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[1] Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is
often associated with diminished grain size (e.g., mylonites). Grain size reduction is typically
attributed to dynamic recrystallization; however, theoretical models of shear localization
arising from this hypothesis are problematic because (1) they require the simultaneous action of
two creep mechanisms (diffusion and dislocation creep) that occur in different deformation
regimes (i.e., in grain size stress space) and (2) the grain growth (‘‘healing’’) laws employed by
thesemodels are derived from normal grain growth or coarsening theory, which are valid in the
absence of deformation, although the shear localization setting itself requires deformation.
Here we present a new first principles grained-continuum theory, which accounts for both
coarsening and damage-induced grain size reduction in a monomineralic assemblage
undergoing irrecoverable deformation. Damage per se is the generic process for generation of
microcracks, defects, dislocations (including recrystallization), subgrains, nuclei, and
cataclastic breakdown of grains. The theory contains coupled macroscopic continuum
mechanical and grain-scale statistical components. The continuum level of the theory considers
standard mass, momentum, and energy conservation, as well as entropy production, on a
statistically averaged grained continuum. The grain-scale element of the theory describes both
the evolution of the grain size distribution and mechanisms for both continuous grain growth
and discontinuous grain fracture and coalescence. The continuous and discontinuous processes
of grain size variation are prescribed by nonequilibrium thermodynamics (in particular, the
treatment of entropy production provides the phenomenological laws for grain growth and
reduction); grain size evolution thus incorporates the free energy differences between grains,
including both grain boundary surface energy (which controls coarsening) and the contribution
of deformational work to these free energies (which controls damage). In the absence of
deformation, only two mechanisms that increase the average grain size are allowed by the
second law of thermodynamics. One mechanism, involving continuous diffusive mass
transport from small to large grains, captures the essential components of normal grain growth
theories of Lifshitz-Slyosov and Hillert. The second mechanism involves the aggregation of
grains and is described using a Smoluchovski formalism. With the inclusion of deformational
work and damage, the theory predicts two mechanisms for which the thermodynamic
requirement of entropy positivity always forces large grains to shrink and small ones to grow.
The first such damage-driven mechanism involving continuous mass transfer from large to
small grains tends to homogenize the distribution of grain size toward its initial meangrain size.
The second damage mechanism favors the creation of small grains by discontinuous division
of larger grains and reduces themean grain sizewith time.When considered separately,most of
these mechanisms allow for self-similar grain size distributions whose scales (i.e., statistical
moments such as themean, variance, and skewness) can all be described by a single grain scale,
such as the mean or maximum. However, the combination of mechanisms, e.g., one that
captures the competition between continuous coarsening and mean grain size reduction by
breakage, does not generally permit a self-similar solution for the grain size distribution, which
contradicts the classic assumption that grain growth laws allowing for both coarsening and
recrystallization can be treated with a single grain scale such as the mean size.
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1. Introduction

1.1. Background

[2] The formation of weak and narrow tectonic plate
boundaries separating broad, strong plates involves litho-
spheric shear localization driven invariably by mantle
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convection (see reviews by Tackley [2000a], Bercovici et al.
[2000], and Bercovici [2003]). Weak zones form and are
sustained during deformation, but remain weak after defor-
mation ceases [Gurnis et al., 2000; Bercovici, 2003]. The
requisite state variable that is both associated with shear
localization and permits remnant weak zones could be, for
example, increased temperature [Schubert and Turcotte,
1972; Whitehead and Gans, 1974; Schubert and Yuen,
1978; Fleitout and Froidevaux, 1980; Bercovici, 1996,
1998; Leloup et al., 1999] or void/microcrack density
[Bercovici, 1998; Tackley, 2000b; Auth et al., 2003; Ogawa,
2003; Bercovici et al., 2001a, 2001b; Bercovici and Ricard,
2003, 2005; Ricard and Bercovici, 2003]. However, a well
documented feature of lithospheric weak zones is reduced
grain size (i.e., mylonites) [White et al., 1980; Karato,
1983; Jin et al., 1998; Furusho and Kanagawa, 1999].
Lithospheric grain size reduction is typically attributed to
dynamic recrystallization whereby grain size is reduced in a
high-stress state by the propagation of dislocations [Karato
et al., 1980; Urai et al., 1986; Derby and Ashby, 1987].
However, theoretical models of shear localization attempting
to capture this effect [Kameyama et al., 1997; Braun et al.,
1999; De Bresser et al., 1998, 2001; Montési and Zuber,
2002; Montési and Hirth, 2003] are problematic for several
reasons.
[3] First, shear localization requires that an applied

stress drives deformation, which induces weakening that
subsequently focuses deformation that in turn increases
weakening, and so on. However, grain size reduction via
dislocation propagation occurs at high stress during dislo-
cation creep which does not permit weakening by grain
size reduction since in this rheological regime, viscosity is
independent of grain size. Weakening only occurs if the
system drops to a lower stress state to undergo diffusion
creep, which has a grain-size-dependent viscosity, but does
not involve dislocations and thus only permits grain growth.
Thus the grain size reduction by imposed stress and defor-
mation, and the grain size weakening that focuses deforma-
tion occur in mutually exclusive stress regimes [De Bresser et
al., 1998, 2001]. It is possible that these regimes are not
exclusive if a nonhomogeneous grain size distribution is
allowed; this would permit an effective mixture of regimes,
i.e., large grains support dislocation creep and small grains
diffusion creep [Bercovici and Karato, 2003]. However,
recrystallization theories treat mean grain size and not the
full grain size distribution.
[4] Second, the grain growth laws employed by recrys-

tallization models are not entirely self-consistent. In partic-
ular, the rigorous incorporation of coarsening in a theory is
nontrivial since one must account for grain size distribu-
tions as well as mean grain size (i.e., coarsening only occurs
for nonhomogeneous grain size distributions). However,
dynamic recrystallization models [Kameyama et al., 1997;
Braun et al., 1999; De Bresser et al., 1998, 2001; Hall and
Parmentier, 2003; Montési and Hirth, 2003; C. Hall and
E. M. Parmentier, unpublished manuscript, 2002] generally
treat only mean grain size by invoking nondeformational
‘‘normal’’ grain growth theory [Hillert, 1965; Atkinson,
1988; Evans et al., 2001], which stipulates that grains
undergoing coarsening stay in a size distribution that is
relatively narrow and self-similar. Although the entire dis-
tribution will, during coarsening, drift toward the larger grain

size spectrum, the distribution’s shape is conserved and its
amplitude, variance and mode are all related to one grain size
scale which is effectively the average grain size (or alterna-
tively the maximum grain size). Recrystallization theories
use this result to justify modeling only the evolution of mean
grain size. However, this approach is not self-consistent
since such self-similar grain size distributions arise where
the only power source is surface energy reduction during
coarsening; in actuality, the rapidly deforming shear local-
ization setting involves additional important energy sources
such as deformational work.
[5] Third, the driving mechanism for grain reduction in

recrystallization theories is an empirically prescribed kine-
matic condition wherein grain size changes linearly with
strain rate [e.g., Montési and Hirth, 2003]; as this relation
does not arise from basic conservation laws there is no
guarantee that energy of the medium is properly conserved
(i.e., energy exchange is not considered in the grain growth
laws). Moreover, a linear dependence on strain rate might
not provide a strong enough nonlinear feedback to generate
shear localization. Indeed, localization described by first
principles damage theories is typically driven by energy
transfer from deformational work to surface energy, or some
other thermodynamic manifestation of damage, and is thus
a nonlinear function of stress or strain rate [Ashby and
Sammis, 1990; Hansen and Schreyer, 1992; Lemaitre,
1992; Krajcinovic, 1996; Lyakhovsky et al., 1997; Bercovici
et al., 2001a, 2001b; Bercovici and Ricard, 2003, 2005;
Ricard and Bercovici, 2003; Austin and Evans, 2007].
(Damage per se is the generic process for generation of
microcracks, in both brittle and combined brittle-ductile
material, defects, dislocations, including recrystallization,
and cataclastic breakdown of grains.) For example, Bercovici
and Ricard [2005] employed such a damage approach toward
both void and grain-size-reducing (or ‘‘fineness’’-generating)
damage; that study demonstrated the profound importance
of fineness-generating damage in the formation of plate
boundaries from convectively driven flow. Nevertheless,
recrystallization and damage theories should be reconcilable
at some fundamental level since both involve generating
and growing discontinuities (defects, cracks, dislocations,
grain boundaries, etc) by an imposed deformation.
[6] In this paper we attempt to unify the damage and grain

size evolution approaches in order to obtain a self-consistent
theory for lithospheric shear localization. This paper proposes
a continuummechanical theory that also allows for statistical
distribution of grain sizes controlled by both coarsening and
energy transfer from deformation and damage.

1.2. Hypothesis

[7] The motivation for this theoretical model is to estab-
lish a self-consistent continuum theory of a grained medium
that allows for grain size evolution in deforming state, thus
allowing for the competition between coarsening/grain
growth and damage/grain reduction. We assume the medium
is a single-phase, single component incompressible viscous
material, but made of grains in complete contact with each
other along grain boundaries. The grain boundaries them-
selves have interfacial energy and tension (interfacial energy
has units of J m�2 and represents either a free energy per unit
interfacial area, or a membrane tension. The membrane
tension acts to pull on the edges of an interface segment,
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tangent to the interface; it thus also has units of force per unit
length of interface edge (N m�1). A net force is exerted
normal to the interface segment if it has nonzero curvature,
and parallel to the segment if surface energy/tension is
nonuniform across that area segment. Surface tension and
energy differ if there is surface entropy, which occurs if
surface tension is a function of temperature or surface
chemistry, although that is not the case in this study [see
Leal, 1992; Bailyn, 1994; Bercovici et al., 2001a]. The
overall medium differs thus from that of a simple continuum
even at the macroscopic scale. The grains also have a
continuous size distribution and the occurrence of coarsening
or damage is manifest primarily in the evolution of this
grain size distribution. For example, during coarsening not
all grains grow, but rather larger grains grow at the expense
of small ones and thus the grain size distribution (e.g., its
mode) drifts to larger grain sizes. Likewise, damage osten-
sibly causes a decrease in the number of large grains.
[8] In the end, we require two levels of the theory. The

macroscopic level contains the continuum mechanical equa-
tions of mass, momentum and energy for the averaged
medium. Averaging of quantities occurs over a ‘‘point’’ in
the continuum which is actually an ‘‘infinitesimal’’ volume
containing a statistically meaningful sample of grains (so
that while the grain size distribution might depend on
position, it does not depend on volume size).
[9] The microscopic level of the theory contains two

essential components: First is the kinetic theory of how an
individual grain’s mass changes depending on the free
energies of itself and surrounding grains, and of how the
free energy can change by reducing or increasing the
number of grains. The second component, is the continuity
or evolution equation for grain size distribution, which is
coupled to the kinetic equation. As with coarsening theories
for ‘‘normal’’ grain growth [Hillert, 1965; Atkinson, 1988;
Evans et al., 2001], the grain size distribution equation can
be, in special cases, solved with a similarity approach to
describe the distribution shape, as well as the rate its mode
shifts in grain size space.
[10] The continuum set of equations imposes the stress

and background energy state on the grained medium and
thus influences grain growth through deformation-induced
damage; since the state (e.g., stress) of the medium changes
continuously in space, the grain growth laws also change
spatially. Conversely, the change in mean grain size arising
from the microscopic equations affects the continuum
equations through surface tension effects and through the
rheological law, i.e., viscosity is typically grain size depen-
dent for diffusion creep and grain boundary sliding [see
Hirth and Kohlstedt, 2003]. Thus the theory involves a
coupled set of macroscopic/continuum and microscopic/
statistical equations (although when we say ‘‘microscopic’’
we mean grain scale). In the end, the full theory involves
not only the standard temporal and spatial dimensions, but
at least one statistical or grain size dimension as well.
[11] In the following sections we present the derivation of

the theory by considering first the statistical representation
of the grained continuum and how ‘‘continuum’’ averages
are calculated; we then consider continuity equations for
grain size distribution as well as kinematics of the model
(i.e., having to account for change and flow through both
spatial and grain size/statistical dimensions). We will then

use these formalisms to derive the continuum conservation
laws. The energy equation in particular requires proper
thermodynamic treatment and nonequilibrium phenomeno-
logical relations (arising from entropy production); from
these we derive the kinetic law for grain growth, which
requires special consideration to allow for a closed mathe-
matical description that includes both coarsening and
damage.

2. Statistical Description of a Grained Continuum

2.1. Grain Variables

[12] To derive a continuum theory we consider a control
volume dV in which the macroscopic variables and their
derivatives are continuous. The dimensions of this volume
are small compared to the large-scale process that we intend
to describe, but large enough to contain numerous grains so
that macroscopic variables can be defined as a statistical
average of grain-scale properties.
[13] Except for the grain size R, we denote by an

accented variable the properties defined for grains; for
example each grain has a volume �v and surface area �A.
The mass transfer between grains is related to their differ-
ences in thermodynamic properties. Each grain thus has its
own internal energy �e, specific entropy �s and chemical
potential �m. Because of the existence of surface energy
and tension, g, each grain also has its own pressure �P.
[14] In the present theory we stand to lose little by

assuming thermal equilibrium between neighboring grains,
i.e., the temperature T is the same for all grains within a
volume dV; we are always free to make dV ‘‘infinitesimally’’
small so that temperature gradients over scales much larger
than grain size, but still useful in a continuum mechanical
sense, are allowed. We also make the reasonable simplifying
assumption that the velocity of each grain remains close to
the velocity of the center of mass of the control volume dV.
The plausibility of this assumption relies on the fact that
motion and deformation of the grained continuum must
obey a compatibility relations wherein, to remain a contin-
uum, the neighboring grains do not move at different
velocities, otherwise gaps and discontinuities would form.

2.2. Grain Shape

[15] We assume that only one geometrical variable per
grain, the grain size R, is enough to characterize each grain
geometry. Our theory will therefore not be able to deal with
any kind of anisotropy due to crystal fabric. If the grains are
generally polyhedral, then R represents the polyhedral
in-radius (the radius of the largest sphere bounded by the
polyhedron). All the grain geometrical properties are
assumed to be unequivocally related to R, e.g., we assume

�V ¼ 4

3
PR3 and �A ¼ 4PR2; ð1Þ

where P is a geometric factor equal to p for a spherical
grain. For simple regular polyhedrons, this geometrical
factor is easy to compute; it amounts to 6

ffiffiffi
3

p
, 6, 3

ffiffiffi
3

p
, 3.79

for tetrahedrons, cubes, octahedrons and isocahedrons,
respectively. We assume that grains defined by the same
R are similar enough that they have the same geometrical
factor P and we will use P = p for numerical applications
(most of the effects of this geometrical factor could also
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be accounted for by defining an effective surface tension
(P/p)g). Since all the geometrical properties are simple
functions of R, all the accented variables, are functions
of R, space x and time t.
[16] As discussed below (section 2.4) we need to treat

quantities on the cross sections of grains (Figure 1). How-
ever, cross sections through polyhedral grains are of any
number of possible polygonal shapes depending on the
orientation of the cross-sectioning plane relative to the
symmetry axes of the polyhedron. Not knowing all grain
orientations we can only treat average cross-sectional areas,
�A, and average lengths of the bounding curves, �c (i.e.,
averaged over all possible cross-sectioning orientations).
We state that a cross section at a distance x � R from the
center of a grain, has an average area

�a ¼ P R2 � X 2
� �

; ð2Þ

and is limited by the bounding curve of length

�c ¼ 2P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � X 2

p
: ð3Þ

We also consider that the total grain surface area �A is sliced
off into the surfaces �Al and �Ar, one on the left of the cross
section, one on the right, with

�Al ¼ 2PR2 1 þ X

R

� �
; and �Ar ¼ 2PR2 1 � X

R

� �
; ð4Þ

These two equations are only valid for spherical grains but we
assume they hold for more complex grain geometries. For
convex multifaceted grains they are close approximations.

2.3. Grain Size and Grain Size Distribution

[17] Within a volume element in the continuum dV, there
is continuous and convergent distribution of grain sizes,
which requires that dV 	 Rmax

3 where Rmax is the maxi-

mum grain size for which there are a nonzero number of
grains. Since the distribution is continuous, then the number
of grains between sizes R and R þ dR, and per unit
volume is dn = VRdR, where VR is a function of position
and time as well as R (note that dn has units of m�3 and VR
has units of m�4). Thus the total number of grains in a
volume element dV at position x and time t is

dN x; tð Þ ¼ dV

Z 1

0

VR R; x; tð ÞdR; ð5Þ

and thus of course the total number of grains in a larger
volume dV is

N ¼
Z
dV

Z 1

0

VRdRdV : ð6Þ

[18] It will often be more convenient to use grain
mass distributions, VM, such that the number of grains
per unit volume dn with masses between �m Rð Þ and
�m R þ dRð Þ ¼ �m þ d �m, is

dn ¼ VM d �m ¼ VR dR: ð7Þ

Since grains are assumed incompressible the density r
is uniform and constant, thus the grain size distribution
VR and the grain mass distribution, VM (with units of
kg�1 m�3) are related by

VR ¼ 4PR2rVM: ð8Þ

[19] Grains are assumed to fill all space in the continuum,
i.e., there are no gaps between grains; thus the volume of all
grains in dV is necessarily also dV which leads to the
important normalization conditions, either in terms of
volume,

Z 1

0

�vdn ¼
Z 1

0

�vVRdR ¼
Z 1

0

�vVMd �m ¼ 1; ð9Þ

Figure 1. (left) Sketch of a control volume dVof an idealized grained medium illustrating intrinsic grain
quantities, such as grain volume �v and grain surface area �A. Also shown are properties of the cross section
of the grain with one of the control surfaces dA, in particular, the cross-sectional area �A, the curve �c
marking the intersection between the grain boundary and the cross section, the unit normal to the cross
section n̂, and the unit vector p̂ that is parallel to the cross section but still normal to the intersection curve
�c. (right) Diagram showing the surface tension force acting along the curve �c.
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or, since we assume that the density is a constant, in terms
of mass

Z 1

0

�mdn ¼
Z 1

0

�mVRdR ¼
Z 1

0

�mVMd �m ¼ r; ð10Þ

since �m ¼ r�v.

2.4. Surface Quantities and Fluxes

[20] Since our control volume dV is arbitrary, it necessarily
cuts through grains at arbitrary positions from the grain
centers. We invariably need to treat surface quantities, such
as mass fluxes or tractions acting on or through the surface of
dV, and thus through various cross sections of grains. Let us
consider some such surface quantity on a cross section of
grain and with a surface density �q (such as mass flux per unit
area, or force per unit area); �q is generally a function of R
and can be a scalar or the components of a vector or tensor
operating on the normal to the grain’s cross section. If the
surface dA cuts through a particular grain a distance x from
the grain’s center, then the amount of this quantity on the
grain’s cross section is �q Rð Þ�a ¼ �q Rð ÞP R2 � X 2

� �
(see

equation (2)). However, dA does not cut through all grains
at the same distance x from their centers. The average of this
quantity on cross sections of all grains of size R within the
control volumes on either side of the cutting surface dA (see
equation (2)) is

Q Rð Þ ¼ 1

2dXn

Z dXn

�dXn

�q Rð ÞP R2 � X 2
� �

dX ; ð11Þ

where dXn is the breadth of the adjacent control volumes on
either side of dA (such that each control volume is dV =
dXndA). However, since R  dXn we only cut through
grains whose centers are within R of the surface dA and
thus in fact

Q Rð Þ ¼ 1

2dXn

Z R

�R
�q Rð ÞP R2 � X 2

� �
dX ¼ 1

2dXn

�q Rð Þ 4
3
PR3

¼ 1

2dXn

�q Rð Þ�v Rð Þ:

ð12Þ

[21] There are a total of 2VRdRdV grains of size R in the
two control volumes on either side of the cutting surface;
thus the total Q on dA for all grains of all sizes within these
volumes is

Qtot ¼ 2dV

Z 1

0

1

2dXn

�q Rð Þ�v Rð ÞVRdR

¼ dA

Z 1

0

�q Rð Þ�v Rð ÞVRdR: ð13Þ

Thus if �q is independent of R then Qtot = �q dA (see
equation (9)); for example if �q = 1 then we have proven that
the total cross-sectional area of all grains of all sizes cut by
the surface dA is simply dA, which is true since grains fill all
space. Invariably, this approach for integrating over
volumes and surfaces will be vital for our macroscopic
conservation laws.

2.5. Kinematics of Grain Size Distribution

[22] In addition to conservation laws for our continuum,
we also require evolution or conservation laws for our grain
size distribution. Moreover, to construct conservation laws
for properties that depend not only on position and time, but
grain size as well, we must discern rates of change consis-
tently, i.e., whether we are considering a rate of change
while following a multigrained particle through space
(involving the Lagrangian or material time derivative) or
the complete rate of change following the particle not only
through space but also through grain size ‘‘space’’ as its
grain size distribution changes.
[23] In the most general case and in a macroscopically

motionless continuum, the change of the number of grains
of sizes between R and R þ dR can be caused by two
different processes. First, grain populations can move con-
tinuously through R space since grains in the size interval
between R and R þ dR can gain or lose mass and hence
move to a neighboring interval of sizes. This continuous
process involves proximal exchange between grain popula-
tions and occurs via diffusive mass transfer between grains.
Second, the population of a given size can increase because
two smaller grains have coalesced or can decrease by the
division of a grain. This process involves discontinuous
transfer between remote population intervals (e.g., breakage
of grains in half causes population exchange from the
interval centered on R to the one centered on R/2). This
discontinuous and remote exchange occurs during (1) cata-
clastic fragmentation, (2) when subgrain boundaries appear
[Hobbs, 1968] and (3) when a finite sized grain is nucleated.
We refer to the former process as continuous exchange
between proximal populations, and the latter process as
discontinuous exchange between remote populations.
[24] The continuity equation for VR can be derived by

considering the rate of change of the total number of grains
dn between sizes R1 and R2 > R1 in the fixed volume
element dV

ddn
dt

¼ d

dt

Z
dV

Z R2

R1

VRdRdV

� �
¼

Z
dV

Z R2

R1

@VR

@t
dRdV

� �
:

ð14Þ

[25] The change of this number of grains can be due to
transport of different grain populations into dV by the
macroscopic velocity v, and by change in grain number
within the volume dV (by both continuous and discontinu-
ous exchange between populations of different sized
grains). These transport processes together lead to

ddn
dt

¼ �
Z
dV

Z R2

R1

#� VRvð ÞdRdV

�
Z
dV

VR _R
� 	R2

R1
dV þ

Z
dV

Z R2

R1

GRdRdV : ð15Þ

[26] In the second term on the right side, we used the fact
that, in a time dt, the number of grains lost from the
population between R1 and R2 to the population with
R > R2 is VR _Rdt

� 	
R2

dV (and likewise the number
of grains added from the population with R < R1 is
VR _Rdt
� 	

R1
dV); [see also Hillert, 1965; Atkinson, 1988].
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In the last term of (15), GR is the rate at which grains of size
R are added or removed by discontinuous processes (i.e.,
breaking or coalescence). Accounting for the fact that dV is
arbitrary, and taking the limit that R2 � R1 ! 0 (or really
R2 � R1 = dR), (15) yields the continuity equation for VR

DVR

Dt
þ VR

#� v þ
@ _RVR
� �
@R ¼ dVR

dt
þ VR

#� v þ VR
@ _R
@R ¼ GR;

ð16Þ

[see also Hillert, 1965; Atkinson, 1988; Voorhees, 1992]. In
this equation, we introduced the usual Lagrangian deriva-
tive, which is also the total derivative holding R constant

D

Dt
¼ @

@t
þ v � #ð Þ ¼ d

dt

� �
R
; ð17Þ

and therefore, the full time derivative is

d

dt
¼ D

Dt
þ _R @

@R ; ð18Þ

which is a formalism we will adopt throughout this paper.
Equation (16) is the four-dimensional (4-D) generalization
of the usual conservation equation in three dimensions
(3-D); to wit, in the 4-D space r4 = (x, y, z, R), the
velocity is v4 = (vx, vy, vz, _R), the gradient operator is#

4 = (@/@x, @/@y, @/@z, @/@R) and (16) is expressed by

@VR

@t
þ #

4 � VRv4ð Þ ¼ GR: ð19Þ

[27] The evolution of the grain mass distribution is
similarly obtained, and is expressed by

@VM

@t
þ #� vVMð Þ þ

@ _�mVM


 �
@ �m

¼ GM; ð20Þ

where, by definition GRdR ¼ GMd �m, hence,

GM ¼ GR

4PrR2
: ð21Þ

[28] Let us next consider the rate of change of a granular
quantity �q R; x; tð Þ, such as, for example, the mass or
internal energy of a grain of size R. The total amount of
this quantity in all grains and in a finite volume dV within
our continuum is

Q ¼
Z
dV

Z 1

0

�q R; x; tð ÞVRdRdV : ð22Þ

The rate of change of Q following the closed and
deformable volume dV is

DQ
Dt

¼
Z
dV

Z 1

0

@ �qVR


 �
@t

þ #� v�qVR


 �0
@

1
AdRdV : ð23Þ

Using (16) and (18), equation (23) becomes

DQ
Dt

¼
Z
dV

Z 1

0

d�q
dt

VR þ �qGR

" #
dR � �q _RVR

h i1

R¼0

 !
dV : ð24Þ

[29] The last quantity inside the volume integral involves
loss of �q by flux of grain populations (e.g., by grain growth
or grain reduction) beyond the tails of the distribution VR.
However, except for the actual grain number itself, physical
granular quantities (e.g., grain mass, grain surface area,
grain energy, grain entropy, etc.), vanish for vanishing grain
size, hence �q _RVR ! 0 for R ! 0. In contrast, we assume
that the grain size distribution itself converges for grain
sizes much less than the control volume size such that
VR ! 0 and also �q _RVR ! 0, as R ! dV1/3. In total,
the fluxes through the distribution tails are assumed 0 and
(24) becomes simply

DQ
Dt

¼
Z
dV

Z 1

0

d�q
dt

VR þ �qGR

 !
dRdV : ð25Þ

[30] Equation (25) relates a macroscopic change to the
sum of the ‘‘microscopic’’ continuous and discontinuous
processes of mass exchange between grain populations. For
example, consider �q ¼ �m and Q = M the total mass of dV,
which is a conserved quantity. From (25) we obtain

DM

Dt
¼ 0 ¼

Z
dV

Z 1

0

d �m
dt

VR þ �mGR

� �
dRdV : ð26Þ

[31] We assume the discontinuous processes of grain
sticking or breaking occur instantaneously, i.e., over a much
shorter time scale than diffusive exchange between grains.
Therefore, since any instantaneous exchange of populations
must conserve mass independently of other slower processes
(i.e., the time scales for these processes are separable), we
write

Z 1

0

�mGRdR ¼
Z 1

0

�mGMd �m ¼ 0 ð27Þ

where the volume integral is removed since dV is arbitrary.
Given (27), equation (26) implies that

Z 1

0

d �m
dt

VRdR ¼
Z 1

0

_R @ �m
@R VR ¼ 0; ð28Þ

since �m ¼ �m Rð Þ and we have again used the fact that dV is
arbitrary.
[32] In total, the evolution of grain size distribution is

governed by (16) (or alternatively (19) or (20)), and grain
quantities are conserved according to (25). However, these
laws require expressions for _R and GR (or alternatively
_�m and GM) that govern continuous grain growth and
discontinuous exchange between grain size populations by
breaking or coalescence. Thus a major goal of this paper is
to use the constraints of nonequilibrium macroscopic
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thermodynamics, in particular the positivity of the entropy
sources to specify the quantities _R and GR (or _�m and GM).

3. Mass, Momentum Conservation, and Dynamic
Equilibrium

3.1. Mass Conservation

[33] The expression for mass conservation is straightfor-
ward. Since grains move at velocity v, the mass flux through
a grain’s cross section �A normal to n̂ is

�q ¼ rv � n̂ ð29Þ

Using (13), the total mass flux across the surface dA is
therefore J =

R
dA dA

R1
0

rv � n̂�vVRdR, and since rv � n̂ is
independent of R, the normalization condition (9) leads to

J ¼ r
Z
dA
v � n̂dA ¼ r

Z
dV

#� vdV : ð30Þ

[34] Since we assume the material to be incompressible,
then J = 0 which, since dV is an arbitrary volume, requires

#� v ¼ 0; ð31Þ

as expected and we can therefore remove the terms in

#� v
in the grain size and grain mass evolution equations (16)
and (20).

3.2. Momentum Conservation

[35] In this paper we consider only the case of dynamic
equilibrium, i.e., where the forces are all in balance and
acceleration is negligible. This setting is relevant for viscous
creeping motion, elastostatic equilibrium, and slow visco-
elastic motion wherein the time scales considered are much
longer than those for ‘‘quaking’’ behavior or propagation of
elastic waves. The absence of an explicit time derivative in
the momentum equation, does not mean that the system is in
steady state. The macroscopic rheology and interfacial
surface tension ultimately depend on the grain size distri-
bution, which is an explicit function of time and evolves
even in the absence of deformation. For the application
toward lithospheric shear localization on mantle convection
and plate boundary evolution time scales, we mainly con-
sider subsolidus viscous flow. The addition of acceleration
and inertia for shorter time scale problems of faulting and
earthquakes should involve minor effort since we equate
the continuum velocity and the grain velocity, and thus
momentum and its material derivative (i.e., acceleration) are
easily established. In the present paper, the law of conser-
vation of momentum requires only that no gaps appear
between deforming grains and that all forces balance; thus
we must simply account for body, surface and line forces on
the volume dV. The model, therefore, does not account for
open voids, secondary phases or components that limit
intergrain contact, such as might occur in fault gouge,
porous matrices and in polymineralic assemblages. These
would be important for the next generation of this theory
but also introduce extensive complexity and additional
degrees of freedom.
[36] In the following, we use the terms ‘‘static’’ and

‘‘dynamic’’ to describe situations in which the macroscopic

velocities are either zero (static) or nonzero (dynamic). None
of these situations is, however, truly static or steady. Even in
the case without macroscopic deformation, which we call
‘‘static’’, the grain size distribution evolves at a microscopic
level and induces changes in surface tension, rheology and
energy dissipation that affect the macroscopic pressure and
temperature fields. The only truly static system would be a
nondeforming medium made of a single grain.

3.3. Body Forces

[37] The body force on dV is due to the action of a body
force per unit mass vector g (typically gravitational acceler-
ation) acting on the mass of all grains of all sizes and is thus

Fb ¼
Z
dV

Z 1

0

�mgVRdRdV ¼
Z
dV

rgdV ; ð32Þ

as expected, and where we have used (10) and the fact that g
is independent of grain size R.

3.4. Surface Forces

[38] The surface force acting on the area dA surrounding
dV is due to the total force acting on all cross sections of
grains cut by the surface. If �s is the full stress tensor acting
on one grain of size R, then the force on the grain’s cross
section �A is n̂ � �s�a, and thus, using (13) in which n̂ � �s is
substituted for �q, the force on all grains of all sizes
intersected by dA is

Fs ¼
Z
dA

Z 1

0

n̂ � �s�vVRdRdA: ð33Þ

[39] If we define s as the volume average of �s such that

s ¼
Z 1

0

�s�vVRdR; ð34Þ

then

Fs ¼
Z
dA
n̂ � sdA ¼

Z
dV

#� sdV ; ð35Þ

as expected.
[40] The above result is independent of the constitutive

relationship for �s. We can decompose stress into isotropic
and deviatoric parts by writing as usual that

�s ¼ �PI þ �t; ð36Þ

where �P and �t are the pressure and deviatoric stress in a
grain. The statistical volume-averaged stress, from (34), is
of course simply

s ¼ �PI þ t; ð37Þ

where P and t are the averaged pressure and deviatoric
stress.
[41] Our model assumes that all grains of the same radius

are affected by the same stress and the same strain rate �t
and �_e. The constitutive law for �t is therefore

�t ¼ 2�h�_e; ð38Þ
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where the grain viscosity �h R;�_e
� �

is a function of both grain
size and strain rate as the grain deformation may result from
various mechanisms acting simultaneously (e.g., diffusion
creep, dislocation creep, etc.). We also require that the
grain-scale strain rate �_e averaged over all grain sizes in the
control volume dV corresponds to the macroscopic strain
rate, and thus that

_e ¼
Z 1

0

�_e�vVRdR: ð39Þ

As the continuum is incompressible and as we assume
isotropy, the constitutive relation between the macroscopic
stress and strain rate (34) and (39) can be written as t = 2h _e
where we must define the macroscopic viscosity h as the
ratio of two second invariants, h = t/(2 _e), where t =

ffiffiffiffiffiffiffiffiffiffi
t : t

p
and _e ¼

ffiffiffiffiffiffiffiffiffi
_e : _e

p
; this leads to

h ¼

Z 1

0

�h�_e�vVRdR
� �

:

Z 1

0

�h�_e�vVRdR
� �� �1=2

Z 1

0

�_e�vVRdR
� �

:

Z 1

0

�_e�vVRdR
� �� �1=2 : ð40Þ

Thus the macroscopic viscosity h is generally a function of
grain size and strain rate (VR and �_e are explicitly present in
(40) and furthermore, �h is likely to be a function of R
and �_e). Of course, if the strain rate is uniform across all
grains, then we will find that h =

R1
0

�h�vVRdR while if
the stress is uniform across all grain then we will find that
h =

R1
0

1=�hð Þ�vVRdR
� 	�1

. More complex averaging
schemes (e.g., by using a variational estimates as in the
work of Hashin and Shtrikman [1963]) would give a
viscosity estimate in between these two bounds.
[42] In most classical rheological treatments [e.g., Poirier,

1991; Hirth and Kohlstedt, 2003], the macroscopic viscosity
is only related to the average grain size and the average
stress. However, equations (40) indicates that the viscosity
is a statistical average where, according to its size, each
grain may be in a different deformation regime (diffusion
creep, grain boundary sliding, dislocation creep, etc.). The
macroscopic viscosity is therefore different from the vis-
cosity of the average grain size.

3.5. Surface Tension and Line Forces

[43] As noted by Bercovici et al. [2001a], surface tension
on the interface between two phases or as in the theory
presented here, on grain boundaries, manifests itself as a
line force acting on the surface dA of the control volume dV.
In particular, the intersections of grain boundaries with the
surface of the control volume are curves on which surface
tension pulls outward with a line force (force per unit
length) of magnitude g, which is in fact simply the surface
tension. Consider the control volume’s surface intersecting a
grain of size R a distance X from the center of the grain.

The intersection curve has a mean length �c ¼ 2P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � X 2

p

(see (3)). At all points on the intersection curve, the surface
tension pulls both normal to this curve and tangent to the
grain boundary itself. By symmetry, only the component of
the line force vector perpendicular to the control surface
element, with amplitude ~gn ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � X 2

p
=R has a nonzero

average (see Figure 1). The average line force for all grains
of size R cut by, and within a distance dXn of, the control
surface is thus (see section 2.4),

1

2dXn

Z þR

�R
�c~gnn̂dX ¼ 1

2dXn

Z þR

�R
2P

R2 � X 2

R gn̂dX

¼ 1

2dXn

2g
R

�vn̂: ð41Þ

[44] The total force on all grains of all sizes and arbitrary
distances from the cutting surface dA can be deduced by
replacing �q with (2g/R)n̂ in equations (11)–(13), which
leads to the total surface tension force acting on the control
surface dA of

Fl ¼
Z
dA

Z 1

0

g �Kn̂�vVRdRdA; ð42Þ

where

�K ¼ 2

R ¼ d�A
d�v

¼ 2

3

�A
�v
; ð43Þ

is the net curvature of a grain of size R. Assuming that
surface tension g is independent of grain size R, and defining
the volume-averaged net grain boundary curvature as

K ¼
Z 1

0

�K�vVRdR; ð44Þ

we obtain

Fl ¼
Z
dA
gKn̂dA ¼

Z
dV

#

gKð ÞdV : ð45Þ

3.6. Total Force Equation

[45] Balancing the net forces on the volume dV from
equations (32), (35), and (45), and noting that the volume
dV is arbitrary, we obtain the equilibrium equation

0 ¼ rg þ #� s þ #

gKð Þ ð46Þ

which has the expected form of a continuum mechanical
equilibrium equation, with the exception of the interfacial
surface tension component. The presence of the interfacial
surface tension term in the momentum equation, and that it
manifests itself as the gradient of a potential, corresponds to
previous work on two-phase continuum theory with
interfacial effects [e.g., Bercovici et al., 2001a].
[46] Although the continuum force equation describes

macroscopic motion of a volume of many grains, it is
still coupled to the grain-scale dynamics. While the body
force term is independent of the physics occurring at the
grain scale, the surface force term depends on grain-scale
dynamics through at least the rheology, and possibly
through other effects if there is grain boundary slippage
leading to stress couples (which we assume to not occur in
this theory). The line force or surface tension term depends
on the grain-scale physics through the average grain
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curvature K which obviously changes as the grain size
distribution changes.

4. Thermodynamics and Energy Conservation

[47] Damage theory is generally predicated on the as-
sumption that the internal energy of a continuum E(S, r, D)
is not only based on the usual state variables S and r
(entropy and density), but also on a scalar or tensorial
‘‘damage’’ variable D [e.g., Lemaitre, 1992; Krajcinovic,
1996; Houlsby and Puzrin, 2000; Lyakhovsky et al., 2005].
The rheological properties of the material are related to the
damage variable, whose evolution is constrained by the 2nd
law of thermodynamics. Although this damage formalism is
general, the physical manifestation of damage itself is not
readily identified and the experimental measure of D is
indirect (e.g., the damage tensor can be adjusted in order for
the theory to reproduce a given set of deformation experi-
ments, but not measured directly by microscopic analysis).
Moreover, while the conjugate variables of S and r are
clearly T and P, respectively, the conjugate to D is physi-
cally ambiguous and only defined as the partial derivative of
free energy with respect to D.
[48] In our approach (as well and in our earlier work on

two-phase damage theory [see Bercovici et al., 2001a,
2001b; Bercovici and Ricard, 2003, 2005; Ricard and
Bercovici, 2003]), however, the damage variable is readily
identified with the amount of interfacial surface energy
present in the system. In this case the internal energy is
naturally written as E(S, r, a) where a =

R1
0

�AVRdR is the
interfacial or grain boundary area density (area per unit
volume) and is the isotropic equivalent to the damage
variable D. In our model, damage corresponds to a mea-
surable property (grain boundary area), and its conjugate
variable is clearly identified as interfacial surface tension g.
Our model in its present form cannot account for anisotropy
because we have assumed that grains are isotropic (both
crystallographically and morphologically) such that the
resulting interfacial area density a is a scalar; however, this
assumption can be relaxed by including other grain charac-
teristics leading to the tensorial form of a termed by
Bercovici et al. [2001a] the fabric a [see also Drew,
1971; Drew and Segel, 1971].

4.1. Thermodynamics of an Ensemble of Grains

[49] The total intrinsic energy contained in volume dV
(i.e., the total energy less the kinetic energy due to bulk
motion of the entire volume, which is neglected to be
consistent with the assumption that acceleration is negligi-
ble) is given by the sum of volumetric internal energy and
total surface grain boundary energy:

E ¼
Z
dV

Z 1

0

�m�e þ g�A

 �

VRdRdV ; ð47Þ

in which �e is the specific volumetric internal energy of a
grain of size R (notice that since �A is the grain surface, the
sum of all grain surfaces is two times what could be defined
as total surface of grain interfaces: our definition of surface
energy may thus be half of what an experimentalist would
call surface energy). We assume that surface tension is
temperature independent so that no irreversible surface

energy (in which surface entropy goes as �dg/dT) is present
in the system [Desjonquères and Spanjaard, 1993; Bailyn,
1994; Bercovici et al., 2001a]. Surface entropy could be
readily included [see Bercovici et al., 2001a] but it is
superfluous to the intentions of this theory. The rate of
change of total energy in the volume dV is thus (using (25))

DE

Dt
¼
Z
dV

Z 1

0

d �m�eð Þ
dt

þ g
d�A
dt

 !
VR þ GR �m�e þ g�A


 �" #
dRdV :

ð48Þ

[50] We can also write a Gibbs relation for the increment
in total energy E as the sum of all energy increments for all
grains. During a time interval dt, the total energy changes
not only because of the continuous and diffusive exchange
of mass and energy between grains, but also because of
the discontinuous exchange (from breaking and sticking)
leading to a change in number of grains of size R given
by GRdt. The increment in total energy is therefore

dE ¼
Z
dV

Z 1

0

Td�S � �Pd�v þ �md �m þ gd�A

 �

VRdRdV

þ
Z
dV

Z 1

0

T�S � �P�v þ �m �m þ g�A

 �

GRdtdRdV ; ð49Þ

where T is the temperature (assumed to be uniform in the
volume dV, as discussed in section 2.1), �S; �P and �m are the
grain entropy, pressure and chemical potential, respectively.
Notice that we assume that the only mechanical exchange of
work ��P�v is through the pressure forces and therefore that
the energy exchange due to the deviatoric stresses will
ultimately appear in a dissipative term and in the generation
of damage. The elastic strain energy is therefore ignored in
our model.
[51] The extrinsic grain quantities of entropy and volume

can be written in terms of grain mass; i.e., �S ¼ �m�s and
�v ¼ �m/r where �s is the grain specific entropy (entropy per
mass); with these expressions and the above Gibbs relation
(49), the total increment in internal energy per unit time
dE/dt is

DE

Dt
¼
Z
dV

Z 1

0

T
d �m�sð Þ
dt

� �P
d �m=rð Þ

dt
þ �m

d �m
dt

þ g
d�A
dt

 !
VR

"

þ �m T�s �
�P

r
þ �m

� �
þ g�A

� �
GR

�
dRdV ; ð50Þ

where note that by (18), dE/dt = DE/Dt since E is a function
of space and time, but not grain size R. Subtracting (50)
from (48), we obtain

Z
dV

Z 1

0

�m
d�e
dt

� T
d�s

dt
þ �P

d 1=rð Þ
dt

� �
VR

�

þ d �m
dt

VR þ �mGR

� �
�e � T�s þ

�P

r
� �m

� ��
dRdV ¼ 0; ð51Þ

where, even though we have been assuming incompressi-
bility, we temporarily and for the sake of exposition retain
terms involving derivatives of r. Since equation (51) must
hold for any grain size distribution and kinetic law, there is
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no way for the term proportional to �m to vanish (i.e., since
�m > 0) other than requiring the internal energy to obey

d�e ¼ Td�s � �Pd 1=rð Þ: ð52Þ

[52] The term proportional to (VRd �m=dt þ �mGR) can-
cels according to mass conservation (26) provided that
�e � T�s þ �P=r � �m is at most a constant independent of R.
This constant represents the background energy state that is
the same for all neighboring grains within the volume dV.
Since only differences in chemical potential affect grain size
evolution, there is no loss of generality in adopting the
classical relation for the chemical potential

�m ¼ �e � T�s þ �P=r: ð53Þ

Since the grains are assumed viscous, the only direct and
reversible mechanical contribution to the chemical potential
is �P/r; if elasticity were to be incorporated, the chemical
potential would also include the product of stress and strain
tensors [see, e.g., Shimizu, 1992]. Finally, if we also employ
incompressibility, then we find d�e = Td�s and by expansion
of scales (given local thermal equilibrium) �e ¼ T�s, which
leads quite simply to

�m ¼ �P=r: ð54Þ

4.2. Energy Conservation in a Grained Continuum

[53] In our thermodynamic treatment so far we have
considered the energy of an arbitrary volume dV in our
continuum without describing any fluxes through its sur-
face; nor were we specific about the nature of the volume
itself, i.e., whether it is fixed or moving in space, whether its
surface is closed and deformable, or open and fixed. Here
we consider the complete energy equation considering all
fluxes and sources of energy on our volume, which we
choose to be fixed in space with open boundaries.
[54] The rate of change of total energy of this fixed and

open volume is dictated by fluxes of energy through its
surface, work done on the volume (by body, surface and line
forces) and internal energy or heat production. Again, since
we assume dynamic equilibrium (e.g., creeping flow) kinetic
energy is considered negligible.
4.2.1. Energy Fluxes
[55] The flux of internal energy associated with mass

transport through the cross section of a grain of size R cut
by the area element dAwith unit normal n̂ and a distance X
from the grain’s center is r�ev � n̂P R2 � X 2

� �
. Following

the development of (13) (in particular using �q = r�ev � n̂), the
flux of internal energy going through the control surface is

Je ¼
Z
dA

Z 1

0

�m�ev � n̂VRdRdA: ð55Þ

[56] In addition to the flux of internal energy Je, a flux of
surface energy Jg is also present. The surface area of grain
sliced off by dA is 2PR2 1 þ X=Rð Þ (see (4)) and thus the
rate at which this surface varies with X is 2PR _X =
�2PRv � n̂. Therefore the average flux of surface energy
g for all grains of size R within dXn > R of the cutting

surface is (following a similar line of reasoning leading to
(12) and (13))

1

2dXn

Z þR

�R
g2PRv � n̂dX ¼ 1

2dXn

g4PR2v � n̂ ¼ 1

2dXn

g�Av � n̂:

ð56Þ

[57] The total flux of surface energy through the cross
sections of all grains in the volume 2dXndA cut by dA is thusR1
0

g�Av � n̂VRdRdA, and therefore the total flux through
the control volume’s surface dA is

Jg ¼
Z
dA

Z 1

0

g�Av � n̂VRdRdA: ð57Þ

4.2.2. Mechanical Work
[58] The rate of body force work done on dV is quite

simply the sum of work done by the body force per mass,
e.g., gravity, on all grain masses, i.e.,

Wb ¼
Z
dV

Z 1

0

�mv � gVRdRdV : ð58Þ

The rate of surface work done by stresses (using (13) and
substituting n̂ � �s � v for �q) is

Ws ¼
Z
dA

Z 1

0

n̂ � �s � v�vVRdRdA: ð59Þ

[59] The derivation of the rate of work done by surface
tension follows section 3.5. The surface tension force is
applied on the curve �c that delineates the intersection of a
grain surface and the control surface. Both components of
surface tension parallel and perpendicular to the control
surface do work when a grain crosses the control surface.
However, since there is statistically the same number of
grains with their centers on either side of the control surface,
the work of the surface tension components parallel to the
control surface cancel when averaged. The rate of work
done by the component of surface tension perpendicular to
the control surface on a segment d‘ of the curve marking the
cross section of the grain boundary with the cutting surface
(at a distance X from the grain center) is ~gnv � n̂ d‘ in which
~gn = g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � X 2

p
=R. The integral of this element of work

over the length of the intersecting curve �c = 2P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � X 2

p

is thus g2Pv � n̂ R2 � X 2
� �

=R. The total rate of work on all
grains of all sizes and arbitrary distances from the cutting
surface dA can be deduced by using �q ¼ 2g=Rð Þv � n̂ (see
also (43)) in equations (11)–(13), which leads to the total
surface tension work acting on the control surface dA of

Wl ¼
Z
dA

Z 1

0

g �Kv � n̂�vVRdRdA: ð60Þ

4.2.3. Rate of Energy Change
[60] We now write the total rate of change in intrinsic

energy (energy less the kinetic energy).

@E

@t
¼
Z
dV

Z 1

0

@ �m�eVRð Þ
@t

þ g
@ �AVR


 �
@t

0
@

1
AdRdV

¼ �Je � Jg þ Wb þ Ws þ Wl �
Z
dA
qdA þ

Z
dV

QdV ; ð61Þ
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where q is the heat flux vector and Q is internal heat
production, both assumed grain size independent. The
fluxes and work terms are given by (55)–(60).
[61] With the divergence theorem, the surface integrals of

this energy balance are expressed as volume integrals over
dV; as this volume is arbitrary we obtain

Z 1

0

@ �m�eVRð Þ
@t

þ g
@ �AVR


 �
@t

0
@

1
AdR ¼ �

Z 1

0

#

� �m�e þ g�A

 �

vVR

h i
dR þ

Z 1

0

�mv � gVRdR þ
Z 1

0

#

� �s � v þ g �Kv

 �

�vVR

h i
dR � #� q þ Q; ð62Þ

Using the relation for the material derivative of grain-
averaged quantities (see (23)–(25)), and the force equili-
brium equation (46), the energy equation can be recast as

Z 1

0

d �m�eð Þ
dt

þ g
d�A
dt

 !
VR þ �m�e þ g�A


 �
GR

" #
dR

¼ Y � #� q þ Q; ð63Þ

where

Y ¼ t :

#

v ¼ t : _e; ð64Þ

is the rate of deformational work; note that we have
removed the volume integral since dV is arbitrary.
Equation (63) relates the microscopic energy exchange
(left side) to the macroscopic energy exchange (right side).

4.3. Entropy Production

[62] The internal entropy production in a volume dV is the
total rate of entropy increase less the external entropy input
from entropy flux through the volume’s surface dA; by the
2nd law of thermodynamics the internal entropy production
is necessarily greater than zero, i.e.,

DS

Dt
þ
Z
dA
Js � n̂dA � 0; ð65Þ

where Js is the entropy flux not associated with mass
transport (which is accounted for already in the material
derivative). Typically non-mass flux entropy loss is only
due to heat loss and so

Js ¼ q=T : ð66Þ

[63] After writing entropy S as the statistical average over
grains, using again the relation between material derivative
and grain average quantities (see (23)–(25)) and Green’s
divergence theorem for the entropy flux term, (65) becomes

Z 1

0

d �m�sð Þ
dt

VR þ �m�sGR

� �
dR þ #� q=Tð Þ � 0; ð67Þ

where the arbitrary volume integral as been removed (as
already discussed in (23)–(25), �m�s _RVR vanishes as R ! 0

and R ! 1) Another relation involving entropy change
can be derived from energy conservation, (63) using (52)
and (53)

Z 1

0

T
d �m�sð Þ
dt

� �P
d�v
dt

þ �m
d �m
dt

þ g
d�A
dt

 !
VR

"

þ �m �m þ T�s �
�P

r

� �
þ g�A

� �
GR

#
dR ¼ Y � #� q þ Q: ð68Þ

[64] By subtracting (68) from T times the entropy equa-
tion, (67), we arrive at

Z 1

0

"
�P � g �K

 � d�v

dt
� �m

d �m
dt

� �
VR � �m �m �

�P

r
þ 3

2

g �K
r

 !
GR

#
dR

þ Y þ Q � 1

T
q � #

T � 0; ð69Þ

where we have also introduced the grain curvature �K using
(43). Equation (69) reveals the standard relations that Y and
Q are positive definite, and that for the heat flux term to be
positive definite, q and � #

T must be proportional as
suggested by Fourier’s law of heat conduction.
[65] The term proportional to VR in (69) could have been

reduced by taking into account that �m ¼ r�v, but it has been
temporarily retained to illustrate three important points.
[66] First, the factor �P � g �K represents the grain pressure

in excess of what is caused by the surface tension of the
grain boundary squeezing the grain, and thus is the pressure
acting to expand the grain and generate a nonzero d�v/dt.
However, excess pressure should in fact be written as
the grain pressure in excess of both surface tension from
the grain boundary and background pressure external to the
grain, otherwise the grain pressure would do no work to
expand the grain if surface tension were zero; i.e., the excess
pressure is really �P � �P � g �K where �P is the background
pressure. There is no loss of generality in replacing �P � g �K
with �P � �P � g �K in the entropy production equation (69)
since �P is independent of grain size (being the pressure
averaged over all grains in the volume) and its contribution
to entropy production only involves a term proportional toR1
0

d�v=dtð ÞVRdR = D(1)/Dt = 0 (see equation (9)). If the
pressure difference exactly balanced surface tension then it
would satisfy Laplace’s condition for static equilibrium
between a pressure drop across a curved interface and the
surface tension on the interface. However if the grain
pressure, say, exceeded the sum of the external pressure
and the surface tension, then, in simple cases (see the more
general discussion about damage in section 7) it should act
mechanically to expand the grain and thus the term
�P � �P � g �K

 �

d�v/dt should be positive definite.
[67] Second, the term in (69) proportional to d �m/dt

represents entropy production from grain growth. The term
itself is readily interpreted if rewritten as �m � �mð Þd �m/dt
where �m is a background mean chemical potential (again
this factor would make no contribution to the integral in
(69) for our incompressible medium; see equation (10)).
This term shows that if a grain’s chemical potential �m is
larger than that of its surroundings, then it will lose mass
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which migrates down chemical potential gradients; thus
� �m � �mð Þd �m/dt should also be generally positive definite
(see section 7).
[68] Third, the last term proportional to GR indicates that

it is also possible to change the entropy by simply changing
the number of grains. Each grain carries a surface energy
term 3g �K �m/2r = g�A and since, contrary to grain masses,
grain surfaces are not conserved during the coalescence or
breaking of grains, the change in grain number affects the
entropy balance.
[69] Equation (69) is used to develop grain growth laws

for both coarsening and damage. However, to simplify
matters we employ our assumption that the medium is
incompressible and thus �m ¼ �P/r (see (54)). For simplicity
we also assume that there is no heat generation (Q = 0) and
no heat flux (q = 0; e.g., the medium is insulated or
isothermal). With these assumptions taken together, (69)
eventually reduces to

Z 1

0

�g �K d �m
dt

VR � 3

2
g �K �mGR

� �
dR þ rY � 0; ð70Þ

where we have multiplied (69) by r. Equation (70)
represents a fundamental relationship for our combined
damage and coarsening theory in that it expresses the
internal entropy production by deformational work, and
changes in grain size or grain number.
[70] Using the definition of the curvature (43) and the

expression for the rate of change of a granular quantity (25),
the positivity of internal entropy production can also be
written simply as

�g
Da
Dt

þ Y � 0; ð71Þ

where a is the grain boundary area per unit volume [see also
Bercovici et al., 2001a],

a ¼
Z 1

0

�AVRdR: ð72Þ

[71] Equation (71) clearly shows that in the absence of
deformation, the grain boundary area per unit volume must
decrease (e.g., by evolving toward less numerous but larger
grains). It is only in the presence of damage Y > 0 that a
reduction of the grain boundary area per unit volume is
possible.
[72] In the following, we first consider the entropy

terms related to continuous (coarsening) and discontinuous
(breaking/sticking) exchanges of grain mass between grain
populations as separate and independent. We then show that
the potential coupling of these processes together with the
effects of deformational work is what leads to a theory of
combined coarsening and damage. In the evolution equation
for grain size distribution, we do not consider the advection
term and we equate D/Dt with @/@t. This simplification is
valid in the static case (i.e., when v = 0) but also in a
simple shearing experiment (i.e., with v 6¼ 0 and Y 6¼ 0,
which is necessary for damage to occur), since during simple

shearing the grain size distribution remains uniform along
the direction of advection (i.e., the gradient in grain size is
perpendicular to the damaged shear bands).

5. Static Grain Growth by Continuous Processes

5.1. Grain Coarsening by Diffusion

[73] We first consider static grain growth (i.e., no damage
and/or Y = 0). We assume that the grain population can only
change by continuous exchange of mass between grains in
the absence of discontinuous processes (coalescence or
fracture) that allow remote exchange between grain size
populations. The changes in grain mass d �m/dt, must satisfy
the constraints of entropy positivity, (70), mass and distri-
bution conservation, (28) and (16), with Y = GR = 0,

Z 1

0

�g �K d �m
dt

VRdR � 0; ð73aÞ

Z 1

0

d �m
dt

VRdR ¼ 0; ð73bÞ

@VR

@t
þ
@ _RVR
� �
@R ¼ 0: ð73cÞ

[74] The system of equations (73) can be used to develop
the well known equations for static grain growth [Hillert,
1965].
[75] We make the usual assumption of linear nonequilib-

rium thermodynamics, that ‘‘thermodynamic forces’’ acting
on grains, i.e., the g �K, and ‘‘thermodynamic fluxes’’, i.e.,
the d �m/dt, are simply coupled through a linear system of
phenomenological relations [de Groot and Mazur, 1984]. In
our case, the forces and fluxes are all scalar quantities, but
there are as many forces and fluxes as there are grains. The
change in mass of one grain of radius R depends on its
interactions with all the other grains of radii R0. The linear
system of phenomenological relations appears therefore as a
convolution over the grain space distribution:

d �m Rð Þ
dt

¼ g
Z 1

0

Gc R;R0ð Þ�K R0ð ÞVR R0ð ÞdR0 ð74Þ

where Gc(R;R0) is the grain interaction function that
determines how much the chemical potential or pressure of
a grain of size R0 affects the growth rate of a grain of size
R. In other words, a single grain’s growth is coupled to the
growth and reduction of all grains, and thus is influenced by
the chemical potential (or pressure) of all neighboring grains
(proximity of grains is not relevant since information about
pressure differences and fluctuations is propagated at the
speed of sound such that the medium essentially starts to
respond to these changes instantaneously everywhere). The
function Gc(R;R0) can also be interpreted as the con-
ductivity (or inverse resistance) of mass flux driven by
chemical potential (e.g., Gc is invariably related to chemical
diffusivity).
[76] Although Gc(R;R0) cannot be uniquely determined

there are several constraints that reveal its basic properties.
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First, according to Onsager’s reciprocal relations [de Groot
and Mazur, 1984], the phenomenological matrix Gc(R;R0)
is symmetric,

Gc R;R0ð Þ ¼ Gc R0;Rð Þ: ð75Þ

(in other words, the physical principle relating the free
energies of grains of size R0 to the growth of grains of size
R is the same as that which relates the free energies of
grains of size R to the growth of grains of size R0). Second,
the matrix Gc(R;Rs0) and the relation (74) must satisfy the
mass conservation equation (73b). This implies that

Z 1

0

d �m Rð Þ
dt

VR Rð ÞdR ¼ g
Z 1

0

�K0
dn0
Z 1

0

Gc R;R0ð Þdn ¼ 0;

ð76Þ

where we use the abbreviated notation dn = VR Rð ÞdR;
dn0 ¼ VR R0ð ÞdR0; �K ¼ �K Rð Þ and �K0 ¼ �K R0ð Þ (we will
frequently adopt this convention in equations involving two
or more integrals). For (76) to be true for any grain size
distribution, the interaction function Gc(R0;R) should
satisfy

Z 1

0

Gc R;R0ð Þdn ¼
Z 1

0

Gc R0;Rð Þdn ¼ 0; ð77Þ

where we also use the symmetry of Gc(R;R0). Therefore
we can rewrite the evolution of grain size (74), as

d �m Rð Þ
dt

¼ g
Z 1

0

Gc R;R0ð Þ �K0 � �K
h i

dn0; ð78Þ

which, because of the symmetry of Gc(R;R0), satisfies the
total conservation of mass (73b).
[77] With the conditions (73a), (75) and (78), we can

readily show that coarsening dissipation rate is

�
Z 1

0

g �K d �m
dt

VR Rð ÞdR

¼ �g2
Z Z 1

0

Gc R;R0ð Þ �K0 � �K
h i

�Kdndn0: ð79Þ

The double integral on the right side of (79) is invariant to
an interchange of the integration variables R and R0.
Therefore, given the symmetry of Gc(R;R0), we can
expressed (79) as

�
Z 1

0

g �K d �m
dt

VR Rð ÞdR

¼ 1

2
g2
Z Z 1

0

Gc R;R0ð Þ �K0 � �K
h i2

dndn0 � 0: ð80Þ

[78] Therefore the positivity of the entropy sources
requires that Gc(R;R0) is a positive function. (Note that
linear nonequilibrium thermodynamics usually introduces
positive definite operators, analogous to a positive definite
matrices; however, the particular form of coarsening dissi-
pation given by (80) involves coupling of only positive

quantities �K0 � �K
h i2

, and therefore only requires the

positivity of Gc(R;R0).) An obvious (but not necessary)
form that satisfies all the above constraints on Gc(R;R0) is a
quadratic product between functions of R and R0; e.g.,

Gc R;R0ð Þ ¼ B Rð ÞB R0ð Þ; ð81Þ

where B(R) is any function of grain size and we have left
off a ‘‘diagonal’’ term proportional to d(R � R0), which is
needed to satisfy (77), because it makes no contribution to
the grain growth or entropy production (dissipation)
equations given the pervasive factor of �K0 � �K. Adopting
this form of Gc(R;R0), the grain growth law (78) now
becomes very simply

d �m Rð Þ
dt

¼ gb Rð Þ K � �K Rð Þ
h i

; ð82Þ

where

b Rð Þ ¼ B Rð Þ
Z 1

0

B R0ð ÞVR R0ð ÞdR0; ð83Þ

is introduced for the sake of mathematical brevity, and we
generally define for any granular quantity �q the weighted
average quantity q

q ¼

Z 1

0

�q R0ð ÞB R0ð ÞVR R0ð ÞdR0

Z 1

0

B R0ð ÞVR R0ð ÞdR0
: ð84Þ

Notice that since VR is time and space dependent, so are b
and K. This eventually reduces to the simple standard grain
growth laws often employed in coarsening problems and
Ostwald-Ripening [e.g., Lifshitz and Slyozov, 1961;Wagner,
1961; Hillert, 1965; Atkinson, 1988; Evans et al., 2001;
Voorhees, 1992].

5.2. Example Solutions for Coarsening

[79] Although analytic and numerical treatments of coars-
ening can be found elsewhere [e.g., Collet and Goudon,
2000], here we show a simple example using a power law
relation for B(R), which is consistent with previous studies
of coarsening [e.g., Lifshitz and Slyozov, 1961; Hillert,
1965]; we therefore write

B Rð Þ ¼
ffiffiffiffiffiffiffiffiffi
4Pr

p
B0Rp; ð85Þ

where the exponent p can be either positive or negative.
This expression for B(R) and (82), _R becomes

_R ¼ 2gB2
0IpR

p�2 R�1 � R�1

 �

; ð86Þ

where B0
2 has units of m7�2p kg�1 s and

Ip ¼
Z 1

0

RpVRdR: ð87Þ

[80] Defining an average time-dependent grain size hRi =
(R�1)�1 and the similarity variable u = R= Rh i, we show in
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Appendix A that (73c) and (86) have asymptotic self-similar
solutions of the form

VR ¼ A tð ÞH uð Þ ¼ A tð ÞH R
Rh i

� �
; ð88Þ

where H is the normalized shape of the grain size
distribution, A its amplitude, and the average radius is
found to vary as

Rh i / t1= 7�2pð Þ: ð89Þ

[81] Our definition of Rh i is chosen to simplify the
analytic operations; but in the asymptotic self-similar regime
R and Rh i are proportional within a factor of order 1 (i.e., the
inverse of the average radius is close and proportional to the
average of the inverse radius). Experimentally, the average
radius is often found to increase as t1/3 which suggests that
p � 2. With this value of p, the asymptotic self-similar
distribution (see Appendix A) is

H uð Þ ¼ u

2 � uð Þ5
e 6= u�2ð Þð Þ with Rh i3¼ R0h i3þ 9B2

0g
8P

t: ð90Þ

(where hR0i is hRi when t = 0). The distribution and
growth rate given above are in agreement with previous
findings [Lifshitz and Slyozov, 1961; Hillert, 1965].

[82] However, the distribution has a self-similar shape
when it initiates that way and will remain so during further
evolution. To study the evolution of any arbitrary initial
grain size distribution, one must solve (73c) and (86)
numerically. For coarsening, the advection velocity in R
space, _R, points outward from the integration domain (i.e.,
_R is negative near R = 0 where grains shrink, and positive
for R ! +1 where grains grow), thus one does not need to
impose explicit boundary conditions (i.e., no information is
coming from outside the domain).
[83] Figure 2 shows the evolution of an arbitrary distri-

bution of grain size (assumed Gaussian in grain mass
distribution) with time. The average radius (Figure 2,
bottom) follows very closely the prediction of the analytical
similarity solution even when the grain size distribution is
far from its final self-similar shape. The grain size distri-
butions at various normalized times, are depicted in Figure 2
(top) as a function of the normalized radius R= Rh i. The
distributions are normalized so that their integrals (i.e., the
number of grains per unit volume) are equal to a constant
(arbitrarily set to 1). The distributions depicted at the
normalized times 0, 0.5 and 0.72 are evolving toward the
self-similar solution and become rapidly indistinguishable
from it. Although the normalized distribution tends toward
a time-independent solution in u = R= Rh i space, in
dimensional grain size space, the distribution moves toward

Figure 2. Evolution of the distribution of grain sizes with time in the coarsening case computed with a
finite difference code with a second order of precision in time and second-order upwind in grain size.
(top) Distribution (normalized so that its integral is constant) as a function of the normalized grain size
R=R. The arbitrarily chosen distribution at time t = 0 (a Gaussian in �m, thin curve) evolves with time
toward the self-similar distribution given by H (thick solid curve). The other curves (dotted and dashed)
correspond to intermediate normalized times. (bottom) The average grain size R varies rapidly as
(9gB0

2t/(8p))1/3, as predicted by the analytical solution (the dotted line has a slope of 1/3 in logarithmic
axis.
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larger and less numerous grains (i.e., migrates right and
collapses).

6. Static Grain Growth by Discontinuous Process

[84] We next consider static grain growth (i.e., with no
damage, Y = 0) when grain populations change discontin-
uously by coalescence or breaking of grains of remote grain
size populations, rather than by continuous exchange of
mass between grains. Thus considering no continuous
exchange ( _R = 0), the positivity of entropy source (70)
together with the conservation of mass and of grain size
distribution, (27) and (20), leads to the system

�
Z 1

0

3

2
g �K �mGRdR � 0; ð91aÞ

Z 1

0

�mGRdR ¼ 0; ð91bÞ

@VR

@t
¼ GR: ð91cÞ

6.1. Source Terms GRRRRR or GMMMMMM
[85] The source terms GR or GM of the evolution equa-

tions, (16) and (20) are necessary to account for the fact that
the number of grains can change by coalescence or fracturing.
Nucleation can also be viewed as extracting a small subgrain
from a larger one. Such processes of division and coales-
cence are well studied in the domains of polymer chemistry
[Stockmayer, 1943], cellular biology [Neelamegham et al.,
1997], algae population growth [Ackleh and Fitzpatrick,
1997], planetary formation [Wetherill, 1990] and the general
physics of aggregation [Collet, 2004]. The generalized
formalism that we adopt from these studies is often called
the Smoluchowski formalism [von Smoluchowski, 1917].
Since mass conservation is more easily expressed with mass
distribution than it is with grain size distribution we focus on
the source term GM, from which GR can be readily deduced
(see equation (21)).
[86] We first consider aggregation kinetics, in particular

the coalescence of only two grains of masses �m0
and �m00

to
form a new grain of mass �m0 þ �m00

. The rate that a fraction of
the number of grains of size �m00

stick to the available grains
of mass between �m0

and �m0 þ d �m0
is given by W+ �m0� �

d �m0
.

Thus the rate that all grains of size �m00
stick to those of size

�m0
is given by W+ d �m0VM �m00� �

d �m00
. However, W+ clearly

depends on the number of available grains of mass �m0
and

thus W+ = L+VM �m0� �
where L+ is a reaction rate. The rate of

coalescence between these two populations of grains is
therefore L+ �m0

; �m00� �
VM �m0� �

d �m0VM �m00� �
d �m00

. Both this
net rate and L+ itself are necessarily symmetric in �m0

and
�m00

(i.e., the rate that population 1 sticks to population 2 is
the same as the rate that population 2 sticks to population 1);
we also define L+ to be positive (i.e., any reversal of sticking
through breaking is treated by a separate quantity below).
[87] The effect of this aggregation reaction on a popula-

tion of grains of mass �m is twofold. First, if �m is the
resulting mass such that �m ¼ �m0 þ �m00

(or �m00 ¼ �m � �m0
)

then the population of grains of mass �m will increase at
a rate GM �mð Þd �m given by L+ �m0

; �m � �m0� �
VM �m0� �

VM
�m � �m0� �

d �m0
d �m (note that d �m00 ¼ d �m � �m0� �

¼ d �m for

a given, fixed �m0
). Second, if �m is the mass of the

reacting population (i.e., coalescing with grains of mass
�m0
) then �m00 ¼ �m; in this case, the population of grains

of mass �m will decrease at a rate GM �mð Þd �m given by
�L+ �m0

; �m
� �

VM �m0� �
VM �mð Þd �m0

d �m. This coalescence
reaction is of course just for sticking to masses of particular
size �m0

and we must account for all possible masses by
integrating over �m0

; but first we will consider the counterpart
to coalescence, i.e., breaking.
[88] For fracturing of grains we consider the rate that a

fraction of the number of grains of an original mass �m�

break into grains of sizes �m0
and �m00

where of course
�m� ¼ �m0 þ �m00

; we write this fractional rate as W� d �m0
to

denote that the fracturing will create grains in the interval
between �m0

and �m0 þ d �m0
(as well as the complementary

interval around the size �m00 ¼ �m� � �m0
, although this is

already constrained by knowing �m0
). The net rate that the

population of grains of mass �m�
will break is therefore

W� d �m0VM �m�� �
d �m�

. Unlike the case for coalescence we
do not expect W� to depend on either of the product
populations VM �m0� �

and VM �m00� �
(since either could be

0 and still breaking should occur), but it will depend on the
resulting masses symmetrically, such that W� = L�( �m

0
; �m00

),
where L� is a positive and symmetric function. As with
coalescence, breaking can affect the population of grains of
mass �m in two ways. First, if grains of mass �m undergo

fracturing then �m* ¼ �m and the rate of change of their
population GM �mð Þd �m is negative (i.e., there is loss of these
grains) and is given by �L� �m0

; �m � �m0� �
d �m0VM �mð Þd �m.

Second, if the grains of mass �m are produced by fracturing
(i.e., �m is one of the product masses) then �m00 ¼ �m
and �m* ¼ �m0 þ �m, in which case the rate of change of this
population GM �mð Þd �m is positive (since these grains are
being produced) and is given by +L� �m0

; �m
� �

d �m0VM
�m þ �m0� �

d �m (where, again, in this case d �m� ¼ d �m).
[89] Combining the rates given by both aggregation and

fracturing and integrating over all possible reacting or
product masses �m0

, we obtain

GM �mð Þ ¼ 1

2

Z 1

0

Lþ �m0
; �m � �m0� �

VM �m0� �
VM �m � �m0� �

d �m0

�
Z 1

0

Lþ �m0
; �m

� �
VM �m0� �

VM �mð Þd �m0

þ
Z 1

0

L� �m0
; �m

� �
VM �m þ �m0� �

d �m0

� 1

2

Z 1

0

L� �m0
; �m � �m0� �

VM �mð Þd �m0
; ð92Þ

where the factor 1/2 is necessary to avoid counting
interacting distributions of grains twice (i.e., while integrat-
ing in �m0

we encounter at small �m0
, interaction of grains of

mass �m0 ¼ �m0 and �m � �m0, and later, at larger �m0
, we

encounter interaction of grains of mass �m0 ¼ �m � �m0 and
�m0). We choose by convention to haveL+(x, y) =L�(x, y) = 0
if either argument x or y is negative, hence all integrals
involving �m � �m0

, and for which 0 < �m0
< �m, can be

extended to 0 < �m0
< 1.

[90] A symmetrical relation for GM can also be derived
[e.g., Leyvraz, 2003],

GM �mð Þ ¼ 1

2

Z Z 1

0

E �m0
; �m00� �

D �m; �m0
; �m00� �

d �m0
d �m00

; ð93Þ
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where, for the two variables �m0
and �m00

, the integrations are
from 0 to 1, and where

E �m0
; �m00� �

¼Lþ �m0
; �m00� �

VM �m0� �
VM �m00� �

� L� �m0
; �m00� �

VM �m0 þ �m00� �
;D �m; �m0

; �m00� �
¼ d �m � �m0 � �m00� �

� d �m � �m0� �
� d �m � �m00� �

; ð94Þ

where d is the Dirac function. The function E is a reaction
rate and the equilibrium equation E = 0 suggests a relation
between grain populations of different sizes, analogous to
the usual law of mass action for chemical reactions

VM �m0� �
VM �m00� �

VM �m0 þ �m00� � ¼
L� �m0

; �m00� �
Lþ �m0

; �m00� � : ð95Þ

One can easily verify that mass conservation, (27), is
automatically satisfied since

Z 1

0

�mGM �mð Þd �m ¼ 1

2

Z Z 1

0

E �m0
; �m00� �

�
Z 1

0

�mD �m; �m0
; �m00� �

d �m
� �

d �m0
d �m00

¼ 1

2

Z Z 1

0

E �m0
; �m00� �

� �m0 þ �m00� �
� �m0 � �m00� �

d �m0
d �m00 ¼ 0:

ð96Þ

6.2. Static Grain Evolution (No Damage)

[91] We can replace the relation for GM, (93), in the
expression for the entropy sources (69). The term �(3/2)g �K �m
is also �g(36Pr)1/3 �m2/3, and since GRdR ¼ GMd �m, we
obtain

�
Z 1

0

3

2
g �K �mGMd �m ¼ g

9Pr
2

� �1=3

�
Z Z 1

0

E �m0
; �m00� � Z 1

0

� �m2=3D �m; �m0
; �m00� �

d �m
� �

d �m0
d �m00

¼ g
Z Z 1

0

E �m0
; �m00� �

A �m0
; �m00� �

d �m0
d �m00 � 0; ð97Þ

where

A �m0
; �m00� �

¼ 9Pr
2

� �1=3

�m02=3 þ �m002=3 � �m0 þ �m00� �2=3
 �
:

ð98Þ

is related to the change in surface area during grain
sticking or fracturing and has units kg m�1. This function
is strictly positive unless �m0 ¼ �m00

= 0. Therefore, in the
case of no deformation (Y = 0), the positivity of entropy
production is guaranteed for any distribution of grain mass
if E( �m0

; �m00
) � 0. From the definition of E (see (94))

entropy production is only guaranteed positive for any
distribution if the rate of grain breaking L� is zero (this
conclusion assumes that the rates L� and L+ are only
functions of the grain masses �m and �m0

, and not of the
grain size distributions themselves). Otherwise in the limit
where the grain number tends to 1, the remaining grain

could still possibly break, but there would be no other
grain to coalesce with, and this could violate the second
law of thermodynamics by causing E < 0. Without
damage, the possibility of two grains sticking is allowed
by the second law of thermodynamics, but L� = 0 implies
no possibility for any grain to break.
[92] Therefore, in the case of no damage, the general

evolution of grain distribution must verify

dVM �mð Þ
dt

¼ 1

2

Z Z 1

0

Lþ �m0
; �m00� �

D �m; �m0
; �m00� �

dn0dn00; ð99Þ

where dn0 and dn00 stand for VM �m0� �
d �m0

and VM �m00� �
d �m00

.
The kinetic rate L+ is a positive function that might be
deduced either experimentally or from a microscopic model.
The rules of nonequilibrium thermodynamics suggest from
(97) a phenomenological law between the reaction rate L+

and the thermodynamic ‘‘force’’ gA of the form

Lþ �m0
; �m00� �

¼ g
Z Z 1

0

Gd �m0
; �m00

; �m000
; �m0000� �

� A �m000
; �m0000� �

dn000dn0000; ð100Þ

where Gd( �m0
; �m00

; �m000
; �m0000

) is another interaction function
for the discontinuous sticking process. Equation (100)
indicates that the chemical potential difference (stored as
surface energy on the grains) before and after coalescence
acts as a thermodynamic force that will drive the
coalescence reaction, which is itself a form of ‘‘thermo-
dynamic flux’’. The entropy production, according to (97),
can be written

�
Z 1

0

3

2
g �K �mGMd �m ¼ g2

Z Z Z Z 1

0

Gd �m0
; �m00

; �m000
; �m0000� �

� A �m0
; �m00� �

A �m000
; �m0000� �

dn0dn00dn000dn0000 � 0; ð101Þ

which is positive provided Gd is itself a positive definite
operator. The operator Gd should be invariant to the
permutation of its four variables since L+( �m

0
; �m00

) is
invariant to a permutation of �m0

and �m00
, and

Gd( �m0
; �m00

; �m000
; �m0000

) is invariant to a permutation of
( �m0

; �m00
) with ( �m000

; �m0000
) by Onsager’s symmetry rules

(i.e., the cross-coupling coefficients that relate the ‘flux’
L+( �m

0
; �m00

) to the ‘force’ gA �m000
; �m0000� �

are symmetric with
the cross-coupling coefficients relating the ‘flux’
L+( �m

000
; �m0000

) to the ‘force’ gA �m0
; �m00� �

).

6.3. Example of Grain Coalescence

[93] A few cases of exact solutions for aggregation
kinetics are known [Leyvraz, 2003; Collet, 2004] and the
continuous representation is often replaced by a discrete set
of equations where ‘‘monomers’’ (the smallest ‘‘grain size’’)
can be successively added to larger clusters as in the
seminal paper of Becker and Doring [1935]. As an example,
we assume here that the sticking rate, often called the
aggregation kernel in the mathematical literature [e.g.,
Collet, 2004], is a constant rate L+( �m

0
; �m00

) = C0g, regard-
less of the masses, �m0

and �m00
, of the grains that stick

together. This is clearly a very simplified view of the
generic phenomenological equation (100) but for which
an analytical solution is possible. In this case, the integra-
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tion of (99), taking into accounting the Dirac functions of
D, leads to

dVM �mð Þ
dt

¼ C0g
1

2

Z m

0

VM �m0� �
VM �m � �m0� �

d �m0
�

� VM �mð Þ
Z 1

0

VM �m0� �
d �m0

�
: ð102Þ

[94] This first integral is computed up to �m0 ¼ �m only,
since only grains smaller than �m can coalesce to produce a
grain of mass �m.
[95] Here again, self-similar solutions can be found (see

Appendix B) by assuming VM �mð Þ = A(t)H( �m=m) where
m ¼

R
VM �md �m=

R
VMd �m (i.e., choosing B( �m) = 1 in

(84)). The average mass is found to satisfy

m ¼ m0 þ 1

2
rC0gt; ð103Þ

(with m0 = m (t = 0)) and the asymptotic mass size
distribution

VM �m; tð Þ ¼ r

m2
exp �

�m
m

� �
; ð104Þ

and since VR ¼ 4pR2rVM according to (8), the asymptotic
grain size distribution would be

VR / u2 exp �u3
� �

; ð105Þ

where u = R= Rh i and hRi � m1=3.
[96] The existence of a self-similar solution, depends on

the behavior of L+. When L+( �m
0
; �m00

) increases faster than
the product �m0 �m00

, a ‘‘gelation’’ can occur where the largest
grain size diverges (reaches an infinite size) in a finite time
[Leyvraz, 2003]. However, in our theory, even when the
interaction function Gd is a constant, the reaction rate
L+( �m

0
; �m00

) is related to the 2 / 3 power of �m0
and �m00

(see (98) and (100)) and should still yield self-similar
solutions.
[97] As with the coarsening case, we study numerically

(using the same approach as in section 5.2), the evolution of
a test case distribution of grain size with time for the
assumed reaction rate L+ = g C0 (see Figure 3). The average
radius (Figure 3, bottom) follows very closely the prediction
of the analytical solution. The normalized grain size distri-
bution (normalized so that the integral of the distribution is
1) is depicted in the Figure 3 (top) as a function of the
normalized radius ( �m=m)1/3 (the average radius used in
Figure 2 and the radius of the average mass are proportional
by a factor O (1)). The normalized distributions shown at
the dimensionless times 0, 0.5 and 0.72 evolve toward the
self-similar solution. The distributions appear to spread
toward smaller grains; however, this is due to the fact that
they are plotted with respect to normalized sizes. The
normalized distributions as a function of the real grain sizes
(see Figure 3, middle) show on the contrary, that the number
of grains with a small size simply decreases while new and
larger grains are created (i.e., the grain size distribution
changes by only expanding its right tail, which leads to a
twice slower shift of the average grain size toward larger

sizes). The average grain mass is increasing linearly with
time as plotted in Figure 3 (bottom).

6.4. Coupled Continuous and Discontinuous Processes:
Static Grain Growth and Coalescence

[98] The equations that we have obtained for the continu-
ous mass transfer (78) and discontinuous reaction rate (100)
may not be the most general even in the static case (i.e., in the
absence of deformational work). The continuous and discon-
tinuous processes are potentially coupled according to

d �m
dt

¼ g
Z 1

0

Gc �m; �m0� �
�K0 � �K

 �

dn0

þ g
Z Z 1

0

Gcd �m; �m0
; �m00� �

A �m0
; �m00� �

dn0dn00 ð106aÞ

Lþ �m; �m0� �
¼ g

Z 1

0

Gdc �m00
; �m0

; �m
� �

�K00
dn00

þ g
Z Z 1

0

Gd �m; �m0
; �m00

; �m000� �
A �m00

; �m000� �
dn00dn000;

ð106bÞ

(where, for consistency, we treat all variables as functions of
grain masses since integration can be done either with
respect to grain size or grain mass using the fact that dn =
VRdR ¼ VMd �m).
[99] Coupling between continuous and discontinuous

processes conceivably exists through the coefficients Gcd

and Gdc. Gcd( �m; �m0
; �m00

) represents the influence on the
diffusive growth rate of grains of mass �m due to the
presence of (i.e., chemical potentials of) grains of masses
�m0

and �m00
. Reciprocally, Gdc( �m00

; �m0
; �m) is the influence on

the aggregation rate between grains of masses �m and �m0
due

to the presence of grains of size �m00
.

[100] Onsager’s reciprocal relations between the argu-
ments of Gdc and Gcd can be inferred by considering the
contribution to the entropy production by these cross-terms
(using (70) with (97) and the intrinsic symmetry of A given
by (98))

_Scross ¼ � g2
Z Z Z 1

0

�KA �m0
; �m00� �

� Gcd �m; �m0
; �m00� �

� Gdc �m; �m0
; �m00� �� 	

dndn0dn00 ð107Þ

The positivity of entropy is best guaranteed by Onsager’s
symmetry relationship Gdc( �m; �m0

; �m00
) = Gcd( �m; �m0

; �m00
),

which states that the law governing how the aggregation of
two grains is influenced by the diffusive growth of a third
grain is the same as that which governs how diffusive
growth of the third grain is influenced by the two
aggregating grains.
[101] However, we have assumed that mass conservation

is separately satisfied by the continuous and the discontin-
uous processes. Since the term containing Gc in (106a)
already satisfies mass conservation, then the term contain-
ing Gcd must by itself satisfy mass conservation. Since
A �m0

; �m00� �
is a symmetric function, the best guarantee that

mass is conserved is for the function Gcd to be antisymmet-
ric in �m0

and �m00
so that Gcd( �m; �m0

; �m00
) = �Gcd( �m; �m00

; �m0
).
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Onsager’s relations then imply that Gdc is also antisymmet-
ric with respect to its last two variables: Gdc( �m00

; �m0
; �m) =

�Gdc( �m00
; �m; �m0

). This is however impossible as L+( �m; �m0
)

in (106b) is itself a symmetric function. Therefore the only
possible solution is that Gdc, and thus Gcd are both zero.
This analysis implies that the phenomenological laws gov-
erning continuous coarsening and discontinuous coales-
cence are decoupled with regard to continuous and
discontinuous thermodynamics forces and fluxes; however,
some coupling exists regardless since the forces g �K and gA
both depend on grain size.

7. Grain Size Evolution With Damage

[102] A major goal of this study is to go beyond simple
static grain growth by either coarsening or coalescence and

to treat nonstatic cases that include deformation and dam-
age. As with static grain growth, the general phenomeno-
logical grain size law is inferred by satisfying positivity of
entropy production stipulated in (70) [e.g., de Groot and
Mazur, 1984]. Entropy production associated with defor-
mational work for irrecoverable deformation Y is already
known to be positive definite. (Note that if the medium were
viscoelastic then the elastic component of Y would only
make a contribution to the reversible internal energy, akin to
the �PdV term [Malvern, 1969], and the remaining viscous
part would be a positive definite entropy source.)
[103] Although positivity of entropy production is best

guaranteed by positive definiteness of individual entropy
sources, this is not the most general statement of the 2nd law
of thermodynamics. Entropy can of course be exchanged
between coupled processes and all the 2nd law really

Figure 3. Same as in Figure 2, evolution of the distribution of grain sizes with time, when grain can
stick together. (top) Normalized distribution as a function of the normalized grain size R=R. The
arbitrarily chosen distribution at time t = 0 (a Gaussian in �m, thin curve) evolves with time toward the
self-similar distribution (thick solid curve). The other curves (dotted and dashed) correspond to
intermediate normalized times. (middle) Although the normalized distribution tends toward a time-
independent solution, in unnormalized grain size space, the distribution moves toward larger grains; this
shows normalized distribution amplitudes because the peak of the beginning distribution (t = 0) is more
than an order or magnitude greater and that of the final one (t = 2). (bottom) The average grain mass m
varies rapidly as (rgC0

2/2) t as predicted by the analytical solution.
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requires is that the net entropy production be positive. Thus
we now discuss the possible coupling between the different
entropy sources.
[104] One of the basic hypotheses of damage mechanics

is that a portion of deformational work is stored as a free
energy on defects in the continuum (cracks, voids, dis-
locations, grain boundaries) rather than as dissipative
heating [Ashby and Sammis, 1990; Hansen and Schreyer,
1992; Lemaitre, 1992; Krajcinovic, 1996; Lyakhovsky et
al., 1997; Bercovici et al., 2001a; Bercovici and Ricard,
2003; Ricard and Bercovici, 2003; Austin and Evans,
2007]; in the case of grain growth it is manifest as
increasing grain boundary surface energy by making more
smaller grains and thus reducing the mean grain size. This
effect can be stated in two equivalent ways: Either (1)
some portion of deformational work is used to create
stored energy, and thus does not go into entropy produc-
tion; or (2) the storage of free energy provides an entropy
sink (see for example section 6.2 in which entropy
production associated with the grain breaking rate L� is
negative), which is necessarily offset, to preclude violation
of the 2nd law of thermodynamics, by some portion of
mechanical dissipation (i.e., deformational work). In either
description, a portion of a given entropy source (deforma-
tional work) is used to balance a nonentropic process
(grain size reduction).
[105] The total entropy production during grain evolu-

tion in the presence of deformation is given by (70), which
we write as having the standard positive definite contri-
butions from grain growth (coarsening and coalescence)
and deformational work, but where a fraction �f of the
deformational work is not used for entropy production
(i.e., it is used for surface energy creation instead of
heating):

Z 1

0

�g �K d �m
dt

VR Rð Þ � 3

2
g �K �mGR þ �mYVR Rð Þ

� �
dR ¼

þ g2

2

Z Z 1

0

Gc R;R0ð Þ �K0 � �K

 �2

dndn0

þ g2
Z Z Z Z 1

0

Gd �m; �m0
; �m00

; �m000� �
� A �m; �m0� �

A �m00
; �m000� �

dndn0dn00dn000

þ
Z 1

0

1 � �f Rð Þ

 �

�mYVR Rð ÞdR � 0; ð108Þ

where Gc, Gd, and A are the same grain functions described
in section 5; we have also used the identity rY =R1
0

�mYVR Rð ÞdR, and employed the results of section
6.4 (i.e., Gcd = Gdc = 0). The factor �f Rð Þ is a work-
partitioning function that indicates how much deformational
work is used to create surface energy and which therefore
does not immediately cause dissipative heating (and hence
represents a small nonpositive contribution to entropy
production). Therefore implicit in (108) is that the grain
evolution processes represented by the first two terms in the
integral on the left of the equation include not only positive-
definite entropy sources (the first two terms on the right
side) but also nonentropic, or conservative, components
(i.e., surface energy storage by grain reduction) that are
offset by a fraction of the deformational work �f Y. The

nonentropic damage processes are thus constrained by
(simply rearranging (108))Z 1

0

�g �K d �m
dt

VR Rð Þ � 3

2
g �K �mGR

� �
dR

� g2

2

Z Z 1

0

Gc R;R0ð Þ �K0 � �K

 �2

dndn0

� g2
Z Z Z Z 1

0

Gd �m; �m0
; �m00

; �m000� �
� A �m; �m0� �

A �m00
; �m000� �

dndn0dn00dn000

¼ �
Z 1

0

�f Rð Þ �mYVR Rð ÞdR: ð109Þ

[106] The partitioning function �f Rð Þ also potentially con-
tains information about the rheological grain size dependence
and distribution, i.e., how, and even if, viscosity depends on
grain size. This can be seen by considering an alternative and
seemingly more general form of the last term on the right side
of (109) in which we could have employed �Y Rð Þ, the
deformational work on grains of size R, rather than the
average, grain-size-independent work Y; in this case the term
in questionwould have been

R1
0

~f Rð Þ �m�YVR Rð ÞdRwhere ~f
is an alternative work-partitioning function. As we consider
velocity independent of grain size, then �Y only depends
on grain size through grain viscosity �h Rð Þ and thus we can
write �Y Rð Þ ¼ �h Rð Þ=hð ÞY where h is the volume-averaged
viscosity (see for example (44)). The revised last term of
(109) would thus become

R1
0

~f Rð Þ �h Rð Þ=h½  �mYVR Rð ÞdR
which simply means we can define �f Rð Þ ¼ ~f Rð Þ�h Rð Þ/h and
recover (109), identically. Therefore, although we have
shown that the form of this term in (109) is general as is,
we have also demonstrated that the work-partitioning func-
tion is conceivably and quite plausibly a function of the grain
size dependence of viscosity. This has significance toward the
functionality of dynamic recrystallization as is discussed
below in section 9.
[107] The net viscous dissipation,

R1
0

1 � �f Rð Þ

 �

�mYVR Rð ÞdR, cannot be negative and cannot exceed the
available deformational work (rY in (70)), therefore,

0 � Y
Z 1

0

1 � �f Rð Þ
h i

�mVR Rð ÞdR � rY ð110Þ

leading to

0 � f ¼
Z 1

0

�f Rð Þ�vVR Rð ÞdR � 1; ð111Þ

where f is the average proportion of viscous dissipation
removed from the entropy sources that is converted into
surface energy.
[108] The term �f and its macroscopic average f are the

sum of continuous and discontinuous processes and can be
written as �f ¼ �f c þ �f d and 0 � f = fc + fd � 1. We therefore
divide (109) intoZ 1

0

�g �K d �m
dt

VR Rð Þ
� �

dR

¼ g2

2

Z Z 1

0

Gc R;R0ð Þ �K0 � �K

 �2

dndn0

�
Z 1

0

�f c Rð Þ �mYVRdR � 0; ð112Þ
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and,

Z 1

0

3

2
g �K �mGM

� �
¼ g2

Z Z 1

0

Gd �m; �m0
; �m00

; �m000� �
� A �m; �m0� �

A �m00
; �m000� �

dndn0dn00dn000

�
Z 1

0

�f d �mð Þ �mYVMd �m � 0: ð113Þ

Here again, as in section 5.1 and section 6.1, we prefer to
use grain size for the continuous process and grain mass for
the discontinuous process.

7.1. Continuous Processes With Damage

[109] Assuming �f d = 0, and considering the possible
coupling between grain growth and deformational work,
the relevant system of equations (entropy positivity, mass
and grain size distribution conservation, with �f c 6¼ 0 and
�f d = 0 and GR = 0) becomes

Z 1

0

�g �K d �m
dt

þ �f c Rð ÞY �m
� �

VRdR

¼ g2

2

Z Z 1

0

Gc R;R0ð Þ �K0 � �K

 �2

dndn0 � 0; ð114aÞ

Z 1

0

d �m
dt

VRdR ¼ 0; ð114bÞ

@VR

@t
þ
@ _RVR
� �
@R ¼ 0: ð114cÞ

[110] The phenomenological grain growth relation
required by (114a), and similar to (78), is

d �m Rð Þ
dt

¼
Z 1

0

Gc R;R0ð Þg �K R0ð Þ � �K Rð Þ
h i

VR R0ð ÞdR0

þ
�f c Rð Þ �m Rð Þ
g �K Rð Þ

Y ð115Þ

[111] The damage/deformational work term (last on the
right side) in (115) is in fact quite general; a seemingly more
general approach would have been to, as with the coarsening
effect, construct this term as a convolution of work-partition-
ing contributions to all grains, which would have lead to a term
of the form Y

R1
0

H R;R0ð Þ�f c R0ð Þ �m R0ð ÞVR R0ð ÞdR0 where
H(R;R0) is a convolution or interaction function similar to
Gc(R;R0). This term is, after integration in R0 necessarily of
the form YZ Rð Þ where Z Rð Þ is simply the integral factor in
that term; however, with this alternative term in (115), (114a)
can only be satisfied if Z Rð Þ ¼ �f c Rð Þ �m Rð Þ=g �K Rð Þ, which
simply leads back to (115) in its original form.
[112] Finally, using the form of Gc(R;R0) assumed in

(82), we obtain, as with (82),

d �m Rð Þ
dt

¼ gb Rð Þ K � �K Rð Þ
h i

þ
�f c Rð Þ �m Rð Þ
g �K Rð Þ

Y ð116Þ

where b(R) is given by (83) and K is defined as in (84).
Equation (116) manifests both coarsening under the

influence of surface tension, as well as changes in grain size
due to energy input from deformational work. However, just
as with the grain interaction function Gc(R;R0), the work
partitioning �f c Rð Þ must be elaborated on subject to various
constraints such as mass conservation, as well as the second
law of thermodynamics as given by (111).
7.1.1. Work Partitioning and the Damage Distribution
[113] To satisfy mass conservation (114b), the partitioning

function �f c Rð Þ cannot have the same sign for all grain sizes
(not all grains can simultaneous grow or shrink). The most
general expression that satisfies mass conservation, is to
require �f c Rð Þ to have the form of

�f c Rð Þ ¼
�K
�v
b Rð Þ H � �H Rð Þ

� 	
; ð117Þ

where �H Rð Þ is an arbitrary function of R;H is defined as in
(84), and recall that �v ¼ �m/r. We assume that �H Rð Þ is
monotonic in R, i.e., grains are either more or less
susceptible to damage as they get larger or smaller, but
there are no extrema in which grains could reach a
minimum or maximum damage susceptibility at a given
size. Using (117) the grain growth law (76) now becomes

d �m
dt

¼ b Rð Þ g K � �K Rð Þ
h i

þ rY
g

H � �H Rð Þ
� 	� �

: ð118Þ

[114] Whether �H Rð Þ increases or decreases with R,
determines the nature of the damage distribution, i.e.,
whether larger grains shrink (if d �H Rð Þ=dR � 0, then
�H Rð Þ increases and H � �H Rð Þ and thus dm/dt are negative
for large R) or grow (if d �H Rð Þ=dR � 0) with the
additional deformational work term. However the sign of
d �H=dR and the amplitude of �H cannot be chosen arbitrarily
as they are constrained by the 2nd law of thermodynamics.
Equation (111) leads to

Z 1

0

�K Rð Þb Rð Þ H � �H Rð Þ
� 	

VRdR ¼ fc; ð119Þ

where 0 � fc � 1, which reduces to

B2 H K � HK
� �

¼ fc; ð120Þ

where, given (83),

B2 ¼
Z 1

0

b Rð ÞVRdR ¼
Z 1

0

B Rð ÞVRdR
� �2

: ð121Þ

[115] The function

�H ¼ fc
1

B2

�F
F K � FK

; ð122Þ

obviously satisfies (120) for any function �F . The general
expression for the grain evolution is therefore,

_R ¼ dR
dt

¼ b Rð Þ
4PR2r

g K � �K Rð Þ
h i

þ fc
rY

gB2

F � �F Rð Þ
F K � FK

 !
:

ð123Þ
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[116] Employing the definitions for �K, b and B2 given
in (43), (83) and (121), and substituting the expression
(85) for B(R), we can express _R in terms of R:

_R ¼ 2gB2
0IpRp�2 R�1 � R�1

h i
þ fcY

Rp�2

8PgIp

F � �F Rð Þ
F R�1 � FR�1

" #
;

ð124Þ

and recall that Ip is given in (87) and that barred (weighted
average) quantities are given by (84). It is of course
important to remember that all integrals and weighted
averages of R�1 are time dependent as they depend on a
grain size distribution that shifts and evolves during grain
growth or grain reduction. Of course, when Y = 0, we return
to the coarsening expression found in (86).
[117] Using the expression (124), we can readily show

that the deformational work has an effect opposite to
coarsening; while coarsening induces a mass flow from
small grains to large grains, continuous damage does the
opposite independently of the choice of �F Rð Þ. To prove
this result, we must determine the sign of the quantity
F K � FK. The definition of the averaged quantities (see
(84)) implies that

B2 F K � FK
� �

¼
Z 1

0

�FB dn

Z 1

0

�K0
B0dn0 �

Z 1

0

B0dn0
Z 1

0

�F �KB dn

¼
Z Z 1

0

BB0 �F �K0 � �K
h i

dndn0

¼ 1

2

Z Z 1

0

BB0 �F � �F 0h i
�K0 � �K
h i

dndn0; ð125Þ

where the functions with primes are functions of R0 (e.g.,
B0 = B(R0)). The sign of �K R0ð Þ � �K Rð Þ is sgn(R � R0), and
�F Rð Þ � �F R0ð Þ has the sign of sgn(R � R0) d �F=dR
(provided �F is monotonic). Therefore (125) implies that
F K � FK has the sign of d �F=dR. For large grains
F � �F Rð Þ has a sign opposite to d �F=dR, so that
F � �F Rð Þ
� �

= F K � FK
� �

is always negative for large
grains; similarly this factor is positive for small ones. This
leads to the result that damage is thermodynamically
required to involve reduction of large grains and growth of
smaller ones, opposite to coarsening. Physically, this result
shows that if damage creates more surface energy it must do
so by increasing the population of smaller grains, which is
accomplished by shrinking large grains and distributing their
mass over small-grain populations.
7.1.2. General Behavior During Continuous
Grain Damage
[118] We have already seen that coarsening implies the

growth of large grains and the diminution of small ones.
This process is associated with a reduction of grain popu-
lation (by more of the mass existing in few larger grains and
by the formation of vanishingly small grains); but since the
decrease in grain number (the rate of which for the contin-
uous coarsening case goes as �d _R=dR) is faster for small
grains than for large grains, the mode of the distribution
moves toward larger grain size (see Figure 4).
[119] The mechanism of continuous damage functions in

the opposite sense. Since grains larger than the mean size

shrink and those smaller than the mean grow, the grain size
distribution naturally converges toward the mean (see
Figure 4). The major effect of this continuous damage term
is thus simply to narrow the width and increase the
amplitude of the initial distribution. This homogenization
of grain sizes accelerates with time since the denominator
F K � FK tends to zero as the distribution becomes
singular (i.e., becomes the distribution for homogeneous
grain size).
[120] This mechanism of homogenization during defor-

mation may not seem very realistic since it implies that a
solid made of homogeneous grain sizes does not evolve
when deformed. However, the homogenization of grain
sizes during deformation is experimentally documented
[Faul and Jackson, 2007]. In Figure 5, we show the
evolution of a typical distribution under deformation, assum-
ing arbitrarily that �F Rð Þ ¼ R2 and neglecting the coarsen-
ing term (or equivalently assuming Y 	 1). To account for
the fact that the coarsening term (which goes as 1/R)
dominates at R = 0, with _R < 0, we impose a boundary
condition of zero influx of grains at R = 0. As expected, the
grain size distribution becomes rapidly narrower, while the
average grain size, remains mostly constant (it decreases by
less than 0.1% in this numerical simulation).

7.2. Discontinuous Grain Damage

[121] The last simple case we examine corresponds to the
case �f c = 0, �f d 6¼ 0; here we assume that there is no
continuous exchange between grain populations ( _R = 0),
but discontinuous exchange occurs through breaking and
coalescence coupled with deformational work. The relevant
system of equations is now

Z 1

0

� 3

2
g �K �mGM þ �f d �mð ÞY �mVM

� �
d �m

¼ g2
Z Z 1

0

Gd �m; �m0
; �m00

; �m000� �
� A �m; �m0� �

A �m00
; �m000� �

dndn0dn00dn000 � 0; ð126aÞ

Z 1

0

�mGMd �m ¼ 0; ð126bÞ

dVM

dt
¼ GM: ð126cÞ

7.2.1. Rate of Grain Formation by Discontinuous
Damage
[122] The general discussion on the source term, section 6.1

using the Smoluchowski aggregation formalism [von
Smoluchowski, 1917] remains valid and thus (126a) leads
to

g
Z Z 1

0

E �m0
; �m00� �

A �m0
; �m00� �

d �m0
d �m00 þ

Z 1

0

�f d �mð ÞY �mVMd �m

¼ g2
Z Z 1

0

Gd �m; �m0
; �m00

; �m000� �
� A �m; �m0� �

A �m00
; �m000� �

dndn0dn00dn000 � 0 ð127Þ
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while as in (96), mass conservation (126b) is already
accounted for by the expression for E, (94).
[123] The expression (94) for the reaction rate E includes

a grain sticking rate L+ �m0
; �m00� �

VM �m0� �
VM m00ð Þ associ-

ated with a positive entropy source and a grain breaking rate
L� �m0

; �m00� �
VM �m0 þ �m00� �

associated with an entropy

sink. The entropy sink corresponding to L� was disallowed
in section 6.2 but is now permitted since it can be partially
offset by the entropy production from deformational work
(i.e., some fraction of work is used for breakage, which
increases surface energy). In particular, employing (94) in

Figure 4. Schematic evolution of a grain size distribution VR (shaded area) during continuous
processes. The function _R is indicated by a dashed line. (top) Coarsening case: The function _R changes
sign near R ¼ R from negative to positive with increasing R, and therefore, the grain size distribution
diverges from R. However, the rate of change of grain population dVR/dt goes as �VR@ _R=@R (see
(16)), and thus, VR collapses asymmetrically about the mean, i.e., more rapidly for small R than for large
R; this causes the mode to shift to larger R and thus leads to an increase of the average grain size.
(bottom) Damage case: The function _R varies in the opposite way, and the grain size distribution
converges toward R. Depending on the curvature of _R (i.e., on the choice of F Rð Þ), the mode of the
grain size distribution may slightly drift. However, this change in the average grain size remains very
small because the distribution becomes rapidly singular around its initial R; this was also verified by an
extensive suite of numerical simulations.

Figure 5. Evolution of the distribution of grain sizes VR Rð Þ with time, assuming continuous damage.
Instead of reaching a self-similar shape, the grain distribution converges toward a monodisperse peak.
The average radius (not shown) varies by only negligible amounts and in a direction depending on the
initial grain distribution.
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(127), with the assumption that L+ is still given by (100),
then L� must satisfy

g
Z Z 1

0

L� �m0
; �m00� �

A �m0
; �m00� �

VM �m0 þ �m00� �
d �m0

d �m00 ¼ fdrY;

ð128Þ

with a macroscopic average partitioning factor fd between 0
and 1.
[124] Just as we demonstrated in section 7.1.1 (see (120)–

(123)), the function

L� �m; �m0� �
¼ fdrY

g

�
L �m; �m0� �Z Z 1

0

L �m00
; �m000� �

A �m00
; �m000� �

VM �m00 þ �m000� �
d �m00

d �m000
;

ð129Þ

would satisfy the entropy requirements in (128) for any
positive, symmetric function L. Therefore the general
expression for the rate of grain formation by discontinuous
damage alone is

GM ¼ � fdrY
2g

�

Z Z 1

0

L �m0
; �m00� �

D m;m0;m00ð ÞVM �m0 þ �m00� �
dm0dm00

Z Z 1

0

L �m0
; �m00� �

A �m0
; �m00� �

VM �m0 þ �m00� �
d �m0

d �m00
:

ð130Þ

7.2.2. An Example Solution for Grain Reduction
With Damage
[125] To illustrate discontinuous grain reduction by dam-

age, we simply assume that L( �m0
; �m00

) is a constant rate
regardless of the mass of the generated subgrains �m0

and �m00

(note that in the numerator of general break, the integral has
only to be performed until �m0 þ �m00 ¼ �m since subgrains
are obviously smaller than the initial broken grain). In this
case,

dVM

dt
¼ GM ¼ fdrY

2g

Z 1

0

2VM �m þ �m0� �
d �m0 � �mVM �mð ÞZ Z 1

0

VM �m0 þ �m00� �
A �m0

; �m00� �
d �m0

d �m00
:

ð131Þ

[126] Here again, self-similar solutions can be obtained,
by inserting into (131) the expression VM ¼ r=m2

H �m=mð Þ
(which itself arises from (10)). After some epiphanous
algebra (using the same method as in Appendix B), we
find that

H uð Þ ¼ exp �uð Þ;m�1=3 ¼ m�1=3
0 þ 2

9pr

� �1=3
fdYt
9gv

; ð132Þ

where now u = �m=m, and v =
RR1

0
(x2/3 + y2/3 � (x + y)2/3)

exp(�x � y) dxdy � 0.065.

[127] Figure 6 depicts the evolution of a characteristic
distribution of grain size VR ¼ 4pR2rVM with time. The
average grain mass (Figure 6, bottom) follows, as in the
previous cases, the prediction of the analytical solution
(132) (although the numerical solution is still far from the
asymptotic 1/t3 behavior since them0 term of (132) is not yet
negligible). The normalized grain size distributions are
shown in Figure 6 (top) as a function of the normalized
radius �m=mð Þ1/3. The distributions are displayed at the
normalized times 0, 0.2 and 0.4 and are evolving toward
the self-similar solution, which (given thatVR ¼ 4pR2rVM)
is

VR / r2 exp �r3
� �

; ð133Þ

where r = R= Rh i and hRi = m1/3. The same asymptotic
distribution can therefore obtained by breaking grains (133)
or sticking grains randomly (105), but of course the average
grain size decreases in the first case and increases in the
second case.

7.3. General Case

[128] There are four mechanisms that we have studied
separately: two of them (continuous coarsening and discon-
tinuous coalescence) operate in the static case and increase
the mean grain size; and two of them (continuous grain
reduction and discontinuous grain division) occur in the
presence of deformation and damage and either homogenize
the grain size distribution or decrease the mean grain size. In
general, these mechanisms act simultaneously to affect the
grain size distribution. Although we cannot explore all the
possible combinations of these mechanisms, we can at least
show a simple (and likely most common) case, i.e., when
the grain growth is dominated by continuous coarsening
through diffusive mass exchange (e.g., a normal grain
growth theory in keeping with Lifshitz and Slyozov [1961]
and Wagner [1961]), but where grain reduction is driven by
damage through the discontinuous ‘‘breaking’’ mechanism.
In this case the equation of grain size evolution is

@VM

@t
þ
@ _�mVM


 �
@ �m

¼ GM ð134Þ

where the coarsening rate _�m ¼ 4PR2 _R is given by (86)
and the damage rate GM is given by (131). The mechanism
of coalescing grains should not be very efficient for
crystalline solids, since the mismatch of atomic lattices
between grains and the presence of secondary phases may
prevent it.
[129] Although there is no self-similar asymptotic solu-

tion for this mixed case (as shown below), an interesting
result can be found by substituting a trial solution
VM ¼ r=m2

H �m=mð Þ into (134) (as with all cases, a scale
factor of 1/m2 is required by mass conservation).
[130] Since the Dirac d functions ofD have dimensions of

1/ �m, the discontinuous source term with damage (131)
becomes

GM ¼ fdrY
2g

2

9Pr

� �1=3

m�5=3
Ha uð Þ; ð135Þ
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and the continuous (grain growth without damage) term,

@ _�mVM


 �
@ �m

¼ 8PgB2
0r

10�2pð Þ=3m 2p�13ð Þ=3
Hb uð Þ; ð136Þ

where Ha(u) and Hb(u) are dimensionless shape functions of
u = �m=m related to derivatives of H(u). The general grain
size evolution therefore becomes

� r

m3

dm
dt

Hc uð Þ þ 8PgB2
0r

10�2pð Þ=3m 2p�13ð Þ=3
Hb uð Þ

¼ fdrY
2g

2

9Pr

� �1=3

m�5=3Ha uð Þ; ð137Þ

where Hc(u) is another dimensionless function related to
H(u).
[131] Asymptotic solutions can only be obtained if the

variables are separable which is only possible if (2p � 13)/3
= �5/3 or p = 4, which is impossible since p � 3 (see
Appendix A). Therefore no asymptotic solution exists with
constant L� (i.e., one cannot find functions Ha(u), Hb(u)
and Hc(u) satisfying (137)). Of course if Y or B0 are zero,
the variables are again separable and we can rederive the
time evolution of �m (or R), discussed in section 5.2 and
section 7.2.1.
[132] The lack of existence of self-similar solutions

implies that, in the presence of damage, there is no time-
dependent grain size distribution that can be represented
uniquely by the average grain size. This conclusion contra-
dicts all earlier studies that treat only the evolution of the
mean grain size to model the simultaneous processes of
coarsening and grain reduction via dynamic recrystallization
[e.g., Karato et al., 1980; Kameyama et al., 1997; Montési
and Hirth, 2003; Hirth and Kohlstedt, 2003; Braun et al.,
1999; Bercovici and Karato, 2003]; in particular, these
studies assume that the self-similar distribution during static
grain growth, which allows description of the entire distri-
bution by one grain scale such as the mean grain size, is
relevant in the presence of deformation and damage. Our
simple demonstration above shows this is not a valid
assumption.
[133] Equation (137) presents, however, the interesting

possibility of stationary solutions (i.e., dm/dt = 0), which
correspond to a state where the reduction of the grain size
by damage is exactly balanced by diffusive coarsening.
These solutions have the normalized shape determined by
Ha(u)/Hb(u) = constant (which is equivalent to a differential
equation for H(u)) and an average grain size that satisfies

R 2p�8ð Þ / m
r

� � 2p�8ð Þ=3
/ fdY

g2B2
0

: ð138Þ

[134] This result indicates that when a steady state regime
is reached for the grain size distribution, the average grain
size is a function of the deformational work, i.e., could be
called a paleowattmeter [Austin and Evans, 2007]. The
control of the grain size by the deformational work and
damage has also been used by Bercovici and Ricard [2005]
and Landuyt et al. [2008]. In the typical case p = 2, the
stationary solution verifies m / Y�3/4 or R / Y�1/4.

However since Y = t2/h where t is a characteristic stress,
and h / t1�n in the dislocation regime (with n � 3 [see,
e.g., Karato et al., 1980]), the paleowattmeter equation
(138) becomes, in the dislocation regime, the piezometer

R / 1

ts
; where s ¼ n þ 1ð Þ

8 � 2pð Þ : ð139Þ

For typical values of p and n (e.g., 2 and 3, respectively),
the exponent s is of order 1 or slightly larger, which is in
good agreement with observations [Van der Wal et al.,
1993].
[135] The evolution of the average grain size is depicted

in Figure 7 (bottom) for various levels of viscous dissipa-
tion. In each case, except when Y = 0, the average grain size
reaches an asymptotic limit proportional to Y�1/4. In the
case of Y = 0 (solid line), coarsening progresses indefini-
tively as t1/3 (see section 5.1).
[136] The normalized steady state grain size distribution

(Figure 7, top) is the same for all simulations (dotted lines).
We depict both normalized distributions for grain size
(/VR, thin lines) and grain mass (/VR=R2, thick lines)
to emphasize the different behavior at small grain size. The
steady solution (which is identical for all simulations of the
Figure 7, bottom, that have reached their asymptotes for
cases with Y > 0) is compared with the asymptotic self-
similar solution obtained for the case of pure coarsening
(90) and pure damage (133). Although the normalized
shapes of the grain size distributions (thin lines) look
similar, they differ significantly for small grain sizes, as
readily shown by the grain mass distributions VM ¼ VR=R2

(thick lines). In the cases with coarsening, the grain mass
distributions go to infinity near �m = 0 since the self-similar
grain size distribution is / R near zero, hence VM / 1/R
(see (90)); for the case of pure damage, however, the self-
similar grain size distribution is / R2 near zero, hence VM
becomes constant (see (133)). Note that the three unnormal-
ized distributions are very different since one distribution is
steady and the two others correspond to self-similar solutions
with a time-dependent average grain size (Figure 7).

8. Summary of Governing Equations

8.1. Macroscopic: Continuum Mechanical Equations

[137] Apart from the occasional appearance of surface
tension related terms, the macroscopic equations differ little
from the standard continuum mechanical equations. Since
we have assumed that the medium is incompressible, the
mass and momentum equations are given by (31) and (46),
which we repeat here:

#� v ¼ 0 ð140Þ

0 ¼ rg þ #� s þ #

gKð Þ ð141Þ

where s and K are the volume (or mass) averaged stress
and grain boundary curvature (�K ¼ 2=R), as defined in (34)
and (44), respectively. Stress s itself is decomposed
according to s = �PI þ t, where P is the volume average
of the grain pressure �P, and t is the deviatoric stress. In
addition to depending on gradients of the velocity field v, t
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depends on viscosity which is a statistical average of grain
viscosities. The viscosity is potentially a function of the
whole grain size distribution (not just a function of R as in
more classical theories of diffusion creep or grain boundary
sliding [see Hirth and Kohlstedt, 2003]) and of stress (as in
dislocation creep). Both mean curvature K and viscosity are
determined by the microscopic/statistical equations for
coarsening and damage (summarized below in section 8.2).
[138] Although we did not explicitly develop a tempera-

ture equation, we can readily arrive at one from (63) by
noting that because the medium is incompressible, then d�e =
Td�s = cvdT where cv is heat capacity which we assume, like
temperature T, is independent of grain size R. In this case,
(63) using the mass conservation (28) and the relation
between macroscopic and microscopic derivatives (23),
reduces to

rcv
DT

Dt
¼ Y � g

Da
Dt

� #� q þ Q ð142Þ

where a is the grain boundary area per unit volume. The
expression for total entropy production is thus in agreement
with (72) [see also Bercovici et al., 2001a]. The temperature
equation (142) is very similar to the standard temperature
transport law (given that q � � #

T) except for the presence
of the grain boundary energy effect wherein a loss of net
grain boundary density a during coarsening results in an
increase in temperature, while damage and grain size
reduction will act to decrease temperature. As with K and
viscosity, a is determined by the microscopic/statistical

equations for coarsening and damage. The formalism
derived in this paper guaranties that the dissipation Y �
gDa/Dt remains a positive quantity.

8.2. Grain Scale: Statistical and Grain Growth
Equations

[139] The grain scale, statistical model essentially reduces
to three equations, the first for the evolution of the grain size
distribution VR, the second for the continuous grain growth
kinetics (i.e., for _R, by continuous changes of grain size
through mass diffusion) and the third for the discontinuous
transfer of grain population by breaking or coalescence (i.e.,
through the transfer rate GR). The grain size distribution
equation (16) is repeated here:

DVR

Dt
þ
@ _RVR
� �
@R ¼ GR ð143Þ

[140] The evolution of VR depends on _R and GR, which
are determined by

_R ¼ 2gB2
0IpRp�2 R�1 � R�1

h i
þ fcY

Rp�2

8PgIp

F � �F Rð Þ
F R�1 � FR�1

" #
;

ð144Þ

and by

GR ¼ 2PR2r
Z Z 1

0

E �m0
; �m00� �

� d �m � �m0 � �m00� ��
� d �m � �m0� �

� d �m � �m00� ��
d �m0

d �m00
; ð145Þ

Figure 6. Evolution of the distribution of grain sizes VR Rð Þ with time, in the grain breaking with
damage case. (top) Normalized distribution as a function of the normalized grain size R=R. The initial
distribution evolves with time toward the self-similar distribution (thick solid curve). The other curves
(dotted and dashed) correspond to intermediate times. (bottom) The average grain mass m follows the
analytical prediction, (132), m�1/3 / t. A slope of �1/3 is shown by the dotted line.
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where the various parameters are defined in sections 7.1.1
and 6.1. In this last equation, the reaction rate is

E �m0
; �m00� �

¼ Lþ �m0
; �m00� �

VM �m0� �
VM �m00� �

� L� �m0
; �m00� �

VM �m0 þ �m00� �
ð146Þ

where L+( �m
0
, �m00

) is the rate of grain sticking and is a
symmetric and positive function (related to the loss of
surface area, see (98) and (100)), and

L� �m0
; �m00� �

¼ fdrY
g

�
L �m0

; �m00� �Z Z 1

0

L �m0
; �m00� �

A �m0
; �m00� �

VM �m0 þ �m00� �
d �m0

d �m00
; ð147Þ

is the rate of grain breaking (where L is another symmetric
and positive function), and

A �m0
; �m00� �

¼ 9Pr
2

� �1=3

�m02=3 þ �m002=3 � �m0 þ �m00� �2=3
 �
ð148Þ

characterizes the change of surface area during grain
creation or annihilation. The parameters fc and fd are
positive and represent the fraction of energy removed from
deformational work and stored as surface energy; the sum of
these two quantities must be less than 1. Since _R and GR
are dependent on statistical averages of powers of R, they
are intrinsically dependent on the distribution VR, and thus
all the above equations are coupled. Moreover, with the
inclusion of the deformational work or damage term
proportional to Y in (144) and (147), the grain distribution
and growth laws are coupled to the continuum mechanical
laws outlined in section 8.1.

9. Discussion and Conclusions

[141] In this paper we have developed a new continuum
theory of a grained medium with the purpose of describing,
from first principles, shear localization and plate boundary
generation associated with grain reduction.
[142] This theory is distinctly unlike dynamic recrystalli-

zation theories of shear localization which (1) treat onlymean
grain size and not grain size distribution; (2) treat grain
growth (coarsening) under the influence of surface energy
as if the system were static (even though it is moving and
deforming and thus far from static); and (3) prescribe grain

Figure 7. Evolution of the distribution of grain sizes with time in the simultaneous presence of
coarsening and damage. (top) Normalized grain size (thin lines) and grain mass (thick lines) distributions
as a function of the normalized grain size R=R. The final steady state distribution (dotted line) is
compared to the self-similar coarsening distribution (dash-dotted, also shown in Figure 2) and the self-
similar damage distribution (dashed, also shown in Figure 5). The grain mass distributions (proportional
to R�2 times the grain size distribution) illustrate the difference in behavior between VR and VM near
R = 0. (bottom) The evolution of the average radius is in agreement with (137). An asymptotic
solution is reached, with the predicted value indicated by tick marks near the right vertical axis.
Without damage (thick line, Y = 0), the expected t1/3 behavior is recovered.
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reduction kinematically from empirical equations which do
not necessarily satisfy basic mass and energy conservation.
[143] In contrast, the theory presented here derives entire-

ly from basic continuum mechanical conservation laws and
nonequilibrium thermodynamics; it describes the evolution
of the full grain size distribution in a deformable and
moving continuum; and it allows for nonstatic grain growth
and change in grain number in the presence of both grain
boundary surface energy as well as motion, deformation and
damage. This is not to say that the theory presents a
different mechanism from dynamic recrystallization but is
instead a more general theory that potentially includes
recrystallization amongst other possible mechanisms (e.g.,
cataclasis). The simulations that we have shown cover only
a limited range of parameters and are presented to illustrate
basic behavior. The various phenomenological coefficients
are necessarily constrained by experiments designed to
reveal the microscopic details of, for example, recrystalli-
zation and other microphysical effects.
[144] The theory presented here has considerable potential

for understanding the complexities of localization in grained
media like mantle/lithosphere rocks. One of the most
important contributions of the theory is the inclusion of
damage physics to the grain growth laws; this can predict
not only how damage affects mean grain size but the entire
grain size distribution, which is a testable prediction from
deformation experiments. Indeed, the theory shows that the
distribution of damage partitioning (the fraction of deforma-
tional work that goes into creating surface energy instead of
dissipative heating) over grain sizes is thermodynamically
required by the 2nd law of thermodynamics to have a specific
trend; i.e., the damage partitioning must always drive large
grains (above a critical grain size) to shrink and smaller ones
to grow, and thus for the grain size distribution to either
become narrower (as in section 7.1) or drift toward smaller
grain sizes (as in section 7.2). The first mechanism of
potential homogenization of grain size during deformation
is surprising. The second mechanism of grain size reduction
occurring under damage is perhaps more intuitively appeal-
ing, and it is reassuring that the intuitive solution is a
thermodynamic requirement. Moreover, such a damage par-
titioning distribution gives credence to recent stipulations
that simultaneous diffusion and dislocation creep in dynamic
recrystallizing might occur in different parts of the grain size
distribution, i.e., dislocation creep (and grain size reduction
by recrystallization) in large grains and diffusion creep (and
grain growth by coarsening) in smaller ones [Bercovici and
Karato, 2003; S. Karato, personal communication, 2006].

Appendix A: Coarsening Self-Similar Solutions

[145] We assume for the grain size distribution a self-
similar solution of the form VR = A(t)H(u), where u =
(R= Rh i) is a normalized grain size. This implies that when
proper scalings are used for grain size (using R= Rh i) and
grain distribution (using VR/A(t)), the shape of the distri-
bution (H(u)) is time independent. The conservation of
mass, (10), implies a relation between A and hRi such that

VR ¼ 3

4P Rh i4
H uð Þ
l3

: ðA1Þ

where it is convenient to introduce the various moments of
the normalized grain size distribution,

ln ¼
Z 1

0

H uð Þundu: ðA2Þ

[146] For the definition of hRi, we use

Rh i ¼
Z 1

0

RpVRdR=

Z 1

0

Rp�1VRdR; ðA3Þ

so that K = 2/hRi. Using (A1), the definition of hRi implies
that lp = lp�1. The individual grain size evolution equation
for _R, (86) can therefore be rewritten

_R ¼ 3B2
0g

2P
lp

l3

Rh i2p�6
up�2 1 � 1

u

� �
: ðA4Þ

Using (A1) and (A4), the size evolution equation (73c)
leads to

Rh i6�2pd Rh i
dt

¼ 3B2
0g

2P
lp

l3

u3
d

du
H uð Þup�2 1 � 1

u

� �� �

� d

du
u4H uð Þ
� �� ��1

; ðA5Þ

where it is evident that the u- and t-dependent variables can
be separated. We introduce the constant C, so that both sides
of (A5) are equal to (3B0

2glp)/(2Pl3) C. This shows that in
the self-similar regime, the average radius varies like

Rh i7�2p¼ 7 � 2pð Þ 3B
2
0g

2P
lp

l3

Ct: ðA6Þ

The distribution shape H(u) satisfies in turn

dH uð Þ
H uð Þ ¼ p � 2ð Þup�3 � 4C � p � 3ð Þup�4

C þ up�4 � up�3

du

u
: ðA7Þ

[147] The differential equation (A7) for H(u) implies that
near u = 0, the grain size distribution varies as H(u) � 1/u4

if p > 4 and as H(u) � u3�p if p < 4. As we require that the
mass of the distribution proportional to

R1
0

u3H(u) du,
converges, we must have p < 4. For p < 4, the grain size
distribution cannot extend to u ! 1 because (A7) predicts
that H(u) � u�4 if p < 3, or H(u) � u2�p if 3 < p < 4. In both
cases the mass in the distribution, which is proportional toR1
0

u3H(u)du, would not be convergent.
[148] The distribution H(u) is therefore only defined for

p < 4 and must have a finite domain [0, u0] where u0 is
the largest populated grain size. This maximum grain size
is a constant in the similarity solution and its existence
depends on the conditions for existence of a similarity
solution [see Lifshitz and Slyozov, 1961; Hillert, 1965]. In
particular, a similarity solution exists if the normalized
growth rate is time independent, i.e., if du/dt = 0, or
equivalently since hRi is monotonic in t we can seek the

conditions by which
Rh i
u

du
d Rh i = 0 (assuming this does not

occur when either hRi or u are 0). Since u = R= Rh i then
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du/dt = hRi�1( _R � h _Riu), and using (A6) for _R and (A5)
for h _Ri we find that

Rh i
u

du

d Rh i ¼ � 3B2
0g

2P
lp

l3

Rh i2p�6
C þ up�4 � up�3
� 	

ðA8Þ

(the right side of which is the equivalent to the denominator
in the factor of (A7) that multiplies du/u). The similarity
solution exists for the narrow distributions infinitesimally
close to u0, which is a root of the right side of equation
(A8). However, as argued by Lifshitz and Slyozov [1961]
and Hillert [1965], the right side of (A8) must not only
equal 0 but so must its derivative, i.e., u0 must be a double
root; the reason stated is that if this function crosses zero
then normalized grain growth on either side of u = u0 will be
nonzero and either cause convergence of the population on
this point, leading to singular distribution, or divergence
from this point and thus zero population. A double root at u
= u0 allows a stable similarity solution for u near this point
(since points infinitesimally close to u0 have infinitesimal
growth rates) that involve neither convergence nor diver-
gence. Similarity solutions only exist for u < u0 and for a
constant C that satisfies C + u0

p�4 � u0
p�3 = 0 and (p � 4) �

(p � 3)u0 = 0. The second condition reduces further the
domain of existence of similarity solutions to p < 3 (as u0 >
0) and leads to the choice of

C ¼ 3 � pð Þ3�p

4 � pð Þ4�p
; and u0 ¼ p � 4

p � 3
ðA9Þ

(This double-root condition, discussed by Lifshitz and
Slyozov [1961] and Hillert [1965], was critically reexa-
mined by Brown [1989] and since, followed by a long-
standing controversy [Giron et al., 1998]; however, our
numerical simulations (in the asymptotic limit of t ! 1)
are in agreement with this condition in.)
[149] After some cumbersome algebra, H(u) can be found

for several simple values of p (e.g., integers and half
integers). Experimentally determined coarsening rates often
imply hRi / t1/3 [Evans et al., 2001] thus p should be close
to 2. For p = 1, 2 and 3, we get

H ¼ u2

3 þ uð Þ7=3 3 � 2uð Þ11=3
e 3= 2u�3ð Þð Þ

with Rh i5¼ 10B2
0g

9P
t; for p ¼ 1

H ¼ u

2 � uð Þ5
e 6= u�2ð Þð Þ

with Rh i3¼ 9B2
0g

8P
t for p ¼ 2;

H ¼ exp �3uð Þ

with Rh i ¼ B2
0g
P

t for p ¼ 3; ðA10Þ

(The solution for H(u) with p = 3 is obtained in the limit
where the double root u0 ! +1).
[150] These functions are shown in Figure A1. As p

decreases, the distributions become narrower around u = 1
(i.e., around R = hRi). The mode moves to lower values of
u as p increases and reaches u = 0 when p = 3. In principle,

Figure A1. Examples of self-similar distributions for the case of continuous coarsening under static
(nondeforming) conditions. The different curves represent three values of the parameter p (see (85)),
which also controls the evolution of the average grain size with time (see inset legend); p = 1, 2, and 3 for
the dashed, solid, and dotted curves, respectively.

ðA10Þ
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experimentally determined static grain size distributions
constrain the parameter p.

Appendix B: Discontinuous Grain Coalescence
Self-Similar Solutions

[151] As in Appendix A, we look for solutions of the
grain mass distribution evolution equation (102) of the form
VM �mð Þ = A(t)H(u) where now u = �m=m and

m ¼
R

VM �md �mR
VMd �m

; ðB1Þ

(i.e., choosing B( �m) = 1 in (84)). This definition of m
implies that H(u) satisfies

Z 1

0

H uð Þu du ¼
Z 1

0

H uð Þdu; ðB2Þ

while mass conservation (10) implies that

A tð Þ ¼ A0=m
2; where A0 ¼ r

Z 1

0

H uð Þu du
� ��1

: ðB3Þ

[152] By substituting the self-similar representation for
VM expression into

� A0

m3

dm
dt

1

u

d

du
u2H uð Þ
� �

¼ C0gA2
0

m3

� 1

2

Z u

0

H u0ð ÞH u � u0ð Þdu0 � H uð Þ
Z 1

0

H u0ð Þdu0
� �

: ðB4Þ

As in Appendix A, the t- and u-dependent variables can be
separated and the average mass must be simply proportional
to t,

m ¼ m0 þ Ct; ðB5Þ

where m0 = m (t = 0) and C a constant. The asymptotic
mass size distribution satisfies

� C
1

u

d

du
u2H uð Þ
� �

¼ C0gA0

� 1

2

Z u

0

H u0ð ÞH u � u0ð Þdu0 � H uð Þ
Z 1

0

H u0ð Þdu0
� �

: ðB6Þ

[153] This integrodifferential equation has solutions of
simple exponential form since such functions can be fac-
tored from both sides of the equation; in particular, we
obtain H(u) = e�a u with C = C0gA0/(2a). Condition (B2)
leads to a = 1, while condition (B3) implies that A0 = r. The
asymptotic mass size distribution is therefore

VM �m; tð Þ ¼ r

m2
exp �

�m
m

� �
; ðB7Þ

where the average mass size varies according to

m ¼ m0 þ 1

2
C0grt: ðB8Þ
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