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S U M M A R Y  
One of the many problems in the study of plate-mantle coupling is the disparity 
between the theory of mantle dynamics-which involves continuum physics-and 
the theory of plate tectonics-which employs discontinuous plates. This discordance 
causes a variety of difficulties in geodynamic models, e.g. infinite tractions between 
the plates and mantle. As motions of the Earth’s surface do not involve 
discontinuous plates (i.e. intraplate deformation is significant and plate margins have 
finite width), it is necessary to adjust the plate-tectonic model to allow for 
continuous surface motions. Here we present a model of plate motions on a sphere 
using analytically continuous (i.e. infinitely differentiable) functions to describe both 
plate geometry and plate margin width. We first apply this model to the idealized 
system of a single ‘rectangular’ plate to examine the influence of plate geometry and 
size on kinetic-energy partitioning of plate motions on a sphere. The ratio of 
toroidal (strike slip and spin) kinetic energy to poloidal (convergent-divergent) 
kinetic energy is affected not only by the relative lengths of strike-slip and 
convergent-divergent margins, but also on plate size, which controls the magnitude 
of plate spin. For large plates, spin toroidal motion contributes a major portion of 
the net toroidal energy. Basic concepts from this simple illustrative model are then 
expanded to derive an analytically continuous model of present-day plate-tectonic 
motions. The plate boundary for any given plate is smoothed and expressed as a 
single-valued differentiable function; this function is employed to generate the 
analytically continuous shape function of the plate. The shape function is then used 
to model the plate’s motion about its contemporaneous Euler pole. This technique is 
carried out for all the plates and their motions are superposed to yield a complete 
yet simplified model of present-day plate motions. We use this model to examine the 
influence of plate margin width on energy partitioning for the Earth’s plates; this 
approximately indicates the extent to which energy partitioning is influenced by 
intraplate deformation. The calculations indicate that the introduction of finite 
margin width allows spin vorticity to make a larger contribution to the toroidal 
energy. Depending on margin width, the partitioning of energy is possibly reversed, 
with toroidal energy assuming a larger proportion of the net kinetic energy. The 
model of continuous plate motions proposed here may not only ease the disparity 
between the theories of plate tectonics and mantle convection, but is a first simple 
step toward incorporating intraplate deformation into plate tectonics. 
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The essence of the intractability stems from the fact that 
mantle dynamics is a continuum theory, whereas plate 1 INTRODUCTION 

The theory of plate tectonics describes motions of the tectonics is not. 
Earth’s lithosphere as the rotation of rigid plates on a The theory of plate tectonics assumes that the boundaries 
spherical surface (Morgan 1968). While this concept has between individual plates are discontinuities in the surface 
been one of the most important paradigms in the earth velocity field. While this assumption facilitates a well- 
sciences of the century, it still presents certain intractabilities determined inverse model for the determination of surface 
when trying to unify plate tectonics with mantle dynamics. motions (e.g. Minster & Jordan 1978; DeMets et al. 1990), it 
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leads to difficulties in plate-mantle coupling models (e.g. 
Hager & O’Connell 1978, 1979, 1981; Olson & Corcos 1980; 
Ricard, Froidevaux & Fleitout 1988; Ricard & Vigny 1989; 
Gable, O’Connell & Travis 1991; King, Gable & Weinstein 
1992) and continuum models of plate generation from 
mantle flow (Ribe 1992; Weinstein & Olson 1992; Bercovici 
1993; see also Kaula 1980). In models of plate-mantle 
coupling the calculation of mantle tractions on the base of 
the lithosphere is essential; however, for discontinuous 
surface velocities, basal tractions are infinitely large, as first 
pointed out by Hager & O’Connell (1981). This situation 
can be mitigated by various ad hoc techniques, e.g. 
approximating basal tractions with ones calculated at some 
small depth beneath the surface (Gable et al. 1991). 
Discontinuous surface velocity fields also cause problems in 
combined kinematic and dynamic continuum models; in 
such models, lithosphere motion is driven by imposing the 
known divergence of plate motion as a source-sink function 
and determining what lithospheric rheology is necessary to 
yield toroidal flow most like that of the original plate 
(Bercovici 1993). As such models are continuous, the 
surface divergence must be at least second-order 
differentiable (and thus the velocity field must be at least 
third-order differentiable) to avoid singularities. However, 
in rigid-plate models the divergence itself is singular. Thus, 
differentiable or continuous plates are desirable for models 
of plate-mantle coupling and fluid dynamical models of 
plate generation. In essence, to make plate tectonics and 
mantle dynamics compatible, it is necessary for the tectonic 
model to incorporate plate continuity and therefore allow 
for finite plate margin width and intraplate deformation. 

In this paper we present a model of plate motions that 
involves continuous and differentiable surface velocity fields. 
We use this model to examine the influence of plate shape 
and continuity on surface kinematics and the partitioning of 
kinetic energy between toroidal (strike slip and spin) and 
poloidal (divergent and convergent) motions. First, we give 
some background on kinetic-energy partitioning in surface 
plates. Second, we present an idealized version of the 
continuous-plate model to investigate some basic facets of 
plate kinematics and energy partitioning, such as the relative 
amount of toroidal energy as a function of plate geometry 
and size. Finally, we present a simple, continuous model of 
the present-day tectonic plates. The model is compared to 
the discontinuous plate tectonic model and is used to 
estimate the dependence of energy partitioning on plate 
continuity and plate margin width. 

2 TOROIDAL A N D  POLOIDAL MOTIONS 

A SPHERE 

The motion’ of the Earth’s tectonic plates can be divided into 
two components: toroidal motion, involving vertical vorticity 
in the forms of spin and strike-slip shear, and poloidal 
motion, involving convergence and divergence. The kinetic 
energy of plate motions was first noted by Hager & 
O’Connell (1978) to be nearly equipartitioned between 
toroidal and poloidal parts. This partitioning is one of the 
primary issues in the effort to link plate tectonics and mantle 
convection (e.g. see Hager & O’Connell 1978, 1979; Kaula 
1980; Forte & Peltier 1987; Gable et al. 1991; O’Connell, 

A N D  KINETIC-ENERGY PARTITIONING ON 

Gable & Hager 1991; Olson & Bercovici 1991; Christensen 
& Harder 1991; Ribe 1992; Bercovici 1993). 

It is necessary to understand the manner in which the size, 
geometry and strength distribution of the plates are related 
to their kinetic-energy partitioning. Kaula & Williams (1983) 
and Forte & Peltier (1987) interpreted the poloidal energy 
as associated with convergent-divergent margins, while 
toroidal energy is associated with transform faults. It is in 
fact more general to associate toroidal motion with 
strike-slip margins that also include oblique subduction 
zones; one of the largest highs in vertical vorticity occurs 
over the Java trench. In Cartesian geometry, kinetic-energy 
partitioning is fairly predictable. For plates undergoing 
simple drift (i.e. all translation and no spin) the amount of 
toroidal energy is independent of plate size and entirely 
dependent on plate geometry; i.e. the longer the strike-slip 
margins are relative to the convegent-divergent margins, 
the greater the proportion of toroidal energy (Olson & 
Bercovici 1991; O’Connell et al. 1991). The near 
equipartitioning of the Earth’s kinetic energy has thus been 
interpreted as characteristic of a system of many small plates 
with a random distribution of geometries or a few plates that 
are primarily equidimensioned (i.e. square) (Olson & 
Bercovici 1991; Ribe 1992). However, the Earth’s kinetic 
energy is strongly dominated by the Pacific plate which is 
neither small nor square. The geometrical interpretation of 
the Earth’s kinetic-energy partitioning is somewhat flawed 
because of the assumption of pure drifting motion and its 
basis in Cartesian geometry. For motion on a sphere, it is 
not possible to separate plate drift and spin since the only 
part of a plate that does not spin is the line of points 90” 
from the Euler pole. Plate spin is manifest as toroidal 
motion, and the larger a plate the greater the contribution of 
spin to toroidal energy. The dependence of kinetic-energy 
partitioning on plate geometry is therefore not as simple as 
Cartesian models imply and plate size plays a distinct role. 
In order to understand the effects of plate continuity in this 
paper, we first systematically categorize the influence of 
plate shape and size on kinetic-energy partitioning for 
spherical geometry (Section 4). 

Related to the presence of spin is the net rotation of the 
lithosphere. Net lithosphere rotation is manifest as toroidal 
motion with spherical-harmonic degree 8 = 1. However, the 
amount of lithospheric rotation is also reference-frame 
dependent. In models of plate motions (Minster et al. 1974; 
Minster & Jordan, 1978; DeMets et al. 1990) the Euler poles 
can only be calculated relatively. Absolute plate motions 
require a choice of reference frame which is somewhat 
subjective. The classical and perhaps best reasoned choice is 
that of the hotspot reference frame. The L= 1 toroidal 
power in the hotspot reference frame is continuous with the 
rest of the spherical-harmonic spectrum, providing relatively 
empirical support for this choice of frame (since a different 
choice would cause the L= 1 power to be anomalously out 
of line with the rest of the spectrum) (O’Connell et al. 1991). 
Even so, the observation that net lithospheric rotation in the 
hotspot frame is extremely slow has lead to the suggestion 
that an equally viable reference frame is one that has zero 
net rotation (Minster et al. 1974). Some investigators have 
argued that since net rotation is frame dependent it is 
physically meaningless and thus should be removed from 
interpretations of kinetic-energy partitioning (Lithgow- 
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Bertelloni et al. 1993). This argument has lead to the 
conclusion that the present-day plate kinetic energies are far 
from equipartitioned, i.e. the toroidal component of kinetic 
energy is perhaps only 30 per cent of the poloidal 
component. However, a rotating frame does not obey 
Galilean invariance, thus neglect of net rotation by 
appealing to frame independence is specious. Moreover, 
there is no reason that mantle convective stresses cannot 
induce net rotation of the lithosphere (O'Connell et al. 
1991). Therefore, given the ambiguity over the treatment of 
net rotation, we consider frames of reference with and 
without net rotation while examining the relation between 
kinetic-energy partitioning and plate geometry. 

3 THEORY 

3.1 Kinematics of a continuous plate on a sphere 

The surface velocity field associated with the motion of a 
single plate on the surface of a sphere is 

v=SZxRS(O,+)  ( 1 )  

where SZ is the constant angular velocity vector that 
intersects the surface of the sphere at the Euler pole; R = R3 
is the position vector of an arbitrary point on the sphere of 
radius R ;  8 and 4 are colatitude and longitude, respectively, 
and 3 is the unit radial vector at 8 and 4. S is the shape 
function of the plate that prescribes both the figure of the 
plate and the sharpness of its boundaries; S is unity at the 
centre of the plate and goes to zero outside the plate 
boundary (see Section 3.2).  

It is most convenient to express SZ in Cartesian 
components, i.e. SZ = (R,, R,, Rz) where the t axis points 
through the geographic north pole and the x axis points 
through the intercept of the zero meridian and the equator. 
The horizontal divergence and radial vorticity at the surface 
are, respectively, 

as 1 as 
w, = 3 - v x v = 2 x 2 ,  - Re- - R " 7 -  ae sin ea4 (3 )  

where 

R, = (R, cos 4 + R, sin 4) sin 8 + R, cos 8 

Re = (R, cos 4 + R, sin 4) cos 8 - R, sin 8 

R, = R, cos 4 - R, sin 4 

(4) 

(5) 

( 6 )  

are the angular velocity components in spherical coordin- 
ates. For plates undergoing pure drift in a Cartesian 
geometry, the expressions for divergence and vorticity have 
an antisymmetrical appearance (Olson & Bercovici 1991); in 
spherical geometry this symmetry is broken by the first term 
on the right side of eq. ( 3 ) ,  (i.e. the term proportional to S). 
This term represents the spin vorticity of a point on the 
surface at position (8, 4); thus the contribution of spin 
cannot be eliminated from plate motion on a sphere. All 
other terms in the expressions for divergence and vorticity 
involve transitions in velocity at the plate boundaries (i.e., 
where S changes from unity to zero). 

To determine kinetic-energy partitioning, we separate the 

surface velocity field into poloidal and toroidal parts by a 
Helmholtz representation: 

v = Vh@ + v x (Y3) (7) 

where CP is the poloidal scalar potential and Y i  is the 
toroidal vector potential. The poloidal velocity VhCP is 
irrotational on the surface of the sphere while the toroidal 
velocity V X (Y3) is solenoidal both on the surface of the 
sphere and throughout the volume of the sphere. Using this 
relation, the horizontal divergence and radial vorticity of the 
velocity field are 

V i Q = D ,  V ; Y = - w ,  (8) 

respectively, thus yielding two Poisson's equations for the 
poloidal and toroidal potentials. To find CP and Y given D 
and w, from eqs ( 2 )  and ( 3 )  we represent all variables with 
spherical-harmonic expansions, e.g. 

( 9 )  

where 

is a complex coefficient and Ye,,, is a normalized complex 
spherical harmonic of degree e and order rn. By definition of 
a spherical harmonic, RZV2Yem = - f ( f +  l ) Y y m ,  thus eq. ( 8 )  
leads to 

The kinetic energy per unit mass integrated over the surface 
of the sphere is 

where the first and second terms on the right of eq. (12)  are 
the poloidal and toroidal kinetic energies, K E ,  and KE,, 
respectively. Thus, the toroidal-poloidal kinetic-energy ratio 
is 

This ratio is the primary measure of kinetic-energy 
partitioning for plate motions. 

3.2 The plate-shape function 

In the theory of plate tectonics, the shape function S for 
each plate is a discontinuous step function; the divergence 
and vorticity at plate margins are thus singularities. A 
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discontinuous plate shape function is essentially composed 
of linear step-functions 

x - x o  < -1 
1 0  b 

51 

(where the step function is centred on x o  and has half-width 
b).  For a continuous plate, s is replaced with an analytic, 
infinitely differentiable function. For versatility, we employ a 
shape function in which plate size and margin width can be 
independently prescribed; e.g. 

' X - x  + b  
tanh ( ) - tanh (" -2'' ') 

(15) 2tanh ( b / 6 )  ~ ( x ,  xo, b )  = 

where x o  and b have their previous definitions and 6 is the 
margin half-width. Divergence and vorticity depend on the 
derivative of this function, e.g. 

sech'( x - ~ o + b  )-sech'( x - x o - b  ) 
(16) - ds 

dx 26 tanh ( b l 6 )  
_ -  

with extrema at x = xo f b. Functions other than hyperbolic 
tangents could be used for s, e.g. error functions for which 
the squared hyperbolic secants of eq. (16) would be replaced 
by Gaussians. 

It should be emphasized that the plate-shape function is 
not based on any physical model for intraplate deformation. 
These plate models are intended to be a simple 
parametrization of plate continuity, which is in itself only a 
crude approximation of intraplate deformation. Rigorous 
incorporation of intraplate deformation is beyond the scope 
of this paper, but is conceivable within the framework 
presented here (see Section 6). 

4 ENERGY PARTITIONING FOR 
IDEALIZED PLATES 
The simplest idealization of a tectonic plate is a single, 
four-sided plate translating across the surface of a sphere in 
a direction perpendicular to two of its boundaries and 
parallel to the other two. Convergence and divergence (i.e. 
poloidal motion) are confined to the leading and trailing 
boundaries, respectively, and strike-slip vorticity is confined 
to the other two boundaries. We can therefore identify 
specific boundaries as either convergent-divergent or strike 
slip, and thus systematically discern the dependence of 
kinetic-energy partitioning on plate geometry. 

We accomplish this idealization by specifying the plate's 
Euler pole to be 90" from its centre of figure. (The Earth's 
major energy carrying plates in fact have similarly large 
angles between their Euler poles and centres of figure; see 
Olson & Bercovici 1991.) Furthermore, the geographic 
north pole is chosen to coincide with the Euler pole; thus, 
for motion to be entirely perpendicular or parallel to the 
boundaries, the boundaries must lie on lines of constant 
latitude or longitude. The strike-slip boundaries therefore lie 
on small circles of constant Iatitude and the convergent- 
divergent boundaries lie on meridians. We call such a plate 
'rectangular' or 'square', where the quotation marks indicate 
that these geometries are in the spherical sense. 

The angular velocity vector has only one component, i.e., 
a= Q,i such that motion is only in the 6 direction. The 
centre of figure of the plate lies on the equator and at 4 = a. 
For the shape of this plate we use the product of two linear 
shape functions from eq. (15) such that 

w, = n,S(4, a, a) 7- [sin'es( e, f, p ) ]  
sin 0 do 

where a and p are the angular half-widths of the plates in 
the longitudinal and latitudinal directions, respectively. The 
same margin half-width 6 is used in both directions. Fig. 1 
shows an example of the plate velocity, divergence and 
vorticity fields. To investigate kinetic-energy partitioning, we 
determine coefficients Dpm and wcm numerically by Gaussian 
quadrature in latitude and fast -Fourier transforms in 
longitude. In the following subsection we will examine the 
basic relationships between kinetic-energy partitioning and 
simple plate geometry. 

4.1 Energy partitioning for a 'rectangular' plate 

We first consider the kinetic-energy partitioning of a general 
'rectangular' plate for a full range of plate half-widths a and 
p. In all cases we take R and a, to be unity, and 6 = ~ 1 9 0 .  
Fig. 2 shows KE,, K E ,  and KE,IKE, versus a and p. As 
expected, poloidal kinetic energy K E ,  increases with p for a 
given a as the convergent-divergent margins increase in size 
(Fig. 2a). However, for a fixed p, K E ,  changes 
non-monotonically with strike-slip margin size a, especially 
for the larger p. This trend is distinctly different from 
Cartesian cases (Olson & Bercovici 1991) for which KE,  is 
independent of strike-slip margin length. This relation 
occurs because as a approaches either 0 or n, the regions of 
divergence and convergence begin to cancel each other (i.e. 
the plate either becomes vanishingly narrow or closes on 
itself), thus reducing the amount of poloidal flow. 

In the frame of reference with solid-body or net rotation, 
the toroidal kinetic energy K E ,  increases monotonically 
with a, or strike-slip margin length, as expected (Fig. 2b). 
For fixed a and increasing p, strike-slip shear decreases 
since, as the strike-slip margins approach the Euler pole, the 
velocity at these margins vanishes. Even so, K E ,  increases 
with p (and a fixed) because the contribution of spin to the 
toroidal motion increases as the plate becomes larger. Again 
this differs from Cartesian models wherein K E ,  is 
independent of convergent-divergent margin size. 

In the frame of reference without solid-body or net 
rotation (Fig. 2b), K E ,  increases monotonically with 
strike-slip margin length (a) only for small values of p. For 
values of p >0.222n (i.e. 40"), K E ,  reaches a maximum 
value with increasing strike-slip margin length a, and then 
decreases for a > 0 . 5 5 6 ~  (i.e. 100"). This maximum occurs 
because the spin vorticity, which makes the primary 
contribution to toroidal energy for large plates, is largely 
removed in the no-net-rotation frame; thus as the plate size 
approaches that of the entire lithosphere the toroidal energy 
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Figure 1. .Velocity field (a), horizontal divergence (b) and radial vorticity ( c )  of an idealized 'rectangular' plate on a sphere for cy = p = 57r/36 
(i.e. 25") and 6 = x/90 (i.e., 2"). Solid (dashed) contours indicate positive (negative) values. Angular velocity R, and sphere radius R are set 
equal to 1, thus the maximum velocity vector is 1. The minimum and maximum contours for the divergence and vorticity fields arc &12.89 and 
12.08, respectively; the contour interval is 2.5 for both fields. 

vanishes. The influence of spin kinetic energy is also obvious exercise serves to illustrate that spin vorticity makes the 
in Fig. 2(b) from the fact that the maximum K E ,  with net primary contribution to toroidal energy for large plates. 
rotation is approximately five times larger than the The ratio between the toroidal and poloidal kinetic 
maximum KE,  without net rotation. Although the energies KE,/KE, is shown in Fig. 2(c). In the reference 
no-net-rotation frame has no clear physical justification, this frame with net rotation, KE,- /KE,  increases as strike-slip 
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Figure 2. Poloidal kinetic energy KE,  (a), toroidal kinetic energy K E ,  with and without solid-body (or net) rotation (SBR) (b), and the energy 
partitioning ratio KE,/KE, with and without SBR (c) versus margin half-widths LY and p (shown in degrees) for the idealized ‘rectangular’ 
plate translating eastward as in Fig. 1. In all cases 6 = z/90 (i.e. 2”). The thick black curve on (c) indicates values for the ‘square’ plate, wherein 
all margins have the same arc-length; shading indicates the level of equipartitioning, where the contour line separating gray and white indicates 
KE,/KE, = 1 .  Kinetic energy is dimensionless in that the angular velocity R, and the sphere radius R are unity. 

margin length ( a )  and plate size increase for all fixed p. The 
ratio approaches a singularity as a+n (this is not obvious 
from the figure which employs a log,, scale) since the 
poloidal energy vanishes as the leading and trailing edges of 
the plate connect while the toroidal energy remains finite. 
For fixed strike-slip margin length ( a ) ,  the ratio decreases as 
the convergent-divergent margin length p increases. This 
trend actually displays three combined effects: as p 
increases, poloidal and spin toroidal energies increase while 
strike-slip toroidal energy decreases. In the Cartesian model 
of Olson & Bercovici (1991), KE,/KE, is only a function of 
the ratio of strike-slip margin length to convergent- 
divergent margin length; i.e. the ratio is only dependent on 
the aspect ratio of the plate. As shown by Fig. 2(c), this 
simple relation does not hold in a spherical geometry; for 
plate motion on a sphere, the kinetic-energy partitioning 
depends on plate size as well as geometry. 

In the no-net-rotation frame, the kinetic-energy ratio 
essentially reflects the toroidal energy (Fig. 2c). For small a 
and p the ratio KE, /KE,  behaves as in the reference frame 
with net rotation. For large values of a and p, however, 
KE,/KE, approaches zero as plate size increases, even 
though both KE,  and KE,  in this frame go to zero in the 
limit of a global plate ( a  = K ,  p = ~ 1 2 ) .  (This trend occurs 
because as the global-plate limit is approached, the 
strike-slip margins vanish by dual effects, i.e. they shorten 
and close up at the poles; in contrast, the convergent- 
divergent margins become very long and only vanish as the 
leading and trailing plate edges connect.) These results 
suggest that the low value of KE, /KE,  obtained for the 
Earth’s plates in the no-net-rotation frame (Lithgow- 
Bertelloni et al. 1993) simply occurs because the spin energy 
of the large fast plates (in particular, the Pacific plate) is 
essentially removed in this frame. 

The influence of spherical geometry on kinetic-energy 

partitioning is well illustrated by examining the kinetic 
energies for a ‘square’ plate in which all four boundaries 
have equal arc-length. As mentioned above, the kinetic 
energy for a square plate in a Cartesian geometry is 
equipartioned between toroidal and poloidal parts (i.e. 
KE,/KE, = 1) regardless of plate size and velocity (Olson 
& Bercovici 1991) because the strike-slip and convergent- 
divergent margins have all the same lengths. However, while 
a ‘square’ plate on a sphere may maintain similar unity 
aspect ratio, the kinetic-energy partitioning will change as its 
size varies. For a ‘square’ plate, a is a function of p: 

a = p/cos p. (20) 

Since a S K ,  the constraint that p /cosP l a  is more 
restrictive than p 5 a/2.  This constraint leads to P 5 0 . 3 7 7 ~  
(or p 5 67.85”); at /3 = 0 . 3 7 7 ~  the trailing and leading edges 
of the ‘square’ plate connect. The curve defined by eq. (20) 
is projected onto the surfaces of KE,/KE, versus a and p 
(Fig. 2c). Shading on these surfaces indicate the level of 
equipartitioning (gray indicates where KE,/KE, < 1, white 
where KE,/KE, > 1). This exercise demonstrates that, in 
contrast to the Cartesian case, KE,/KE, for ‘square’ plates 
is not constant at unity except for very small plates. For 
cases with net rotation, the ratio exceeds unity as plate size 
increases. For cases in the no-net-rotation frame, the ratio is 
less than unity as plate size increases, except near the 
singularity at p = 0 .377~  where KE,  + 0. 

5 A CONTINUOUS M O D E L  OF T H E  
TECTONIC PLATES 

In this section we introduce a model of the present-day 
tectonic plates that involves analytically continuous, 
infinitely differentiable plate-shape functions. This model is 
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Figure 2. (Continued.) 

desirable in many aspects over a spherical-harmonic 
representation of discontinuous plates (Hager & O’Connell 
1978, 1979, 1981; O’Connell et al. 1991). Spherical-harmonic 
analyses are well behaved in representing the toroidal and 
poloidal functions Y and a. However, divergence and 
vorticity for the discontinuous-plate model are singularities 
and their spherical-harmonic representations are non- 
convergent series; their amplitudes are thus dependent on 
series truncation and they exhibit considerable Gibbs effects, 
i.e. ringing. Fig. 3 shows a spherical-harmonic model of 
divergence and vorticity derived from the NUVEL-1 
discontinuous plate model (DeMets et al. 1990; O’Connell, 

personal communication, 1992). Ringing is particularly 
noticeable in the divergence field around the East Pacific 
Rise, and in the vorticity field on the Phillipine plate. 
Numerical convergence and Gibbs phenomena are greatly 
reduced or eliminated altogether in the model presented 
here since divergence and vorticity are not singularities. 
More importantly, actual data on intraplate deformation and 
margin width could be incorporated into this model. 

We first present the mathematical model of continuous 
tectonic plates and then use it to examine the influence of 
plate margin width on kinetic-energy partitioning of the 
Earth’s surface motions. 
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Figure 2. (Continued.) 

5.1 Mathematical model 
The angular velocities of the present-day plates is 
determined from the NUVEL-1 Pacific-plate-fixed Euler 
poles (DeMets et al. 1990; see also DeMets 1993) added to 
estimates of the instantaneous Pacific-hotspot pole from 
Pollitz’s (1988) joint inversion of North American and 
Pacific plate motions. The surface velocity field of the 12 
primary plates is expressed with a single equation: 

12 

V =  -R X C Ln,S,(O, 4) 
1 = I  

where C4, and S, are the angular velocity vector and shape 
function of the ith plate, respectively. The procedure for 
determining S, is the most crucial aspect of the model; we 
thus discuss it as a sequence of steps. 

Step 1: plate-boundary filtering 

To make the model of the tectonic plates analytically 
continuous, the plate boundaries must be smoothed. This is 
necessary for two reasons. First, boundary offsets (e.g. 
transform faults) are analytically intractable. Second, large 



Figure 3. Horizontal divergence and radial vorticity for the discontinuous plate-tectonic model (derived from a spherical-harmonic analysis of 
the NUVEL-1 model; O’Connell, personal communication, 1992). 



Figure 5. Horizontal divergence and radial vorticity for the continuous plate model with margin width RS = 200 km. 



A continuous model of plate tectonics 603 

changes in boundary curvature (e.g. the Indo-Australian 
and North American plates) cause a non-analytic plate 
shape function; this point is more fully explained in Step 3 
below. Thus, both discontinuities and large changes in 
curvature are smoothed out. Filtering is accomplished by 
representing the latitude and longitude of boundary points 
as two separate, discrete, single-valued functions of distance 
along the boundary. These two series are then smoothed by 
spatially convolving them with a Gaussian filter of a 
particular half-width. After the filtering, the latitude and 
longitude data are recombined to yield smoothed plate 
boundaries (Fig. 4a). The choice of Gaussian-filter 
half-width depends on being able to analytically describe the 
plate boundary (again, see Step 3 below). The plate 
boundaries do not overlap so lotlg as the same 
Gaussian-filter half-width is used for all the plates. However, 
because plate boundaries are rounded, gaps between plates 
unavoidably occur. This effect is particularly noticeable for 
small plates which are significantly reduced in size by the 
boundary filtering (Fig. 4a). 

Step 2: plate-boundar-v rotation 

The filtered plate-boundary data are then rotated into a 
frame of reference where the plate centre of figure is at 
longitude a and colatitude a / 2  (Fig. 4b). (The plate centre 
of figure is defined as the centre of 'mass' of evenly spaced 
boundary points; it is thus prudent to resample the boundary 
data to be evenly spaced in distance.) This rotation assures 
that the plate-shape function is defined in a coordinate 
system where the plate does not contain a geographic pole 
and where the plate boundary does not cross the zero 
meridian. The new coordinate system is denoted by ( O ' ,  4 ' )  
and is unique to each plate. 

Step 3: the plate-boundary function 

For a given plate (see Fig. 4c), the pseudo-distance from an 
arbitrary point within the plate (0& 4;) to any other point 
on the globe (0'. 4 ' )  is 

A ( w ,  4 ' )  = v'(q - 4;)iz + (el - e;)? (22) 

The pseudo-angle between the line connecting these two 
points and the line connecting (&,, 4;) and the first 
plate-boundary data point (Oh,, 4; , )  is 

(The terms 'pseudo-distance' and 'pseudo-angle' are used 
because these quantities treat 0' and 4' as if they were 
Cartesian coordinates; since this model is a purely 
mathematical description of an arbitrary shape, accounting 
for spherical curvature at this level of the model is an 
unnecessary complication.) An arbitrary boundary point 
(Oh, 4;) has pseudo-distance A,, = A( 0;. 4;). In order to 
make the plate shape analytically continuous, A,, must be 
expressed as a single-valued function in A; this function 
A,(A) is called the plate-boundarv function. Achieving a 

single-valued A,,(A) requires a prudent choice of (O,'), $6) in 
conjunction with sufficient smoothing of the boundary. For a 
given plate, we search for the optimum (0;. 4;); since 
multivalued functions have singularities in their slope, the 
optimum (@A, &,) is defined as one that yields the smallest 
maximum in IdA,/dAl. However, unless the boundary is 
adequately smoothed, even this JdAh/dAJ is infinite, or very 
nearly so. Thus, we also find the minimum Gaussian-filter 
width which yields a finite value for the smallest maximum 
in ldAh/dAl. Since the same filter width should be used for 
every plate (to preclude overlap), the largest filter width 
amongst all plates is used. In this sense, the Indo-Australian 
plate is the most restrictive given its elongated shape and 
change in boundary curvature from convex within the 
Himalayan Plateau to concave at the Java trench. The 
Gaussian-filter half-width, therefore, must be at least 
7000 km for the & ( A )  of each plate to be single-valued. The 
plate-boundary function A h ( A )  is then evenly resampled in A 
with radix-2 number of points and discrete Fourier 
transformed to obtain such that 

and N is the number of resampled points. In this way, A,(A) 
is expressed as an analytic function. Therefore, for any given 
point on the surface of the sphere with coordinates (0', 4 ' ) ,  
the function Ah[A(+' .  O f ) ]  - A ( 4 ' ,  0') is greater than, equal 
to, or less than zero depending on whether the point is 
inside, on, or outside the boundary, respectively. 

Step 4: the plate-margin function 

The shape function S of any plate is given by 

1 
S ( W ,  4 ' )  = - [ 1 + tanh 

2 

where 6* < 5, = &/N.  (The quantity &, represents the 
characteristic mean pseudo-radius of the given plate). The 
function 6*(A) is the plate margin half-width (in the 
pseudo-coordinates employed here, with units of radians) 
along the line connecting the points (Oh, 4;) and ( W ,  4 ' ) ;  S* 
is not the margin width normal to the boundary. As this 
model attempts to include information about plate 
continuity and margin width, 6* represents the significant 
new parameter added to the plate-tectonic model. It is 
through S* that data on intraplate deformation could be 
conceivably incorporated. Presently 6* is unconstrained. For 
consistency with the plate-tectonic model, we would ideally 
have the margin width be constant normal to the boundary. 
However, for simplicity we approximate this condition by 
prescribing the margin in A - A space (i.e. treating A and A 
as Cartesian coordinates) to be uniformly thick (Fig. 4d). 
With the plate boundary described in this space by the curve 
A,(A), the normal to the boundary has angle 

relative to the A-axis. The line drawn from (0& 4;) to the 
boundary is a line of constant A and thus a vertical line in 
A-A space; this line intersects the boundary at an angle to 
the boundary normal of (a/2) - v. If the margin has a 
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(4 Tectonic Plates 

Filtered Plates 

Figure 4. Illustration of the procedure for constructing the analytically continuous model of present-day plate motions. 

(a) Outline of present-day plate geometries before (top frame) and after (bottom frame) smoothing of the boundaries. 
(b) Illustration of rotation of a plate into a reference frame where the centre of figure of the plate lies at the equator and the 180" meridian. 

The plate shown here and subsequently is the North American plate. The white and gray plates are its original (geographic) and rotated 
positions, respectively. 

(c) Illustration of the coordinates describing the plate-boundary function; see text for discussion. 
(d) Illustration for the simplified definition of the plate-margin function; see text for discussion. 

constant width 6 normal to the boundary (in A-A space), 
then the margin width along the constant-A line is 

Allowing for the margin width to be constant normal to the 
boundary in more realistic coordinates, e.g. accounting for 
spherical curvature, is possible through a similar procedure 
(i.e. since the plate-boundary function is known, the normal 
to the boundary can be determined), but leads to (27) 
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3n12 

considerably more complicated expressions. With the plate scalars they are invariant to coordinate transformations. 
margin function 6* determined, the plate-shape function Thus D and w, at the transformed point (6’, 4‘) have the 
(eq. 25) is complete. same values at the untransformed point (6, 4) in the 

original (geographic) frame. (Naturally, the angular velocity 
In this model for the shape of a tectonic plate, the vector must be rotated into the (6’, 4’) frame for D and 

horizontal divergence D and radial vorticity w, of the plate’s w, to be calculated.) D and w, for each plate depend on the 
motion are analytically continuous. Since D and w, are derivatives of the shape function which are given in 
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Figure 4. (Continued.) 

abbreviated form as 

f3S Ah - A 1 
ax’ - 26 sech’ ( 6 q 1 +  ( d A h / d h ) 2 )  dl + (dAh/dh)’  

(xl: - x’) cx; - xT) 3 
A A2 dh 

[Ab - A]  d’Ah/dh2 
- 1 + (dA , /dh)*  

where x i  = 8’ ,  x- = 4’ and 

Since the plate-boundary function Ah(A) is approximated 
with a Fourier series, its derivatives are susceptible to Gibbs 
effects. These can be reduced with moderate Gaussian 
filtering; we empirically find that multiplying h, by e-n2” in 
eqs (24), (29) and (30) yields satisfactory results. However, 
this ad hoc correction raises the question of why the 
convoluted method described so far is preferrable to 
spherical-harmonic analysis and appropriate spectral filter- 
ing (i.e. tapered truncation). First, filtering of spherical- 
harmonic series essentially imposes finite-width margins 
indirectly by an implied spatial convolution with some 
unknown plate shape (or plate-margin shape) model. In this 
paper, the plate margin structure and plate shape are 
specified directly in the physical domain; they are thus more 
physically grounded and are more capable of incorporating 
data on margin width and intraplate deformation. Second, in 
the method described here, enhancing resolution of the 
plate boundaries entails increasing the value of N for 12 
linear Fourier series. To do the same with a spherical- 
harmonic expansion is more costly since resolution is 
essentially homogeneous (over the global surface) and must 
be increased everywhere when it is actually only the plate 
boundaries that need to be well resolved. Thus to increase 
the resolution by a factor M means increasing the size of the 
linear Fourier series in the method presented here by M, 
and by M Z  in the spherical-harmonic method. 

The D and w ,  for all plates are added in the original 

geographic (8, 4)  reference frame, yielding the global 
divergence and vorticity fields, shown in Fig. 5 for 
R6 = 200 km. As expected, the curvature of the boundaries 
is reduced. However, Gibbs effects (i.e. ringing) are 
eliminated. Several features hidden in the ringing of the 
spherical-harmonic representation of the discontinuous plate 
model (Fig. 3) appear clearly in the continuous model (Fig. 
5) .  For example, the Phillipine plate is distinguishable in the 
vorticity field of the continuous plate model (compare to 
Fig. 3), and the divergent motion at its southern end (e.g. at 
the Ayu trough: see Weissel 1980), while invisible in the 
discontinuous plate model, is distinct in the continuous 
model. 

The model described has certain advantages and 
disadvantages in comparison to the discontinuous plate- 
tectonic model. As discussed above, it is more mathemati- 
cally well behaved for problems of plate-mantle coupling 
since it is essentially a continuum model of the plates. In 
addition to avoiding singularities (and associated numerical 
problems) the model crudely accounts for finite-margin 
width and (even more crudely) intraplate deformation. 
However, because the plate shapes must be manipulated 
and smoothed until they are analytically describable, the 
model loses information about small-scale tectonic features 
and causes gaps between the plates. The importance of these 
weaknesses can only be assessed a posteriori (and only 
incompletely) with comparison to the plate-tectonic model. 
Since all tectonic models are simplifications and approxim- 
ate in nature, it is not a simple matter to determine which 
one is best as there is no absolute standard. 

5.2 Results: energy partitioning and plate margin width 

We use the model described above to examine the influence 
of plate margin width on the kinetic-energy partitioning for 
plates with (roughly) present-day motions and geometries. 
This exercise will indicate the dependence of partitioning on 
the plate-tectonic assumption (i.e. of rigid plates with 
discontinuous boundaries) and (crudely) the influence of 
intraplate deformation on partitioning. 

Figure 6 shows the spherical-harmonic kinetic energy 
spectra for the discontinuous NUVEL-1 model to 
spherical-harmonic degree P = 40 (O’Connell, personal 
communication, 1992) along with the continuous model for 
plate margin width R6 between 40 km and 1000 km. With all 
of its simplifications, the continuous model preserves many 
of the primary features of the energy spectrum. Most 
notable is the local peak at spherical-harmonic degrees 4 
and 5 and a smaller one at degree 8; these local maxima 
probably reflect basic plate geometries since they change 
little as plate-margin-width changes. The tracking of the 
poloidal energy spectrum by the toroidal one is also 
preserved in the continuous plate model. The low-order 
harmonics have essentially the same energies in both the 
discontinuous and continuous models (for all values of 6). 
The slope of the spectra at high wavenumbers, however, is 
affected by changes in 6. For the discontinuous model, 
kinetic energy falls off essentially as t’, which is expected 
for step functions (Hager & O’Connell 1978, 1979; 
O’Connell et af. 1991: Olson & Bercovici 1991) and implies 
that the spherical-harmonic representation of velocities is 
probably non-convergent (since the power spectra of the 
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Figure 6. Spherical-harmonic kinetic-energy spectrum for the discontinuous plate-tectonic model (from analysis of the NUVEL-1 model to 
spherical-harmonic degree 40; O’Connell, personal communication, 1992) and the continuous plate model with plate margin half-width R6 
ranging from 40 km to 1000 km. Solid lines indicate poloidal energy; dashed lines are toroidal energy. Units of energy are (rad/Gyr)’. 

RMS velocities, or <KE, + KET, fall off as l/f). For the 
continuous model, the energy spectrum falls off more 
rapidly with 8 (but not as a power law) as the margin width 
increases to 400 km (Fig. 6). This trend is to be expected as 
the smoothing of the plate boundaries and use of continuous 
shape functions reduce high-wavenumber effects. Thus with 
the continuous model, velocities can be represented by 
convergent spherical-harmonic series, and hence ringing can 
be eliminated. However, as RS increases past 400 km, the 
high-wavenumber tail of the spectrum begins to lift again. 
This reversal occurs because the increase in margin width 
eventually causes the plate interiors to become narrow 
features that induce high-wavenumber harmonics in the 
energy spectrum. 

The total poloidal and toroidal kinetic energies and their 

ratio are shown as functions of margin width in Fig. 7; the 
energies from the NUVEL-1 discontinuous model are 
associated with 6 = 0. The kinetic energies decrease 
monotonically with increasing 6 as expected, since an 
increase in margin width causes the amount of convergent- 
divergent and strike-slip motion to diminish. KET however, 
approaches an asymptote for large S and eventually exceeds 
K E ,  at RS = 900 km. Unlike KE,, K E ,  levels at large S 
because of the contribution to spin: although an increase in 
margin width reduces the magnitude of convergence, 
divergence and strike-slip shear, it has relatively little effect 
on spin vorticity. K E ,  thus approaches zero as 6 increases, 
while K E ,  does not. These relations obviously have 
significant effects on the energy partitioning in plate motion. 
The ratio K E ,  /KE,> starts at less than unity for small S and 
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increases with margin width, eventually exceeding unity (at 
RS =900km). (The small decrease in K E , / K E ,  from 
RS = 0 to RS = 40 km is likely due to underlying differences 
between the discontinuous and continuous models, e.g. 
exact plate geometries, choice of Pacific-hotspot pole, etc.) 
Accounting for finite plate margins (and thus intraplate 
deformation) may, therefore, change the relative propor- 
tions of toroidal and poloidal kinetic energies. 

6 CONCLUSIONS 

In this paper, we have proposed a simple kinematic theory 
of spatially continuous plate-tectonic motions. The proposed 
model essentially introduces finite margin width into the 
theory of plate tectonics by using analytically continuous 
shape functions to describe plate geometry. This model has 
advantages for the study of plate-mantle coupling as it 

allows the discontinuous theory of plate tectonics to be 
expressed in a continuum form that is more suited for the 
fluid-dynamic theory of mantle flow. 

The plate model presented here was used to examine the 
influence of finite margin width on kinetic-energy partition- 
ing. An examination of the relation between energy 
partitioning and plate geometry for idealized plates in a 
spherical geometry indicates that partitioning depends on 
plate size as well as aspect; in particular the larger a plate 
the more profound the contribution of spin vorticity to the 
toroidal energy. In the discontinuous plate-tectonic model, 
however, divergence and strike-slip shear are singularities, 
and hence tend to overwhelm the contribution from spin 
vorticity. When finite margin widths are allowed, the spin 
vorticity becomes significant (especially in the presence of 
large plates such as the Pacific) causing toroidal motion to 
assume a larger if not major portion of the kinetic energy. 
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Figure 7. Total poloidal (solid curve) and toroidal (dashed curve) 
kinetic energies versus margin half-width RS (top frame). The 
NUVEL-1 model analysis is used for the point corresponding to 
R6 = 0. The energy ratio KE, . /KE,  is shown in the bottom frame. 

The model calculations presented here, however, assume 
that all margins have essentially the same width. A rigorous 
estimate of the effect of finite margin width requires 
constraints from geodetic measurements of intraplate 
deformation. With the continuous plate model, the 
incorporation of data on plate margin widths and intraplate 
deformation is possible. One would essentially need to 
estimate the margin-width function 6*(h)  for every plate 
from tectonic and geologic analyses. The actual structure of 
velocity profiles across the margins, however, could not be 
easily incorporated into the model, since it is not likely that 
simple analytic functions such as hyperbolic tangents would 
fit these profiles. More elaborate functions (e.g. splines) 
could be employed, at considerable expense and loss of 
simplicity. 

It would also be desirable to model the plate shapes more 
realistically, i.e. use a smaller Gaussian-filter half-width for 
plate-boundary smoothing. The Indo-Australian plate 
boundary is the most difficult to represent by analytic 
single-valued functions and thus prescribes the minimum 
filter width. Recent work, however, has indicated a diffuse 
zone of deformation within this plate (Wiens er af. 1985; 
Gordon, DeMets & Argus 1990; DeMets et af. 1990). 
Resolution of this zone into a boundary separating the 
Indian and Australian plates would possibly facilitate more 
realistic plate shapes for all plates. Regardless of this 
potential improvement, the plate boundaries would still 
need to be smoothed to some degree, and thus small-scale 
information, e.g. the detailed structure of ridge offsets, 

would be lost. However, it should be emphasized that a 
continuous plate model is most useful in the study of 
large-scale global tectonics. In this context, therefore, a 
refinement of the model and incorporation of plate margin 
data would seem a worthy endeavour since the continued 
development of a continuous plate model is a necessary step 
toward making plate tectonics and mantle dynamics 
compatible. 
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