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ABSTRACT
We present a mathematical model of the growth of
coral subject to unidirectional ocean currents using
concepts of porous-media flow and nonlinear dy-
namics in chemical systems. Linear stability analysis
of the system of equations predicts that the growth
of solid (coral) structures will be aligned perpendic-
ular to flow, propagating against flow direction.
Length scales of spacing between structures are se-
lected based on chemical reaction and flow rates. In
the fully nonlinear system, autocatalysis in the
chemical reaction accelerates growth. Numerical

analysis reveals that the nonlinear growth creates
sharp fronts of high solid fraction that, as predicted
by the linear stability, advance against the predom-
inating flow direction. The findings of regularly
spaced growth areas oriented perpendicular to flow
are qualitatively supported on both a colonial and a
regional reef scale.

Key words: coral reefs; pattern formation; self-
organization; colonial organisms.

INTRODUCTION

Coral reefs are composed of small, calcifying coral
polyps that together build complex architectures.
That these architectures can be different for colo-
nies of the same species in different environmental
conditions suggests that quantifiable, nongenetic
chemical and physical controls are important in the
organization of the system. Although the complex
interactions controlling the chemistry of coral cal-
cificaltion are difficult to model, it is possible to
model some aspects of growth using fundamental
principles of physics and chemistry. Important fac-
tors in the growth of coral include light, which
influences the rate of calcification, and flow, which
influences the delivery and uptake of the nutrients
essential for growth.

Herein we consider the simplest examples of

coral colonies and reef systems subject to one-di-
mensional nutrient-transporting water currents
and construct a theoretical model of coral growth.
We simplify the growth process to a hypothetical
chemical reaction between a limiting nutrient sup-
plied by the water column and solid material man-
ifest as a porous skeleton. The chemical reaction,
represented mathematically using the law of mass
action, produces additional solid matrix. The self-
enhancing growth of the solid matrix is said to be
autocatalytic and reflects the need for an existing
organism in order to sustain growth. The density of
solid matrix influences the flow of the nutrient-
bearing current by changing the constriction and/or
tortuosity of fluid pathways or by inducing subcriti-
cal turbulence by means of enhanced surface
roughness. Overall, we assume that an increase in
matrix density impedes flow, creating a nonlinear
feedback mechanism between matrix growth and
nutrient supply. To consider how natural patterns
may arise, we consider the behavior of perturba-
tions in an initially uniform model system.

Alan Turing was one of the first to describe a
theory for the onset of biological form and to con-
sider theoretically the dynamics of spatially varying
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nonlinear chemical systems (Turing 1952). The key
point in Turing’s work relevant to many aspects of
pattern formation is that asymmetry could be am-
plified by means of competing chemical reactions,
and, as mitigated by diffusion, the asymmetry could
be spatially distributed. By considering autocata-
lytic, or self-enhancing, chemical species Turing was
able to show how steep gradients could result from a
small perturbation to uniform concentrations.

Patterns in coral reefs range from the small-scale
architecture of a particular colony to large-scale reef
distribution patterns. Because of the many complex
factors that can contribute to the development of
these patterns, examples for theoretical study are
taken from environments where one particular en-
vironmental parameter appears to play a distinctly
significant role. In particular, the influence of ocean
currents appears to affect coral reef orientation over
many scales. On the colony scale, certain coral col-
onies orient as a series of plates perpendicular to the
predominating direction of flow (Figure 1). On the

regional scale, reef islands orient in series (Figure 2)
along the predominating direction of large-scale
currents (Figure 3).

Well-developed coral reefs are thought to be
present in otherwise low-productivity waters due to
the tight recycling of nutrients between symbiotic
zooxanthellae within the tissues of the coral organ-
ism and the coral organisms themselves (Lewis
1973). Classically, these photosynthetic zooxan-
thellae provide oxygen and food for the coral or-
ganism through photosynthesis, while the coral in
turn provides essential nutrients to the zooxanthel-
lae through metabolic waste (Muscatine 1973). Cal-
cification can be positively correlated with light ex-
posure, indeed calcification rates can be about three
times faster in light than in dark (Kawaguti and
Sakumoto 1948; Baker and Weber 1975a, b; see
also Gattuso and others 1999). It is therefore widely
suspected that the photosynthesis in zooxanthellae
contributes to increased rates of calcification. For a
basic understanding of how photosynthesis may
enhance calcification, we consider the overall reac-
tions of both.

For photosynthesis, carbon dioxide (CO2) and
water (H2O) are used to produce glucose and oxy-
gen:

CO2 � H2OO¡
sunlight

C6H12O6 � O2 (1)

For calcification, calcium and bicarbonate ions pre-

Figure 1. Aggregations of common reef coral Agaricia
tenuifolia, Carrie Bow Cay, Belize. The colony consists of
a series of upright plates oriented perpendicular to flow.
The sand channel is parallel to the flow direction (after
Helmuth and others 1997).

Figure 2. Bunker Reef group, Great Barrier Reef, Aus-
tralia (after Jupp and others 1985).
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cipitate calcium carbonate and evolve carbon diox-
ide (Ware and others 1991, from Stumm and Mor-
gan 1981):

Ca�� � 2HCO3
� 3 CaCO3 � CO2 � H2O (2)

The calcification reaction produces carbon dioxide,
which can be used in photosynthesis. This removal
of carbon dioxide by photosynthesis provides a
mechanism by which the calcification reaction in
Eq. (2) can be driven toward the right; it has been
proposed that this mechanism explains enhanced
calcification (Goreau 1963). Although this is a via-
ble mechanism, the details of calcium supply and
bicarbonate usage are poorly constrained; there-
fore, few conclusions can be drawn as to the signif-
icance of these reactions alone in enabling organis-
mal calcification.

For example, complicating the simple photosyn-
thesis-driven calcification hypothesis, some species
of coral possess an organic matrix on the outside of
cells lining the skeleton that contains calcium-bind-
ing substances (Isa and Okazaki 1987). The organic
matrix provides a way to lower the energy for pre-
cipitation and thus drive calcification (Borowitzka
1987). Additionally, there is evidence that the in-
corporation of calcium into the coral skeleton is a

cellularly controlled process that requires metabolic
energy for the pumping of materials into or out of
the cell (see Gattuso and others 1999). Finally, the
introduction of a mineral inhibitor can hold calcifi-
cation to 1% of normal incorporation of calcium
into the skeleton without affecting rates of photo-
synthesis (see Gattuso and others 1999).

The combination of these observations suggests
that photosynthesis-driven calcification involves
more complex chemical schemes than Eqs. (1) and
(2); however, since the aim of this paper is to con-
sider the relationship of growth and shape of coral
colonies in response to differing environmental fac-
tors, it is not entirely necessary to understand the
explicit mechanism of calcification. What we must
consider is that skeletogenesis is an active process
that occurs in the presence of the organism, which
must be supplied with some form of food or energy.
Because corals are known to feed on zooplankton
and remove food fragments from the water column
(Yonge 1930; Porter 1976), we devise very simpli-
fied “calcification” reactions where preexisting cal-
cium carbonate “reacts” with some limiting nutrient
to produce more calcium carbonate, representing
coral growth. The nutrient is supplied at the sea sur-
face and diffuses or settles downward. We then con-
sider the effect of currents circulating through the reef
by imposing a unidirectional flow on the system.

An interesting characteristic of coral reef mor-
phology is that there is often a strong pattern of
vertical zonation along the reef (see Jackson 1991).
The absorption of light as it penetrates through the
water column and the change in flow regime are
suspected to contribute to the change of dominating
form with depth (Baker and Weber 1975a, b; Graus
and Macintyre 1989). Although the difference in
dominating forms with depth is often related to a
change in the dominating coral species and is thus
more of an evolutionary problem, there are in-
stances where corals of the same species exhibit
morphological plasticity in accordance with flow
regime. Using an example of Pocillopora damicor-
nis, we see that as flow increases, morphology
changes from more space-filling knobby forms in
high-flow regimes to more delicately branching
forms in low-flow regimes (Figure 4). Since the
same species can exhibit different growth forms
under different flow regimes, it is evident that the
ambient environmental conditions profoundly in-
fluence morphology. The effect of water and nutri-
ent flux in controlling biological pattern formation
is obviously important in other environments as
well, such as vegetation in semiarid areas (HilleRis-
Lambers and others 2001)

It is our goal to understand how the calcification

Figure 3. Southwest Pacific Circulation (after Maxwell
1968). “X” denotes the location of the Bunker Reef
Group.
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rate and the flow regime affect the growth of coral
reefs. We hypothesize that colonies and reefs de-
velop their complex structures as they obstruct flow
and intercept available nutrients, either by en-
hanced surface roughness or by increased complex-
ity of the path for the flow field. Complex feedbacks
among turbulent flow, nutrient supply, and calcifi-
cation likely operate to generate the elaborate
three-dimensional colony architectures. These
complex interactions are unwieldy in theoretical
continuum models and thus have largely been ap-
proached using idealized lattice Boltzman or cellu-
lar-automata models of aggregation to explain the
increase of space-filling forms with increased flow
regime (Preece and Johnson 1993; Kaandorp and
others 1996).

Here we attempt to provide a simple, physically
based model using basic carbonate chemistry in
conjunction with a porous-flow model to describe
the overall decrease in flow rate that accompanies
the increase in coral cover that occurs as corals take
nutrients from the water column. We represent
increasing coral cover in the face of nutrient supply
by the autocatalytic construction of a porous matrix
infiltrated with fluid subject to a one-dimensional
pressure gradient. The nutrient, supplied from the
surface, diffuses through and is carried by the fluid.
We arrive at the model by considering the conser-
vation of mass for the fluid, dissolved nutrient, and
the solid. We then analyze the model to explore the
dynamic interaction of nutrient supply, solid and
nutrient diffusion rates, flow rates, and chemical
reaction rates and to find cases where small depar-
tures from the uniform system are amplified and
patterning phenomena arise.

THEORETICAL MODEL

Although it is a simplification, considering that tis-
sue, and thus growth, occurs only on the outer
surface of the coral, we employ a porous-medium

formulation to model our skeletal framework. Mak-
ing use of a porous matrix allows us to describe flow
of fluid by Darcy’s law in porous materials. Aha-
ronov and others (1995) used a porous-medium
formulation to address feedbacks between dissolu-
tion of host matrix and fluid infiltration for under-
standing melt-focusing beneath midocean ridges.
Their model considered the interaction of dissolu-
tion, changing porosity, and enhanced fluid infiltra-
tion and revealed that larger channels develop at
the expense of smaller channels, thus providing a
mechanism for focusing melt beneath the ridge.
The basic premise of their work is that changing
porosity can affect flow velocity. This idea will be
retained in our model; however, rather than con-
sidering a positive feedback between infiltration
and dissolution, we examine the interaction of the
autocatalytic growth of the matrix and the advec-
tive supply of a limiting nutrient.

The model system is considered to take place in a
layer of thickness H that rests atop the sea floor but
above which no coral grows (Figure 5). The coral reef
mass is considered to be a porous, immobile, and solid
matrix that reacts chemically with dissolved nutrient
to form more solid matrix. The nutrient itself is sup-
plied by a uniform source from the overlying water
column and by flux of the nutrient-bearing water,
forced to flow horizontally through the solid matrix
by an imposed pressure gradient. The solid matrix has
molar concentration � (that is, moles in a unit volume
containing solid, fluid, and nutrient); the nutrient has
molar concentration �. Both values are given in units
of mol/m3 to facilitate the provisions of a stoichiomet-
ric relation for their chemical reaction (see Appendix
1). The pressure whose gradient drives flow is de-
noted by P and has units of Pa. All three dependent
variables (�, �, and P) change in space and time and
obey equations of mass conservation and fluid flow
(Darcy’s law); however, these equations are vertically
averaged in z so that they can be posed in terms of
horizontal position (x, y) only, as well as time t (see
Appendix 1).

The growth, loss, and transport of the nutrient is
determined by its advective flux with water
through the solid matrix, its diffusion through the
water, and the mass lost through chemical reaction
with the solid matrix; when all dependent and in-
dependent variables are nondimensionalized by the
natural mass, length, time, and molar scales of the
system (see Appendix 1), this relation is expressed as:

��

�t
� �h � ��1 � ��2��hP	 � 
h

2� � �s � � � ���2

(3)

Figure 4. Three specimens of the coral Pocillopora dami-
cornis from sites increasingly sheltered from water move-
ment. Specimen a is most exposed to flow; specimen c is
most protected from flow. After Kaandorp and others
1996 (from Veron and Pichan 1976).
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where 
h is the horizontal gradient operator, �s is
the uniform supply of nutrient through the top
surface of the layer, and � is a chemical reaction
parameter (that is, the dimensionless number that
contains the reaction rate; see Appendix 1). The
terms on the left side of Eq. (3) are (from left to
right) the growth rate of nutrient density and the
advective nutrient flux carried by Darcy flow that is
itself forced by a pressure gradient 
hP through a
matrix with permeability proportional to (1 � �)2

(such that when the solid density � � 1, the matrix
is impermeable). The terms on the right side repre-
sent horizontal diffusion of nutrient (
h

2�), vertical
diffusion relative to the overlying source concentra-
tion (�s � �, such that if �  �s nutrient diffuses
down into the layer, and if � � �s it diffuses up out
of the layer), and mass loss due to chemical reaction
(term proportional to �). A coefficient of diffusivity
for � does not explicitly appear in Eq. (3) because it
is absorbed into the nondimensionalizing time scale
(see Appendix 1).

The equation for change of solid matrix concen-
tration is controlled only by mass addition through
chemical reaction with nutrients and by loss
through minor diffusion; such solid diffusion is used
to represent both slight dissolution of coral reef
mass and—perhaps more importantly—erosion
and damage near the perimeter of coral reef con-
centrations, which are here represented as steep
gradients in �. This leads to the following equation
(again dimensionless):

��

�t
� �
h

2� � �� � ���2 (4)

where � is the solid matrix diffusivity (scaled by the
nutrient diffusivity) and will be referred to as “the
diffusion parameter” (see Appendix 1 for more de-
tails). The terms in Eq. (4) show growth of solid
concentration (left side), diffusion both horizontally
and vertically (terms proportional to �), and mass
addition from chemical reactions with the nutrient
(term proportional to �).

Lastly, the mass conservation of water flowing
through the matrix leads to an equation for pres-
sure itself:


h
2P �

2�h� � �hP

�1 � ��
�

1

�1 � ��2

��

�t
(5)

where spatial adjustments in pressure (left side of
the equation) are controlled by flow through con-
strictions in the matrix—for example, a “nozzle”
effect (first term on right side) and a growth of the
matrix that would squeeze fluid out of pores (last
term on the right side).

Eqs. (3), (4), and (5) are the dimensionless gov-
erning equations that we use to analyze the stability
of our autocatalytic, nutrient-limited porous ma-
trix. The complete derivation of these equations
and details about nondimensional parameters and
nondimensionalizing scales are discussed in Appen-
dix 1.

ANALYSIS OF THEORETICAL MODEL

Stability Analysis
Philosophy. One of the most powerful tools for

elucidating self-organization and pattern formation
in natural systems is linear stability analysis. Most
systems have a simple equilibrium state that is es-
sentially uniform and patternless. However, this
equilibrium state might be unstable, so that distur-
bances or perturbations would grow and force the
system to a different state with some inherent pat-
tern. A ball atop a hill is a simple zero-dimensional
example: Undisturbed, the ball can be balanced and
remains at rest; but with a sufficient disturbance
(for example, wind, earthquake, a light kick), the
ball will roll off the hill and not stop until it reaches
some other equilibrium state (for example, a valley
deep enough to capture it).

The classic paradigm of instability and pattern
formation in physics is that of thermal convection,
whereby a fluid layer is uniformly heated along its
base and cooled along its top. This system has a
static and patternless thermally conductive state
whereby heat is transported from the hot base to a
cooler surface by transmission of molecular vibra-
tions, or phonons. But since fluid near the hot base
is less dense than fluid near the colder top, it is
gravitationally unstable. Thus, perturbations or dis-
turbances such as slight fluid motion can jostle the
system and initiate overturn such that light fluid
moves to the top and heavy fluid moves to the
bottom; with the continuous heat supply through
the bottom and heat loss through the top, the mo-
tion persists as convective circulation. The pertur-
bation of a given length scale that can cause the
layer to turn over most efficiently, or for the least
amount of heat input, is generally the one that will
grow the fastest and dominate the pattern of con-
vection (that is, it will determine the length scale of
the convection cells).

Thus, in stability analysis, one seeks the charac-
teristics (length scale and temporal behavior, such
as growth and propagation) of this dominant per-
turbation. The formalism of stability analysis is well
explained in various texts (see, for example, Chan-
drasekhar 1961; Drazin and Reid 1989; Nicolis
1995). Here we employ the principles of linear sta-
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bility analysis to build a framework for interpreting
pattern formation and self-organization in our
model coral reef system (see Appendix 2 for full
details).

Equilibrium States. Given the cubic nonlinearity
of the system of governing equations (in particular,
the reaction term proportional to � in Eqs. [3] and
[4]), there are three uniform equilibrium states.
One such state is the trivial state, wherein there is
no solid mass; the two other states involve small
solid-mass fraction and large solid-mass fraction,
respectively. The trivial state is stable and does not
lead to any pattern formation, implying that at least
some minimal amount of initial solid is necessary to
initiate instability and pattern growth; hence, we do
not consider this state further. Likewise, the high
solid fraction state is stable under almost all condi-
tions and is also not very susceptible to pattern
formation, implying that little more solid structure
can be built if the solid fraction is near its maximum
allowed value; we will therefore not consider this
state either. (For discussion of these states, see Ap-
pendix 2.)

The low solid fraction state is unstable to pertur-
bations and leads to the growth of structures. This
state is denoted by (�0, �0, P0) where:

�0 �
1

2 ��s

�
� ��s

2

�2 �
4

�� , �0 � �s � ��0 (6)

and the equilibrium pressure has a constant gradi-
ent given dP0/dx � ��, which represents an im-
posed background current velocity or flow rate.
(Note that in Appendix 2, this equilibrium state is
referred to by �0

� to keep it distinct from the other
equilibrium states; here we drop the “�” super-
script.)

Instability of Perturbations. We next address the
question of perturbations to the equlibrium state
given by Eq. (6) and consider how their properties
(growth rate, spatial structure) are affected by the
model parameters. To maintain a manageable pa-
rameter space, we examine only the effect of vary-
ing the flow rate � and reaction rate �, and we hold
solid diffusion fixed at � � 10�3 (that is, much
smaller than nutrient diffusion) and surface nutri-
ent supply fixed at �s � 9 � 10�4 (much smaller
than the molar concentration of pure solid by
which all molar concentrations have been nondi-
mensionalized; see Appendix 1).

As shown in Appendix 2, the only perturbations
that grow are completely uniform in the y (cross-
current) direction and have nonuniform structure
in the x (along-current) direction. We therefore
only need to consider the x and t (time) dependence

of our system instead of the x, y, and t dependence.
We thus assume that each perturbation to �0, �0,
and P0 is a sinusoid in x, with wavenumber k (that
is, wavelength 2�/k) and growth rate s. The growth
rate s can be complex; the real part Re(s) implies
growth (if positive) or decay (if negative), while the
imaginary part Im(s) implies wavelike propagation.
(As shown in Appendix 2, there are in fact two
possible growth rates for each k, although only one
allows growth of perturbations; this growth rate is
referred to in Appendix 2 as s�, but for simplicity
we have dropped the “�” subscript here; however,
in all the figures, we still refer to s� for consistency
with the figures in the appendixes.)

If we consider an infinite number of perturba-
tions with different wavelengths, the one that has
the largest growth rate max(Re(s)) will dominate the
pattern that evolves. The wavelength of this fastest
growing perturbation is 2�/kmax, and its propaga-
tion rate, or wavespeed, is:

cmax � �Im�s�max/kmax (7)

where Im(s)max is the imaginary part of s whose real
part is max(Re(s)).

Figure 6 shows the maximum growth rate
max(Re(s)) along with the corresponding wave-
number kmax and wavespeed cmax as functions of
flow velocity � and for three reaction rates � � 5,
10, and 100. The maximum growth rate increases
monotonically with both � and � (Figure 6a), al-
though for the large reaction rate � � 100, the
growth rate is nearly constant over �. Because � �
100 corresponds to a very fast chemical reaction,
there is little influence from current velocity since
the reaction is nearly instantaneous for any flow
rate. On the other hand, for slower reactions, such

Figure 5. Schematic of the model. Fluid infiltrates the
porous matrix, and flow is maintained by a pressure
gradient in one direction. Limiting nutrient is supplied
from the surface, diffuses through the fluid, and reacts
with the matrix for the autocatalytic production of addi-
tional matrix. The model assumes that the system is con-
tinuous in x and y with finite depth z � H.
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as � � 5, we see increased growth rates as the flow
speed increases, suggesting that the growth of solid
structures is more sensitive to nutrient supply from
the current for slower chemical reaction rates. As �
3 �, the growth rates for � � 5 approach those for
� � 10 and 100 as the growth rate of the dominant
perturbation becomes primarily controlled by the
nutrient flux from the moving current.

This one-dimensional model also reveals that the
system develops solid growth maxima at character-
istic, finite wavelengths (2�/kmax) over a wide range
of � and � (Figure 6b). For zero fluid flow, � � 0,
spatial variability leads only to diffusive loss and
thus decay of perturbations to the solid and nutri-
ent fields; therefore, the wavelength or spacing for
the fastest-growing structure is infinite (kmax � 0)
for all �—that is, growth is spatially uniform with
no fluid motion. However, as the background flow
speed is increased (� � 0), nutrient parcels become
depleted asymmetrically as upstream reaction af-
fects downstream supply; thus, a finite wavelength
or spacing for fastest-growing patterns occurs. How-
ever, the wavelength of the fastest-growing struc-
tures at first decreases (kmax increases) with increas-
ing flow �; then, at a critical �, it increases again
(Figure 6b), which suggests competition between
effects. In particular, a decrease in wavelength with
increased flow permits sharper pressure gradients
with which to impede flow and more efficiently
capture nutrients; however, at too sharp a wave-
length, the growth of structures is limited by diffu-

sion (as occurs in many classic problems of diffu-
sion-limited aggregation [DLA]). Beyond the
critical �, diffusion destroys the advantage of having
sharp pressure gradients and thus the system’s
dominant length scale becomes determined by the
recovery length—that is, the distance traveled by a
nutrient-depleted parcel of fluid before it recovers
its nutrient content via the surface supply �s; this
recovery distance is obviously influenced by the
fluid velocity, as demonstrated in Figure 6b. In this
latter regime (that is, for � greater than the critical
value), increased reaction rates (larger �) also cause
the spacing of structures to grow (kmax decreases)
because the fast reaction depletes the nutrients
more thoroughly and rapidly, necessitating a longer
recovery.

Our model also shows that fastest-growing per-
turbation also propagates into the incoming flow
(cmax  0). By supplying more abundant nutrients
upstream, increasing � drives the system toward
upstream growth—that is, the structure propagates
toward the upstream accumulation fronts (for ex-
ample, the direction a surface travels while being, in
effect, spray-painted). As � affects the nutrient sup-
ply, it affects the slowest reaction cases the most—
that is, those with small �—since for fast reactions,
nutrients stay more ubiquitously depleted. A con-
stant propagation value is achieved at a critical flow
rate �, since, above a certain flow rate, the nutrient
supply must still be affected by the rate at which it
is supplied by nutrients from the surface.

The important features of this linear stability
analysis predict that perturbations to our nonlinear
system will grow, and that the system will be char-
acterized by the development of gradients in the
solid and nutrient fields that propagate upstream.

Nonlinear Analysis

For the nonlinear analysis, we build on the results
from the linear stability analysis. We assume that
derivatives in y are zero for Eqs. (3), (4), and (5),
thus effectively considering the evolution of the
one-dimensional nonlinear system.

We integrate the nonlinear equations using finite
differences. We take the fully explicit forward-time
difference for time derivatives and a space-centered
difference for second-order derivatives; for first-or-
der spatial derivatives, which reflect advection, we
use upwind-differencing (Jain 1984; Press and oth-
ers 1992). The Courant condition on the time-dif-
ferencing is met by time-stepping at 10% of the
Courant time-step (Press and others 1992). For the
evaluation of the pressure field, we assume an in-
stantaneous response to changed solid and nutrient

Figure 6. Maximum growth rate max(Re(s�)) of least
stable perturbation (a), corresponding wavenumber kmax

(where perturbation wavelength is 2�/k) (b), and corre-
sponding propagation velocity cmax � �Im(s�)/k (c) as
functions of imposed flow velocity (or pressure gradient),
�, for three reaction rates, � � 5, � � 10, and � � 100.
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fields. We solve for P at each grid point using a
tridiagonal matrix solver (Press and others 1992).
We then use the adjusted pressure field in the next
time-step integration of the nutrient and solid
fields. Convergence tests and comparisons with lin-
ear stability analytic solutions suggest that the divi-
sion of the domain into 201 grid points provides
sufficiently precise solutions.

Because the system is open, we expect the nutri-
ent and solid fields to obey Eqs. (3), (4), and (5) at
the boundaries. The first derivatives of pressure, P,
at the endpoints are approximated by making use of
the second-order Taylor expansions of the two
points interior to the boundary, expanded around
the boundary itself. For the nutrient � and solid �,
derivative expressions are approximated by the de-
rivatives of the nearest interior point. Because we
cannot specify � and � at the endpoints, we cannot
make use of the Taylor expansion about the bound-
aries, as in the case of pressure.

Since there are an infinite number of nonlinear
solutions, here we seek only to extend the results of
the linear stability analysis into the nonlinear re-
gime. Thus, we consider small perturbations to the

uniform steady state, �0 (Eq. [6]), as in the linear
stability analysis. We assume the steady state of the
system is perturbed at 10% of the steady-state
value, and we integrate the equations over time.
We assume that the system selects the scale pre-
dicted by the linear stability, and we perturb the
system at that selected wavelength.

We show the results of the numerical integration
of the nonlinear system for the fastest reaction rate
� and for four different values of the pressure gra-
dient �, which is defined here, for our finite do-
main, as � � (Pl � Pr)/X, where X is the length of
domain in x and Pl, Pr are the presssures at the left
and right boundaries, respectively (in the cases con-
sidered here, Pl � Pr). In these numerical calcula-
tions, we consider how the nonlinearities in the
autocatalysis affect the shape and propagation of an
infinitesimal perturbation. For � � 100, the fastest
reaction parameter examined, we show the devel-
opment of solid growth fronts for a range of four
flow parameters (Figure 7). These results show
strong asymmetry between the peaks and troughs,
suggesting that the autocatalysis in the chemical
reaction acts to accelerate the growth of the solid
maxima. With respect to the linear system, growth
is greatly accelerated (Figure 8).

Examining the behavior of the associated nutri-
ent fields for � � 100, � � 50 permits a good
illustration of the system’s behavior (Figure 9).
Here we find that the sharply growing solid fronts
deplete the nutrient field and that the downstream
recovery of the nutrient field controls the spacing of
the solid fronts. Also, we see that the fronts prop-

Figure 7. Solutions for �, the solid matrix, versus x for
the time integration of the nonlinear system for pertur-
bations to the steady state for � � 100. Contours repre-
sent different stages in the time evolution; the maximum
amplitudes reflect the most recent time integration and
are approximately evenly spaced in time. The indicated
peak and trough values of �, �max, and �min are for the
first and last contour, and �normalized � (� � �min)/
(�max � �min). From top to bottom, solutions for slow
flow (� � 4), moderate flow (� � 10), high flow (� � 50),
very high flow (� � 100). Perturbations to the steady
state were at the wavelength of the least stable mode
predicted by the linear stability analysis at 10% of the
steady-state value �0 � 0.0113; however, the magnitude
of the perturbation for the � � 4 case is 1% of �0.

Figure 8. Values of �, the solid matrix, versus time t for
linear stability solution for perturbations to �0 (dashed
line) and for nonlinear solutions (solid line) after 2800
time steps. Result is for perturbations to the steady state
for � � 100, � � 100.
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agate upstream. For the � � 10 and � � 5 cases the
results are very similar, although growth is much
slower and the asymmetry is not as extensively
exaggerated by the end of the time integrations
(Mistr 1999).

DISCUSSION OF THE MODEL

The main result from the nonlinear analysis is the
development of pronounced nutrient and solid
fronts that propagate upstream. Sharp gradients in
the nutrient field develop as the solid depletes the
available nutrient by reacting autocatalytically to
create additional solid that can further deplete the
nutrient. Growth of the solid due to the autocatal-
ysis is greatly accelerated with respect to the linear
system, and this rapid growth must far exceed dif-
fusive loss to allow for the development of the solid
fronts. These fronts are most pronounced for in-
creased reactions rates and increased flow rates. We
can conclude from this analysis that without the
nonlinearities of the autocatalysis in the reaction
chemistry, the development of sharp fronts is not
possible. The self-enhancing behavior of the solid
acts to deplete local nutrient concentrations
sharply, so that growth occurs most rapidly in the
upstream direction, where nutrient supply is great-
est. To some extent, the solid structures act as nu-
trient filters; thus, it is not surprising that they
accumulate and absorb nutrients faster on the sup-
ply side of the structures. The areas of high solid
concentration act to impede flow, increasing the
potential for nutrient depletion and further growth.

Spacing of the fronts is invariably controlled by the
competition among (a) the propensity for solid
structures to introduce sharp pressure gradients
through obstructions that impede flow and thus
more effectively capture nutrients; (b) the diffusion
of sharp gradients in both the solid and (especially
in the cases considered here) nutrient fields; and (c)
both the decay and recovery length scales over
which the nutrient content in a parcel of fluid is,
while being swept downstream, either lost to reac-
tions with the solid or replenished by surface sup-
ply.

We find that the slowest-reacting systems are the
most sensitive to changes in the imposed fluid flow
(or pressure gradient) in terms of the growth rates
and selected wavelength for the growing structures
(Figure 6a and b), suggesting that slow-growing
corals are most succeptible to environmental plas-
ticity. Also, we expect this plasticity to be the most
evident over slow flow regimes. We further find
that for the fastest reactions, as well as the fastest
flow rates, long wavelengths dominate (Figure 6b),
suggesting that faster-growing systems might ex-
hibit broader structures.

As we have mentioned, there are morphologies
of coral reefs that orient perpendicular to flow, with
regular spacing of the growth plates parallel to flow
(Figure 1). Our theory suggests that this type of reef
is organizing to best intercept nutrient supply,
whereas nonlinear growth permits the develop-
ment of sharp growth fronts in the face of a one-
dimensional flow. Additionally, the regular spacing
of reef cays off the coast of Queensland parallel to
the main direction of the East Australian Current
leads us to anticipate a similar mechanism for reef
organization (Figure 2). Evidence of upstream
propagation in each of the colonial and large-scale
cases is difficult to ascertain, although further in-
vestigation of these areas would reveal clues. Ex-
amining the paleohistory of Bunker Reef would
help to establish the validity of the hypothesis of
nutrient-controlled growth patterns. Additionally,
it would be enlightening to determine whether A.
tenuifolia advances into the flow as it grows addi-
tional plates. Because the nondimensional scales
include hypothetical reaction components, it is not
informative to consider the physical scaling of the
spacing.

The model presented here is quite simplified, and
thus many possibilities exist for further theoretical
modeling of reef systems. As information comes to
light regarding the relationship of photosynthesis to
calcification, a simple model of the chemical dynamics
of calcification would be very appropriate.

Figure 9. Normalized solutions for (from top to bottom)
�, the solid matrix, and �, the nutrient field, versus x for
the time integration of the nonlinear system for pertur-
bations to the steady state for � � 100, � � 50. See Figure
7 for information about contours and normalization.
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Appendix 1. Derivation of the Theoretical
Model

Let us suppose a system wherein we have a porous
matrix of solid material, � in mol � m�3, infiltrated
with fluid containing dissolved nutrient � in
mol � m�3. This dissolved nutrient undergoes a reac-
tion with the solid material that generates addi-
tional solid material (Figure 5). In other words, the
system is subject to the autocatalytic production of
�. Stated symbolically;

l� � m� ¡
k

n� (A1)

with a rate constant, or activity coefficient, k, where
units depend on the stoichiometric coefficients, l, m,
and n, where n � m � l. The stoichiometric coeffi-
cients specify the number of mol � m�3 that react and
are produced. The law of mass action states that the
rate of a chemical reaction is proportional to the
product of the concentrations of the reactants raised
to their stoichiometric coefficients (Bailyn 1994;
Nicolis 1995). In an ideal system, this rate would be
given by the product of the number of moles per m3

of the reactants alone, which gives the statistical
probability of the two species coming into contact;
however, in reality, a rate constant, or activity co-
efficient, such as k must be used as a proportionality
factor to account for the gap between the statistical
probability and the actuality of the reaction occur-
ring (Nicolis 1995). To constrain the stoichiometric
coefficients for the hypothetical reaction, we picked
l � 1 for simplicity and investigated the stability of
a system for various m and found that the system is
unstable, yielding solid growth only in cases where
m � 2 (Mistr 1999). We chose the lowest-order
unstable case for our model, given by:

� � 2� ¡
k

3� (A2)

in which case k’s units are m6 mol�2 s�1. Thus,
according to the law of mass action, for rate of
change of fluid and solid material (with no flow or
other sources of mass):

���

�t �
reaction

� �k��2 (A3)

���

�t �
reaction

� k��2 (A4)

These two expressions provide the chemical source
and sink terms for our model. We must consider

chemical diffusion and advection of mobile species
and therefore make the following fundamental as-
sumptions. First, we consider that the dissolved spe-
cies (nutrients) do not contribute to the volume of
the fluid infiltrating the porous matrix. Second, the
solid is considered immobile (with respect to advec-
tion) although subject to diffusive loss.

Loss of solid mass is accounted for solely by ef-
fective diffusion of � representing, for example,
disintegration and erosion near the perimeters of
coral reef concentrations that are represented by
sharp gradients in �; thus, its time rate of change is:

��

�t
� D�


2� � k��2 (A5)

We relate the velocity of the fluid to the evolving
pressure gradient by Darcy’s law (Bear 1988):

q � �
K0�1 � ���2

�

P (A6)

where q is the Darcy velocity vector, � is fluid
viscosity, � is the volume that one mole of pure
solid occupies such that 1 � �� is the matrix poros-
ity, and K0(1 � ��)2 is the porosity-dependent per-
meability in which K0 is a reference permeability.
Conservation of fluid mass (assuming the fluid is
incompressible) prescribes that:

�

�t
�1 � ��� � 
 � q � 0 (A7)

(see Mistr 1999; also Bercovici and others 2001 and
references therein), which leads to:


2P �
2�

1 � ��

� � 
P �

��

K0�1 � ���2

��

�t
(A8)

With an expression for the velocity of the fluid, we
may then consider the evolution of the nutrient
field. The time rate of change for the nutrient, �, is
controlled by advection, diffusion, and reactive loss,
leading to:

��

�t
� 
 � �q�� � D�


2� � k��2 (A9)

Our governing equations are (A5), (A6), (A8), and
(A9), which interrelate advection of our nutrient to
growth of the solid. We consider the system to be
continuous horizontally, in x and y, with finite ver-
tical thickness, H. We supply nutrient to the system
by holding the nutrient density at the top surface
constant, � � �s at z � H. Holding the left entrance
to the channel (x � 0) at a constant pressure, Pl,
and maintaining the right exit at a constant lower
pressure, Pr, we force fluid in the x direction, al-
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though the resulting flow with various obstructions
due to heterogeneity in the matrix can be in any
direction. To simplify the system to a two-dimen-
sional model, we integrate the equations over the
channel depth, z, assuming that vertical profiles of
the solid and the nutrient are parabolic to first order
in order to match the top and bottom boundary
conditions. Thus, the nutrient concentration � is
constrained at the top by the surface nutrient sup-
ply �s, and changes parabolically to zero gradient at
the bottom (that is, an effectively insulating bottom
boundary through which neither flow nor particle
diffusion can occur). The solid concentration � is
held to zero at the top and increases parabolically to
zero gradient at the bottom (again, the bottom is
effectively insulating). From these boundary condi-
tions we assume that:

�� x, y, z, t� � �s � ��� � x, y, t� � �s� f� z� (A10)

�� x, y, z, t� � �� � x, y, t� f� z� (A11)

where:

f� z� �
3

2 �1 �
z2

H2� (A12)

and since 1
H
�

0
Hf�z�dz � 1, then �� and �� are the

values of � and �, respectively, averaged over z.
Substituting the above functions into Eqs. (A5),
(A6), (A8), and (A9), integrating in z, and eliminat-
ing q, we find:

���

�t
� 
h � ���

K0�1 � ��� �2

�

hP�

� D�
h
2�� � D�

3��s � �� �

H2 � k�� �� 2 (A13)

���

�t
� D�
h

2�� � D�

3��

H2 � k�� �� 2 (A14)


h
2P �

2�
h�� � 
hP

�1 � ��� �
�

��

K0�1 � ��� �2

���

�t
(A15)

where 
h is the horizontal gradient. For nonlinear
terms, we have assumed that 1

H
�

0
H fm(z)dz� 1

(where m is any integer), which is generally only
true for m � 3; however, more accurate integration
only introduces factors that are O(1), which can be
absorbed into the system by slightly redefining con-
stants such as K0, k, and �. Since the equations are
made nondimensional anyway (see below), these
factors have no effect on the final governing equa-

tions and merely change the dimensional scales of
the system by a few tens of percent.

These equations are nondimensionalized accord-
ing to natural length, time, mass, and molar scales,

L �
H

31/ 2 , T �
H2

3D�
, M �

�H5

35/ 2D�K0
, N �

H3

�33/ 2 ,

respectively, resulting in (dropping the overbars for
simplicity):

��

�t
� 
h � ��1 � ��2�
hP	 � 
h

2� � �s � � � ���2

(A16)

��

�t
� �
h

2� � �� � ���2 (A17)


h
2P �

2
h� � 
hP

�1 � ��
�

1

�1 � ��2

��

�t
(A18)

where:

� �
D�

D�
(A19)

� �
kH2

3�2D�
(A20)

The first parameter, �, is the ratio of diffusion coef-
ficients of the solid to nutrient and will be referred
to as “the diffusion parameter.” The second nondi-
mensional parameter, which contains k, the rate
constant of the reaction, will be called “the reaction
parameter,” �.

Eqs. (A16), (A17), and (A18) are the dimension-
less governing equations that we use to analyze the
stability of our autocatalytic, nutrient-limited po-
rous matrix; these equations are reproduced in the
main text as Eqs. (3)–(5).

Appendix 2. Linear Stability Analysis

Here we consider the growth of perturbations to a
spatially constant system, characterized by uniform
distribution of solid and nutrient and an imposed,
constant pressure gradient. For small perturbations,
solutions take the form:

� � �0 � ��1 (A21)

� � �0 � ��1 (A22)

P � P0� x� � �P1 (A23)

where �  1. Substituting these solutions into the
two-dimensional equations gives rise to the three
steady-state equations O(�0):
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�s � �0 � ��0�0
2 (A24)

��0 � ��0�0
2 (A25)

d2P0

dx2 � 0 (A26)

the solutions of which are the trivial case:

�0
0 � 0, �0 � �s (A27)

and the two conjugate roots:

�0
� �

1

2 ��s

�
� ��s

2

�2 �
4

�� (A28)

where for all solutions �0 � �s � ��0 and the
0th-order pressure gradient is dP0/dx � ��, where �
is constant.

With pressure specifications, we have introduced
a fourth parameter, �, and thus fix two of the
nondimensional parameters so as to maintain a
manageable parameter space. We assume that the
variation in the diffusion coefficients is minimal,
such that the ratio of solid to nutrient diffusion, �,
remains constant. We fix � � 0.001, corresponding
to nutrient diffusion that is 1000 times faster than
solid diffusion. Since the 0th-order porosity 1 � �0

must be between 0 and 1, then 0 � �0 � 1, thus
demanding that �s/�  1, as well as that �s

2�/
(4�2) � 1, to ensure real �0. Therefore, we set �s �
0.0009, which, recall, is nondimensionalized by the
molar volume of the pure solid. Dimensionally, this
is effectively a surface concentration of around 200
mol/m3, assuming solid density for the calcium car-
bonate skeleton to be around 2.5 g/cm3. Setting
constant values for two of the parameters, �s and �,
permits us to examine changes in the system as the
background pressure gradient, �, and the reaction
parameter, �, are varied.

The trivial case (A27) implies that there is no
matrix present and that the nutrient distribution
matches the surface supply. The two quadratic
roots, (A28), represent steady states characterized
by either high (�0

�) or low (�0
�) solid density. The

high solid-density steady state evolves when there
is not enough nutrient to react and support growth
beyond that which balances diffusive loss, whereas
the low solid-density state evolves since there is not
enough solid to react and sustain growth beyond
that which is lost to diffusion.

The stability of each of the high- and low-density
matrix steady states, as well as the trivial case, is
examined using equations O(ε1) from substitutions
of solutions (A21), (A22), and (A23) into the two-
dimensional Eqs. (3), (4), and (5):

��1

�t
� 2�0�1 � �0�
P0 � 
�11

� �1 � �0�
2
P0 � 
�1 � �1 � �0�

2�0

2P1

� 
2�1 � �1 � 2��0�0�1 � ��0
2�1 (A29)

��1

�t
� �
2�1 � ��1 � 2��0�0�1 � ��0

2�1 (A30)


2P1 �
2
P0 � 
�1

�1 � �0�
�

1

�1 � �0�
2

��1

�t
(A31)

We assume that solutions to the above equations
take the form:

�P1, �1, �1� � �Pk, �k, �k�eik�r�st (A32)

where s is the growth/decay rate, k � (kx, ky) is the
horizontal wavenumber vector, and r � (x, y) is the
horizontal position vector. Assuming solutions of
this type implies that for each wavenumber pair (kx,
ky) there is an associated growth or decay rate.
Since wavenumber is related to wavelength, estab-
lishing which wavenumber supports the fastest
growth allows us to predict the spatial scale over
which the solid field exhibits preferred growth.

Substituting perturbation solutions (A32) into
Eqs. (A29), (A30), and (A31), we find the disper-
sion relation:

s2 � s��1 � ���1 � k2� � ��0��0 � 2�0 � �0�0�

� ikx��1 � �0�
2	 � �1 � k2����1 � k2� � ���0

2

� 2��0�0	 � ikx��1 � �0�
2���1 � k2� � 2��0�0	

� 0 (A33)

where k2 � kx
2 � ky

2. Eq. (A33) has two complex
roots, s� (where the “�” subscript indicates the sign
of the radical term in the quadratic formula solu-
tion), only one of which, s�, allows growth.

We explore the growth rates Re(s�) versus k �
(kx, ky) over a wide range of the nondimensional
parameters for the three steady states and find that
in all cases, the maximum growth rate max(Re(s�))
occurs for ky � 0. As an example of this result, we
show the growth rate Re(s�) versus k � (kx, ky) for
one reaction parameter � over a range of pressure
gradients, � for the steady state �0

� (A28) (Figure
A1). We select �0

� because growth is sustained for
perturbations to this steady state, whereas growth is
sustained for neither the trivial case �0

0 nor for the
high solid-mass concentration case �0

� over the
wide range of parameters that were sampled. Here
we see that the fastest growth rate for low solid-
mass concentration case �0

� occurs at kx � 0 and ky
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� 0. Nonzero kx implies that there is a finite wave-
length that characterizes the fastest growth in x,
while ky � 0 implies that growth is uniform in y,
perpendicular to the imposed pressure gradient.
Thus, for further analysis of the dispersion relation,

we set ky � 0 and analyze the system for spatial
dependence in x.

We show for the one-dimensional case that
growth is not sustained (max(Re(s))  0) for the
trivial case, and growth is sustained only over very

Figure A1. Two-dimensional
dispersion relation for pertur-
bations of the form ei(kxx�kyy)�st

to the equilibrium state �0

given by Eq. (6) with �s �
0.0009, � � 0.001, � � 100.
Surfaces show the growth rate
of the perturbation, Re(s�)
(where s� is the one of two
possible solutions for (a) that
allows growth) versus wave-
numbers kx and ky for (a) � �
5, (b) � � 10; (c) � � 50, (d)
� � 100. Note the symmetry in
kx and that the least stable
mode (location of largest
Re(s�)) always occurs at ky � 0.

Figure A2. Growth rate
Re(s�) versus wavenumber k
for perturbations to the low
solid-density quadratic root
�0

� (solid curves), to the high
solid-density quadratic root,
�0

� (dash–dot curves), and to
the trivial steady state �0

0

(dashed curves). Plots are for
increasing reaction parameter,
� from left to right (� � 5,
10, 100), and for increasing
imposed pressure gradient, �,
from top to bottom (� � 5,
10, 100).
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restricted ranges for the nutrient-limited steady
state �0

� (Figure A2). For the solid-limited steady
state, �0

�, however, growth is sustained over a wide
range of parameters. This result does not contradict
our findings for sampled parameter ranges for the
two-dimensional case. We thus examine only this
consistently unstable root, �0

�, in the main text.
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