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Abstract

The grain-damage and pinning mechanism of Bercovici and Ricard (2012) for lithospheric shear–localization is employed in two-
dimensional flow calculations to test its ability to generate toroidal (strike-slip) motion and influence plate evolution. This mechanism
posits that damage to the interface between phases in a polycrystalline material like peridotite (composed primarily of olivine and
pyroxene) increases the number of small Zener pinning surfaces, which then constrain mineral grains to ever smaller sizes, regardless
of creep mechanism. This effect allows a self-softening feedback in which damage and grain-reduction can co-exist with a grain-
size dependent diffusion creep rheology; moreoever, grain growth and weak-zone healing are greatly impeded by Zener pinning
thereby leading to long-lived relic weak zones. The fluid dynamical calculations employ source-sink driven flow as a proxy for
convective poloidal flow (upwelling/downwelling and divergent/convergent motion), and the coupling of this flow with non-linear
rheological mechanisms excites toroidal or strike-slip motion. The numerical experiments show that pure dislocation-creep rheology,
and grain-damage without Zener pinning (as occurs in a single-phase assemblages) permit only weak localization and toroidal
flow; however, the full grain-damage with pinning readily allows focussed localization and intense, plate-like toroidal motion and
strike-slip deformation. Rapid plate motion changes are also tested with abrupt rotations of the source-sink field after a plate-
like configuration is developed; the post-rotation flow and material property fields retain memory of the original configuration for
extensive periods, leading to suboptimally aligned plate boundaries (e.g., strike-slip margins non-parallel to plate motion), oblique
subduction, and highly localized, weak and long lived acute plate-boundary junctions such as at what is observed at the Aleutian-
Kurile intersection. The grain-damage and pinning theory therefore readily satisfies key plate-tectonic metrics of localized toroidal
motion and plate-boundary inheritance, and thus provides a predictive theory for the generation of plate tectonics on Earth and other
planets.
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1. Introduction

Plate tectonics is arguably one of the most successful scientific
theories in physical science, given its predictive capacity regard-
ing, for example, the distribution and magnitude of seismic and
volcanic disasters (see Abbott, 2011), or sea-floor ages and hy-
drocarbon maturation (see McKenzie, 1981). However it also
plays a crucial role in planetary science since plate motion is a
likely key ingredient for planetary habitability. In particular the
plate-tectonic mode of mantle circulation drives chemical dise-
quilibrium in the ocean and atmosphere by constantly bringing
new mantle material to the surface. In this way, plate tecton-
ics drives the geological carbon cycle through erosion, weather-
ing and volcanism (Walker et al., 1981), which imposes a neg-
ative feedback and the long-term climate stability necessary for
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biological evolution over billions of years. Likewise, plate tec-
tonics may also be necessary for the origin of life by provid-
ing an energy source for chemosynthetic life at the bottom of
the ocean, i.e., at mid-ocean ridges (e.g., Southam and Westall,
2007). The discovery of many terrestrial planets in other solar
systems over the last fifteen years (e.g., Charbonneau et al., 2009)
has, therefore, emphasized the importance of understanding the
conditions for plate tectonics as a possible requisite for biologi-
cal habitability (Valencia, O’Connell, and Sasselov, 2007; Valen-
cia and O’Connell, 2009; O’Neill and Lenardic, 2007; Landuyt
and Bercovici, 2009b; Korenaga, 2010; van Heck and Tackley,
2011; Foley, Bercovici, and Landuyt, 2012; Stamekovich, Noack,
Breuer, and Spohn, 2012).

However, understanding the conditions for plate tectonics re-
quires a predictive theory for how it arises during the evolution
of a planet, and in particular how it is generated by mantle con-
vection on some but not all planets. For example, the occurrence
of plate tectonics on Earth but not its putative twin Venus (or
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any of the other terrestrial planets in our solar system) is one of
the major enigmas in Earth and planetary science. While plate
tectonics is well recognized to be a manifestation of mantle con-
vection (Davies and Richards, 1992; Bercovici, 2003), the gener-
ation of plate tectonics from convective motions remains an elu-
sive goal despite 30 years of research (e.g., Kaula, 1980; Hager
and O’Connell, 1979, 1981; Ricard and Vigny, 1989; Vigny et al.,
1991; Bercovici, 1993, 1995; Tackley, 1998, 2000b,c; Bercovici
and Ricard, 2005; Landuyt et al., 2008; Landuyt and Bercovici,
2009a; van Heck and Tackley, 2008; Foley and Becker, 2009);
see reviews by Bercovici et al. (2000); Gurnis et al. (2000); Tack-
ley (2000a); Bercovici (2003).

Many models of plate generation from mantle convection
adopt the “plasticity” formalism in which plate boundaries are
developed instantaneously if convective stresses exceed a certain
yield stress (e.g., Trompert and Hansen, 1998; Tackley, 2000b;
Richards et al., 2001; Stein et al., 2004; van Heck and Tackley,
2008; Foley and Becker, 2009). This method, however, requires
an unusually low yield-stress and, being an instantaneous mech-
anism, does not allow dormant plate boundaries that can be be
re-activated, as is likely necessary for new subduction initiation
in cold lithosphere (Gurnis et al., 2000; Toth and Gurnis, 1998;
Lebrun et al., 2003; Hall et al., 2003). Moreover, laboratory ex-
periments on rock deformation at moderate temperatures show
much more complex behavior than simple plastic rheology (e.g.,
time-evolution of grain-size and texture, as well as interaction
between different deformation mechanisms; see Karato, 2008).

The alternative damage model of plate generation predicts that
plate boundaries develop from material damage leading to shear-
localization and weakening, which survives for geologically ex-
tensive periods even after deformation ceases (Bercovici, 1998;
Tackley, 2000c; Bercovici et al., 2001a,b; Auth et al., 2003;
Bercovici and Ricard, 2003, 2005; Ricard and Bercovici, 2003,
2009; Landuyt et al., 2008; Landuyt and Bercovici, 2009a; Rozel
et al., 2011). Observations of localized shear in mantle peridotitic
mylonites (White et al., 1980; Etheridge and Wilkie, 1979; Jin
et al., 1998; Furusho and Kanagawa, 1999) has prompted much
activity in exploring grain-size shear-localizing feedback mecha-
nisms (e.g., Kameyama et al., 1997; Braun et al., 1999; Montési
and Hirth, 2003). In this case, a self-weakening positive feed-
back occurs because of the interaction of grain-size dependent
rheologies (such as diffusion creep or grain-boundary sliding; see
Hirth and Kohlstedt (2003)) and grain-reduction driven by de-
formation through dynamic recrystallization (e.g., Karato et al.,
1980; Urai et al., 1986; Derby and Ashby, 1987; Doherty et al.,
1997; Shimizu, 1998; Lee et al., 2002). However, this localiz-
ing feedback mechanism is paradoxical because grain-reduction
by recrystallization is generally thought to occur only in dislo-
cation creep, which is independent of grain-size, while rheolog-
ical softening by grain-reduction only occurs in diffusion creep,
when the grains cannot be reduced (Etheridge and Wilkie, 1979;
Karato and Wu, 1993; De Bresser et al., 1998, 2001). In principle,
the boundary between diffusion and dislocation creep is a stable
equilibrium state for grain evolution (i.e, large grains in disloca-

tion creep and small grains in diffusion creep respectively shrink
and grow toward this state), hence the rheology tends to become
anchored closed to this boundary on the piezometric curve. Near
the boundary, complex interactions can ensue, leading to effec-
tive rheologies that are dependent on both grain-size and stress.
Such interactions can either be due to mixing of creep mecha-
nisms over grain-size distributions that span the boundary (e.g.,
Rozel et al., 2011), or to unique mechanisms like grain-boundary
sliding (e.g., see Hirth and Kohlstedt, 2003; Hansen et al., 2012).
These effects are not necessarily distinguishable in that both mix-
ing and grain-boundary sliding lead to similar grain-size depen-
dence (which is weaker than for diffusion creep), and stress de-
pendence (which is slightly stronger than for dislocation creep)
(see Rozel et al., 2011; Hansen et al., 2012). Nevertheless, these
interactions are bound close to the diffusion-dislocation bound-
ary where grain-reduction and thus localization feedbacks are re-
stricted (Rozel et al., 2011). In addition, grain-growth and heal-
ing of weak zones in single mineral or single-phase systems is
quite fast (Karato, 1989), which would cause fine-grained weak
zones in the lower lithosphere to vanish in less than a million
years (see Bercovici and Ricard, 2012).

However, actual lithospheric rocks are at least two-phase or
polycrystalline materials (e.g., peridotite, which is roughly 60%
olivine and 40% pyroxene). Secondary phases are well known
to impede grain-growth by Zener pinning (e.g., Smith, 1948;
Hillert, 1988; Solomatov et al., 2002) and can interact with defor-
mation mechanisms by holding grain-size in the diffusion creep
regime, thus stabilizing shear zones (Olgaard, 1990; Warren and
Hirth, 2006; Mehl and Hirth, 2008; Herwegh et al., 2011; Linck-
ens et al., 2011). In Bercovici and Ricard (2012) we proposed
a new mechanism of grain-damage combined with Zener pin-
ning that drives weakening and localization, and over-comes the
problems with single-phase grain-reduction models. In particu-
lar, damage to the interface between phases increases the con-
centration of ever smaller pinning surfaces, which not only pre-
vent grain-growth but even reduce grain-size while still in the
diffusion creep regime. Damage combined with pinning thus al-
lows a positive feedback between grain reduction and diffusion-
creep weakening in deformation zones, thus promoting localiza-
tion. Moreover, grain growth and weak-zone healing are greatly
impeded by enhanced Zener pinning, thus leading to long-lived
relic weak zones.

In this paper we apply the model of Bercovici and Ricard
(2012) to some simple multi-dimension flow calculations to test
the efficacy of the model in generating toroidal (strike-slip) flow
from a convective type poloidal (divergent-convergent) flow field.
Toroidal motion is one of the key metrics of plate generation
theory and it can only be obtained in strongly non-linear rheo-
logical feedback mechanisms (see Bercovici, 2003). The simple
flow field involves source-sink flow in a horizontal plane akin
to a ridge-subduction system in the lithosphere. This imposed
flow is applied to a fluid layer with our grain-damage mecha-
nism and the toroidal strike-slip field is analyzed for its plate-like
properties. Moreover, we use the source-sink model to impose
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a rapid change in plate-driving forces and examine the effect of
relic damage zones (as pseudo-plate boundaries) on plate evolu-
tion.

2. Source-Sink Model with Grain and Interface Damage and
Pinning

Our model continuum has two phases of comparable (though
not identical) density, viscosity and other properties, which are
combined into a non-dilute mixture (e.g., 60%-40% mixture by
volume, such as a mantle peridotite with olivine and pyrox-
ene). The phases each have unique grain-size distributions with
mean grain-sizes Ri (where i denotes the primary or secondary
phase, i.e., i = 1 or 2), which evolve separately. Furthermore,
the phases are separated by an interface that we assume to be
isotropic and is thus described by a scalar interface density α,
which represents the interfacial area per unit volume of the mix-
ture (Bercovici et al., 2001a). This interface density can be di-
rectly associated with an interface curvature, and in particular a
characteristic radius of curvature, or “roughness”, of the interface
r.

Finally, Zener pinning occurs if a grain, of either phase, is
growing and the migration of its boundary is obstructed by the in-
terface with the other phase (where this interface is, for example,
the contact between olivine and pyroxene grains); the interface
density thus represents the concentration of obstructing bound-
aries and similarly the interface curvature controls the effective-
ness of the resulting pinning.

The primary goal of this paper is to study the classic plate-
mantle coupling problem of how well a convective poloidal flow
field can generate toroidal flow through nonlinear rheological
mechanisms (see reviews by Bercovici et al., 2000; Bercovici,
2003). In this analysis we prescribe a poloidal flow by imposing
a source-sink field in a shallow-layer of fluid, nominally the litho-
sphere overlying a less viscous mantle (Bercovici, 1993, 1995,
1998; Bercovici and Ricard, 2005). In effect, the source-sink field
represents vertical motion of underlying fluid being injected into
or ejected from the horizontal shallow layer. This source-sink
flow is then used to examine how our damage theory generates
plate-like strike-slip shear or toroidal flow.

2.1. Mass conservation and source-sink kinematics

Conservation of mass in two-phase continuum mechanics dic-
tates a relation for the volume fraction φi of phase i (i.e., ei-
ther phase), which, assuming both phases are incompressible and
there is no mass exchange between phases, leads to

∂φi

∂t
+ ∇ · (φivi) = 0 (1)

where vi is the velocity of phase i. However, both phases are
highly viscous and tightly coupled silicates with negligible rela-
tive motion (i.e., they do not separate or percolate through each
other), thus we assume both have the same velocity at a given

point in space (i.e., in a small control volume in space) such that
vi = v. Summing (1) over i and noting that

∑
i φi = 1, we arrive

at
∇ · v = 0 (2)

which implies that
Dφi

Dt
= 0 (3)

where D/Dt = ∂/∂t + v · ∇ is the material derivative. Thus if φi

is initially uniform (as assumed below, in the application of this
model) it will remain so indefinitely.

The thin layer with which we model flow is assumed to be
bounded above and below by inviscid half-spaces (i.e., the ocean
and atmosphere above, the low-viscosity asthenosphere below)
and thus has free-slip boundaries. The components of velocity
are given by

v = ux̂ + vŷ + wẑ (4)

Within the layer we assume vertical flow w is negligible, and
thus the free-slip boundaries leads to the condition that ∂u/∂z =

∂v/∂z = 0 on the top and bottom of the layer. We further assume
that the layer is so thin that this condition exists across the entire
width of the layer, and thus u and v are independent of z.

In general, a solenoidal velocity field that satisfies (2) is

v = ∇ × (ψẑ) + ∇ × ∇ × (θzẑ) (5)

where ψ is the toroidal stream function and θ is the poloidal po-
tential, and both are functions of x, y and time t only. The velocity
given by (5) can be rewritten as

vH = ∇θ + ∇ × (ψẑ) and w = −z∇2θ (6)

where vH = (u, v, 0), is the horizontal velocity vector.
We are only concerned with lateral flow in the thin horizontal

fluid layer that is driven by an imposed source-sink field, which
represents injection and ejection of material from below. We de-
fine the thin layer to exist near z = 0 such that, according to (6), w
is negligibly small, although ∂w/∂z is not. Indeed, the negative of
∂w/∂z represents the net vertical volume flux per unit volume (or
at a point) of material being injected into the thin layer (i.e., if the
layer has thickness h, then the net vertical volume flux over an in-
finitesimal area is [w(z = 0) −w(z = h)]dxdy ≈ −(∂w/∂z)hdxdy).
We therefore prescribe the source-sink field (due to vertical injec-
tion/ejection) as S = −∂w/∂z, which, using (6), can be restated
in terms of the poloidal field as

∇2θ = S . (7)

Since the source-sink field S is prescribed, (7) is sufficient to
determine the potential θ.

One of the key metrics of plate-like motion is focused toroidal
motion in the form of concentrated bands of vertical vorticity
that, if they were to represent a truely discontinuous strike-slip
fault, would by line singularities. Vertical vorticity is defined as
Ω = ẑ · ∇ × v and represents the rate of strike-slip shear. Given
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(6) the vorticity and toroidal potential are related by

∇2ψ = −Ω (8)

However, Ω itself is determined by the momentum equation
which we treat next.

2.2. Source-sink dynamics

The conservation of momentum in creeping two-phase flow
with grained phases was prescribed by Bercovici and Ricard
(2012) and, in the limit where the two phase velocities are the
same (i.e., vi = v), the summed momentum equation is sufficient
and is given by

0 = ∇Π̄ + ∇ · τ̄ + ρ̄g + ∇(γIα) (9)

where the pressure Π, stress τ and density ρ are volume averaged
over the two phases (i.e., for any quantity q, q̄ =

∑
i φiqi); g is

gravitational acceleration; γI is the surface tension on the inter-
face between phases; and α is the interface density (interface area
per unit volume). The internal pressure on phase i, Πi, includes
the effect of surface tension on the grain boundaries (Ricard and
Bercovici, 2009; Bercovici and Ricard, 2012). Finally, since the
two phases have the same solenoidal velocity, the volume aver-
aged stress tensor is

τ̄ = µ̄
(
∇v + [∇v]t

)
(10)

where µ̄ is the volume average of the viscosities µi, the rheologi-
cal model of which will be discussed below in §2.3.

Substituting (10) into (9) and taking ẑ · ∇× of the resulting
equation leads to an elliptic equation for the vorticity Ω

µ̄∇2Ω = −2∇µ̄ · ∇Ω − ẑ · ∇µ̄ × ∇S

+ ∆∗µ̄

(
∆∗ψ − 2

∂2θ

∂x∂y

)
+ 2

∂2µ̄

∂x∂y

(
∆∗θ + 2

∂2ψ

∂x∂y

)
(11)

where we define the differential operator ∆∗ = ∂2/∂x2 − ∂2/∂y2

(Bercovici, 1993). A non-zero vorticity depends on forcing from
the source-sink field S through gradients in the viscosity. Vis-
cosity variability is dictated by the rheological model for the
medium, which is discussed in the next section.

2.3. Rheology

As described in Bercovici and Ricard (2012), a material parcel
(i.e., small control volume) has two phases, each of which has a
non-uniform grain-size distribution; grains in these distributions
will predominantly undergo either diffusion or dislocation creep
depending on whether they are, respectively, smaller or bigger
than a critical size defining the transition between creep mecha-
nisms (e.g., see Rozel et al., 2011; Bercovici and Ricard, 2012,
Appendix F.7). The strain-rate tensor of either phase averaged
over the grain-size distribution reflects a mixture, or composite,

of creep mechanisms, and is given by

ė = 1
2 (∇v + [∇v]t) =

(
aiτ

n−1
i +

bi

Rm
i

)
τi (12)

assuming that stress is the same for all grains of like phase in
the parcel; note that while the averaged strain-rate is the same
for both phases in the parcel (since they have the same macro-
scopic velocity), their stresses can differ. In (12), τ2

i = 1
2τi : τi

is the second stress invariant for phase i, Ri is the characteristic
or mean grain-size for phase i, ai is the dislocation creep compli-
ance for phase i, n is the power-law index (typically n = 3), and
m is an exponent that is typically 2 for diffusion through grains
(Nabarro-Herring creep) and 3 for diffusion along grain bound-
aries (Coble creep); the exponents n and m are assumed the same
for both phases for simplicity although that assumption is easily
relaxed. Assuming log-normal grain distribution with dimension-
less variance σ for each phase, the macroscopic diffusion-creep
compliance compliance bi depends on both the grain-scale com-
pliance Bi and the shape of the grain-size distribution according
to

bi =
λ3−m

λ3
Bi where λn = en2σ2/2. (13)

(see Rozel et al., 2011). In general, the development of macro-
scopic relations from microscopic (i.e., grain-scale) properties
involves averaging over moments of the grain-size distribution,
which invariably introduces normalization factors like λn (see Ri-
card and Bercovici, 2009; Rozel et al., 2011; Bercovici and Ri-
card, 2012). We choose σ = 0.8, which allows a typical dimen-
sional variance of order Ri (Bercovici and Ricard, 2012). The
composite rheology (12) implies that the transition from dislo-
cation to diffusion creep occurs for the macroscopic parcel at
a critical grainsize Rc = [bi/(aiτ

n−1
i )]1/m; thus, a parcel whose

grain-size distribution has a mean size far from this critical value
will be predominantly in one creep mechanism or the other, while
a mean grain-size exactly at this value has roughly half its grains
in diffusion creep and the other half in dislocation creep, depend-
ing on the precise distribution shape (see also De Bresser et al.,
1998). The viscosity of phase i is defined by (see (12))

µi =
1
2

(
aiτ

n−1
i +

bi

Rm
i

)−1

(14)

in which τi is the solution to

aiτ
n
i +

bi

Rm
i
τi − ė = 0 (15)

for a given ė, where

ė2 = 1
2 ė : ė =

(
∂2θ

∂x2

)2

+

(
∂2θ

∂y2

)2

+

(
∂2θ

∂x∂y

)2

+
∂2θ

∂x2

∂2θ

∂y2

+

(
∂2ψ

∂x∂y

)2

+
1
4

(∆∗ψ)2
+
∂2ψ

∂x∂y
∆∗θ −

∂2θ

∂x∂y
∆∗ψ (16)
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provided the velocity field (6). Equation (15) can be solved ex-
actly (for n = 2 or n = 3) or implicitly for τi(ė) (e.g., see
Bercovici and Ricard, 2012, §4.1). The viscosity thus depends on
the second strain-rate invariant ė2, and the grain-size Ri in phase
i, which evolves and varies according to deformation, damage
and Zener pinning, as discussed in the next section.

2.4. Grain and interface evolution and pinning
The mean grain-sizeRi of phase i evolves through the competi-

tion between surface-tension driven coarsening (i.e., normal grain
growth) and damage. Damage to grains is described macroscop-
ically in terms of the deformational work used to create surface
energy on grain boundaries, while microscopically this occurs
through mechanisms such as dynamic recrystallization.

However, grain growth and damage is also affected by block-
ing surfaces imposed by the interface between the two different
phases (e.g., the contact between olivine and pyroxene grains),
the classic manifestation of which is Zener pinning. The inter-
face blocks grain-boundary migration and the more curved the
interface the more it causes grain-boundary distortion, which can
impede and even reverse grain-growth and make grains more sus-
ceptible to damage (Bercovici and Ricard, 2012). The interface is
represented here by the interface density (interface area per unit
volume) α, which we prescribe to be a function of both volume
fraction of the phases φi and the interface radius of curvature r

α = η(Φ)/r (17)

where Φ =
∏

i φi and η is a function depending on mixture mor-
phology, but necessarily goes to 0 as either phase fraction φi → 0
(Bercovici and Ricard, 2005, 2012); however, in general, for sim-
ple morphologies, η ≈ 3Φ (Bercovici and Ricard, 2012). The in-
terface curvature itself evolves, both by coarsening (i.e., smooth-
ing of the interface, as well as growth and merging of grains) and
by damage via deformation, distortion and/or rending of the in-
terface. As shown by Bercovici and Ricard (2012) the evolution
of the grain-size and interface roughness equations are similar
and appear as

DRi

Dt
=

Gi

pRp−1
i

Zi −
λ3

λ2

R2
i

3γi
fG(1 − fI)ΨiZi

−1 (18)

Dr
Dt

=
ηGI

qrq−1 −
r2

ηγI
fIΨ (19)

where Gi and GI are coarsening coefficients for the grain bound-
aries and interface, respectively, p and q are exponents (typically
p = 2 and 2 ≤ q ≤ 4), γi is the grain-boundary surface en-
ergy (i.e., the surface energy at the contact between like grains of
phase i), γI is, as defined already, the surface energy at the inter-
face between phases (i.e., between grains of different phases), fI
is the partitioning fraction governing how much deformational
work goes toward creating interface surface energy, while fG
is the fraction of remaining work going toward creating grain-
boundary energy. The deformational work in phase i is given by

Ψi = τi : ė = 2µiė : ė = 4µiė2 and the volume averaged work is
Ψ =

∑
i φiΨi. The interface blocking of grain growth is given by

the Zener pinning factor

Zi = 1 − c(1 − φi)
R2

i

r2 where c =
3λ4

160λ2
(20)

(see Bercovici and Ricard, 2012). The Zener pinning effect acts
to slow down and even reverse grain growth as r becomes com-
parable to or smaller than

√
c(1 − φi)Ri. Likewise it facilitates

grain damage by reducing the energy contrast between large and
small grains (i.e., it causes more distortion and higher effective
grain boundary energy on large grains, thus breaking such grains
into smaller less distorted grains takes less energy).

However, as stipulated by dynamic recrystallization theory, we
also prescribe that damage to grains only occurs in the fraction
of the medium that deforms by dislocation creep; as shown by
(Rozel et al., 2011), this is accomplished by prescribing that
fG ėi = f∗Gaiτ

n
i or that the partitioning fraction is given by

fG = f∗G

1 +
bi

aiR
m
i τ

n−1
i

−1

= f∗G

(
1 +

(
Rc

Ri

)m)−1

= 2f∗Gµiaiτ
n−1
i

(21)
where f∗G is the maximum possible value of fG. Note that the
stress is still determined as a mixture of diffusion and dislocation
creep for an imposed total strain-rate, but the damage to grains
only occurs for the part of the strain-rate undergoing dislocation
creep.

Because of the limitation on grain damage through (21), dam-
age is more effective at distorting and sharpening the interface,
which then forces grain-size reduction by pinning (through the
factor Zi), driving the medium into diffusion creep. In this way
damage and self-weakening in the diffusion creep regime can
co-exist, which is normally disallowed in single-phase miner-
als (since the creep mechanisms are exclusive, unless the system
holds close to the diffusion-dislocation creep boundary).

2.5. Dimensionless governing equations

To begin with we assume that φi is uniform and constant and
simply provides the mixture ratio for our two-phase model litho-
sphere (e.g., φ2 = 60% for olivine and φ1 = 40% pyroxene for
a mantle-lithosphere peridotite). In this case η ≈ 3φ1φ2 is also
uniform and constant and we use both φi and η within the nondi-
mensionalizing scales.

We use the amplitude of the source-sink field S = max |S | for
a rate scale (inverse of time), and the characteristic separation
of the source and sink L as our macroscopic length scale. We
nondimensionalize time according to t = S−1t′, spatial variables
according to (x, y, z) = L(x′, y′, z′), ∇ = L−1∇′, and the velocity,
flow potentials, divergence, vorticity and strain-rate according to

(S ,Ω, ė, v, θ, ψ) = S(S ′,Ω′, ė′, Lv′, L2θ′, L2ψ′) (22)

We further define the stress, viscosity and grain-size scales ac-
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cording to

τ = (S/ā)1/n , µ = τ/S , and R = (b̄µ)1/m (23)

where ā =
∑

i φiai and b̄ =
∑

i φibi; thus we nondimensionalize
stress, viscosity grain-size and interface roughness according to
τi = ττ′i , µi = µµ′i and (Ri, r) = R(R′i , r

′). With these scal-
ing relationships, the dimensionless governing equations for flow
are, after dropping the primes, unchanged from (6)–(8), and (11).
Likewise the relations for the dimensionless viscosity µi, stress
invariant τi, and strain-rate invariant ė are the same as given by
(14)–(16), except for replacing ai with ai = ai/ā, and bi with
bi = bi/b̄. In general we expect comparable rheologies between
the two phases such that a1 ≈ a2 and b1 ≈ b2 in which case we
can assume ai ≈ bi ≈ 1.

The dimensionless evolution equations for Ri and r become,
after substituting in (21),

DRp
i

Dt
= CiZi −DiR

p+1
i

1
2 aiτ

n+1
i Zi

−1 (24)

Drq

Dt
= CI −DIrq+1µ̄ė2 (25)

where
Ci =

Gi

SRp , CI =
ηGI

SRq (26)

and

Di =
4pλ3f

∗

G(1 − fI)RS1/n

3λ2γiā1/n , DI =
4qfIRS1/n

ηγIā1/n (27)

and the relation for the Zener pinning factor Zi does not change
from (20); see also Table 1 for a summary of dimensionless vari-
ables and parameters.

2.5.1. Scales and numbers
We can estimate geometric, kinematic, rheological and grain-

growth scales for typical tectonic settings and olivine properties
listed by Rozel et al. (2011). For a tectonic speed of 5cm/yr and
a plate-boundary width of 100km, the typical source-sink (diver-
gence/convergence) scale is S ≈ 1.6 × 10−14s−1. For olivine at
lower-lithosphere temperatures of T = 1000K, the stress scale is
τ ≈ 900MPa (which is same order of but a factor of 3-5 bigger
than typical tectonic stresses) and the grain scale R ≈ 50µm. At
the same conditions, Gi ≈ 5 × 10−23mp/s for p = 2. Finally,
surface energies γi and γI are generally O(1)J/m2, and η ≈ 3φ1φ2
(Bercovici and Ricard, 2012).

To constrain q and GI, we use the synthetic peridotite grain-
growth experiments of Hiraga et al. (2010). The experimental
value of interface roughness r = r̃ can be determined from the
laboratory grain-size measurements in the large-time “pinning
limit” (i.e., the limit of Zi → 0 wherein grain-growth tracks in-
terface coarsening; see Bercovici and Ricard, 2012, eqn. 12),
from which we also estimate the experimental interface coars-
ening rate dr̃/dt. Equation (19) without damage implies that

GI = η−1qr̃q−1dr̃/dt, which is verified by the data provided
2 ≤ q ≤ 4 (Bercovici and Ricard, 2012) (as also implied by nu-
merical simulations of coarsening in two phases; see Solomatov
et al., 2002). Comparing the value of GI with any q, denoted by
G(q)

I , to that with q = p leads to

G(q)
I

G(p)
I

=
q
p

r̃q−p (28)

where G(p)
I has the same units as Gi. For experiments with peri-

dotitic mixtures of φ1 = 0.42, the pinning limit is reached when
r̃ ≈ 1µm. Therefore, we infer that G(q)

I is given by (28) for
r̃ = 1µm, where, as also determined by Bercovici and Ricard
(2012), G(p)

I ≈ Gi/250 for p = 2 (see Bercovici and Ricard,
2012, Fig. 6). Thus, for example, for p = 2 and q = 4,
GI = 2(µm)2Gi/250.

Given these properties we can estimate the governing dimen-
sionless numbers. Although there are several dimensionless pa-
rameters, the key ones are Ci, CI, Di and DI. Otherwise we as-
sume ai = bi = 1, m = 3 for Coble diffusion creep, n = 3
for dislocation creep, p = 2 for normal grain coarsening, and
2 ≤ q ≤ 4 for interface coarsening (hence we will explore the
effect of varying q).

For the plate kinematic and olivine properties inferred above,
we use the grain coarsening number Ci ≈ 1, which is probably
an upper bound (given the assumed high lithosphere temperature,
modest plate speed and wide plate boundary width); however we
leave this parameter as is to be conservative. For q = p = 2 and a
peridotic mixture (φ1 = 0.42), CI/Ci = ηGI/Gi ≈ 3 × 10−3; how-
ever to be conservative we limit this interface coarsening number
to be CI = 10−2. Using (26) and (28) for cases with q , p yields
C

(q)
I /C

(p)
I = q/p(r̃/R)q−p; therefore for p = 2, when we increase

q from 2 to 4 with r̃/R = 1/50, we must decrease CI to approxi-
mately 10−5.

The damage numbers Di and DI can be very large depending
on what one assumes for fG and fI, and in general DI ≈ Di.
For fG, fI of order a few tens of a percent to unity, DI and Di

are as much as O(105). However, to be conservative, we assume
that fG, fI � 1 such that 1 < Di,DI < O(100); e.g., for the
parameters listed above, cases with Di,DI ≈ 100 corresponds to
fG, fI ≈ 2 × 10−4. This value is well in the range of the estimates
for fG by Rozel et al. (2011) for olivine (10−2−10−4), or by Austin
and Evans (2007) for calcite (O(10−4)).

2.6. Solution method
We use a simple spectral transform technique with fast Fourier

transforms to solve the model equations, as described previously
(Bercovici, 1993, 1995, 1998; Bercovici and Ricard, 2005); a
spatial grid of 128 by 128 points provides sufficient resolution.
We first impose a source-sink field S (see description in Fig. 2a),
from which θ is determined with (7); both S and θ thence remain
fixed throughout any calculation. Given an initial uniform grain-
size field the viscosity fields can be determined from (14) (noting
that (ai, bi) are replaced with (ai, bi) ≈ (1, 1)), which, with S and
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Variable Definition Reference Equation(s)
v velocity (6)
S source-sink field (divergence) (7)
Ω vertical vorticity (strike-slip shear) (8)
r interface roughness (25)
Ri mean grain-size of phase i (24)
R̄ volume averaged grain-size

∑
i φiRi

Zi Zener pinning factor (20)
µi viscosity of phase i (14)
µ̄ average viscosity

∑
i φiµi

τi square-root of 2nd stress invariant of phase i (12), (15)
ė square-root of 2nd strain-rate invariant (12), (16)

CΩ vorticity correlation (29)
Dimensionless parameter Definition Reference Equation(s)

Ci grain coarsening rate (26), Ci = 1
CI interface coarsening rate (26)
Di grain damage rate (27)
DI interface damage rate (27)
n dislocation creep stress exponent (12), n = 3
m diffusion creep grain-size exponent (12), m = 3
p grain coarsening exponent (24), p = 2
q interface coarsening exponent (25)
φi volume fraction of phase i (1), φ1 = 0.4, φ2 = 0.6

Table 1: Table of variables and dimensionless parameters (as referenced in the figures)

θ, can be used to find the vorticity Ω from (11) – which must be
solved iteratively to convergence – and hence ψ from (8). With
ψ and θ one obtains velocity from (6), ė from (16), and τi from
(15), which are then used to update the grain-size Ri and inter-
face roughness r from (24) and (25). The new grain-size Ri is
then used in the viscosity relation to update Ω and so on. Because
the dislocation creep viscosity is singular at zero strain-rate, we
impose a minimum value ė2

min on the second strain-rate invariant;
we find that ė2

min ≤ 10−4 has no significant effect on the results.

Other than imposing S , the only other initial condition we
adopt is that the initial mean grain-sizes are dimensionally all
about 500µm, but with the major phase’s mean grain-size R2 be-
ing somewhat larger than that for the minor phase R1 (as is often
observed in the laboratory and field), and that the interface rough-
ness r is similar to but slightly less than R1 (as inferred from ex-
periments; see Bercovici and Ricard, 2012, §3). Therefore, the
dimensionless grain-size fields begin uniformly with R1 = 8 and
R2 = 12 and the interface roughness is r = 7.5 (these values are
also consistent with the range of values predicted for the quasi-
steady pinning limit of Zi → 0, where Zi is given by (20)). A
few comparison cases with both smaller and larger initial values
of Ri and r were also run and their results are briefly summarized
below (see §3.2.3).
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Figure 1: Effective rheology in simple shear from Bercovici and Ricard
(2012) showing dislocation creep only with n = 3 (gray dash-dot), grain-
damage without Zener pinning (black dash dot), and grain-damage with
Zener pinning and 3 interface coarsening exponents q = 1.5, 2, 4 (colors,
as indicated). The simple shear system has a different scaling law than
employed in the source-sink system, thus some non-dimensional param-
eters are defined differently, as described in Bercovici and Ricard (2012).
Nevertheless, Q is analogous to CI and is likewise much less than unity.
All other parameters indicated have the same meaning as in this paper.
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3. Results

3.1. Effective rheology

Bercovici and Ricard (2012) analyzed the system of grain-
damage and pinning in steady-state one-dimensional uniform
simple shear and inferred effective constitutive relations between
imposed shear strain-rate and final steady-state stress (in particu-
lar, see Bercovici and Ricard, 2012, §4.2). We can apply the same
method here to compare various non-Newtonian rheologies (Fig.
1). The standard dislocation-creep rheology (Fig. 1, gray dashed
curves) provides a baseline for comparison since it is independent
of grain-size; even though moderate damage does drive grain re-
duction, the grain-size evolution has no effect on the rheology
and any localization or weakening is due to the explicit depen-
dence of viscosity on stress or strain-rate. Such a rheology is
given by (12) or (15) with bi = 0, in which a typical mantle
power-law index is n = 3 (as used in Fig. 1; see also Table 1
for a summary of dimensionless variables and parameters). This
rheology shows viscosity reduction with increasing strain-rate,
but with relatively large stresses and viscosities and hence poor
to modest weakening and localization (as inferred by Bercovici,
1993). The dislocation creep rheology represents an upper bound
on stress (and viscosity) for the medium; other rheologies for
which grain-damage provides additional weakening will appear
as a lower bound, since stress reaches its minimum in the final
steady-state 1-D shear zone (Bercovici and Ricard, 2012).

The case with a full composite rheology (bi , 0) and grain-
damage but no Zener pinning (i.e., fixingZi = 1; see Fig. 1 black
dashed curves) is analogous to the system studied by Rozel et al.
(2011), and is possibly relevant to inferred grain-boundary slid-
ing near the diffusion-dislocation creep boundary. Grain-damage
proceeds while the material is in the dislocation creep regime of
stress–grain-size space, but once grain-size reaches the diffusion
creep regime, grain-damage and grain-reduction cease (see (21)),
and grain-size stays close to the critical value Rc at the diffusion-
dislocation boundary. Without Zener pinning, the damage to the
interface and reduction in r has no effect on grain-size and hence
no effect on the rheology. In this case the system is only slightly
more effective at causing localization than the standard disloca-
tion creep rheology.

Cases with composite rheology, grain-damage and Zener pin-
ning can show dramatically more softening, provided that the in-
terface healing rate is very slow, as is to be expected (i.e., since
interface healing occurs through long distance diffusion across
phases or along the interface, rather than short-distance diffusion
across grain boundaries; see also §2.5.1). The interface coarsen-
ing power-law index q has significant influence on the strength of
the 1-D shear zone, as discussed in Bercovici and Ricard (2012).
In particular, for q < m − 1 the rheology is velocity weaken-
ing (stress drops with increasing strain-rate), for q = m − 1 it
approaches a pure plasticity limit (stress becomes independent
of strain-rate) and for q > m − 1 it appears as a pseudo-plastic
or power-law type rheology (see Fig. 1 color curves). In all
such cases, even for q > m − 1, the stress and viscosity are sig-

nificantly lower than both the simple power-law and “no-Zener
pinning” cases, since they involve the system being driven far
into diffusion creep with small grains and hence low stress and
viscosity. Hence, weakening co-exists with grain-size reduction
because even when the system is in the diffusion creep regime,
damage reduces the interface roughness r, which in turn drives
down grain-size through Zener pinning.

Although these effective rheologies are for 1-D, uniform sim-
ple shear, they are useful for interpreting non-uniform, multi-
dimensional, time-dependent flow results. In particular, the dis-
location creep curve represents an upper bound on strength and
is associated with large grains, while the other effective rheo-
logical curves represent lower bounds and are associated with a
minimum steady-state grain-size. Thus, for a given strain-rate,
and provided the existence of some grain-damage, the grain-size
will shrink and the stress will drop from the dislocation curve
to one of the lower-bound curves, leading to classical localiza-
tion behavior (i.e., a stress drop with increasing strain). Alterna-
tively, for a given stress, large-grained regions on the dislocation
creep curve have the smallest strain-rate, while small-grained re-
gions on one of the other curves have the largest strain-rate; large
differences in strain-rates for a given stress are also associated
with localization. In the no-Zener-pinning case, there is little dif-
ference between the upper and lower stress bounds, and hence
weak localization. For cases with Zener pinning, the difference
between upper and lower stress bounds is large, hence localiza-
tion is potentially significant. Such localization is evident in the
source-sink calculations discussed next.

3.2. Stationary source-sink flow

We examine shear localization and toroidal flow generation in
source-sink flow for several non-Newtonian rheological mecha-
nisms as discussed above in §3.1. In particular we step through
levels of complexity going from pure steady-state dislocation
creep power law rheology (with bi = 0 and n = 3), to grain-
damage without Zener pinning (i.e., fixingZi = 1), and finally to
the general case of grain-damage with Zener pinning (see Table
1 for a summary of dimensionless variables and parameters).

In each case we hold the grain-coarsening parameter fixed to
Ci = 1, which is on the higher end of its likely range, but is
thus conservative in that it mitigates damage with faster healing.
We examine the non-dimensional 2-D fields for Ω and v driven
by the source-sink field S , in addition to the resulting interface
roughness (or radius of curvature) field r, average grain-size R̄ =∑

i φiRi, and mixture viscosity µ̄ =
∑

i φiµi.
In all cases we display Ω with the same contour scale in which

S is shown, in order to display the strength of the strike-slip vor-
ticity relative to the driving source-sink field; values of Ω that ex-
ceed this scale saturate with a uniform color. For ideal plate-like
flow, the vorticity would be Ω̃, which is a replica of S but rotated
90◦ clock-wise (Bercovici, 1993; Bercovici and Ricard, 2005).
The measure of how well the produced vorticity Ω matches the
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ideal vorticity Ω̃ is given by the correlation

CΩ =

∫
A ΩΩ̃dA∫
A Ω̃Ω̃dA

(29)

where dA = dxdy and A is the domain of the calculation. The
vorticity correlation CΩ is unity if the vorticity fields are identical,
0 if they are 90◦ out of phase and approaches −1 if they are 180◦

out of phase.
The relevant magnitudes of these fields are also determined as

functions of time in order to track their evolution. The minimum
values of r and Ri are of most importance for the material fields
since they indicate the damage done to the interface and grains
in deformation zones. The maximum vorticity and the vortic-
ity correlation CΩ are also tracked to show the evolution toward
plate-like flow. The idealized vorticity Ω̃ has an amplitude of ±1;
thus a produced vorticity maximum Ωmax approaching or exceed-
ing 1 is characteristic of being plate-like, at least in magnitude. A
correlation CΩ approaching 1 is indicative of plate-like structure
as well as amplitude. The 2-D fields themselves are displayed to-
ward the end of a calculation as the system reaches steady state.

3.2.1. Baseline case 1: Pure dislocation creep
The source-sink system with steady-state pure dislocation

creep (bi = 0, ai = ai/ā = 1, and n = 3) provides a baseline
comparison for all other calculations. As discussed by Bercovici
(1993) a power-law rheology with index n = 1 is Newtonian,
and this does not permit toroidal motion. A moderate mantle-
like power law index of n = 3 is also known to generate only
weak localization and toroidal motion, and much higher values
of n make little added difference (Bercovici, 1993). Indeed, the
source-sink model in this case (Fig. 2) produces relatively weak
toroidal motion and un-plate-like flow wherein the velocity field
appears predominantly dipolar (Fig 2a); moreover, the peak vor-
ticity and vorticity correlation plateau quickly to modest values
significantly less than 1 (Fig 2b). Although the grain-sizes Ri

and interface roughness r are computed, they have no effect on
the rheology and thus do not influence the flow field. In the end,
weakening mechanisms must be considerably more effective in
producing toroidal motion than a power-law of n = 3 to be con-
sidered viable plate-generating mechanisms.

3.2.2. Baseline case 2: Grain-damage without pinning
When grain-damage occurs without Zener pinning (by fixing

Zi = 1), there is only grain reduction while the two phases de-
form via dislocation creep, i.e., at high stress and large grain-
size. This case is equivalent to the single-phase system (Rozel
et al., 2011) since there is no influence of one phase on the other
through pinning.

In the source-sink driven model, damage without pinning
provides modest toroidal motion and localization (Fig 3), only
slightly better than the pure dislocation creep case. This result is
to be expected since damage drives the initially large grain-sizes

to the boundary between diffusion and dislocation creep, i.e., to-
ward so-called piezometric equilibrium, after which grain-size
stops evolving (Fig 3b); i.e., the diffusion-dislocation boundary
delineates a stable equilibrium in grain-size, since grains grow if
smaller than this size and shrink if larger (assuming damage is
generating dislocations). Thus the composite rheology still has a
large dislocation creep component to it. Note that while dam-
age to the interface continues to drive the roughness r to smaller
sizes, r itself has no influence on the system in this case. The
maximum vorticity Ωmax and vorticity correlation CΩ peak with
time and then approach steady state values that are only mod-
estly larger than for the pure dislocation case, both significantly
less than their idealized values of 1.

In short, without Zener pinning grain-damage cannot drive
the grain-size completely out of the dislocation creep regime
and thus the system retains a significant component of power-
law dislocation-creep rheology. The rheology remains close to
a power-law rheology with an exponent larger than for pure dis-
location creep, and a weak grain size dependence (Rozel et al.,
2011), similar to what is observed during grain-boundary sliding
(e.g., Hirth and Kohlstedt, 2003; Hansen et al., 2012).

3.2.3. Grain-damage and pinning
When damage occurs with Zener pinning, the system can expe-

rience grain reduction even in the diffusion creep regime because
damage to the interface and subsequent reduction in r drives grain
reduction by Zener pinning. This system can attain significant
localization and a very strong toroidal field, depending on the
choice of parameters, especially the damage numbersDI andDi,
which we set equal to each other for simplicity. The grain heal-
ing rate is fixed at Ci = 1, as mentioned above, and the interface
healing rate is set to CI = 10−2 for q = 2 and CI = 10−5 for q = 4;
we only consider these values of q since comparison to experi-
ments implies they cover the most plausible range (Bercovici and
Ricard, 2012).

For moderate values ofDI = Di = 100, highly plate-like local-
ization and toroidal motion are readily obtained for both values
of q = 2 and 4 and their associated CI (Fig 4). The vorticity ex-
trema in fact far exceed the idealized values of Ω̃ (indicated by
the “saturated” peaks that appear as color bands in the vorticity
field). Indeed Ωmax reaches more than double the magnitude of
Ω̃ and the correlation CΩ readily reaches the idealized value of 1
(Figs. 4b,d). Hence the strike-slip shear bands dynamically reach
much narrower structures than the imposed source and sink.

The material property fields also obtain plate-like character-
istics. In particular, the viscosity fields display more contigu-
ous narrow zones of weakness – akin to plate boundaries – than
in either the cases with pure dislocation creep or with grain-
damage sans pinning. Moreover, the minimum grain-sizes drop
almost two orders of magnitude from their original values; the
dimensional grain-sizes thus evolve from approximately 500µm
to about 5µm, which is consistent with observations of grain-size
distributions in mylonites (Warren and Hirth, 2006). The con-
tinuous weak zones are associated with regions undergoing more
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Figure 2: Source-sink driven flow and material fields. Frame (a) displays the imposed source-sink (divergence) field S , vorticity Ω (with the same
contour interval as S ), surface velocity field v, interface roughness r, volume averaged mean grainsize R̄ =

∑
i φiRi, and volume averaged mean

viscosity µ̄ =
∑

i φiµi; the latter three quantities are shown in log10 for better resolution of minima. The dimensionless model domain is −1 ≤ x, y ≤ +1;
the length of the source and sink as well as their separation distance are 1 (since the separation length is the nondimensionalizing length scale), while
their half-width is 0.1, and amplitude is |S |max = 1 (since the dimensional amplitude of S is used for the strain-rate and inverse time scales). Frame (b)
shows the time evolution of the minimum grainsizes Ri and interface curvature r, as well as the peak vorticity Ωmax and correlation function CΩ from
(29). The case shown is for dislocation creep only (i.e., setting bi = 0 in (12)-(15)) with n = 3. Contours are evenly spaced between extrema for each
contour plot. The extrema for S are always ±1. Extrema ([min,max]) in contour plots for Ω, r, R̄ and µ̄ are [-0.4,0.4], [0.06,3.9], [0.08,3.3] and [0.5,10.8],
respectively
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Figure 3: Same as Fig. 2 but with grain-damage and no Zener pinning. The case shown has an interface growth exponent of q = 4, but this only affects
interface evolution and not the rheology or localization, since without pinning there is no coupling between interface and grains. Extrema ([min,max]) in
contour plots for Ω, r, R̄ and µ̄ are [-0.5,0.5], [0.07,5.0], [0.8,4.6] and [0.2, 10.0], respectively. The viscosity field also displays color contours indicating
fraction of compliance or deformation occuring in diffusion creep, given by µ̄/[

∑
i φiR

m
i /(2bi)]; in particular regions between the red contours are more

than 75% in diffusion creep and regions inside the yellow contour are more than 99% in diffusion creep, although in this case the lowest viscosity
regions have a significant contribution from dislocation creep hence diffusion creep is only 99% dominant in a small island offset from the viscosity
minima.

than 99% diffusion creep, i.e., where the grain-size distribution
has been driven almost completely into the diffusion creep regime
(see Figs 4a,c).

Obviously the damage number DI (and Di) influences the
plate-like behavior. The values of Ωmax and CΩ as a function
of DI can be determined from a suite of source-sink calcula-
tions (Fig. 5) and these demonstrate a very dramatic increase in

plate-like toroidal motion with increasing damage number. For
DI ∼ O(1) the toroidal motion is weak and comparable to the
pure dislocation case as expected, but for DI ∼ O(10), the peak
vorticity Ωmax and correlation CΩ approach idealized values of
unity. For DI ∼ O(100) the peak vorticity Ωmax well exceeds,
by factors of 2 and 3, the idealized values and the correlation CΩ

firmly saturates at 1. Since the maximum velocity changes only
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Figure 4: Same as Fig. 2 but with grain-damage and Zener pinning for two different cases with different interface coarsening exponents q as indicated.
Extrema ([min,max]) in contour plots for Ω, r, R̄ and µ̄ are (a) [-2.4,2.4], [0.2,4.4], [0.3,4.1] and [0.02,9.6], respectively; and (c) [-1.5,1.5], [0.2,5.5],
[0.4,4.3] and [0.03,9.8], respectively. Because contours in Ω have the same intervals as with S , the maximum and minimum values are saturated
beyond ±1 with yellow and indigo, respectively. As with the viscosity field in Fig.3, regions between the red contours are more than 75% in diffusion
creep and those between yellow contours are more than 99% in diffusion creep.

slightly between cases (e.g., note the velocity maxima in Figures
2–4), the large increase in Ωmax withDI is largely due to narrow-
ing of the strike-slip shear zone; i.e., when Ωmax ≈ 1 the strike-
slip zone is approximately as wide as the source or sink bands (as
it would be for the idealized vorticity Ω̃), thus for DI ∼ O(100)
the strike-slip zone is 2-3 times narrower than the source-sink
bands.

The greater localization and plate-like behavior in the cases
with pinning and grain-damage is largely due to the great sep-
aration in bounding stress–strain-rate curves indicated in §3.1.
For a given stress, regions with small grains well into the diffu-
sion creep regime will have much higher strain-rates than regions
with large grains undergoing dislocation creep; this very contrast
allows for substantial localization, thus rapidly deforming plate
boundaries and weakly deforming plate interiors. However, this
effect also depends somewhat on the initial grain-size distribu-
tion, which determines how much of the domain is initially un-

dergoing dislocation creep. Initial grain-sizes either an order of
magnitude bigger or smaller than shown here tend to increase or
decrease the peak vorticity Ωmax by a factor of approximately 2,
respectively. However, this range of initial grain-sizes leads to
flows that span the range from sufficiently plate-like (Ωmax ≈ 1)
to highly plate like (Ωmax ≈ 3 − 4).

3.3. Plate re-organization and plate-boundary inheritance
The features of instantaneous plate-like motion such as plate-

ness (i.e., strong plate interiors and weak plate boundaries; see
Weinstein and Olson, 1992) and toroidal motion are important
metrics of plate generation models. However, dormancy and re-
activation of weak fault zones and plate boundaries are also im-
portant features of plate tectonics. In particular the inheritance
of long-lived but inactive weak zones are thought to be key for
initiation of new subduction zones (Gurnis et al., 2000; Toth and
Gurnis, 1998; Lebrun et al., 2003; Hall et al., 2003). Moreover,
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Figure 5: Maximum peak vorticity Ωmax (blue) and correlation CΩ (black) obtained versus the damage numbers DI = Di in calculations with pinning
and damage (as in Fig. 4) for two different cases with different interface coarsening exponents q as indicated.

changes in plate motion can also leave relic plate boundaries that
are suboptimally aligned with the new plate direction, such as the
San Andreas Fault system relative to the current direction of the
Pacific plate. How a plate and plate boundaries evolve after a
plate motion change are a key aspect of paleomagnetic plate re-
constructions, which provide important constraints on plate gen-
eration theories. Indeed, one of the advantages of damage theory
over an instantaneous rheology model for plate generation is that
it allows dormant or inherited weak zones that can be misaligned
with the current plate direction and thus influence plate evolution
and geometry.

3.3.1. Experimental set-up
Here we explore one simple experiment on the effect of rapid

plate motion change on plate boundary evolution, given some se-
lected damage and healing parameters. The experiment is an ab-
straction of the change in motion of the Pacific plate associated
with the 47Ma Emperor-Hawaiian bend (see Sharp and Clague,
2006). In particular we initiate calculations with the source-sink
field driving motion 15◦ West of North (i.e, W15N or at an an-
gle of 105◦ from the x axis, approximately the azimuth of the
Emperor Seamount chain) for both sets of interface healing pa-
rameters used above (i.e., (q,CI) = (2, 10−2) and (4, 10−5)). The
calculations are run until a plate-like vorticity field is well es-
tablished with a peak value of Ωmax ≈ 1, i.e., comparable to
the ideal peak value of Ω̃ (Figs. 6a and 7a). The source-sink
field is then abruptly rotated 45◦ counter-clockwise to a W60N
direction, roughly the azimuth of the Hawaiian Ridge (Figs. 6b
and 7b), which imposes a rapid change in so-called plate driv-
ing force (although the Earth’s actual driving force derives from
the mantle’s buoyancy field, which has a direct correlation to
poloidal flow). The vorticity field then evolves from its origi-
nal well-established strike-slip type localizations that are orien-
tated W15N, to its new configuration over a long time integration

(Figs. 6b-e and 7b-e). The evolution of the minimum grain-size
and interface roughness as well as vorticity characteristics Ωmax
and CΩ are tracked through the entire experiment (Figs. 6f and
7f). The experiments are run with a high enough damage number
to establish plate-like vorticity (DI = 100). The experiment with
q = 2,CI = 10−2 (Fig. 6) has faster interface coarsening than the
case with q = 4,CI = 10−5 (Fig. 7), which allows us to infer the
effect of healing on plate reorganization and evolution.

3.3.2. Evolution of strike-slip vorticity
After the plate-motion change (i.e., the source-sink rotation),

the vorticity field retains “memory” of the original plate config-
uration throughout the experiment, and does not reach a regular
square plate-like structure (as in the simpler static-source-sink
experiments of §3.2), although the experiment with faster heal-
ing progresses slightly further to regular strike-slip type margins.
After the abrupt rotation, the peak vorticity Ωmax drops slightly
but then continues to increase to values as large as in the static
source-sink experiments (Figs. 6f and 7f). However, the vortic-
ity correlation CΩ drops significantly immediately after the rota-
tion as expected, since the geometry of the original Ω is poorly
correlated with the new idealized Ω̃.

Following the rotation, CΩ climbs for a period of time, but then
decreases again, indicating that the vorticity field deviates from
the ideal plate-like configuration rather than approaching it. This
result implies that the original weak zones have a very long term
effect on the plate evolution after a motion change. In particular,
the new (post-rotation) strike-slip plate boundaries are subopti-
mal for idealized plate motion (relative to the orientation of the
driving force or source-sink field) for extended periods. Using the
source-sink rate scale S discussed in §2.5.1, the dimensional du-
ration of the experiments is of order several 10Myrs. The grain-
damage and pinning mechanism thus allows for suboptimal plate
boundary evolution akin to the evolution of the San Andreas fault
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(SAF) system over the last 20Myrs (that boundary, however, was
a subduction zone prior to 20Ma).

3.3.3. Evolving plate asymmetry
Another important feature of the experiment is the evolving

asymmetry in the plate motion as well as plate boundary struc-
ture. In particular, the “northernmost” end-point of the sink field
(or subduction zone) forms an accute corner with the relic vortic-
ity field (strike-slip margin) that connects to it, while the south-
ernmost end-point of the sink forms an obtuse angle with the relic
vortex (e.g., see Fig. 7c-e). The norther acute angle generates
very high strain-rates and damage, and thus causes a sharp and
high-amplitude vorticity peak which persists throughout the ex-
periment. The southern obtuse angle has much less strain rate
and does not undergo the same degree of damage. The end result
is that the two vortex fields (the right-lateral margin to the north
and the left-lateral one in the south) are asymmetric, with the
northern one being more intense. This has two pronounced ef-
fects. First the northern acute corner generates a long-lived weak
plate corner that is similar to the sharp Aleutian-Kurile arc corner
(i.e., where the old sink is analogous to the pre-47Ma Aleutian
trench, now transitioned into a zone of large strike-slip vortic-
ity associated with highly oblique subduction; and the new sink
is akin to the current Kurile and Western Pacific trench system),
which has persisted for tens of millions of years despite the fact
that it is an ocean-ocean boundary with no continental shelf to
stabilize such a sharp structure (although the effect of subduct-
ing the Emperor chain at this corner remains an open question).
Secondly, the strong northern vortex causes the plate motion to
actually evolve slightly away from the source-sink orientation;
i.e., immediately after the source-sink rotation, the flow veloci-
ties are largely orientated in a W60N direction (e.g., Fig. 7b), but
as the plate boundaries evolve the flow direction is pulled grad-
ually north toward the strong corner vortex, leading to oblique
convergence or subduction (Fig. 7e).

Although the overall evolution of the experiments are qualita-
tively similar for the q = 2 and q = 4 cases, the asymmetries
in the velocity and vorticity fields are more pronounced for the
q = 4 experiments. In particular, the final northern acute vortic-
ity maximum for the q = 4 case (Fig. 7e) is 60% larger than the
peak amplitude of the source-sink field, the peak idealized vor-
ticity field (see (29)) as well as the peak vorticity for the q = 2
case (Fig. 6e). Indeed, the exponent q = 4 is the most likely
value based on comparison to polycrystalline coarsening experi-
ments (Hiraga et al., 2010; Bercovici and Ricard, 2012) since it
is associated with stagnant grain growth at large times; it is this
very behavior that impedes healing, sustains relic weak zones and
causes more severe asymmetries in our plate reorganization ex-
periments.

In the end, the grain-damage and pinning model of plate gen-
eration allows the memory of an original plate configuration to
persist after an abrupt motion change, and to affect the evolution
and structure of the re-oriented plate for geologically extended
periods.

4. Discussion and Conclusion

As discussed in Bercovici and Ricard (2012), the grain-damage
and pinning mechanism solves several significant quandaries
with regard to plate generation and deep lithospheric shear lo-
calization. First it permits grain-reducing damage to co-exist
with grain-size dependent diffusion creep, thus enabling a shear-
localizing and self-weakening mechanism in the deep litho-
sphere. Without Zener pinning, grain-reduction occurs while the
material is undergoing dislocation creep, which is unaffected by
grain-size, and grain-size dependent rheology only occurs in dif-
fusion creep, in which the grains cannot shrink. (While some
combination of stress- and grainsize-dependent rheology can oc-
cur close to the diffusion-dislocation creep boundary, such as due
to mixing of grain-sizes or grain-boundary sliding, the resultant
rheology is still fixed close this boundary, thus leading to weak
or modest feedbacks and localization.) With Zener pinning in a
two-phase or polycrystalline material such as peridotite, damage
to the interface between phases increases the number of small
blocking or pinning surfaces, which then reduce grain-size even
while well into the diffusion creep regime.

In this paper we have tested this self-softening feedback mech-
anism for its efficacy in generating plate-like toroidal motion,
which is one of the key metrics of plate generation. The sim-
ple test is a source-sink model used previously (Bercovici, 1993,
1995, 1998; Bercovici and Ricard, 2005) and we compare the
results to two baseline cases, i.e., pure dislocation creep and a
grain-damage mechanism without pinning. Both baseline cases
produce very nearly identical weak localization and toroidal mo-
tion. In contrast the model with grain-damage and Zener pin-
ning is capable of producing significant localization and large
focussed toroidal motion, highly plate-like velocity and viscos-
ity fields, in addition to grain-size reduction consistent with peri-
dotitic mylonites (e.g., Warren and Hirth, 2006; Linckens et al.,
2011); see §3.2.3. If such localization is dominant in the lower
lithosphere below plate boundaries, then lattice preferred orien-
tation (LPO) in olivine undergoing dislocation creep should be
weakened and possibly detectable as a lack of seismic anisotropy.
While there is some indication of this effect from field studies
(e.g., Mehl and Hirth, 2008), the expression of such low-LPO
features in regional seismic anisotropy is doubtful (Warren and
Hirth, 2006, M. D. Long, pers. comm.), and resolution would re-
quire analysis with higher-frequency waves and removing signals
of shallow fabric (e.g., laminae or cracks). Nevertheless, refined
seismic studies of plate boundaries would provide an important
test for these models.

Damage theories of plate generation are further able to treat
plate boundary evolution, in particular the effect of dormant
plate boundaries that can be reactivated, or relic boundaries af-
ter plate-motion changes. With the source-sink model we are
able to experiment with the effect of rapid plate motion change
similar to that associated with the Emperor-Hawaiian bend. In
these experiments the relic strike-slip weak zones prior to the
plate motion change have a long-lived influence on the new plate
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motion, causing the plate boundaries to have suboptimal ori-
entation, i.e., strike-slip margins non-orthogonal to the conver-
gent/divergent boundaries, as evident in the San Andreas system.
Moreover, the rotation causes an asymmetry in the flow field that
induces oblique subduction and a weak acute corner similar to the
Aleutian-Kurile junction that is an ocean-ocean boundary with no
continental structure to stabilize such a sharp feature.

In the end, the grain-damage and Zener pinning model of plate-
generation is, according to the tests performed herein, able to
sustain deep lithospheric localization, excite substantial toroidal
flow from convective-type motion, and permits dormant or relic
weak zones and plate boundaries that profoundly influence plate
tectonic evolution.
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