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SUMMARY
A simple model of non-Newtonian creeping flow is used to evaluate classes of rheologies which
allow viscous mantle flow to become plate-like. The model describes shallow-layer lithospheric
motion driven by sources and sinks. The sources represent spreading ridges while the sinks rep-
resent subduction zones; the sources and sinks thus also prescribe the poloidal component of
the surface flow field. The toroidal (strike-slip) componentof the flow field is found via the
solution of the Stokes equation with non-Newtonian rheology. As a first basic investigation of
the model, the horizontal divergence from the two-dimensional rectangular velocity field of
Olson & Bercovici (1991) is used for the source-sink field. The degree to which the induced
fluid flow reproduces the rectangular plate is used to measurethe success of different rheologies
in generating plate-like flows. Results indicate that power-law rheologies, even in the limit of
very high power-law indexν, can only produce modest plate-like flow. For example, the ratio
of toroidal to poloidal kinetic energy for a source-sink field derived from a square plate is at
best0.65, whereas a perfect square plate has a ratio of1.0. Moreover, the power-law rheology
appears to reach an asymptotic limit in its ability to produce plate-like behavior. This implies
that plate tectonics is unlikely to arise from a power-law rheology even in the limit of very high
ν. A class of rheologies that yield significantly more promising results arise from the Carreau
pseudo-plastic rheology with the power-law index taken to be ν < 0. One rheology in this
class is the continuum model for stick-slip, earthquake behavior of Whitehead & Gans (1974),
which is essentially the Carreau equation withν = −1. This class of rheologies, referred to as
the stick-slip rheologies, induces a toroidal to poloidal kinetic energy ratio for a square plates’s
source-sink function which can be as high as0.9. The viscosity (or strength) distribution for
this class of rheologies also appears more plate-like, showing fairly uniform high viscosity re-
gions (pseudo-plates) and sharply defined low viscosity zones (pseudo-margins). In contrast,
even the most nonlinear power-law rheology produces spatially varying high viscosity regions
and relatively smooth low viscosity margins. The greater success of the stick-slip rheologies
in producing plates is attributed to a self-lubricating mechanism in which the transfer of mo-
mentum from regions of high shear to low shear is inhibited. In contrast, even in the limit of
infinite power-law index, a power-law rheology can retard but never prohibit momentum trans-
fer. This feature is essential to the sharpening of velocityprofiles into plate-like profiles, which
is illustrated with a simple boundary-layer theory.

Key words: Plate tectonics, mantle convection, non-Newtonian flow, toroidal-poloidal cou-
pling.

1 INTRODUCTION

One of the major quandaries in geodynamics concerns the rela-
tion between plate tectonics and mantle convection. The proposi-
tion that mantle convection is the driving force of surface motion is
nearly as old as the original theory of continental drift (e.g., Holmes
1928). In the years since the modern theory of plate tectonics arose,
much has been done to explain not only the nature of mantle con-
vection but how it may drive the plates. A majority of work hasbeen
concerned with the interaction between existing plates andmantle

flow. This area of research has lead to a large number of signifi-
cant results, from the prediction of subduction dip angle with plate
driven mantle flow (Hager & O’Connell 1978,1979), to the deter-
mination of vertical viscosity structure from flows driven by mantle
density heterogeneity and plate forces (Hager & O’Connell 1981;
Forte & Peltier 1987; Ricard, Froidevaux & Fleitout 1988; Ricard
& Vigny 1989; Ricard & Bai 1991; Forte, Peltier & Dziewonski
1991). Fully dynamic models of nonlinear thermal convection with
surface plates have also been developed to investigate the feedback
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between plate motion and the underlying mantle flow (Olson &
Corcos 1980; Davies 1986, 1989; Gurnis 1988; Cserepes & Chris-
tensen, 1990; Gable, O’Connell & Travis 1991; King, Gable & We-
instein 1992). These studies have provided considerable insight into
topics ranging from the mechanisms of continental breakup and
formation (Gurnis 1988) to the interaction of strike-slip motion and
mantle convection (Gable et al. 1991).

In many of the above studies the plates are assumed to be pre-
existing rafts floating on the mantle. However, mantle convection
and plate tectonics are more than simply mechanically coupled.
The plates are, in fact, an integral part of the mantle circulation:
they are clearly formed at ridges and recirculate into the mantle
through subduction zones. In essence, plate tectonics is the surface
expression of mantle convection. The most fundamental, andper-
haps most difficult goal in the unification of plate tectonicsand
mantle dynamics is understanding the mechanics by which plate
tectonics arises from a convecting mantle.

There are several aspects of the plate-tectonic style of mantle
convection that are characteristic of simple fluid dynamic models
of thermal convection. The oceanic lithosphere is fairly well de-
scribed as a thermal boundary layer of mantle convection (Turcotte
& Oxburgh 1967). Subducting slabs and hotspot-inferred mantle
plumes are also strongly suggestive of sheet-like downwellings and
columnar upwellings obtained in many forms of three-dimensional
convection (Houseman 1988; Bercovici, Schubert & Glatzmaier
1989). That mid-ocean ridges are likely not the result of active up-
welling (Lachenbruch 1976) correlates with the fact that sheet-like
upwellings are fairly rare in convecting systems (Bercovici et al.
1989).

However, there are also many aspects of plate tectonics that
are not characteristic of simple thermal convection. Subducting
slabs represent asymmetric downwelling – i.e., only one plate at
the convergent zone actually sinks – which is not obtainablewith a
simple model of mantle convection (Gurnis & Hager 1988; King&
Hager 1990). Passive rifting also cannot occur in basic fluidmod-
els of mantle flow. However, the most conspicuous feature miss-
ing from basic convection models is strike-slip motion along trans-
form faults and oblique subduction zones; this motion is also called
toroidal flow. While the net kinetic energy of strike-slip motion
is nearly comparable to the net kinetic energy of plate motions
at convergent/divergent boundaries (called poloidal flow)(Hager
& O’Connell 1978), no strike-slip motion of any kind can be pre-
dicted by simple convection theory (i.e., with constant or depth de-
pendent viscosity). Lateral variations in viscosity, either throughout
the whole mantle or at the very least in the lithosphere itself are re-
quired to allow strike-slip motion.

Most features of plate tectonics not accounted for in simple
models of convection are generally attributed to the various com-
plicated deformation mechanisms in the mantle and/or lithosphere
(Hager & O’Connell 1978, 1979; Kaula 1980). Thus, a working hy-
pothesis for investigating the relation between the platesand mantle
is that the plates – their geometry and motions – arise from the in-
teraction of the Earth’s complicated rheology and the mantle flow
itself. To understand how plate-tectonics is generated from mantle
convection, it is important to consider the entire plate-mantle sys-
tem as a single medium with a complex rheology.

The complex rheology necessary to produce the plate-tectonic
style of mantle convection is, however, not immediately obvious. It
is generally assumed that plate-like behavior is due primarily to the
interaction of convective flow with a plastic or pseudo-plastic rhe-
ology (wherein the viscosity is stress dependent such that the fluid
weakens with an increase in stress). Numerical models of convec-

tion in non-Newtonian fluid have shown a variety of results, from
the verdict that non-Newtonian rheology has little effect on two-
dimensional flows (Parmentier, Turcotte & Torrance 1976; Parmen-
tier 1978; Parmentier & Morgan 1982) to quite significant effects
when coupled to temperature-dependence of viscosity (Cserepes
1982; Christensen 1984). Weinstein & Olson (1992) showed that
for two-dimensional convection beneath a non-Newtonian fluid
lithosphere, a power-law rheology with index up to 7 is required
to create strong plate-like interiors and weak plate margins. How-
ever, one of the most important effects of non-Newtonian rheology
can only happen in three dimensions; i.e., the generation oftoroidal
or strike-slip motion. Christensen & Harder (1991), presenting the
only three-dimensional numerical model of non-Newtonian con-
vection to date, showed how even when the power-law index is
taken up to 6 (whereas mantle rheology is characterized by anin-
dex of 3), the toroidal motion accounts for only 10% of the net
kinetic energy. In the Earth’s plate motions, toroidal energy com-
prises closer to 44% (Hager & O’Connell 1978; Forte & Peltier
1987). The coupling mechanics between poloidal and toroidal flow
for spherical geometry was investigated analytically by Ribe (1992)
to show how the spherical harmonic modes in toroidal energy re-
spond through certain selection rules to a given buoyancy interact-
ing with laterally varying lithospheric stiffness (a combination of
lithospheric viscosity and thickness). A further clue regarding the
physics of toroidal-poloidal coupling was provided by O’Connell,
Gable & Hager (1991) who demonstrated with Monte Carlo meth-
ods that the present day plate motions minimize the toroidalkinetic
energy. However, the physical mechanism by which the interaction
of flow and rheology creates distinct plates with strike-slip margins
is not well understood. Olson & Bercovici (1991), using simple sta-
tistical arguments, hypothesized that the present state oftoroidal-
poloidal near equipartitioning occurs because plastic or pseudo-
plastic rheology causes the plates (and the underlying convection
cell, if one is present) to be decoupled from each other to theextent
that the plates drift nearly independently of one another.

One of the primary limitations in the studies of how plate-like
flows are generated from non-Newtonian thermal convection is that
they involve strongly nonlinear models of convection itself which
are numerically intensive, especially in the three-dimensions neces-
sary to obtain toroidal motion (Christensen & Harder 1991).A fur-
ther limitation on these models is the use of mantle-like power-law
rheologies. Such rheologies are empirically determined inisother-
mal viscometric flows (uni-directional shear flow) or uniaxial ex-
tension/compression (Weertman & Weertman 1975; Ranalli 1987).
These rheologies might possibly have little to do with the actual
rheology of the plate-mantle system as a whole, with its distinct
three-dimensional flow, occurrence of lithospheric failure mecha-
nisms, extensive volatile entrainment, viscous heating, etc.

In this study we present a simple model of non-Newtonian
flow that does not explicity involve convection. By its simplicity
we alleviate some of the numerical restrictions encountered by rig-
orous models of convection. In this model, toroidal motion is re-
stricted to the lithosphere which we assume is a shallow fluidlayer
(see also Ribe 1992; Weinstein & Olson 1992). Moreover, as the
toroidal flow is, in the end, driven by poloidal flow (i.e., it has no
energy source other than its mechanical coupling to poloidal mo-
tion), we assume all flow is driven by a prescribed poloidal velocity
potential. In other words, the model involves two-dimensional flow
driven by sources and sinks; the sources and sinks representdi-
vergent and convergent zones (or upwellings and downwellings),
respectively. The model is thus both kinematic (in that it prescribes
the poloidal component of the flow field) and dynamic (in that it
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solves for the toroidal componenent of the flow field from the equa-
tions of motion). An important caveat is that since the poloidal flow
is prescribed, the model can only partially examine the interaction
of rheology and flow; it does not account for the rheological ef-
fects at divergent and convergent margins (e.g., rifting and subduc-
tion zone dynamics). The model can only allow us to examine how
strike-slip motion arises from the interaction of a given poloidal
field with a particular rheology.

The primary purpose of this study is to determine the best rhe-
ology with which a given poloidal flow field can excite significant
toroidal motion. While we primarily concentrate on strain-rate soft-
ening rheologies, we do not limit ourselves to a mantle-likepower-
law viscosity. In this paper, we examine a simple Cartesian version
of the model using idealized but well calibrated test cases to elu-
cidate the more basic physics of plate generation. In a latercom-
panion paper, we apply this to the real Earth. The present dayplate
motions are an ideal data set for this model in that we can impose
the observed horizontal divergence of the Earth’s plates ona thin
non-Newtonian spherical fluid shell (representing the Earth’s litho-
sphere) and examine what rheologies lead to the best reproduction
of the observed strike-slip motion, and hence generation ofthe ac-
tual tectonic plates themselves.

2 THEORY

2.1 Model Assumptions

We model the Earth’s lithosphere – defined for our purposes asthe
upper boundary layer of mantle convection – as a shallow, con-
stant thickness, incompressible layer of non-Newtonian fluid in
Cartesian geometry, bounded above and below by relatively invis-
cid media, i.e., the atmosphere above and a low viscosity astheno-
sphere below. The relevance of this model to the Earth hingesto
a large extent on the assumption of a relatively inviscid astheno-
sphere, thus this assumption deserves some discussion. Theinvis-
cid asthenosphere assumption is valid as long as the viscosity of
the lithospheric layer is everywhere much greater than the astheno-
spheric viscosity. This assumption may be compromised in cases
with highly non-Newtonian rheologies in which rapidly deform-
ing regions may have very low viscosity. However, the viscosity
contrast between the lithosphere and asthenosphere is conserva-
tively between105 and 107 (where the asthenospheric viscosity
is between1018 and1020 Pa s while a typical lithospheric viscos-
ity is 1025 Pa s or higher; see Beaumont, 1976; Watts, Karner &
Steckler 1982). Therefore, an extremely large viscosity drop from
plate interior to plate margin would be required to invalidate this
model. Such an intraplate viscosity drop, however, can neither be
excluded nor assumed, as it has never been quantified for the Earth.
In this study, the model viscosity drop within the fluid layeris
typically three orders of magnitude – much less than the Earth’s
lithosphere-asthenosphere viscosity contrast – and is thus at least
self-consistent as a model of the lithosphere.

The inviscid asthenosphere approximation also implicitlyas-
sumes that all forces balance within the lithospheric layer, and
thus basal tractions are negligible. Studies of forces on the tectonic
plates have yielded varied conclusions about the influence of vis-
cous drag from the asthenosphere. Forsyth & Uyeda (1975) found
that the independence of plate velocity on plate area was indica-
tive of negligible asthenospheric drag. However, in that study, ridge
push was modelled as an edge force. Hager & O’Connell (1981)
modelled ridge push as a force associated with lithosphericthick-

ening distributed over the area of the plate. Neither this force nor as-
thenospheric drag are negligible, however they tend to cancel, thus
also leading to plate velocities independent of plate area.The model
presented in this study can more or less accommodate either con-
clusion regarding viscous drag. A negligible asthenospheric drag
is explicitly in keeping with the inviscid asthenosphere approxi-
mation. On the other hand, as this model also does not account
for lithospheric thickening, one may argue that distributed ridge
push and asthenospheric drag balance and are thus cancelledout
in the model. Naturally, this latter argument is problematic as it is
never safe to assume that the mantle flow forcing or being forced
by lithospheric motion is easily predictable. The model maybe
made more realistic by the inclusion of underlying viscous drag and
layer thickening, though by the conclusions of Hager & O’Connell
(1981) it is probably wiser to assume these effects cancel than to
include one without the other. Nevertheless, these effectscan even-
tually be incorporated into a shallow layer model such as theone
presented here, as was shown by Ribe (1992) and Weinstein & Ol-
son (1992). As this would introduce extra complications andde-
grees of freedom, we presently opt for a simpler model to examine
the more basic physics of non-Newtonian lithospheric flow.

2.2 Equations of Motion

Given the above considerations, the boundaries of the layerare as-
sumed to be free-slip surfaces. With these boundary conditions, and
the narrowness of the layer, we further assume that there is no vari-
ation of stress or velocity with depth across the layer, and only hor-
izontal velocities exist in the layer. To drive the flow, we prescribe
mass sources and sinks, or, equivalently, the horizontal divergence,
in the layer; thus upwelling appears as sources, downwelling as
sinks. Our field of souces and sinks is described by the source-sink
functionS(x, y) (wherex andy are the two horizontal coordinates)
wherein, by continuity,

∇h · v =
∂u

∂x
+
∂v

∂y
= S (1)

where∇h = ( ∂
∂x
, ∂

∂y
, 0) is the horizontal gradient operator, and

v = (u, v, w) is the Cartesian velocity vector. There is no verti-
cal flow in the layer itself. However, because of the sources and
sinks, there is implicitly a nonzero vertical gradient in the vertical
velocity; i.e., by equation (1),∂w

∂z
= −S.

We next define the horizontal velocity vectorvh = (u, v, 0)
by a Helmholtz representation:

vh = ∇hφ+ ∇h × (ψẑ) (2)

whereφ is a velocity potential representing the poloidal flow (in
fact φ = ∂W

∂z
whereWẑ is the poloidal velocity vector potential)

andψ is the horizontal stream function;ψẑ is exactly equivalent to
the toroidal velocity vector potential. Combining equations (1) and
(2), we see thatφ obeys Poissons equation:

∇2
hφ = S (3)

thus, specifying the sources and sinks throughS directly prescribes
the poloidal potentialφ. All that remains is to determineψ.

The stream functionψ is found through the Stokes equation
for conservation of momentum

0 = −∇P + ∇ · (2ηė) (4)

whereP is the nonhydrostatic pressure (such that body forces and
hydrostatic pressure have been removed),ė = 1

2
(∇v + [∇v]†) is
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the strain-rate tensor, andη is the non-Newtonian laterally varying
viscosity which is a function ofφ andψ. For now, we simply define
η as a general function ofx andy until specifying a rheology later.
To obtain an equation forψ, we takeẑ · ∇× of equation (4); with
the assumptions thatu, v and thusη are independent ofz (because
of the free-slip boundaries and shallow layer), and thatw = ∂w

∂x
=

∂w
∂y

= 0 while ∂w
∂z

= −S in the layer, we arrive at

η∇4
hψ + 2∇hη · ∇h∇2

hψ + ∆∗η∆∗ψ + 4
∂2η

∂x∂y

∂2ψ

∂x∂y
=

ẑ · ∇hη ×∇hS + 2∆∗η
∂2φ

∂x∂y
− 2

∂2η

∂x∂y
∆∗φ (5)

where∆∗ = ∂2

∂x2 − ∂2

∂y2 . Equation (5) is an inhomogeneous equa-
tion for ψ being forced by potential (or source-sink) flow via gra-
dients in viscosity. Ifη is constant, equation (5) becomes a homo-
geneous biharmonic equation forψ yielding a null solution (i.e.,
ψ = 0) if the boundary conditions are homogeneous (as they are
bound to be unless an artificial source of toroidal motion is supplied
at some boundary in the(x, y) domain).

Before explicitly defining a rheology, we simply assume that
η = ηoη̃(x, y) whereη̃ is a dimensionless viscosity. We also define
the domain of interest as−Lx ≤ x ≤ Lx, −Ly ≤ y ≤ Ly

and assume a density of the fluid layerρ. Nondimensionalizingx
andy by Lx (such that the domain now lies in the range−1 ≤
x, y/b ≤ 1 whereb = Ly/Lx), η by ηo, ψ andφ by ηo/ρ, and
S by ηo/(ρL

2
x), we simply regain equation (5), dropping the tilde

on η̃. The dimensionless equation (5) is then solved by a spectral-
transform, under-relaxation method (see Appendix and Christensen
and Harder, 1991).

2.3 Rheology

The rheology we employ in this study accounts for nonlinear
plastic-type behavior in which the fluid viscosity decreases with
an increase in strain-rate (or stress); this rheology is most likely
to yield plate-like flows as it is necessary for creating weakplate
margins (regions of high deformation) and strong plate interiors
(regions of little deformation).

As the source-sink flow described here is strictly isothermal,
viscosity cannot be explicitly dependent on temperature. However,
we can approximate temperature dependence by noting that incon-
vective flows, temperature is usually strongly correlated with either
vertical velocity (in the deep interior regions where horizontal ve-
locities are small) or horizontal divergence (near the surface where
vertical velocities are small); i.e., fluid is generally hot(cold) where
it is either upwelling (downwelling) in the deep mantle or diverging
(converging) at the Earth’s surface. Thus, it is possible toapproxi-
mate temperature by some linear combination ofw and∇h ·v = S.
This can then be employed in a temperature-dependent rheology.
Although we will not investigate this effect here, we note itfor fu-
ture reference.

For generality, we employ the following equation for dimen-
sionless viscosity

η = (γ + ė2)(1/ν−1)/2 (6a)

where

ė2 = ė : ė = 2

"

„

∂u

∂x

«2

+ S2 − S
∂u

∂x

#

+
1

2

„

∂u

∂y
+
∂v

∂x

«2

(6b)
is the second invariant of the strain-rate tensor (within a factor of
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Figure 1. Stress versus strain-rate relation of equation (7) for the viscosity
of equation (6) with various values of the power-law indexν. Power-law
rheologies corresponding to values ofν ≥ 1 are shown, along with the
Whitehead-Gans (W-G) stick-slip rheology withν = −1. For all curves
γ = 10−3. Stress is normalized by its maximum valueσmax; for the
power-law casesσmax = 1, while for the W-G caseσmax = (2

√
γ)−1.

-2). This equation is essentially a simplification of the Carreau rhe-
ology (see Bird, Armstrong & Hassager 1987) for pseudo-plastic
flows. In the limit ofγ → 0, the basic power-law Ostwald-de Waele
rheology is recovered. We retain the parameterγ to proscribe vis-
cosity singularities (in the cases where1/ν − 1 < 0 and ė2 = 0)
and hence prescribe a maximum value ofη. The parameterν is
the power-law index forν > 0, where dilatancy (i.e., strain-rate
hardening) occurs ifν < 1 and pseudo-plasticity (strain-rate soft-
ening) if ν > 1. The rheologies withν > 1 are typical of those
used in geodynamical studies of non-Newtonian flow. Anotherspe-
cial class of rheologies exists forν < 0. These rheologies are also
strain-rate softening. However, they further allow stressto build up
toward a maximum value with increasing strain-rate and thenbe re-
leased with increased deformation; i.e., they induce a stress cut-off
(Figure 1). If we consider the root-mean-square stress scalar (i.e,
the square-root of the second stress invariant)

σ =
p

σ : σ = 2ηė (7)

(whereσ is the deviatoric viscous stress tensor), then stress is max-
imized at ė = ±√−νγ. A stress maximum can thus occur at a
real value ofė for ν < 0. Beyond the stress maximum (i.e., for
|ė| > √−νγ), the material is self-lubricating in that the faster it de-
forms the less it resists deformation. The occurence of a stress max-
imum has importance in this problem because, as will be shown
later, it allows plate-like flows to sharpen their velocity profiles,
rather than spread their profiles by the outward transfer of mo-
mentum. This class of rheologies is also important as a continuum
model of stick-slip behavior. That is, it can model the rapidbuild
up of stress with little strain-rate, followed by the release of stress
once the cut-off strain-rate (i.e., thėe at which the stress maxi-
mum occurs) is exceeded. Such a rheology was used for the case
of ν = −1 by Whitehead & Gans (1974) in their simple yet ele-
gant zero-dimensional continuum model of earth-quake behavior;
this rheology leads to a nonlinear harmonic oscillator thatyields
a nearly saw-tooth periodicity highly suggestive of stressbuild-up
and release during earth-quake sequences. Similar constitutive rela-
tions have also been used in kinematic dynamo theory to relate the
“α” parameter to magnetic inductionB; this is termed “quenching”
in the dynamo literature and leads to a nonlinear B-field oscilla-
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tor suggestive of geomagnetic field reversals (e.g., Olson &Hagee
1990; see Roberts & Soward 1991).

The class of rheologies forν < 0 will be referred to as stick-
slip rheologies. They are in fact merely theoretical rheologies that
have no empirical basis. However, as Whitehead & Gans (1974)
demonstrated, the rheology withν = −1 can arise, in a simpli-
fied sense, from the combination of temperature-dependent viscos-
ity and shear heating. This combination was also shown to yield
an inverse dependence of stress on plate velocity and thus a self-
lubricating mechanism for shallow mantle flow (Schubert & Tur-
cotte 1972), as well as surge behavior in glaciers (Yuen & Schubert
1979). If we assume a simplified temperature-dependent viscosity
(Whitehead & Gans 1974)

η = ηo[1 − α′(T − To)] (8)

and a steady-state relation between shear heating and thermal dif-
fusion

K(T − To) = ηė2 (9)

(whereK is a heat transfer coefficient) then elimination of the tem-
perature anomalyT − To between equations (8) and (9) yields

η =
K/α′

K/(α′ηo) + ė2
(10)

Thus, in an idealized way, rheologies withν < 0 potentially ac-
count for nonisothermal behavior at zones of high deformation. As
the rheology forν = −1 is most physically justifiable, we will con-
centrate to some extent on that case; this rheology will be refered
to as the Whitehead-Gans, or W-G, stick-slip rheology.

2.4 The Source-Sink Function

In this study we examine only one simple flow pattern to illustrate
the basic physics of plate generation. Our source-sink configura-
tion is derived from the motion of a single rectangular plate. A
square plate, as shown by Olson & Bercovici (1991) is the sim-
plest paradigm for a tectonic plate. The presumed active tectonic
plates (i.e., plates attached to signficant subducting slabs) on the
Earth have convergent (subduction) zones that effectivelycom-
prise between 20 and 30% of the plates’ circumferences (Forsyth
& Uyeda 1975); a square plate drifting perpendicular to one of
its edges has a convergent zone (i.e., a leading edge) that ispre-
cisely 25% of its net circumference. Under such uniform drift, a
square plate’s kinetic energy is exactly equipartitioned between
toroidal and poloidal parts, and an ensemble of independently drift-
ing square plates produces a distribution of plate margins rather
closely resembling that of the real Earth. However, most impor-
tantly for this study, the toroidal flow field of a rectangularplate
is precisely known. Thus we here treat the rectangular plateas the
standard we wish to achieve. We separate the poloidal component
of the plate’s velocity field by taking its horizontal divergence and
use it as our source-sink function. The sources and sinks thus rep-
resent the trailing and leading edges of the plate, respectively. It
remains to our model to generate the strike-slip sides of theplate,
i.e., the toroidal motion. We thus use this configuration to deter-
mine which rheology best reproduces the original plate.

To derive the source-sink functionS, we consider a rectangu-
lar plate with sides of length2α and2β in thex′ andy′ directions,
respectively;x′ andy′ are coordinates arbitrarily rotated relative to
thex-y axes to allow the plate a general trajectory. The plate moves
at a velocityV in the in they′ direction and is surrounded by an

-1

0y

-1 0

x

v S

ω z

Figure 2. Velocity vectors v̄, source-sink function (or horizontal diver-
gence)S, and vertical vorticityω̄z for the square plate standard.S andω̄z

are described by equations (13) and (14), respectively, withα = β = 0.25.
The maximum nondimensional velocity is0.045. The maximum and mini-
mum values of bothS andω̄z are±0.98 and the contour interval is0.13.

immobile medium. At a given instant, we define the origin at the
plate’s center. The velocity field of the plate as a function of x′ and
y′ is v̄ = V F (x′/α)F (y′/β). The functionF defines the shape of
the plate; e.g., for a discontinuous plateF is a step function, i.e.,

F (ξ) =

8

>

<

>

:

0 ξ < −1

1 −1 ≤ ξ ≤ 1

0 ξ > 1

. (11)

However, since a discontinuous plate leads to singularities in hor-
izontal divergence and vorticity, we employ anF that is infinitely
differentiable. A plate-like shape can be obtained with a slightly
modified super-Gaussian, i.e.,

F (ξ) = e−ξ2p/p; p ≥ 1 . (12)

For p = 1, a regular Gaussian profile is recovered, while in the
limits of p→ ∞ andp→ 0, step- and delta-functions are obtained,
respectively. A reasonable step-like plate is obtained forp > 4; in
this study we exclusively usep = 8. With these considerations, we
employ a normalized source-sink function:

S =
∂v̄

∂y′
= −

„

2e

2p− 1

«1− 1
2p

„

y′

β

«2p−1

e
− 1

p
(x′/α)2p

e
− 1

p
(y′/β)2p

(13)
In this study, thex′-y′ axes are rotated clockwise45◦ relative to
thex-y frame; i.e.,(x′, y′) = (x− y, x + y)/

√
2. The rotation of

the plate and hence the source-sink field is done to avoid roll-like
flows caused by the periodic boundaries employed in the spectral-
transform method. Similarly, the plates vertical vorticity is, for later
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comparison to the dynamically generated vorticity,

ω̄z = ẑ · ∇ × v̄ =
∂v̄

∂x′

= −β
α

„

2e

2p− 1

«1− 1
2p

„

x′

α

«2p−1

e
− 1

p
(x′/α)2p

e
− 1

p
(y′/β)2p

(14)
For a square plate (α = β) S andωz map precisely into one an-
other by interchangingx′ andy′. Thus, because of equation (3),
and sinceω̄z = −∇2

hψ̄ (whereψ̄ is the toroidal potential, or stream
function, for the plate), the net kinetic energy of a square plate is
equipartitioned between poloidal and toroidal parts. Thatis, since
both the toroidal and poloidal potentials satisfy Poisson’s equation
for forcing functions which differ only by a rotation of axes, then
the toroidal and poloidal flow fields also only differ by a coordi-
nate rotation, and thus bear the same kinetic energy (see also Olson
& Bercovici 1991). Figure 2 shows the velocity field̄v, source-
sink functionS and vertical vorticityω̄z for a square plate with
α = β = 0.25 andp = 8.

The success of our continuum model relies on its ability to
reproduce

(i) the plates original vorticityω̄z

(ii) kinetic energy equipartitioning given theS derived from a
square plate

(iii) the original plate’s functional dependence of the toroidal to
poloidal kinetic energy ratio onβ/α

(iv) the strength (or viscosity) distribution of the plate and sur-
rounding flow; a perfect plate has a uniform strength distribution in
its interior with distinctly weak margins.

It should be noted that the actual tectonic plates do not satisfy ideal
plate behavior since intraplate deformation is certainly significant.
However, the precise quality of plate-like behavior at the Earth’s
surface is difficult (if not impossible) to assess and quantify; this is
of course why the plate tectonic model, wherein the plates are as-
sumed ideal or rigid, is used to determine surface velocities. There-
fore, for the sake of simplicity we seek to attain the well defined
but perhaps most difficult goal of ideal plate behavior.

3 NUMERICAL EXPERIMENTS: RESULTS AND
ANALYSIS

The following results are generated by the numerical solution of
equation (5) (combined with equation (3)) on a256 × 256 grid
with the rheology of equation (6) and the source-sink function of
equation (13); see Appendix for further details about the numerical
solutions. The domain aspect ratiob is held constant at1 and the
parameterp is kept at8. The rheological parametersγ andν, and
the plate aspect ratioβ/α are varied. For the power-law cases, we
allow ν to be as high as 21 to display possible asymptotic behavior
of various quantities asν → ∞. Furthermore, although the deep
mantle is probably characterized byν ≈ 3, it is doubtful that such
a low power-law index is sufficient to capture the behavior ofthe
entire plate-mantle system (see Christensen & Harder 1991;Wein-
stein & Olson 1992).

In Figure 3, we show the velocity vector fieldv, contours of
the generated vorticityωz = −∇2

hψ, and dimensionless viscosity
η for non-Newtonian flow driven by the source-sink function of
Figure 2; rheologies include selected power-law cases (ν ≥ 1) and
the W-G stick-slip case (ν = −1). The velocity field forν = 1,
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Figure 3. Velocity vectorsv (a), contours of vertical vorticityωz (b),
and a three-dimensional surface representation of viscosity η (c), for non-
Newtonian flow driven by the source-sink function of Figure 2with various
values of power-law indexν andγ = 10−3. Vorticity and viscosity for
ν = 1 are not shown since, for that case,ωz = 0 andη is constant. The
maximum velocity forν = 1, 3, 21 and−1 are0.026, 0.039, 0.042 and
0.046, respectively. The maximum and minimum vorticity forν = 3, 21
and−1 are,±0.22, ± 0.34 and±0.46, respectively; the vorticity contour
interval is0.061 for all values ofν.
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Figure 4. Vorticity deviationΩ, defined in equation (15), versus power-law
indexν for the source-sink function of Figure 2 and the power-law rheology
(ν ≥ 1) and two different values ofγ. The value ofΩ for the W-G stick-slip
rheology (withγ = 10−3) is shown for comparison.

the Newtonian case, is shown to illustrate completely irrotational
flow, i.e., whenψ = 0. Clearly, the velocity and vorticity fields
become more like those of the original square plate asν increases
to 21; yet, they are most similar to the fields of the square plate, in
shape and magnitude, for the W-G stick-slip rheology (ν = −1).
However, while the largest generated velocity (for the W-G case)
is essentially the same as that for the original plate, the maximum
generated vorticity (again for the W-G case) is less than half that of
the square plate.

The viscosity field (Figure 3c) changes little in shape in the
power-law cases forν ≥ 3. The W-G stick-slip case, however, is
quite distinct, producing the most plate-like strength distribution.
In all cases, the viscosity lows are aligned with concentrations inS
andωz ; yet the lows are most sharply defined for the W-G rheol-
ogy. Furthermore, the W-G rheology produces nearly uniformhigh
viscosity regions in the plate interior and the medium surrounding
the plate. In the power-law cases, even for very highν, the viscos-
ity of the plate region is strongly spatially varying, maintaining a
distinct saddle-shape.

A quantitative measure of how closely the induced toroidal
flow matches that of the original plate is contained in a quantity we
call the vorticity deviation

Ω =

R

A
(ωz − ω̄z)

2dA
R

A
ω̄z

2dA
(15)

wheredA = dxdy andA is the area contained in the domain
−1 ≤ x, y/b ≤ 1. The vorticity deviation contains information
not only about the ratio of amplitudes of the two vorticities(the
term in equation (15) that goes as

R

A
ω2

zdA/
R

A
ω̄z

2dA) but also
the spatial correlation between the vorticities (the crossterm that
goes as

R

A
ωzω̄zdA/

R

A
ω̄z

2dA). A perfect match betweenωz and
ω̄z yields Ω = 0. Assuming that the Newtonian case (ν = 1),
which can generate no vorticity, produces the worst match, then
Ω = 1 represents the poorest fit. While it is conceivable that there
are even worse fits than in the Newtonian case (e.g., dilatancy cases,
in which0 < ν < 1, produce weak plate interiors and strong mar-
gins), for these strain-rate softening rheologies,Ω is never> 1.

Figure 4 showsΩ versusν for the power-law cases (1 ≤ ν ≤
21) and, for comparison, the value ofΩ for the W-G stick-slip case
(ν = −1); in all casesα = β = 0.25. The W-G case hasγ =
10−3, yielding a maximum dimensionless viscosity of1000. Two
curves are shown for the power-law cases. One curve has the same
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Figure 5. The ratio of toroidal to poloidal kinetic energyKET /KEP ver-
susν for the same cases as Figure 4.

γ as the W-G case, and the other has aγ = 5 × 10−7 such that the
maximum viscosity atν = 21 is the same as that for the W-G case.
This is done to avoid any inequitable comparisons.

The largest vorticity deviation occurs atν = 1, as expected.
For the power-law cases, the minimum deviation is approximately
0.5. While the solutions with largest viscosity contrast (i.e., with
γ = 5 × 10−7) yield more plate-like characteristic in other cat-
egories (e.g., kinetic energy partitioning; see below), they display
larger vorticity deviation than for the cases withγ = 10−3, ap-
proachingΩ = 0.7 asν → 21. One of the most interesting features
of the power-law cases is thatΩ appears to reach an asymptote as
ν → ∞. This implies that a power-law rheology has an upper limit
on how well it can produce a plate-like vorticity. The vorticity de-
viation for the W-G stick-slip rheology is shown for comparison; at
0.4, it is the lowest value shown in Figure 4.

The toroidal to poloidal kinetic energy ratio

KET /KEP =

R

A
|∇hψ|2dA

R

A
|∇hφ|2dA

(16)

versusν is shown in Figure 5 for the same cases as in Figure 4.
For an ideal square plate this ratio is unity, while for a Newtonian
fluid it is zero. For the power-law cases withγ = 10−3 andγ =
5 × 10−7, KET /KEP approachs 0.5 and 0.65, respectively, as
ν → 21. In this category, the higher viscosity contrast cases yield
better plate-like behavior. However, as with vorticity deviation, the
kinetic energy partitioning appears to reach an asymptoticvalue as
ν → ∞, again suggesting that the power-law rheology is limited in
its ability to produce plate-like flows. In contrast to the power-law
cases, the W-G stick-slip rheology yields the largestKET /KEP

shown of 0.88, a quite reasonable reproduction of the ideal plate
partitioning.

For completeness, we show in Figure 6Ω andKET /KEP

versusν for several stick-slip cases with−10 ≤ ν < 0 andγ =
10−3. The minimum vorticity deviation of 0.3 occurs atν = −2,
while the maximumKET /KEP of 0.9 occurs atν = −0.3. In
these categories, the stick-slip rheologies clearly are more success-
ful at reproducing the ideal square plate.

Finally, we examine the dependence ofKET /KEP on
the aspect ratioβ/α (Figure 7). For the ideal rectangular plate,
KET /KEP ≈ β/α, as shown by the dashed curve in Figure
7. This differs from the plate model used by Olson & Bercovici
(1991) whereinKET /KEP = (β/α)2; in that study, the domain
size and plate size were linearly dependent, whereas here they are
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Figure 7. Kinetic energy ratioKET /KEP versus plate aspect ratioβ/α
for the source-sink function derived from the velocity fieldof a general
rectangular plate. Curves are shown for the power-law rheology with ν =

21 (and two values ofγ) and the W-G stick-slip rheology withν = −1
(andγ = 10−3). The dashed curve showsKET /KEP for the original,
ideal rectangular plate

independent. Figure 7 also showsKET /KEP versusβ/α for the
power-law rheology withν = 21 and the W-G stick-slip rheol-
ogy. The same values ofγ as Figures 4 and 5 are used andα is
held constant at 0.25. Although, the power-law case does yield an
increase inKET /KEP with increasingβ/α, its curves diverge
considerably from that of the ideal plate and do not even achieve
equipartitioning asβ/α → 2. In contrast,KET /KEP for the W-
G rheology follows the curve for the ideal plate relatively closely,
and exceeds equipartitioning atβ/α = 1.2.

4 DISCUSSION

4.1 Power-Law versus Stick-Slip Rheologies

The results of this study suggest that plate-like flow, and hence the
generation of plate tectonics from mantle convection, is not read-
ily attained with a power-law rheology, not with a mantle-type law
with ν = 3, nor an extreme one withν = 21 (or perhaps, as
suggested, even in the limit ofν → ∞). A power-law rheology
has always been employed in the past as it is what experimental
evidence has provided. However, although pseudo-plasticity may

yield strong plates and weak margins, it is far from a comprehensive
model of the various failure mechanisms (especially discontinuous
brittle failure) in the Earth’s lithosphere. Furthermore,nonisother-
mal effects (frictional heating) are not accounted for in rheometric
experiments. The myriad influences of water, suggested to bea pri-
mary cause for the Earth’s unique version of tectonics (e.g., see
Kaula 1990), may also not be appropriately accounted for in the
power-law rheology. Although rheometric experiments havebeen
performed with wet silicates (e.g., Chopra & Paterson 1981,1984),
the influence of water on melting at ridges, serpentinization of peri-
dotite at transforms (Bonatti 1978), lubrication of subduction by
muds and enhancement of pore pressure (Shreve & Cloos 1986),
has yet to be comprehensively accounted for in a single rheology
(see Kirby & Kronenberg 1987 for review). While it is unlikely that
a single rheology could in actuality incorporate all these effects, it is
important to recognize that the power-law rheology may be wholly
inadequate for describing the plate-mantle system.

In this study, the rheology that is most successful at produc-
ing plates is the hypothetical stick-slip or self-lubricating rheology
with ν < 0. The stick-slip rheology does not represent any em-
pirical or physically rigorous rheology. However, it does capture
an important physical effect which may aid in understandingwhat
rheology is necessary to generate plates. The stick-slip rheology
is better at producing plate-like flow than the power-law rheology
because, as shown earlier, the stress–strain-rate relation is mono-
tonic for the power-law case, but non-monotonic for the stick-slip
case (see Figure 1). Thus, in the stick-slip case if the maximum
strain-rate in the flow exceeds

√−νγ, there can be a local stress
minimum at the strain-rate maximum; i.e., in the zones of fastest
deformation, there can be a stress minimum (though not necessarily
the minimum stress). It is this property which allows the stick-slip
rheology to yield the best plate-like behavior. This can be under-
stood by considering the transfer of momentum from the edge of
a moving plate (or wall) to a neighboring infinite viscous medium.
The plate moves in the positivey-direction with its edge atx = 0;
the fluid extends to the left tox = −∞. The strain-rate is always
largest at the plate edge as the fluid only comes into equilibrium as
time t → ∞. In a Newtonian or power-law fluid, the shear stress
σxy = η ∂v

∂x
is also largest at the wall, as illustrated in Figure 8, and

decreases asx → −∞. The force (per unit volume) on the fluid
in they-direction isfy =

∂σxy

∂x
, which for all power-law cases is

always> 0. Thus a positive force is exerted by the plate on all parts
of the fluid; this force acts to bring the fluid into equilibrium with
the plate. Momentum is always transferred outward from the plate
into the fluid.

In the stick-slip case, however, if the strain-rate maximumat
the plate’s edge is>

√−νγ, then a stress minimum is at the plate’s
edge; the stress maximum occurs at somex 6= 0 where the strain-
rate is

√−νγ. Physically, this implies that the fluid is so weakened
near the wall that the strong (high viscosity) fluid actuallyretains
more stress than fluid at the wall. Since stress decreases toward the
plate’s edge, the region of fluid between the stress maximum and
the plate edge has a retrograde force on it, i.e.,fy < 0. This re-
verse force causes the weak fluid by the wall to decelerate, thus
inducing the velocity profile near the wall to sharpen. The sharpen-
ing of the velocity profile causes the shear strain-rate to increase,
the shear stress near the wall thereby to decrease, and thus the ret-
rograde force to increase further. The cycle continues, constituting
a feedback mechanism which causes the velocity profile in thefluid
to become plate-like.
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4.2 Boundary Layer Theory

The above arguments can be demonstrated more rigorously with a
simple boundary layer theory. The above idealization is described
by the dimensional momentum equation, in this case

∂v

∂t
=

1

ρ

∂

∂x

„

η
∂v

∂x

«

(17)

where the acceleration term is retained because the fluid domain is
an infinite half-space and cannot, therefore, ever be in equilibrium.
To be able to employ similarity arguments, we take the limit of
γ = 0; in this case, the stress maximum for flow with the stick-slip
rheology occurs atx = −∞. Viscosity is thus defined as

η = A

„

∂v

∂x

«1/ν−1

. (18)

whereA is a constant. We assume thatv is only dependent on the
similarity variableζ = x/δ(t), whereδ(t) is the thickness of the
velocity boundary layer. Combining equations (17) and (18), using
v = v(ζ), and, after some manipulation, integrating the resulting
equation over the extent of the boundary layer, i.e., over−1 ≤ ζ ≤
0, leads to an equation forδ:

δ1/ν dδ

dt
= − A[v′(0) − v′(−1)]

ρν
R 0

−1
ζ

`

dv/dζ
´2−1/ν

dζ
(19)

The growth of the boundary layer, determined by equation (19),
represents the transfer of momentum from the plate edge to the
adjacent medium (since the size ofδ is indicative of the amount
of fluid dragged along by the plate). At the plate edgev = V ,
and at the extent of the boundary layer (i.e., atζ = −1) v ≈ 0.
We thus approximate the velocity within the boundary layer as
v = V (ζ + 1)3. The cubic function is chosen so thatv, its slope
and curvature are continuous with the essentially unmovingfluid
beyond the boundary layer; i.e.,v = v′ = v′′ = 0 at ζ = −1. In
this case, integration of equation (19) yields

δ =

8

<

:

h

A(6ν−2)(5ν−2)(ν+1)

ρν4(3V )1−1/ν t+ C
i ν

ν+1
ν 6= −1

δoe
− 56A

ρ(3V )2
t

ν = −1
(20)

whereC andδo are arbitrary integration constants (see also Bird,
Stewart & Lightfoot 1960, ch. 4). (Equation (20) is not validwhen

ν = 1
3

or ν = 2
5
; however, since we are mainly interested in rhe-

ologies withν ≥ 1 and ν < 0, we will not concern ourselves
with these special cases.) For the power-law cases withν > 1, the
constantC = 0 if the plate’s motion begins instantaneously (i.e.,
δ = 0 att = 0). Thus, the velocity boundary layer thickness always
grows forν > 1. Momentum is always transferred away from the
plate, even for very largeν. However, in the stick-slip cases with
ν < 0, δ can diminish with time, depending on the choice ofC;
in the W-G case ofν = −1, δ can only shrink with time. Thus,
the velocity profile can sharpen (and must sharpen forν = −1)
near the plate edge. Momentum transfer can thus be inhibitted or
blocked altogether for the stick-slip rheologies.

The stick-slip rheologies, therefore, can cause velocity pro-
files to sharpen into plate-like flows and can reduce or eliminate
the transfer of momentum from a fast moving region to a slower
one. This property allows for the generation of a distinct plate-like
flow that is decoupled from the surrounding medium; i.e., outlying
resistive forces that act to smooth the flow and distribute momen-
tum are greatly reduced. In short, this rheology provides for the
forming of the plates as well as efficient lubrication of its edges.

5 CONCLUSIONS

We have employed a relatively simple model of source-sink driven,
non-Newtonian lithospheric flow to determine what rheologyal-
lows for the most efficient generation of tectonic plates. Wechose
as our standard a rectangular plate drifting perpendicularto one
of its edges. The horizontal divergence of the plate’s velocity was
used as a source-sink function (where a source occurs at the trail-
ing edge, and a sink occurs at the leading edge). This function
was then applied to the model to drive fluid flow for various non-
Newtonian rheologies to determine which rheologies best repro-
duced the original rectangular plate. The rheologies used included
a range of power-law (i.e., pseudo-plastic Carreau) relations and a
theoretical rheology that models stick-slip behavior.

In the limit of Newtonian flow, no plate-like behavior is gen-
erated, as expected. As the power-law indexν is increased, the
power-law rheology appears to reach an asymptotic limit in its
rather modest ability to generate plate-like behavior. Thestick-slip
rheologies, while not able to generate the ideal plate, are consider-
ably more successful at producing plate-like flows. An analysis of
momentum transfer and a boundary-layer theory indicates that the
stick-slip rheology is more successful at generating plates because
it can cause velocity profiles to sharpen and impedes or prohibits
the transfer of momentum from the plate-like flow to the surround-
ing medium; i.e., it induces considerable lubrication.

These results imply that the non-Newtonian rheology that can
best describe plate behavior is one that not only permits strain-rate
softening (and thus strong plate interiors and weak plate margins)
but also a negative feedback between stress and strain-rate. The
latter effect (the negative feedback) leads to sharpening of plate
edges as well as lubrication of plate margins (see also Schubert
& Turcotte 1972). The negative feedback mechanism may also be
facilitated by the presence of water (as lubrication certainly is), and
this is in line with present theories of the role of water at plate
margins and why Earth appears to be the only planet with clearly
defined plate tectonics. Although the stick-slip rheologies used in
this study are merely hypothetical, they indicate that the rheologies
required to allow plate tectonics to arise from mantle convection
must incorporate mechanisms not accounted for by standard mantle
rheologies.
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Appendix: Solution Method

The dimensionless toroidal and poloidal functionsψ andφ are as-
sumed periodic over the domain with period 2 in thex-direction
and2b in they-direction. Thus

(ψ, φ) =
∞

X

m=−∞

∞
X

n=−∞

(Ψmn,Φmn)eimπxeinπy/b . (A1)

The infinite series are truncated atm,n = ±N/2. From equation
(3), Φmn is automatically prescribed by

Φmn = −Smn/k
2
mn (A2)

wherek2
mn = π2(m2 + n2/b2) and

Smn =
1

4b

Z +1

−1

Z +b

−b

S(x, y)e−imπxe−inπy/bdxdy . (A3)

In most cases, our rheological law involves an irrational func-
tion of derivatives ofψ andφ, thus there is no guarantee that our
viscosity field has the same periodicity as assumed forψ andφ.
Any apparent linear trend in viscosity across one fundamental pe-
riod of the domain will lead to spurious high wavenumber noise in
a Fourier representation ofη; this occurs because linear trends lead
to discontinuities at the boundaries of the domain. To treatlinear
trends inη separately from the Fourier representation, we assume,
regardless of rheology, that

η = ao + a1x+ a2y + a3xy + η′(x, y) . (A4)

The polynomial portion defines a two-dimensional function that ap-
proximates the linear trend inη; the four ai are determined, for
speed and simplicity, by requiring this function to coincide with η
at the four corners of the domain, i.e., atx = ±1, y = ±b. The
remaining viscosity perturbationη′ has little, if any, spurious high
wave-number modes from edge discontinuites. Thus, we may more
safely Fourier analyzeη′. Equation (5) becomes

ao∇4
hψ +

„

2a1
∂

∂x
+ 2a2

∂

∂y

«

∇2
hψ + 4a3

∂2ψ

∂x∂y
= B(x, y)

(A5)
where B(x, y) contains all the remaining nonlinear and
nonconstant-coefficient terms of equation (5). Employing the
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Figure 9. Frame a (top):Vorticity deviation Ω and kinetic energy ratio
KET /KEP versusN (the mode at which the Fourier series in the
spectral-transform method are truncated; see equation (A1)) for the W-G
stick-slip case of Figure 3. Convergence is adequately attained atN = 256.
Frame b (bottom):Power spectrum of the Fourier coefficients of the toroidal
stream function for the W-G stick-slip case of Figure 3 withN = 256.
Because of dealiasing, power for|n|, |m| > 64 is zero and therefore not
shown. Since the stream functionψ is a real quantity, coefficients for±m
are linearly dependent and are therefore combined in the power spectrum.
The power undergoes a ten-order of magnitude drop which indicates that
the solutions are well resolved.

Fourier representation, equation (A1), we obtain

Ψmn = Bmn

.

ˆ

aok
4
mn − 2iπk2

mn(ma1 + na2/b) − 4a3mnπ
2/b

˜

(A6)
where

Bmn =
1

4b

Z +1

−1

Z +b

−b

B(x, y)e−imπxe−inπy/bdxdy . (A7)

Equation (A6) is used to find theΨmn for one iteration. Thenψ,
φ and appropriate derivatives are determined fromΨmn andΦmn

via use of fast Fourier transforms (FFT), as advocated by Orszag
(1971, 1980); clearly, however,φ and its derivatives need be calcu-
lated only once. From these functions the non-Newtonian viscosity
η is calculated from the rheological equation (6). The parameters
ai, i = 0, 1, 2, 3, are updated;η′ is redetermined and appropri-
ate derivatives ofη′ are found via FFT’s. All nonlinear terms are
then consolidated to updateB(x, y), which is then transformed
via FFT’s toBmn and used to solve equation (A6) forΨmn on
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the next iteration. Aliasing is reduced by settingBmn = 0 for
|m|, |n| > N/4. Under-relaxation is used to facilitate numerical
stability. If ˜Ψmn is the solution to equation (A6) at iterationj, then

Ψ(j)
mn = µ ˜Ψmn + (1 − µ)Ψ(j−1)

mn (A8)

where the superscript denotes iteration number;µ = 0.9 yields
reasonable and consistent convergence. Iterations proceed until the
convergence criterion

P

m

P

n |Ψ(j)
mn − Ψ

(j−1)
mn |2

P

m

P

n |Ψ(j)
mn|2

< 10−6 (A9)

is satisfied. Solution convergence for increasingN is also tested.
The kinetic energy ratioKET /KEP and vorticity deviationΩ vs
N (up toN = 512) are shown in Figure 9a for one of the most nu-
merically demanding solutions, i.e., the W-G stick-slip case. Con-
vergence is sufficiently attained atN = 256 which is employed
throughout the paper. Accuracy of solutions is also estimated by ex-
amining the power spectrum forΨmn. Figure 9b shows the power
spectrum also for the W-G case; clearly, a drop of ten orders of
magnitude in spectral power implies that the solutions are well re-
solved.


