toward the
pegmatite. Biotite modal abundance increases
progressively. Plagioclase and alkali-feldspar ex-
hibit considerable recrystallisation and sub-grain
development. Alkali-feldspar decreases signifi-
cantly in modal abundance to ~7%; meso-
perthite to ~10% and the proportion of alkali-
feldspar in mesoperthite decreases to 40%. Meso-
perthite alkali-feldspar lamellae begin to show evi-
dence of resorption and adopt a ragged appear-
ance. Plagioclase remains approximately constant
mode (~25%) but exhibits progressive composi-
tional change from the protolith (Ans) to Anp
adjacent to the pegmatite. Euhedral epidote may
be associated with biotite aggregates. Epidote
growth on apatite becomes increasingly common.
Monazite, either as isolated grains or as growths
on apatite, is not observed within the alteration
selvedge. Immediately adjacent to the pegmatite
(sample 28/6), hornblende and ilmenite are absent,
biotite reaches ~20% mode. Magnetite occurs as
either skeletal or rounded grains with quartz in-
clusions, but, in both cases, associated with bio-
tite. No deformation fabric or preferred orienta-
tion of matrix grains is present suggesting that
metasomatism and pegmatite emplacement is not
accompanied by significant deformation.

Whole rock geochemistry

A detailed description of the whole rock geo-
chemistry of both alteration selvedge and proto-
lith will be presented elsewhere and only a brief
summary is offered here. The mass change esti-
mates listed below are based on both Ti and Al
(as assumed relatively immobile geochemical
reference frames; e.g. [48]) and elemental concen-
tration ratios (the ratio of species in the altered
unit relative that of the reference protolith; e.g.
[49]). Both techniques provide compatible results.

The alteration selvedge shows mass addition of
Na,O (15-20%), Rb (~80%), P,Os (~20%), Th
(~120%), U (~100%) and Pb (~90%). Rare
earth elements (ZREEs ~30-40%) and Y
(~75%) also show significant enrichment, with
preferential enrichment of the HREEs with in-
creasing alteration. The alteration selvedge under-
went mass loss of CaO (~ 15%), Sr (~20%), Ba
(~20%) and K,O (~25%). Negligible mass
change (< 5%) is exhibited by SiO;, TiO,, Al,O3,
MgO and Zr. Total mass change experienced by
the alteration selvedge is negligible. Density con-
trast between the protolith and alteration selvedge
is insignificant, ranging between ~2.69 and 2.67
gl/cc.
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