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Summary

A continuous kinematic model of present day plate motions is developed which 1) provides more realistic
models of plate shapes than employed in the original work of Bercovici & Wessel [1994]; and 2) provides
a means whereby geophysical data on intraplate deformation is used to estimate plate margin widths for
all plates. A given plate’s shape function (which is unity within the plate, zero outside the plate) can
be represented by analytic functions so long as the distance from a point inside the plate to the plate’s
boundary can be expressed as a single valued function of azimuth (i.e., a single-valued polar function). To
allow sufficient realism to the plate boundaries, without the excessive smoothing used by Bercovici and
Wessel, the plates are divided along pseudoboundaries; the boundaries of plate sections are then simple
enough to be modelled as single-valued polar functions. Moreover, the pseudoboundaries have little or no
effect on the final results. The plate shape function for each plate also includes a plate margin function
which can be constrained by geophysical data on intraplate deformation. We demonstrate how this margin
function can be determined by using, as an example data set, the global seismicity distribution for shallow
(depths less than 29km) earthquakes of magnitude greater than 4. Robust estimation techniques are used
to determine the width of seismicity distributions along plate boundaries; these widths are then turned into
plate-margin functions, i.e., analytic functions of the azimuthual polar coordinate (the same azimuth of
which the distance to the plate boundary is a single-valued function). The model is used to investigate
the effects of “realistic” finite-margin widths on the Earth’s present-day vorticity (i.e., strike-slip shear)
and divergence fields as well as the kinetic energies of the toroidal (strike-slip and spin) and poloidal
(divergent and convergent) flow fields. The divergence and vorticity fields are far more well defined than
for the standard discontinuous plate model and distinctly show the influence of diffuse plate boundaries
such as the north-east boundary of the Eurasian plate. The toroidal and poloidal kinetic energies of this
model differ only slightly from those of the standard plate model; the differences, however, are systematic
and indicate the greater proportion of spin kinetic energy in the continuous plate model.
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1 Introduction
The theories of mantle dynamics and plate tectonics are
fundamentally incompatible; the former employs contin-
uum physics while the latter assumes that plates move
as rigid bodies and thereby have infinitesimally thin mar-
gins. This disparity hampers efforts to couple plate and
mantle theories, causing two problems in particular. First,
the discontinuity between plates causes plate traction on
the mantle to be infinite [Hager & O’Connell, 1981].
Second, the same discontinuity renders the vorticity (strike-
slip shear) and divergence (which represents sources and
sinks of mass in the lithosphere) fields to be comprised
of unphysical and mathematically intractable singular-
ites [Bercovici & Wessel, 1994; Bercovici, 1995a]. The
Earth’s plates are for the most part not discontinuous; i.e.,
intraplate deformation is common and many plate mar-
gins have significant widths. Thus, efforts to understand
how plates are coupled to or generated from mantle flow
should not seek to achieve discontinuous plates; such
plates are abstractions based on the simple assumptions
of the standard plate model, and are therefore unrealis-
tic as well as unrealizable. However, the actual continu-
ity of plates needs to be assessed, and then incorporated
into a global plate model; the resulting model would be
more compatible with mantle flow models, and represent
a more realistic goal for plate generation theories.

To this end, we here extend the continuous kinematic
plate model of Bercovici & Wessel [1994], which intro-
duced finite margin widths into a global model of plate
motions. In particular, we use analytically continuous
(i.e., infinitely differentiable) functions to describe both
plate geometry and plate-margin width. In this paper, the
mathematical model of the plate geometries is consider-
ably refined to prevent the excessive smoothing of plate
boundaries used by Bercovici & Wessel [1994]. More-
over, we demonstrate how geophysical data on intraplate
deformation can be incorporated into the model to con-
strain plate margin widths; for purposes of demonstra-
tion, we use, as an example data set, the global seismicity
distribution. This leads to a marked improvement over
the ad hoc constant margin width assumed in the stan-
dard plate model, or in the simple model of Bercovici and
Wessel [1994]. We refer to this seismicity based applica-
tion of the model as the SEISMAR (seismicity-inferred
margin-width) plate model. The SEISMAR model of
continuous plate motions introduced here is a basic ex-
ample of how data on intraplate deformation can be in-
corporated into a global plate-tectonic model.

In this paper, we will first present the theoretical model
for representing plate shapes and, in particular, develop
the necessary improvements to facilitate more realistic
plate boundaries. We will then discuss how margin width
is determined, for example, from global seismicity. Fi-
nally, we will examine the implications of the resulting
seismicity-based SEISMAR model on global velocity, in
particular the associated deformation fields (vorticity and

divergence) and kinetic energy partitioning between toroidal
and poloidal parts.

2 Plate shapes and boundaries
The analysis of how to represent the shape of a tectonic
plate with an analytically continuous function is discussed
in detail in Bercovici & Wessel [1994]. We will here re-
view the more salient points of the theory and explain in
detail when we have differed from or improved on that
earlier work.

The horizontal velocity field of the Earth’s surface,
given the motion of

�
tectonic plates can be written in a

single equation:

�������	� 
� � ��������
����� ����� (1)

where � is the position vector of a point on the surface of
the Earth, at longitude

�
and latitude � , and ��� and �

�
are

the angular velocity vector and shape function of the �! #"
plate, respectively. The angular velocities of the present-
day plates is determined from the NUVEL-1A Pacific-
plate-fixed Euler poles [DeMets et al. 1994] added to
estimates of the instantaneous Pacific-hotspot pole from
Pollitz’s [1988] joint inversion of North American and
Pacific plate motions. The shape function �

�
is defined

to be 1 within the plate, and 0 outside the plate. For
the standard plate model, �

�
has a discontinuous transi-

tion from 1 to 0, whereas the transition is continuous and
smooth (i.e., infinitely differentiable) in the continuous
model. The procedure for determining �

�
in the continu-

ous model requires several steps as discussed below [see
also Bercovici & Wessel, 1994].

2.1 Plate boundary filtering.
To make the model of the tectonic plates analytically
continuous, the plate boundaries must be smoothed at
least slightly to remove minor discontinuities (e.g., ridge-
transform offsets). This is necessary to allow the bound-
ary to be modelled as a mathematically single valued
function (see next subsection below). In Bercovici &
Wessel [1994], smoothing was performed until each plate
boundary could be represented as a single-valued polar
function in which the polar origin was at some point in-
side the plate. To that end, a very large filter width (7000km
Gaussian full-width; see Bercovici & Wessel [1994]) was
necessary so that the most non-circular plates (e.g., nearly
horse-shoe shaped ones such as the Austro-Indian plate)
could be sufficiently rounded out. Invariably, each re-
sulting smoothed plates became a crude first order rep-
resentation of the original plate, and smaller plates, such
as the Cocos plate (with its lopsided hour-glass shape),
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became almost entirely circularized. However, to em-
ploy data on inptraplate deformation (such as seismic-
ity) to estimate margin widths, it is necessary that the
zones of high deformation (e.g., dense seismicity) coin-
cide accurately with the plate boundaries. Therefore, to
preserve plate boundary structures we use a a much finer
filter width (1000km Gaussian full-width); the original
and smoothed (filtered) plate shapes are shown in Figure
1. To represent the plate boundaries with single valued
functions therefore requires additional manipulation, as
discussed below.

Original Plate Boundaries

Smoothed Plate Boundaries

Figure 1: Original plates boundaries (top) and the same
plate boundaries smoothed with a 1000km Gaussian full-
width filter (bottom), as employed in the continuous plate
model.

2.2 Plate division
We begin with the 13 major tectonic plates of the Earth
as listed in DeMets et al. [1990, 1994]. The Australian
and Indian plates are divided along their diffuse mar-
gin as indicated by Wiens et al. [1985] (Figures 1 and
2). The actual dividing line is a linear function of longi-
tude

�
and latitude � , i.e., a straight line in a cylindrical

equirectangular projection (in which longitude and lati-
tude are essentially treated as Cartesian coordinates); the
end points to this line are

� � � ������� ��� � � � ����� and
�
� �
	�� ��� ��� � �
� � � .

With the finer smoothing employed in this paper, it is
not possible for each plate boundary to be automatically
represented with a single-valued function. Thus it is nec-
essary to further subdivide several plates along arbitrary
pseudoboundaries. These pseudoboundaries are chosen
to maximize the circularity of the resulting subplates; for
example, a horshoe shaped plate would be divided across
its center curve, while an hour-glass shaped plate would
be divided along its neck. In some cases, it is necessary
to divide particularly large plates into 3 and 4 subplates.
To ensure that the pseudoboundaries do not significantly
influence the final model, it is necessary that a subplate
and its complement (i.e., the adjacent subplate sharing
the common pseudoboundary) fit precisely back together.
This is discussed in more detail in Section 3.3.

Plate divisions near the equator are made by pseu-
doboundaries that are simply straight lines in an equirect-
angular projection (i.e., � is a linear function of

�
). How-

ever (as discussed below) the plate boundary function for
a given plate is found in a frame of reference for which
that plate does not contain a geographic pole and is far
from the zero meridian (to avoid discontinuous changes
in longitude); i.e., each subplate is moved to a frame
such that its effective center of mass is near the equator
and the  ����� meridian [see Bercovici & Wessel, 1994].
However, pseudoboundaries located at high latitudes can
undergo significant distortion when being rotated to the
equator; thus to preserve the simplicity of these pseu-
doboundaries on rotation, they are determined by great
circles with specified endpoints. Information on all pseu-
doboundaries is given in Table 1 (i.e., the plate it divides,
its endpoints, and the type of boundary, either a straight
line in an equirectangular projection or a great circle).
The straight line pseudoboundaries are defined by����� ���

�
���

(2)

(where � and
�

are determined such that the line has
endpoints as listed in Table 1). The great circle pseu-
doboundaries are given by����� ������ "! � � �$#&%�' � ��� '�() 

� � (3)

where � and
�

in this case are defined such that the pseu-
doboundary is the intersection of the surface of the Earth
with the plane * � �,+ �-�/.

(where

�
+ � . � * � �0 � 0

�
#&%�' � #&%�' � � #&%�' � '/() � � '/() ��� ) that passes through the

center of the Earth and the endpoints listed in Table 1.
All divided plates are shown individually in Figure 2; the
subplates are also labelled to facilitate further discussion.

2.3 The boundary function
As stated above and in Bercovici & Wessel [1994], each
plate or subplate is rotated to a frame of reference where
its center is at a longitude of  ���1� and latitude of

�1�
.

(The center of the plate is defined as its effective cen-
ter of mass wherein equal masses are placed at evenly
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Table 1: Pseudoboundary Information
Plate

� � (deg) � � (deg)
� � (deg) � � (deg) Type of Boundary

African 43.7231 12.1501 -12.1895 -2.6453 straight line
Antarctic 183.3320 -65.3357 338.0790 -60.4307 great circle
Australian 16.0360 -49.3737 119.6860 -10.0926 straight line

181.5650 -34.3662 170.8820 -23.3943 straight line
Cocos 254.1260 18.1296 255.3420 19.2305 straight line

Eurasian 122.1750 22.2206 94.9668 26.3249 straight line
Nazca 275.0440 1.6506 279.5100 -1.0551 straight line

N. American 162.3830 54.5400 152.0150 59.3193 straight line
-62.4904 18.9033 -45.1415 24.3281 straight line
-34.6069 53.8276 129.1240 50.1203 great circle

Pacific 188.2280 -14.7373 231.3450 44.8559 straight line
S. American 336.1190 -56.6925 344.8290 -46.6037 straight line

AFR-1

AFR-2

ANT-1ANT-2

IND

AUS-1
AUS-2

AUS-3

COC-1

COC-2

EUR-1

EUR-2
NAM-1

NAM-4

NAM-2

NAM-3

NAZ-1

NAZ-2

PAC-1

PAC-2

SAM-1

SAM-2

Figure 2: Plates divided by pseudoboundaries (with labelled subplates).

spaced distances along the boundary.) The coordinates
of this frame of reference are denoted as

����� ��� � � . For a
given plate the pseudo-distance from an arbitrary point
within the plate

�����
� ��� �� � to any other point on the globe

����� ��� � � is� ��� � ��� � � ���
��� � � � �

� � � � � � � � � �� � � � (4)

The pseudo-angle between the line connecting these two
points and the line connecting

��� �
� ��� �� � to the first plate
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boundary data point

��� �
� � ��� �� � � is

� ������ ! � � � � � � ��� � � � �
��� � ���� ! ��� � ���� � � ��� �

� � � � �
�	� (5)

(The terms ‘pseudo-distance’ and ‘pseudo-angle’ are used
because these quantities treat � � and

� �
as if they were

Cartesian coordinates; see Bercovici & Wessel [1994].)
An arbitrary boundary point

��� �
� ���
�
� � has pseudo-distance� � � � ��� � � ���

�
� � . In order to make the plate shape ana-

lytically continuous,
� � must be expressed as a single-

valued function of � ; this function
� �

� � � is called the
plate-boundary function. Achieving a single-valued

� �
� � �

requires a prudent choice of the polar origin

��� �
� ��� �� � .

Here, the optimum

��� �
� ��� �� � yields the smallest maximum

value of
0 
 � ��� 
 � 0 since this would be zero for the ideal

circular boundary while a multivalued
� � � � would have

singularities in its slope. The optimum values of

� �
� and� �� are found numerically for all 25 plates and/or sub-

plates. Since most plates and subplates are, to first order,
elliptically shaped, most of the

��� �
� ��� �� � are near

�
 ��� � � � .

Table 2 shows the values of

��� �
� ��� �� � for each plate or sub-

plate (see Figure 2 for subplate labels).
The plate-boundary function

� �
� � � is therefore con-

structed from all the points on the boundary; it is then
evenly resampled in � with radix-2 number of points and
discrete Fourier transformed to obtain

� �
� � � � � 
� ���  ! 
� � ��� ������ � ��� (6)

and
�

is the number of resampled points. In this way,� �
� � � is expressed as an analytic function.

2.4 Plate shape and plate margin func-
tions

Given the plate boundary function
� �

� � � , the plate shape
function � of any given plate is

�
��� � ��� � � � ���  � ���� �� � � � � � � � ���� � � � �! (7)

where
� �

is the plate margin half-width (in the pseudo-
coordinates employed here) along the line connecting the
points

� � �� � � � � � and

� � � � � � � ; � � is not the margin half-
width normal to the boundary. The plate margin func-
tion

� �
is the crucial addition to the plate tectonic model

since it incorporates information about margin width and
intraplate deformation. How this function is determined
is demonstrated in the following section.

Table 2: Polar Coordinate Origin (
� � ��" � �� ) for Each

Plate and Sub-Plate

Plate
� � � (deg.) �

�
� (deg.)

African-1 187.02 -13.06
African-2 175.50 -13.06

Antarctic-1 185.06 -0.39
Antarctic-2 158.77 -24.49

Arabian 177.24 -4.63
Australian-1 180.66 -0.59
Australian-2 182.97 2.94
Australian-3 178.83 -0.87

Carribean 181.92 0.95
Cocos-1 180.26 -0.52
Cocos-2 174.86 3.67

Eurasian-1 181.06 0.79
Eurasian-2 174.28 3.25

Indian 178.35 -3.39
Nazca-1 180.12 -0.41
Nazca-2 184.11 7.47

N. American-1 180.71 2.67
N. American-2 182.04 -9.33
N. American-3 158.44 4.64
N. American-4 180.06 -1.64

Pacific-1 187.08 -17.05
Pacific-2 194.28 4.53

Philippine 178.50 -1.44
S. American-1 179.60 0.69
S. American-2 190.59 -9.68

3 The SEISMAR model: a seis-
micity based example

Here we illustrate how the margin width function
� �

is
determined via geophysical data on intraplate deforma-
tion. A variety of data sets could be used to estimate� �

, including, for example, global seismicity, stress dis-
tributions [Zoback & Burke, 1993], fault distributions,
and possibly a variant of gravity and bathymetry [Smith
& Sandwell, 1994; Sandwell & Smith 1997]. While no
one data set is clearly preferable, in this paper we em-
ploy seismicity for the sake of demonstration, for its util-
ity and accessibility, and because it is the classic delin-
eator of tectonic boundaries. Since the plate margin func-
tion is only meant to indicate the presence of (and not
amount or force of) deformation, the seismicity data is
not weighted, e.g., by earthquake moment or magnitude
which contain information about the amount of displace-
ment along with crustal/lithosphere strength, etc. The use
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of geologically recent seismicity data of course gives a
very current estimate of plate margin structure and thus
is relevant for models (e.g., mantle flow models) which
need to employ instantaneous motion. We discuss below
how the data are chosen, used and manipulated in order
to yield the plate margin function

� �
. We refer to the

resulting seismicity based application as the SEISMAR
(seismicity-inferred margin-width) plate model.

3.1 The seismicity data
We use seismicity data for the period from 1928 to 1990
in the June 1992 version of the Global Hypocenter Data
Base. While earthquake locations are less reliable prior
to 1960, we choose to have a large data set to facilitate
resolution of plate margins (i.e., to minimize gaps in seis-
micity along plate boundaries). Certain constraints, how-
ever, are placed on the chosen earthquakes. First, we al-
low only earthquakes whose focal depth is less than or
equal to 29 km; this is done because indeterminant focal
depths are, by default, asigned a value of 30 km [F. Duen-
nebier, pers. comm, 1996]. Earthquakes deeper than
30km are eliminated as they are less representative of
plate boundary deformation and interactions (and are li-
able to be influenced by deep earthquakes which are well
removed from plate boundaries). We also choose only
earthquakes with magnitude greater than 4 (given that
small earthquakes have poorly determined locations). In
the end, we obtain the locations of 24,721 earthquakes
(Figure 3). However, when necessary we delete intraplate
earthquakes that are clearly unrelated to plate deforma-
tion (e.g., earthquakes on Hawaii which are primarily
from landslides and volcanic activity).

Figure 3: Global seismicity distribution used to deter-
mine plate margin widths.

3.2 Determination of margin widths
For a given plate we consider only the subset of the seis-
micity data which includes 1) earthquakes on the plate
itself, and 2) earthquakes outside the plate but within� ��� ��� of the plate boundary (and not including earth-
quakes associated with other plate boundaries). We then

calculate the position of each earthquake in terms of the
pseudo-distance

�
and angle � .

We next divide the given plate into wedges of equal
angular extent


 � and bin the seismicity data on each
wedge (Figure 4). Thus the number of earthquakes

�����
at pseudo-distance

�
and a given � is in fact the number

of earthquakes at
�

between � � 
 � � � and � � 
 � � �
(Figure 4). If

�����
versus

�
at the given � had a nor-

mal (Gaussian) distribution centered at
� � � � , then

the margin half-width would be the Gaussian half-width
(i.e., � � times the standard deviation) of the distribution.
However, given the scatter and occurence of outliers in
the actual data, we employ robust estimation techniques
[Rousseeuw & Leroy, 1987] and define the margin width
as the minimum width of the window (in the units of
pseudo-distance) which contains 50% of the earthquakes
(again, in the wedge centered on � ). (This step is consid-
erably facilitated if one first sorts the earthquake location
in each wedge in order of increasing

�
.) By finding this

width for each � we build the raw margin function
� �� � � �

(deemed raw as it still requires some additional process-
ing, as discussed below).

The chosen wedge size

 � differs between plates be-

cause, for example, the

 � for a small plate is larger than

that for a big plate since the smaller plate is likely to have
fewer earthquakes along its boundary. In general we use
between 60 and 70 wedges for the bigger plates, and 20
to 30 for the smaller ones. Moreover, we can only cal-
culate a margin width in a wedge if it has more than 4
earthquakes. If there are fewer than 4 earthquakes in the
wedge we assume the margin width is the average of the
widths of the two surrounding wedges.

To determine the confidence in the inferred margin
width, we also record the total number of earthquakes on
each wedge 	

� � � . We then smooth the function
� �� � � �

by a Gaussian filter that is weighted by 	
� � � ; in this

way values of
� �� that have higher confidence are more

strongly weighted. (The Gaussian filter is arbitrarily cho-
sen to have a half-width that is 
� 
 � ). Therefore, our
smoothed margin width at the �  #" value of � is� � � � � � ���� � �� � �  � 	 � �  � � ! � ��� ! ��� ���  ������ � ���

�� 	
� �  � � ! � ��� ! ��� � �  ������ � � � (8)

However, the pseudoboundaries (where some plates are
divided) must be left intact so the parts of a plate will
fit back together again along the boundary as tightly as
possible. The calculation of the margin widths for the
pseudoboundaries is discussed below.

As with the boundary function
� �

� � � , the margin
function can be put into an analytic form with discrete
Fourier transforms, though since

� �
is defined only on

wedges and not each boundary point, it is defined (usu-
ally resampled to radix 2 points) at fewer values of � .
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α−dα/2



α+dα/2

d
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∗
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Figure 4: Sketch illustrating the determination of mar-
gin width along the true boundary and pseudoboundary
of a single subplate, in this case the northern Pacific
plate (Pacific-1; see Figure 2). On the true boundary, the
oblique margin width at angle � is determined by bin-
ning the seismicity within a wedge between � � 
 � � �
and � � 
 � � � (upper left); the margin is then the narrow-
est region which contains 50% of the earthquakes in that
wedge (the shaded region, which is exaggerated for the
sake of clarity). The margin width of the pseudobound-
ary (lower right) is found by measuring, along a line of
constant � , the width of a box-car function

���
centered

on the boundary (long shaded region). The figure, how-
ever, is over-simplified and should only be considered il-
lustrative; in particular,

� �
is defined in the original co-

ordinate frame

��� ����� , while the measurements of margin
width are done in the rotated frame

����� ��� � � . See text for
further discussion.

3.3 Pseudoboundary margin widths
The creation of pseudoboundaries has no (or negligible)
effect on the final model of plate kinematics as long as
the effects of these boundaries’ margins essentially can-
cel each other once all the subplates are pieced back to-
gether again. The shape functions of a subplate and its
complement (i.e., the adjacent suplate sharing the pseu-
doboundary) should add to unity on the pseudobound-
ary. As a simple example, the 1-D hyperbolic-tangent
step function (centered at + ��+ � and of margin width

�
)

and it’s mirror image add to unity:

�
�
 � ���� � � + � + �� � � �

�
 � ���� �� � + � + �� � �  (9)

But these functions only add to unity as long as they each
have the same margin width. Moreover, since comple-
mentary subplates have the same Euler pole, there is no
differential motion across their pseudoboundary and thus
the pseudoboundary has little or no effect on strain-rate,
vorticity and divergence fields.

However, the actual description of margin widths on
pseudoboundaries is not as precise or as simple as im-
plied by (9) given that the boundaries are arbitrary curves
on a spherical surface, and the margin widths are mea-
sured from completely different points on a subplate and
its complement.

To make a subplate and its complement fit as tightly
as possible along a pseudoboundary the definition of the
margin must be precise. The margin width must have
a consistent mathematical definition that is frame invari-
ant (in particular, independent of the frame of reference
of the subplate in which the margin width is measured).
Thus, it is best to have an exact mathematical description
of the margin in the original spherical coordinates

�
and� . For precision we delineate the margin region of the

plate with a top-hat or box car function centered along
the pseudoboundary, representing, say, a distribution of
fictional earthquakes (see Figure 4); i.e., this function is
1 inside and 0 outside the margin region. Since a pseu-
doboundary curve is given by the single valued function����� ��� � (see equations (2) and (3)), the margin region is
therefore defined by the function��� ��� ����� � �

�
 � '��� �  � � � � ����� ��� �� ��� � � � ���

(10)

where
� ��� � is the margin half-width measured in the North-

South direction. For simplicity, we prescribe the margin
to have a constant half-width



normal to the boundary

(see Figure 4) and thus� ��� � � 
  �
� 
 �����
 � � � (11)

(i.e.,
� � 


if the boundary at that particular

�
is tan-

gent to an East-West line; and
�
	 �

if the boundary
approaches a North-South tangent; see also Bercovici &
Wessel [1994]). With this definition, the margin width
measured from the centers of two adjacent subplates will
be derived from the same formula.

With the margin region for a given plate’s pseudobound-
ary defined in the (

�
, � ) coordinate system, we need to

measure the width of the region in the rotated polar coor-
dinate system (

�
, � ). For a given constant- � line (that in-

tersects the pseudoboundary) the values of
���

are calcu-
lated for increasing

�
(using in (10) the

�
and � uniquely

corresponding to the given
�

and � ). The margin half-
width along this constant � line is thus� � � �

� � ���� � � � � � � (12)
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where
� � � � and

� � ���
are, respectively, the minimum

and maximum
�

for which
� � �  . (Precise measure-

ment of
� �

may require many incremental steps in
�

to
properly resolve the margin region, sometimes as many
as 50,000 steps.) This is done for a sufficient number of� along the pseudoboundary (typically about 20 values).
In this way we obtain a sampling of the function

� � � � �
along the pseudoboundary. This sampling is appended to
the filtered sampling of

� � � � � along the true boundaries
(with seismicity data) to yield a complete margin func-
tion

� � � � � for
� � � � ��� . Incorporation of the total

margin function for each plate into the associated plate
shape function (see equation (7)) comprises the essential
part of the SEISMAR plate model.

Figure 5 shows an example of the seismically in-
ferred margin width for a plate with considerable vari-
ability in its margin structure, i.e., the Eurasian plate.
Where the concentration of earthquakes is dense the mar-
gin width is relatively narrow and well defined. However,
where earthquakes are poorly concentrated, the margin
width is appropriately broad (e.g., the north-east margin
of the Eurasian plate).

4 Results of the SEISMAR
Model

4.1 Divergence and Vorticity Fields
The Earth’s plate motions can be divided linearly into
poloidal and toroidal parts [Hager & O’Connell, 1978,
1979]. Poloidal flow represents divergent motion (ridges
and subduction zones) and thus reflects upwelling and
downwelling in the mantle. Toroidal motion represents
purely horizontal rotational motion as exists in the spin of
plates and strike-slip shear. Poloidal motion is typical of
convective flow. However, the issue of how and why the
purely horizontal and dissipative toroidal motion is gen-
erated in the plate-mantle system remains a fundamen-
tal, yet largely unresolved, aspect of our understanding
of how plate tectonics is linked to mantle convection [see
Bercovici, 1993, 1995a,b, 1996, 1997; Zhong & Gurnis,
1995a,b, 1996].

In this section we show how the SEISMAR model
resolves the poloidal and toroidal parts of the Earth’s
present-day plate motions. In particular, we will exam-
ine the horizontal divergence and vertical vorticity of the
plate motions which are the most detailed manifestations
of the poloidal and toroidal fields. In the standard plate
model divergence and vorticity are essentially impossi-
ble to resolve as they are singularities (due to the as-
sumption of zero margin width). However, in the con-
tinuous plate model, and the SEISMAR model in this
paper, these quantities are quite resolvable and contain
considerable detail about deformation of the Earth’s sur-
face. Although this model also has certain drawbacks

and artifacts it gives us the first quantitative estimate of
the Earth’s surface divergence and vorticity fields.

4.1.1 Theoretical background

The two-dimensional velocity on the surface of a sphere
can be expressed with a Helmholtz representation:������� � � � �

��
	 � (13)

where � is the horizontal gradient, � is the poloidal po-
tential, 	 is the toroidal stream function, and

�� is the unit
vector in the radial direction. Horizontal divergence is

� ���� ����� � � (14)

while radial or vertical vorticity is

����� ����� � � � ��� � 	 � (15)

Divergence and vorticity are thus also representative of
the poloidal and toroidal fields, respectively. However,
since the divergence and vorticity involve gradients of �
and 	 , they enhance the finer small-scale features and
thus permit a more detailed description of the poloidal
and toroidal fields.

To calculate the divergence and vorticity fields di-
rectly we would simply find the appropriate horizontal
gradients of the surface velocity field. This is possible
in the continuous plate model, but not so in the standard
plate model. In the continuous plate model we would
obtain (from substituting (1) into (14) and (15)):

� � � 
� � ���� �
� �
�
� �
�

� � � � �
� �
� #&%�' � � �

�
�
�

(16)

��� � 
� � �� � �
�
� �
� �� � � �

� �
�
� �
�

� � � � �
� �
� #&%�' � � �

�
�
�

(17)

where

� �
� �� � �

� �
� �� #&%�'

�
� � �

� �
� '/() 

� � #&%�' � � � �
� �
� '�(  � (18)

� �
� �
� � �

� �
� �� #&%�'

�
� � �

� �
� '/() 

� � '�() � � � �
� �
� #&%�' � (19)

� �
� �
� � � �

� �
� #&%�'

� � � �
� �� '�() 

�
(20)

and �
� � �

� �
� �� � � �

� �
� � � �

� �
� � . Since the plate margins for

the continuous plate model are of finite width, the var-
ious derivatives of �

�
are calculable. Moreover, since�

and � � are scalars they are invariants and thus we
need only determine them for each individual plate or
subplate in the plate’s specific plate-centered reference
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Figure 5: The seismically inferred margin width for the Eurasian plate, superimposed on the local seismicity
distribution. The plot shows the shape function � for the entire Eurasian plate; however, only values between

� � � �  and
� � 	 are given a single gray shade while all other values are white.

frame

��� � ��� � � . Both divergence and vorticity involve
derivatives of each plate’s shape function � with respect
to

� �
and � � ;these take the form of

� �� ��� ��� � � � '���#�� � � � � � �� � � ��� �	����� �
� � 
 � �
 ��
 � � � ��� ��� � ��� �� � � � � � � � � � � � 
�  ���
 � �

(21)

where ��� � � � , � ! � ���
and we use Fourier transforms

of
� � and

� �
to evaluate their derivatives with respect to� . Although these derivatives are susceptible to Gibbs ef-

fects, such effects can be reduced with modest Gaussian
filtering in the Fourier domain [see Bercovici & Wessel,
1994]. We then simply use the value of

�
or � � at the

point

��� � ��� � � for the divergence and vorticity of the as-
sociated point

��� ����� . The
�

and � � for all the plates
are then added together to yield the total divergence and
vorticity fields.

For the standard plate model the shape function �is essentially constructed from discontinuous step func-
tions and therefore derivatives of � do not exist (i.e., they
are singularities). One can however determine the diver-
gence and vorticity from the velocity field without taking
gradients of � . This method involves vector-spherical-
harmonic transforms [see O’Connell et al., 1991] and
yields the spherical harmonic transform of

�
and � � , not

the physical quantities themselves. Using this method
one finds that the spherical harmonic transforms of

�

and ��� are

��� � � � ����� ��� ����  � 
 � (22)

� � � � � ����� � ��� ���� � �� �  � 
 � (23)

where � is the solid angle, and � �!�� is the complex con-
jugate of the normalized spherical harmonic � �� of de-
gree " and order

�
. In this way divergence and vorticity

can be calcluated from the expansions

� � #� � ��
� ���  ! � ��� � � �� (24)

����� #� � ��
� ���  ! � � � � � �� � (25)

where $ is the maximum " used.

4.1.2 Field representations

The divergence and vorticity fields for the standard dis-
continuous plate model (using (22)–(25) with $ � ���

;
O’Connell, pers. comm., 1992) are shown in Figure 6.
Even though the vector spherical harmonic transforms
from which these are derived do not directly involve sin-
gularities, the divergence and vorticity fields for this model
are intrinsically singular. This causes the excessive ring-
ing or Gibbs phenomenon extant in both fields. More-
over, the magnitudes of

�
and � � depend on $ , i.e.,

where the spherical harmonic series is truncated. Some
of the broader true features are discernible in the diver-
gence and vorticity fields, such as the East Pacific Rise,
and the Southeast Indian Ridge. However, the Gibbs ef-
fect obscures any finer or more complex features, such
as those around the Philippine plate. Finally, it is worth
noting for the sake of later comparison that the diver-
gence field has the largest amplitude feature which oc-
curs the along East Pacific Rise. The maximum vortic-
ity is about 80% of the maximum divergence and oc-
curs on the southwest side of the Philippine plate (though
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Figure 6: Surfaces of horizontal divergence and radial vorticity (with a world map at the bottom for orientation)
for the Earth’s present day plate motions based on vector spherical harmonic transforms of the velocity field for the
standard discontinuous plate tectonic model (with zero margin widths).

the structure of the entire Philippine plate is obscured by
ringing).

The divergence and vorticity fields for the continu-
ous, SEISMAR plate model (using (16) and (17)) are
shown in Figure 7. Since these fields are calculated di-
rectly, i.e., without spectral transforms, they exhibit no
ringing. While the SEISMAR model does yield some
artifacts (discussed below), it also gives a detailed pic-
ture of

�
and � � , clearly showing the effects of even the

smallest plates. The magnitudes of the divergence and
the vorticity fields are not artifacts of the model resolu-
tion but arise from the Euler pole and seismicity data.
Thus the SEISMAR model gives the first quantitative es-
timate of the strength of these fields.

Fine details of the divergence and vorticity field can
be resolved with the SEISMAR model that cannot be dis-

tinquished with the standard model. For example, the
small positive divergence embedded in a convergent zone
near the south-eastern boundary of the Philippine plate is
indicative of the Ayu trough [Weissel, 1980]; this fea-
ture would not be permitted in the standard model since
it would be cancelled out by the negative divergence of
the Yap and Marianas Trenches.

In the SEISMAR model the vorticity field has the
largest maximum near the northern end of the East Pa-
cific Rise, not near the Philippine plate as implied with
the standard plate model. However, two distinct local
maxima in the vorticity field occur on the northern and
southern corners of the Philippine plate. The maximum
positive divergence also occurs on the East Pacific rise,
as with the standard model. However the maximum ab-
solute divergence is in fact negative, in contrast to the
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Figure 7: Same as Figure 6 but with horizontal divergence and radial vorticity calculated directly from the velocity
field of the SEISMAR plate model.

standard model.
Of particular interest is the effect of broad plate mar-

gins. One can distinctly see that the North-Eastern bound-
ary of the Eurasian plate, which hypothetically cuts across
a diffuse seismicity zone in Siberia, is hardly manifested
at all in the divergence and vorticity fields; this is entirely
due to the breadth of the margin as estimated from the
widely and sparsely distributed seismicity data. More-
over, the distribution of seismicity in the Basin and Range
province causes the vorticity field over the San Andreas
region to be well defined but relatively broad. One can
also discern, in both the divergence and vorticity fields,
the effect of the diffuse boundary separating the Aus-
tralian and Indian plates.

Finally, the SEISMAR model clearly shows shades
of nonzero vorticity permeating some plate interiors (e.g.,

the Pacific, Philippine and especially the Cocos plates).
This effect is the direct consequence of plate spin which
is proportional to plate area and not deformation on the
margins (see the first term in (17)).

4.1.3 Artifacts of the SEISMAR model

Although the SEISMAR model creates a relatively clear
and quantifiable representation of the Earth’s divergence
and vorticity fields, it also creates some minor artifacts
that are worthy of discussion. Foremost is that the pseu-
doboundaries show a very small but discernible signa-
ture in the divergence and vorticity fields. In particular
one can observe slight seams in most of the larger plates
(e.g, the southwest-northeast running seam in the Pacific
plate). (These seams are also emphasized in the figures



GEOPHYSICAL JOURNAL INTERNATIONAL, 133, 379–389, 1998 12

due to the false illumination projected from the south-
west). In the plate interiors these seams are not strong
enough to register outside the narrow zero-centered gray
range (i.e,. less than 5% of the maximum) of the color
scale in Figures 6 and 7; however, they do manifest them-
selves more distinctly where they intersect a true bound-
ary. Although these artifacts are second-order at worst,
they demonstrate that there is room for improvement in
the continuous plate model, or in the application of seis-
micity in the SEISMAR model. While considerable care
was taken to accurately resolve the pseudoboundaries (so
that sections of a divided plate would fit cleanly together
again) there are still some problems. First, pseudobound-
aries (both the boundary distance and margin width) are
not sampled by two adjacent plates from the same coor-
dinate system; thus the boundary shape and width are not
measured at the same points or from the same angles by
two complementary plates. This scheme for sampling the
pseudoboundaries might be made more exact in future
studies. Alternatively, it may be possible to essentially
apply a high-pass filter to the divergence and vorticity
field; i.e., permit only values with absolute values greater
than some minimum and thus effectively exclude most of
the effects of the pseudoboundaries. This latter method
is arbitrary at best and thus not entirely satisfactory.

Another artifact of the SEISMAR model is evident
in the spikes and ringing in the divergence and vortic-
ity fields along (i.e., parallel to) the margins. This un-
doubtedly comes about because of the often highly os-
cillatory nature of the margin width function

� � � � � for
many plates. This in itself likely reflects the sparse cover-
age of seismicity data on certain plate boundaries, and/or
diffuse boundaries. Even with smoothing weighted by
confidence (i.e., number of earthquakes, e.g., from (8)),
the resolution of

� �
in � is still relatively coarse in or-

der to permit more than 4 earthquakes per wedge of the
plate; this can cause significant variation from one al-
pha to the next which becomes manifest as spikes and
some secondary ringing of

�
and � � along the bound-

aries. Again, these artifacts might be reduced by more
aggressive filtering, or by using more data on plate mar-
gin widths (e.g., other data sets with additional resolution
of plate boundaries).

4.2 Power spectra and kinetic energy
partitioning

The kinetic energies of toroidal and poloidal motions are
mostly dependent on the bulk size and shape of the larger
plates, and not extensively on the margin width. Thus one
should expect that the toroidal and poloidal kinetic ener-
gies, their power spectra and their ratio should differ little
from one plate model to the next. We therefore examine
the effect (or lack of effect) the SEISMAR model has
on the various characteristics of the toroidal and poloidal
kinetic energies (as well as the power spectra of the di-

vergence and vorticity field).
The spherical harmonic kinetic energy spectrum is

defined as the kinetic energy for each spherical harmonic
degree " ; the poloidal and toroidal energy spectra (per
unit mass and divided by

� �
) are, respectively,

�����
� " � � � " � " �  �

� ���  ! � ��� � � �� � (26)

�����
� " � � � " � " �  �

� ���  ! � � � � � �� � � (27)

Figure 8 (top two frames) shows these spectra and their
ratios for both the standard discontinuous plate model
and the SEISMAR model. One can see that the SEIS-
MAR model has little effect on the amplitude and shape
of this spectrum, as expected. The ratio of the energies�����

� " � � ��� � � " � is also shown in the same figure and
this emphasizes some minor differences between the two
models. The ratio for both models is greater than unity
only in the " �  mode, which represents the amount
of net lithospheric spin. The ratio is noticeably larger at" �  for the SEISMAR model than the standard model.
Moreover, the local peak in the ratio at " �	��	 in the
standard model is not present in the SEISMAR model.
These differences may reflect the use of finite margins in
the SEISMAR model because, for example, with more
diffuse margins the SEISMAR model gives relative more
weight to spin kinetic energy in the toroidal field (which
depends on plate area not on margin structure).

For the standard plate model the total poloidal and
toroidal kinetic energies, and their ratio are

���
� � � � �
(rad/Gyr)

�
,
��� � � � ��� (rad/Gyr)

�
and

��� � � ����� �� ��� � . For the SEISMAR model
���� �
��� � (rad/Gyr)

�
,��� � � � � � (rad/Gyr)

�
and

��� � � ����� � � �����
. The

SEISMAR poloidal energy is 6% and the toroidal energy
3% lower than those for the standard model, while the en-
ergy ratio is higher for the SEISMAR model. While these
differences between the models are subtle, they are sys-
tematic and thus likely reflect the reduction in energy as-
sociated with deformation on margins in the SEISMAR
model, and thus a higher proportion of spin energy in the
SEISMAR toroidal field.

A perhaps more revealing power spectra involves the
squared amplitude of divergence and vorticity at each
spherical harmonic degree, i.e.,

� �� � � ���  ! � ��� � � �� � (28)

� �� � � ���  ! � � � � � �� � � (29)
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Figure 8: Spherical harmonic spectra for the poloidal
(dark solid) and toroidal (dashed) kinetic energies, and
the ratio of toroidal to poloidal energy (gray solid) line
for both the discontinuous and SEISMAR plate mod-
els (top two frames). Spherical harmonic power spectra
for horizontal divergence (solid lines) and radial vorticity
(dashed lines) for both the standard and SEISMAR plate
models (bottom frame).

which employ essentially the same information as in the
kinetic energy spectra, yet emphasize the small wave-
length features. These spectra are also shown in Figure
8 (bottom frame) for both the standard and SEISMAR
plate models. Both models show significant peaks in di-
vergence at " � � , " � �

and � , and " � � � ; however,
only the peak " � � is reflected in the vorticity spec-
tra. Nevertheless, the vorticity spectra appears to track
the divergence spectra but only for low degree, i.e. up
to approximately " �  � ; for higher degree the spectra
seem largely uncorrelated. This may reflect the influ-
ence of plate geometry at low degree on both spectra,
while at higher degree we see that the structure of diver-
gent/convergent boundaries is largely independent of the
structure of strike-slip boundaries. Finally, one can also
see the power drop off for the SEISMAR model, indicat-
ing that the spherical harmonic series for the SEISMAR
model is convergent; no such convergence is indicated
for the standard model, as is to be expected for apparent
singularities.

5 Conclusions
In this paper we have presented a continuous kinematic
model of present-day plate motions allowing for 1) a real-
istic representation of plate shapes; and 2) incorporation
of geophysical data on intraplate deformation in order
to estimate plate margin widths. A variety of data sets
contain information about intraplate deformation, such
as seismicity and stress distributions. To demonstrate
how such data is used in the continuous plate model,
we employ global seismicity to constrain plate margin
width. The mathematical treatment of how to 1) define
analytically continuous plate shape functions, and 2) use
geophysical data (seismicity in particular) to construct
plate margin width functions are presented in this pa-
per; although the treatment as a whole is relatively con-
voluted, the individual steps are basic and straightfor-
ward. The resulting seismicity-based example, called the
SEISMAR plate model (for seismicity inferred margin
widths), yields a detailed and quantifiable representation
of the horizontal divergence and radial vorticity fields
(which are precise measures of poloidal and toroidal mo-
tion). Employing finite margin widths allows these fields
to be analytically calculable (as opposed to being sin-
gularities in the standard plate model) and permits the
representation of diffuse margins. The kinetic energy
spectra and partitioning of the SEISMAR model are not
greatly different from the standard plate model, as ex-
pected and desired; most of the minor differences arise
because, with finite margins (and thus non-infinite di-
vergence and vorticity), a more accurate weighting can
be given to the contribution of plate spin to the toroidal
energy. Although the SEISMAR model represents one
example of combining geophysical data with a continu-
ous plate model, it provides the first effort to incorporate
intraplate deformation data into a global plate tectonic
model and is therefore a significant adjustment to the the-
ory of plate tectonics.
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