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s structures suggest melt can be generated at the top of the transition zone.
Because the melt phase is significantly more compressible than the solid phase, it is expected that a density
crossover occurs with increasing pressure. Experimental studies suggest this crossover lies towards the base
of the upper mantle. If the density crossover lies above the 410 km discontinuity, melt will collect and form a
layer until such time as it reaches the crossover when part of it may become unstable. We investigate the
stability of a compressible melt layer which intersects the density crossover. Analytic models of instabilities
are used to determine the effects of compressibility and crossover location on instability growth rates. We
find that increasing the compressibility increases growth rates due to the fact that rising perturbations
expand and become more unstable as they rise. If the density crossover lies above a melt layer at the
transition zone, perturbations must be large before becoming unstable, making it likely that the layer would
remain. However, when the density crossover lies within the melt layer, all perturbations are unstable and
they drain the melt layer completely unless diapiric separation occurs.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Upwelling mantle material ascending through the Earth's transi-
tion zone into the upper mantle can potentially undergo dehydration
melting (Inoue, 1994). This effect is a consequence of the water sol-
ubility contrast between transition zone minerals and those of the
upper mantle. Ringwoodite andWadsleyite, the principal components
of the transition zone, have solubilities at least an order of magnitude
higher than that of olivine, the main upper mantle mineral (Kohlstedt
et al., 1996). Consequently, when the system is in equilibrium, the
transition zone water concentration will be higher than that of the
upper mantle (Bolfan-Casanova et al., 2000; Richard et al., 2002). For a
sufficiently high mantle water content the transition zone will have a
water concentration higher than the water storage capacity (solubility
or solidus limit, depending on the temperature) of the upper mantle
resulting in ascending material being ‘super-saturated’ on leaving the
transition zone (Huang et al., 2006), which leads to partial melting.
There is evidence to suggest this process occurs in some locations; in
particular seismic studies have detected a low velocity zone in some
areas just above the 410-km discontinuity, which could be interpreted
as a layer of partial melt (Revenaugh and Sipkin, 1994; Song et al.,
2004; Courtier and Revenaugh, 2007).

A question remains as to the fate of melt at the 410-km discon-
tinuity. In many instances melt is less dense than its solid counterpart
ici).
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and, if this were the case, melt generated at the 410-km discontinuity
would rise into the upper mantle. However, mineral physics experi-
ments suggest that dry silicate melts are more dense than their solid
phases at the pressures at the base of the upper mantle (Stopler et al.,
1981; Agee and Walker, 1988; Ohtani et al., 1995; Agee, 2007); this
results from the fact that the melt phase is more compressible than
the solid phase and hence its density increases more rapidly with
depth. The addition of water decreases both the melt density and its
incompressibility, although for small enough water concentrations,
hydrous melts are also expected to be stable just above the transition
zone (Matsukage et al., 2005; Sakamaki et al., 2006). The density cross-
over, where the melt ceases to be gravitationally stable, is likely to lie
close to the base of the uppermantle (Ohtani andMaeda, 2001). In this
case it is possible to form amelt layer which rests on top of the 410-km
discontinuity.

The Transition Zone Water Filter Model (Bercovici and Karato,
2003) hypothesizes that partial melting at the 410-km discontinuity
can filter out incompatible elements such as uranium and thorium
into the melt phase. Melt which rests on the 410-km discontinuity can
then be entrained back into the lower mantle (Bercovici and Karato,
2003; Leahy and Bercovici, 2007) thereby recycling the incompatible
elements. The model provides a mechanism for sustaining distinct
chemical reservoirs and apparent layering within a whole mantle
convection system. A crucial aspect of the Transition ZoneWater Filter
Model is that the melt layer be denser than the solid so that incom-
patible elements do not escape into the upper mantle MORB source
region.

Clearly a melt layer which lies entirely beneath the density cross-
overwill always be stablewhereas if the density crossover lies beneath
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Fig. 1. Schematic diagram of the 2D model.
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the 410 km discontinuity melt generated at the top of the transition
zone will not be stable and no melt layer will form. Given that the
density crossover is thought to lie towards thebase of the uppermantle
it is entirely possible that a melt layer at the 410-km discontinuity may
intersect the density crossover and be partially unstable. Here we
construct simplemathematical models to understand the stability and
evolution of such amelt layer. The aim is to address the questionof how
having an unstable portion of the melt layer affects the stability of the
layer as a whole and under what conditions a significant amount of
meltwould be lost into the uppermantle. From ourmodelswe are able
to predict the growth rates of any instabilities and establish how they
vary with the location of the density crossover and physical properties
of the melt.

2. Mathematical model

2.1. Formulation

We consider the problem of a thin melt layer overlain by a much
thicker solid layer. The system is modelled in 2D as a thin, compress-
ible layer beneath an incompressible half-space (Fig. 1). The melt
occupies the region z=0 to z=hwhere the height of the layer, h, can be
expressed as the sum of the average layer height, ha, and a pertur-
bation, δh:

h x; tð Þ = ha + δh x; tð Þ ð1Þ

The flow within both layers is assumed to be viscous creeping and
consequently the system obeys the Stokes equation:

j � τ−jp + ρg = 0 ð2Þ

where p denotes pressure, ρ density, g gravitational acceleration and
the components of the viscous stress tensor, τ, are given by

τij = η
Aui

Axj
+
Auj

Axi

� �
+ η2

Auk

Axk
δij ð3Þ

where u=(u,w) is the velocity field, η is the dynamic viscosity and η2
the second viscosity.

Assuming all viscosities are constant and substituting Eq. (3) in Eq.
(2) gives

ηj2u + η + η2
� �

j j � uð Þ−jp + ρg = 0: ð4Þ

Given that the lower layer is melt and the overlying layer is solid,
we assume ηs≫ηm where the subscript s denotes the overlying solid
layer andm the melt layer. Thus, the upper layer acts as a rigid bound-
ary for the lower layer while the lower layer acts as a free-slip bound-
ary for the upper layer. The boundary conditions on the velocity field
can be summarised by

on z = 0 : um = 0 ð5aÞ

on z = h : um = 0 ð5bÞ

on z = h :
Aus

Az
+
Aws

Ax
= 0 ð5cÞ

as z→∞ : us→0andws→0: ð5dÞ
There must also be continuity of vertical velocity and normal stress

on the interface between the fluids, i.e.:

on z = h : ws =wm =
Ah
At

ð6Þ

δσ s
zz = δσ

m
zz +Θ δhð Þ ð7Þ
where δσzz represents the deviation in normal stress from the hydro-
static background value (the superscripts indicate whether it is calcu-
lated on the upper or lower side of the interface) and

Θ δhð Þ =
Z ha + δh

ha
ρm−ρsð Þgdz ð8Þ

is the pressure difference induced by a hydraulic head of height δh.

2.2. Melt layer density profile

The density and pressure in each layer may be written as the sum
of a hydrostatic reference profile, which depends only on height z, and
a perturbation that depends on the position vector x and time t:

p = p⁎ zð Þ + p V x; tð Þ ð9Þ

ρ = ρ⁎ zð Þ + p V p V; T Vð Þ ð10Þ

where T′ is the temperature perturbation. A key component of the
model is the reference density profile assumed for the melt layer.
Since the fluid in the overlying layer is incompressible, its reference
density profile is simply a constant and is denoted ρs⁎. In the melt
layer, however, the density will decrease with increasing z-coordinate.
The exact relationship depends on the assumed form of the bulk
modulus, K:

K = ρ⁎ Ap
⁎

Aρ⁎
: ð11Þ

The bulk modulus, a measure of a fluid's incompressibility, will
increase with increasing pressure. The Murnaghan equation of state
assumes that the bulk modulus increases linearly with pressure and
is found to be a good approximation inside the Earth. Therefore, we
write

Km = K0 + K Vp⁎m ð12Þ

for positive constants K0 and K′. Substituting this into Eq. (11) and
knowing that the reference pressure must satisfy

Ap⁎m
Az

= −ρ⁎
mg ð13Þ

we find that

ρ⁎
m = ρ0 1−

K V−1
z0

z
� � 1

K V−1

: ð14Þ

For the special case K′=1 this becomes

ρ⁎
m = ρ0e

− z
z0 ð15Þ



Fig. 2. Density as a function of vertical coordinate, z, for various values of K′. This graph
assumes z0 is a constant (see text).
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where ρ0=ρm⁎ (z=0) and z0 is a length scale which is directly related
to the incompressibility of the fluid. For K′N1, the equation of state
model is invalid for heights zNz0/(K′−1) and we must confine our
analysis well below this limit. For 0bK′ b 1, ρm⁎ →0 as z→∞. Examples
of density profiles for various values of K′ are shown in Fig. 2. It should
be noted that in the expression for ρm⁎ there are three constants: ρ0, z0
and K′, of which only two can be set independently given a reference
point for both the density and pressure. For example, if we assume
ρm⁎ =ρ0 and p⁎=p0 at z=0, then using

Aρ⁎
m

Az
=
Aρ⁎

m

Ap⁎
� Ap

⁎
m

Az
ð16Þ

we can calculate that

z0 =
K0 + K Vp0

ρ0g
: ð17Þ

The exact values of the constants in the melt and solid density
profiles will determine the height of the density crossover, d, or vice-
versa (ρs⁎ =ρm⁎ (d)). In general we assumemelt is gravitationally stable
at z=0 (ρ0Nρs⁎).

2.3. Solution method

The equations are solvedwithin each layer separately using bound-
ary conditions on z=0, z→∞ and the interface z=h Eqs. (5)–(7).

Since the upper layer is incompressible, satisfying∇ · us=0, Eq. (4)
within this layer becomes

ηsj
2us−jps + ρsg = 0: ð18Þ

Taking, respectively, the divergence and curl gives

j2ps = 0 ð19Þ

j4Ws = 0 ð20Þ

where us=∇×Ψs. Given that the flow field is 2-dimensional, Ψs=
(0,Ψs,0).

Conservation of mass within the lower layer is given by the general
equation

Aρm

At
+ um �jρm + ρmj � um = 0: ð21Þ
The perturbation term of the density field can be written as
ρ Vm = ρ⁎
m βmp Vm−αmT Vmð Þ ð22Þ

where β=1/K is the compressibility and α is the coefficient of thermal
expansion. Using an assumption similar to the Boussinesq approx-
imation, the perturbation term is neglected everywhere except in the
momentum balance (justified as long as βmρm′ and αmTm′ are small).
We also assume the anelastic approximation, i.e. ∂ρm/∂t=0. Together
these approximations are known as the anelastic-liquid approxima-
tion and imply (Jarvis and McKenzie, 1980)

j � um = −
w
ρ⁎
m

Aρ⁎
m

Az
: ð23Þ

Under the small-slope assumption for the lower layer, the x-com-
ponent of Eq. (4) can be approximated by (Appendix A)

ηm
A
2um

Az2
−
Ap Vm
Ax

= 0: ð24Þ

Applying the boundary conditions, the velocity field can be written
as

um =
1

2ηm

Ap Vm
Ax

z z−hð Þ: ð25Þ

Because the vertical velocity component is neglected within the
melt layer, the normal stress on the lower side of z=h can simply be
expressed as

δσm
zz = −p Vm ð26Þ

which, with Eq. (7), can be used to obtain an expression for the melt
layer pressure Pm′ that can, in turn, be substituted into Eq. (25) to ob-
tain the velocity within the lower layer.

3. Infinitesimal instabilities

The development of Rayleigh–Taylor instabilities has been well
studied by previous authors when both fluids are incompressible (e.g.
Whitehead and Luther,1975; Ribe,1998). We use similar analytic tech-
niques to calculate the growth rates of infinitesimal instabilities to
ascertain the effect of compressibility on the initial development of
perturbations.

We assume that the interface perturbation from Eq. (1) can be
written as

δh x; tð Þ = F tð Þ cos kx ð27Þ

Given the boundary conditions (5)–(7) and the assumption that δh
is small (allowing boundary conditions on z=h to be evaluated on the
constant surface z=ha), the solutions to Eqs. (19) and (20) are

p Vs = Pe−kz cos kx ð28Þ

Ws = Q + Rzð Þe−kz sin kx ð29Þ

where

P = 2kηsR ð30aÞ

Q = F V tð Þekha 1−khað Þ
k

ð30bÞ

R = F V tð Þekha ð30cÞ



Fig. 3. Growth rate magnitude versuswavenumber for varying degrees of compressibility.
K′=1, ηs/ηm=10, Δρ=−1. The wavenumber k is scaled by 1/ha. Although the thin-layer
approximation suggests that solutions are only valid for khab1, a full 2Ddevelopment gives
essentially identical results.
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in which F′(t)=dF/dt. From this we can calculate the normal stress on
the upper side of the z=h boundary:

δσ s
zz = −p Vs + 2ηs

Aws

Az

� �
z = h

ð31Þ

= −2ηsk
Ah
At

: ð32Þ

Under this assumption that δh is small, the hydraulic head func-
tion, Θ, may be approximated by

Θ δhð Þ =Δρgδh ð33Þ

where Δρ=ρm⁎ (z=ha)−ρs⁎, is the density difference between the melt
at height ha and the solid. This approximation allows for the pressure
induced by a hydraulic head of finite height δh but neglects any
density variation within the melt layer over this small distance.

The time dependent part of the density interface perturbation is
assumed to take the form

F tð Þ = beat ð34Þ

where b is small. Consequently, using Eq. (25), the velocity field within
the melt layer may be written as

um =
bk
2ηm

Δρg + 2kηsa
� �

eatsin kx � z ha−zð Þ: ð35Þ

To obtain a relation for ∂h/∂t consider mass conservation within a
vertical slice through the melt layer:

Z h

0

A

Ax
ρmumð Þdz = −ρm hð ÞAh

At
: ð36Þ

Again we have assumed the anelastic-liquid and thin layer
approximations. Substituting for um in this expression and rearranging
gives us an expression for the growth rate, a:

a =
−Δρg

2kηs +
2ηmρ

⁎
m hað Þ

k2 I hað Þ
ð37Þ

where

I hð Þ =
Z h

0
ρmz h−zð Þdz ð38Þ

corresponds to themass fluxof fluid through a layer of height h. Note that
the growth rate is positive for an unstable density interface (ρm⁎ (z=ha)bρs⁎)
and negative for a stable density interface. (In the incompressible limit,
I/ρm⁎ =h3/6 inwhich case Eq. (37) yields the classical growth rate given
by Whitehead and Luther (1975).) Because the perturbations are as-
sumed to be small their stability cannot change by reaching the
density crossover. The magnitude of the growth rate depends on the
wavenumber of the instability. The maximum growth rate is

amax = −
Δρg
3ηs

I hað Þ
2ρ⁎

m hað Þ
� �1=3 ηs

ηm

� �1=3

ð39Þ

and occurs at a wavenumber given by

k3max =
2ρ⁎

m hað Þηm
I hað Þηs

: ð40Þ

As an example we consider the case where K′=1 as the density
profile has an expression which can be integrated easily. Since the
growth rate Eq. (37) trivially depends on the density contrast at the
melt-solid interface, Δρ, we hold this quantity constant (taken to be −1)
and vary z0 to determine the effect of an increasing degree of
compressibility of the initial instability growth rate. Note that this
means we are no longer free to specify ρ0. Fig. 3 shows curves of growth
rate versuswavenumber for varying degrees of compressibility. Herewe
have defined C=1/z0 which is directly related to how compressible the
fluid is. Increasing the compressibility results in an increase in the
growth rate magnitude. The difference is particularly noticeable around
themaximum. The valueof kwhere themaximumoccurs also decreases
slightly as the compressibility increases.

The only parameter in Eq. (37) which varies in these calculations is
the mass flux of fluid, I (Eq. (38)). As the compressibility increases so
does I due to the density increase with depth. Hence the difference in
initial growth rate with compressibility can be explained by enhanced
mass transport from beneath a downward perturbation to an upward
perturbation.

It should be noted that Fig. 3 is plotted for a viscosity ratio ηs/ηm=10.
As this ratio increases the effect of compressibility on the growth will
become less apparent for a fixed large k since the second term in the
denominator of Eq. (37) becomes less significant. However, as ηs/ηm
increases, the maximum growth rate increases and occurs at diminish-
ingwavenumbers k (see Eqs. (39) and (40)); thus the least stablemode is
in fact affected more by compressibility with increasing viscosity
contrast.

4. Finite amplitude deformation

4.1. Model setup

In order to study the long term stability of the melt layer we must
consider the development of finite amplitude instabilities. Following
Bercovici and Kelly (1997) we have created a simple model whereby
we assume that the interface undulates with a repeating pattern of
crests and troughs. Rather than attempting to model the exact shape
of these undulations we consider only the progression of their average
height (defined to conserve mass beneath). Fig. 4 illustrates the main
components of the model. The unperturbed layer height is ha, the
rising crest height is hc and the descending trough height ht. Flow
within the layer is assumed to be in the horizontal direction only (thin
layer approximation, Appendix A) and is confined beneath the base of
the descending trough (i.e. beneath z=ha−ht). We do not model the
entire pressure field but consider only the average pressure deviation
from the reference field beneath the crest, pc′, and the trough pt′. For
simplicity, and to focus on the effects of compressibility, the system is
assumed to repeat with one period λ, although crests and troughs do
not necessarily have the same widths (e.g., see Ribe, 1998).
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The heights of the crests and troughs must satisfy the following
conservation of mass equation:

Z ha + hc

0
ρ⁎
mdz +

Z ha−ht

0
ρ⁎
mdz = 2

Z ha

0
ρ⁎
mdz ð41Þ

The velocity field within the melt layer is given by

um =
1

2ηm

Ap V
Ax

z z−ha + htð Þ ð42Þ

where in this case we assume

Ap V
Ax = p Vt−p Vc

λ=2
: ð43Þ

Note this expression is for the pressure difference between two
sections as shown in Fig. 4where the trough is at a higher x-coordinate
than the crest. When the positions are reversed there will be a sign
change in this expression.

The flux of material from the trough section to the crest section, Q,
is given by

Q = −
Z ha−ht

0
ρ⁎
mumdz =

p Vt−p Vcð Þ
ηmλ

I ha−htð Þ ð44Þ

where I is as defined in Eq. (38). The total mass increase of the trough
section and mass decrease of the crest section is twice this amount:

2Q =
λ
2
ρ⁎
m ha + hcð Þ Ahc

At
ð45Þ

2Q =
λ
2
ρ⁎
m ha−htð ÞAht

At
ð46Þ

which gives

ρ⁎
m ha + hcð ÞAhc

At
= ρ⁎

m ha−htð ÞAht
At

: ð47Þ

This expression can also be obtained by differentiating Eq. (41)
with respect to time. To solve exactly for the growth rates, ∂hc/∂t and
∂ht/∂t, we use the normal stress balance Eq. (7) where, as before

δσm
zz = −p Vi ð48Þ

δσ s
zz~−

ηs
λ
Ahi
At

ð49Þ

with i=c or t. The constant of proportionality in Eq. (49) could be
determined exactly in the infinitesimal deflection case as the exact
Fig. 4. Schematic model of finite amplitude deformation of the melt-solid interface. Left: The
into two regions: beneath the crest (denoted with a subscript c) and beneath the trough (den
and the crests are rising and the troughs descending.
shape of the boundary was known. Here it is expected to be similar to
a sinusoidal boundary so we assume it is 4π as in Eq. (32). We obtain
the flux, Q, from Eq. (44) by writing

p Vc−p Vt =
4πηs
λ

Ahc
At

+
Aht
At

� �
+Θ hcð Þ−Θ −htð Þ ð50Þ

Combining Eqs. (44), (45) and (50) gives:

Ahc
At

ρ⁎
m ha + hcð Þηmλ2

4I ha−htð Þ +
4πηs
λ

1 +
ρ⁎
m ha + hcð Þ
ρ⁎
m ha−htð Þ

� �" #
= − Θ hcð Þ−Θ −htð Þð Þð51Þ

which gives ∂hc/∂t as a function of hc. ∂ht/∂t can then be calculated
from Eq. (47). We can compare the initial growth rates in this case
with the results of Section 3 by considering Eq. (51) in the limit hc,
ht→0:

Ahc
At

=
−Δρg

4πηs
λ + ρ⁎

m hað Þηmλ2

8I hað Þ

2
4

3
5hc: ð52Þ

The initial growth is exponential with a rate given by the bracketed
term. This expression is almost identical to Eq. (37) although there is
a slight difference in the coefficient of the second term in the denom-
inator caused by the simplified form of the pressure gradients in this
model. The maximum initial growth rate occurs when λ=λmax where

λ3
max =

16πI hað Þηs
ρ⁎
m hað Þηm

: ð53Þ

4.2. Effects of compressibility

We use Eq. (51) to calculate the growth rates of finite amplitude
perturbations for varying degrees of compressibility within the layer.
For simplicity we use the melt layer density profile with K′=1: ρm⁎ (z)=
ρ0e−Cz where C is a measure of the magnitude of the compressibility.
Similar effects will be seen for all values of K′ although the exact mag-
nitudes of growth involved will vary. For the calculations in this sec-
tion densities are non-dimensionalised with respect to ρ0, lengths
with respect to the initial melt layer thickness, ha and time with re-
spect to ηm/ρ0gha. The instability wavelength is assumed to be λmax

(Eq. (53)). Since this is the wavelength of the fastest initial growth rate
it is the instability wavelengthwhich is most likely to occur. Recall that
this wavelength varies with the magnitude of C. The overlying solid is
assumed to be 100 times more viscous than the melt.

Firstly we apply this model to the case of an unstable and in-
compressible melt layer with an identical density contrast between
the melt and solid at z=ha as used in the subsequent compressible
undulating interface is approximated by a box function. Right: The melt layer is divided
oted with a subscript t). The velocity field arrows assume the perturbations are unstable



Fig. 5. Evolution of perturbations for an incompressible, unstable melt layer (C=0) with λ=λmax and ηs/ηm=100. Left: Growth rate, ∂hc/∂t, versus perturbation height, hc. The dashed
line indicates the initial exponential growth rate. Right: Perturbation height versus time.
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calculation. In this case the heights of the crests, hc, and troughs, ht,
will be identical at all times. Fig. 5 shows how the growth rate of the
crest and trough height evolves. The growth rate slows from the initial
exponential growth due to the trough descending and constricting
the channel through which material can flow. Eventually the trough
reaches the base of the layer and the growth rates fall to zero as the
fluid flow channel is completely drained. The rising crest achieves its
maximum height which, in this case, is equal to the layer thickness, ha.

In Section 3 we saw that compressibility increased the initial
growth rates of instabilities due to the increased ease of mass transfer
from beneath the descending troughs to beneath the rising crests.
With our finite deformation model we ascertain the effects of com-
pressibility on finite amplitude growth rates and in particular answer
the question of what happens to an instability which intersects the
density crossover. We now consider the case where the melt layer is
unstable at z=ha but where the density crossover occurs within the
melt layer such that the base of the layer is stable. If the density
crossover occurs at a height d above the base of the melt layer, where
0bdbha, then the density of the overlying solidmust be ρs=ρ0e−Cd. For
amelt layer that is compressible, the height of the rising crest is greater
than that of the descending trough. Moreover, because the crests in-
flate from decompressing they will becomemore unstable as they rise
Fig. 6. Evolution of perturbations for a compressible melt layer with Cha=0.5, K′=1, λ=
Perturbation height versus time.
which will act to increase growth rates; similarly the troughs will be-
come less unstable as they descend (due to compression) and even-
tually become stable when they reach the density crossover which
should act to reduce growth rates.

Fig. 6 shows the evolution of growth rates for C=0.5 and d=0.8,
from which it is clear that the introduction of compressibility has
increased the growth rates moderately. The increased instability of
rising crests is a larger effect than the increased stability of descending
troughs. As before, constriction of the fluid flow channel eventually
causes growth of the perturbations to terminate. However, the max-
imum height attained by the crests is now larger than the initial layer
thickness. These results suggest that a partially stable compressible
melt layer may not be sufficient to prevent its drainage as rising
instabilities from the unstable portion drag material from the entire
layer.

4.3. Critical compressibility

In some cases the rising crests are not able to drain the melt layer
completely. When the compressibility is above a certain critical value
the descending troughs are able to balance crests of any permitted
height without ever reaching the base of the layer. Consider the mass
λmax and ηs/ηm=100. Left: Growth rate, ∂hi/∂t versus perturbation height, hi. Right:



Fig. 8. Contour plot of the height above the density crossover of the smallest unstable
perturbation as a function of the density crossover height, d, and the compressibility
parameter, C, for K′=1. All quantities have been non-dimensionalised with respect to
the unperturbed melt layer thickness, ha.
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conservation Eq. (41) in the special case where the troughs have
reached z=0:

Z ha + hc

ha
ρ⁎
m zð Þdz =

Z ha

0
ρ⁎
m zð Þdz ð54Þ

which becomes

2 1−
K V−1
z0

ha

� � K V

K V−1

−1 = 1−
K V−1
z0

ha + hcð Þ
� � K V

K V−1

ð55Þ

and in the special case K′=1

2e−
ha
z0−1 = e−

ha + hc
z0 : ð56Þ

The right-hand side of both Eqs. (55) and (56) must always be
positive, thus the compressibility parameter C=1/z0 must satisfy

Chab
1− 1

2

� �K V−1
K V

K V−1
ð57Þ

which, in the case K′=1, is equivalent to

Chabln2: ð58Þ

If themagnitude of the compressibility exceeds these critical values
the melt layer will not drain completely. This has significant impli-
cations for the growth rates of the rising crests. As they are no longer
limited by constriction of the fluid flow channel they continue to
increase as the crest rises, a phenomenon we term runaway growth.
Fig. 7 shows the growth rate for K′=1 and a value of C above the critical
compressibility. While the descending trough has a maximum height
which is less than ha, the crest continues to rise indefinitely with the
growth rate steadily increasing.

When K′N1 growth of the perturbations must stop when they
reach height z=z0. Even for K′≤1 there would, in reality, be some
height (for example, the Earth's surface) above which the perturba-
tions cannot rise. However, if the compressibility is above the critical
value it is these external factors, rather than drainage of themelt layer,
which limit the maximum height attained by the crest. It should be
noted that it is mass conservation, not stability induced by crossing
the density crossover, which prevents the troughs from reaching the
base of the melt layer when the compressibility is super-critical.
Fig. 7. Evolution of perturbations for a compressible melt layer with Cha=1.0, K′=,
λ=λmax and ηs/ηm=100. Plot shows growth rate, ∂hi/∂t versus perturbation height, hi.
4.4. Stable melt layer

Another question which can be addressed using our simple finite
deformation model is the fate of a melt layer which lies entirely be-
neath the density crossover when unperturbed. Clearly small interface
deflections which do not reach the density crossover will be stable
with negative growth rates. However, there will be some perturbation
height above which the growth rates become positive and the pertur-
bation unstable. From Eq. (51):

sign
Ahc
At

� �
= sign Θ −htð Þ−Θ hcð Þð Þ: ð59Þ

From this we can calculate the smallest value of hc for which the
growth rate is positive. When the density crossover lies within the
melt layer the growth rate is positive for all values of hc. When the
density crossover lies above the melt layer the smallest unstable per-
turbation height depends on both the position of the density crossover
and the magnitude of the compressibility.

Fig. 8 shows how high above the density crossover a perturbation
must be in order to be unstable for the case K′=1. The thick black line
marks the point above which there are no solutions and all pertur-
bations are stable. For values in this unshaded region, even at the
maximum possible value of hc, which occurs when the channel has
drained completely beneath a trough, the growth rate is still negative.
This black line asymptotes to the critical value of Cha, in this case ln 2.
If Cha is above the critical value, and the perturbation height is not
limited by mass conservation, we always obtain a solution.

There are two expected effectswhich are evident fromFig. 8. Firstly,
as the height of the density crossover increases, so does the height
above this density crossover that a perturbation must have before it
becomes unstable. Secondly, as the magnitude of the compressibility
parameter increases, the height of unstable perturbations decreases.
When the fluid is more compressible, density changes occur more
rapidly and hence a smaller height of unstable fluid above the density
crossover is necessary to balance the stable column of fluid below it.

5. Discussion

5.1. Earth-like parameters

Analysis of our simple model can help us understand the fate of a
compressible melt layer that lies close to the density crossover. In



Fig. 9. Contour plot of the height above the density crossover of the smallest unstable
perturbation as a function of the density crossover height, d, and the compressibility
parameter, C, for K′=5. All quantities have been non-dimensionalised with respect to
the unperturbed melt layer thickness, ha.
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order to determine what happens to a melt layer above the transition
zone we must obtain estimates of the parameters involved under
conditions at the base of the upper mantle. Mineral physics experi-
ments suggest that hydrous silicate melt has a bulk modulus deri-
vative with respect to pressure of K′∼5 and density at the top of the
transition zone of ρ0∼3.3×103 kg m−3 (Matsukage et al., 2005;
Sakamaki et al., 2006). The exact values of K′ and ρ0 depend on the
water content of the melt. Assuming the pressure at the top of the
transition zone is p0∼13 GPa we can use Eq. (17) to calculate
z0∼2×106 m and C∼5×10−7 m−1. The bulk modulus at zero pressure,
K0, is assumed to be negligible compared to K′p0.

There are two possibilities to consider: the density crossover lying
within the melt layer or lying a small distance above the melt layer. In
the first instance perturbations are always unstable but the height
which they may reach without diapiric separation and their ability to
drain the entirety of the melt layer depends on the magnitude of Cha
relative to the critical value. Below the critical value rising crests are
able to drain the whole melt layer beneath the troughs; once this
happens there is no more material to supply the rising crests, hence
their growth terminates and they eventually succumb to diapiric
separation (e.g., Bercovici and Kelly, 1997). Above the critical value of
Cha rising crests will extend indefinitely whilst beneath troughs the
melt layer will never drain completely. From Eq. (57) we can calculate
that the critical value of Cha for K′=5 is 0.10. Since a melt layer at the
410-km discontinuity is likely to be no more than several tens of kilo-
meters thick, we can be reasonably confident that the Earth's system
lies comfortably within the sub-critical domain.

For a density crossover which lies above the melt layer the stability
of perturbations is shown in Fig. 9. A melt layer between 10 km and
100 km thick has corresponding Cha values of 0.005 and 0.05. Hence
realistic Earth values lie on the far left of this figure. In this instance the
density crossover must lie very close to the top of the melt layer for
it to even be possible for any perturbations to be unstable. If this is
satisfied, perturbations that are a significant fraction of the melt layer
thickness are necessary before they are unstable. This suggests that
if the melt layer lies entirely beneath the density crossover when
unperturbed it will be stable to nearly all, if not all, perturbations.

5.2. Conclusions

The Transition ZoneWater Filter Model requires a melt layer above
the 410 km discontinuity to be gravitationally stable. These results
indicate that the average melt layer height must remain below the
density crossover for this to happen. We saw in the previous section
that even if the melt layer lies only just beneath the density crossover
perturbations must be large before they become unstable. In contrast,
as soon as the unperturbed layer height reaches the density crossover
the layer is unstable to all perturbations and these perturbations will
drain the melt layer completely.

Existence of the density crossover part way through the melt layer
is not sufficient to ensure that part of the layer remains stable. How-
ever, the initial growth rates of instabilities are directly proportional to
the density contrast at the melt-solid interface. Therefore, the closer
the density crossover is to the melt-solid interface, the slower the
growth rates will be. If the density crossover lies sufficiently close to
the top of the melt layer it is possible that, even though instabilities
will grow indefinitely, they may take geologically long periods of time
to develop. Dimensionalising the time-scale in Fig. 6 we find that the
instabilities take on the order of several tens of millions of years to
develop for a density crossover at 0.8ha, indicating that unstable per-
turbations indeed take geologically long periods of time to form.

The above analysis assumes that the rising instabilities remain
attached to the melt layer at all times. In practice a rising perturbation
will separate from the melt layer if its Stokes (or free ascent) velocity
exceeds its growth rate (Whitehead and Luther, 1975; Bercovici and
Kelly, 1997). After this happens it is possible that the remaining layer
will lie entirely beneath the density crossover and hence be stable.
Consequently, even if rising perturbations have the potential to com-
pletely drain the melt layer, separation may occur and prevent this
from happening.

Appendix A. Thin layer approximation in compressible fluids

The x-direction component of the momentum Eq. (4) within the
melt layer is given by

2ηm + η2m
� � A2um

Ax2
+ ηm + η2m
� �A2wm

AzAx
+ ηm

A
2um

Az2
−
Apm
Ax

= 0: ðA:1Þ

This can be simplified considerably under the assumption that the
layer is thin (i.e. δx≫δz). Firstly,

A
2um

Ax2
� A

2um

Az2
ðA:2Þ

so the first term of Eq. (A.1) can be neglected.
We can express the velocity field in terms of a mass flux vector,

J, multiplied by specific volume, Vr:

um = VrJx and wm = VrJz where Vr =
1

ρm zð Þ ðA:3Þ

where ∇ · J=0. Considering the second term of Eq. (A.1) in terms of
J and Vr, we can write

A
2wm

AxAz
=
AJz
Ax

� AVr

Az
−Vr

A
2Jx
Ax2

ðA:4Þ

The second term in this relation is small since it scales as 1/δx2.
Using the fact that ∇ · J=0 we can obtain a scaling relationship for Jz:

Jzf−H
AJx
Ax

ðA:5Þ

where H is a typical layer thickness. Therefore,

AJz
Ax

f−
AH
Ax

� AJx
Ax

−H
A
2Jx
Ax2

ðA:6Þ

Both terms scale as 1/δx2 so ∂Jz/∂x is small. Also,

AVr

Az
fVr

L
ðA:7Þ
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where L is a typical scale height for the density profile. Since L≫H this
expression will never be large. Consequently the second term of Eq.
(A.1) can also be neglected and the equation can be written as

ηm
A
2um

Az2
−
Apm
Ax

= 0 ðA:8Þ

The z-direction component of Eq. (4) within the melt layer is given
by

2ηm + η2m
� � A2wm

Az2
+ ηm + η2m
� � A2um

AzAx
+ ηm

A
2wm

Ax2
−
Apm
Az

−ρmg = 0 ðA:9Þ

As before,

A
2wm

Ax2
V
A
2wm

Az2
ðA:10Þ

so the third term can be neglected.
From Eq. (A.8)

ηm
Aum

Az
fH

Apm
Ax

ðA:11Þ

Therefore

ηm
A
2um

AxAz
f A

Ax
H
Apm
Ax

� �
V
Apm
Az

orρmg ðA:12Þ

and hence can be neglected. Finally,

2ηm + η2m
� � A2wm

Az2
= 2ηm + η2m
� � A

Az2
VrJzð Þ

= − 2ηm + η2m
� � A

2

AxAz
VrJzð Þ + 2ηm + η2m

� � A

Az
AVr

Az
Jz

� �
ðA:13Þ

The first term on the right side of Eq. (A.13) is of the same order as
Eq. (A.12) which has already been shown to be small. From Eqs. (A.5)
and (A.7) one can show that

A

Az
AVr

Az
Jz

� �
f−

H
L

A
2

AxAz
VrJxð Þ ðA:14Þ
which when multiplied by (2ηm+η2m) is also small compared to ∂pm/∂z
and ρmg. Therefore, Eq. (A.9) can be written as

Apm
Az

+ ρmg = 0: ðA:15Þ
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