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SUMMARY

A simple model of non-Newtonian creeping flow is used to estdiclasses of rheologies which
allow viscous mantle flow to become plate-like. The modetdbss shallow-layer lithospheric
motion driven by sources and sinks. The sources represegddipg ridges while the sinks rep-
resent subduction zones; the sources and sinks thus akstripesthe poloidal component of
the surface flow field. The toroidal (strike-slip) componehthe flow field is found via the
solution of the Stokes equation with non-Newtonian rhepldg a first basic investigation of
the model, the horizontal divergence from the two-dimemaioectangular velocity field of
Olson & Bercovici (1991) is used for the source-sink fieldeTdegree to which the induced
fluid flow reproduces the rectangular plate is used to medkarguccess of different rheologies
in generating plate-like flows. Results indicate that pela@r rheologies, even in the limit of
very high power-law index, can only produce modest plate-like flow. For example, thie ra
of toroidal to poloidal kinetic energy for a source-sink di@erived from a square plate is at
best0.65, whereas a perfect square plate has a ratib@fMoreover, the power-law rheology
appears to reach an asymptotic limit in its ability to proelptate-like behavior. This implies
that plate tectonics is unlikely to arise from a power-lawatogy even in the limit of very high
v. A class of rheologies that yield significantly more promésresults arise from the Carreau
pseudo-plastic rheology with the power-law index taken éa’b< 0. One rheology in this
class is the continuum model for stick-slip, earthquakeaver of Whitehead & Gans (1974),
which is essentially the Carreau equation witk= —1. This class of rheologies, referred to as
the stick-slip rheologies, induces a toroidal to poloidaktic energy ratio for a square plates’s
source-sink function which can be as highta$. The viscosity (or strength) distribution for
this class of rheologies also appears more plate-like, stgpfairly uniform high viscosity re-
gions (pseudo-plates) and sharply defined low viscosityegdpseudo-margins). In contrast,
even the most nonlinear power-law rheology produces dpati@rying high viscosity regions
and relatively smooth low viscosity margins. The greatercess of the stick-slip rheologies
in producing plates is attributed to a self-lubricating tm&aism in which the transfer of mo-
mentum from regions of high shear to low shear is inhibitedcdntrast, even in the limit of
infinite power-law index, a power-law rheology can retard feever prohibit momentum trans-
fer. This feature is essential to the sharpening of velgmibfiles into plate-like profiles, which
is illustrated with a simple boundary-layer theory.

Key words: Plate tectonics, mantle convection, non-Newtonian flowgital-poloidal cou-
pling.

1 INTRODUCTION flow. This area of research has lead to a large number of signifi

cant results, from the prediction of subduction dip anglthwiate
One of the major quandaries in geodynamics concerns the rela driven mantle flow (Hager & O’Connell 1978,1979), to the dete
tion between plate tectonics and mantle convection. Thpgsie mination of vertical viscosity structure from flows drivey imantle
tion that mantle convection is the driving force of surfacetion is density heterogeneity and plate forces (Hager & O’Conn@d1t
nearly as old as the original theory of continental drifg(eHolmes Forte & Peltier 1987; Ricard, Froidevaux & Fleitout 1988cRid
1928). In the years since the modern theory of plate tecsariose, & Vigny 1989; Ricard & Bai 1991, Forte, Peltier & Dziewonski
much has been done to explain not only the nature of mantle con 1991). Fully dynamic models of nonlinear thermal convettidth
vection but how it may drive the plates. A majority of work Hen surface plates have also been developed to investigateedbdick
concerned with the interaction between existing platesraadtle
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between plate motion and the underlying mantle flow (Olson &
Corcos 1980; Davies 1986, 1989; Gurnis 1988; Cserepes &cChri
tensen, 1990; Gable, O’Connell & Travis 1991; King, Gable &W
instein 1992). These studies have provided considerasilghninto
topics ranging from the mechanisms of continental breakup a
formation (Gurnis 1988) to the interaction of strike-sliption and
mantle convection (Gable et al. 1991).

tion in non-Newtonian fluid have shown a variety of resultenf
the verdict that non-Newtonian rheology has little effenttao-
dimensional flows (Parmentier, Turcotte & Torrance 1976nian-
tier 1978; Parmentier & Morgan 1982) to quite significaneefs
when coupled to temperature-dependence of viscosity €pesr
1982; Christensen 1984). Weinstein & Olson (1992) showed th
for two-dimensional convection beneath a non-Newtoniaid flu

In many of the above studies the plates are assumed to be predithosphere, a power-law rheology with index up to 7 is reedi

existing rafts floating on the mantle. However, mantle cetioa
and plate tectonics are more than simply mechanically ealipl
The plates are, in fact, an integral part of the mantle catonh:
they are clearly formed at ridges and recirculate into thenttea
through subduction zones. In essence, plate tectonice suttfiace
expression of mantle convection. The most fundamental pend
haps most difficult goal in the unification of plate tectonarsd
mantle dynamics is understanding the mechanics by whide pla
tectonics arises from a convecting mantle.

There are several aspects of the plate-tectonic style oflenan
convection that are characteristic of simple fluid dynamimdeis
of thermal convection. The oceanic lithosphere is fairlyllvde-
scribed as a thermal boundary layer of mantle convectionc@ite
& Oxburgh 1967). Subducting slabs and hotspot-inferred thaan
plumes are also strongly suggestive of sheet-like dowrngsland
columnar upwellings obtained in many forms of three-dineme!
convection (Houseman 1988; Bercovici, Schubert & Glatemai
1989). That mid-ocean ridges are likely not the result oivaatip-
welling (Lachenbruch 1976) correlates with the fact thagesHike
upwellings are fairly rare in convecting systems (Bercoeical.
1989).

to create strong plate-like interiors and weak plate marghhow-
ever, one of the most important effects of non-Newtoniaroldgy
can only happen in three dimensions; i.e., the generatitoroidal

or strike-slip motion. Christensen & Harder (1991), prasenthe
only three-dimensional numerical model of non-Newtoniam-c
vection to date, showed how even when the power-law index is
taken up to 6 (whereas mantle rheology is characterized hg-an
dex of 3), the toroidal motion accounts for only 10% of the net
kinetic energy. In the Earth’s plate motions, toroidal ejyecom-
prises closer to 44% (Hager & O’Connell 1978; Forte & Peltier
1987). The coupling mechanics between poloidal and tordimla

for spherical geometry was investigated analytically blyeRi1992)

to show how the spherical harmonic modes in toroidal eneegy r
spond through certain selection rules to a given buoyaneyant-
ing with laterally varying lithospheric stiffness (a comhtion of
lithospheric viscosity and thickness). A further clue nefijag the
physics of toroidal-poloidal coupling was provided by Or®ell,
Gable & Hager (1991) who demonstrated with Monte Carlo meth-
ods that the present day plate motions minimize the tordidaitic
energy. However, the physical mechanism by which the iotema

of flow and rheology creates distinct plates with strikg-shiargins

However, there are also many aspects of plate tectonics thatis not well understood. Olson & Bercovici (1991), using siengta-

are not characteristic of simple thermal convection. Sehbdg
slabs represent asymmetric downwelling — i.e., only onéepda
the convergent zone actually sinks — which is not obtainaifitle a
simple model of mantle convection (Gurnis & Hager 1988; Kéng
Hager 1990). Passive rifting also cannot occur in basic fhoadi-
els of mantle flow. However, the most conspicuous features-mis
ing from basic convection models is strike-slip motion @drans-
form faults and oblique subduction zones; this motion is akdled
toroidal flow. While the net kinetic energy of strike-slip tram
is nearly comparable to the net kinetic energy of plate nmstio
at convergent/divergent boundaries (called poloidal flgMger
& O’Connell 1978), no strike-slip motion of any kind can bespr
dicted by simple convection theory (i.e., with constant eptth de-
pendent viscosity). Lateral variations in viscosity, eitthroughout
the whole mantle or at the very least in the lithospherefitmel re-
quired to allow strike-slip motion.

Most features of plate tectonics not accounted for in simple
models of convection are generally attributed to the varioom-
plicated deformation mechanisms in the mantle and/ordiphere
(Hager & O’Connell 1978, 1979; Kaula 1980). Thus, a workigg h
pothesis for investigating the relation between the platesmantle
is that the plates — their geometry and motions — arise frairth
teraction of the Earth’s complicated rheology and the neafhtiw
itself. To understand how plate-tectonics is generategh freantle
convection, it is important to consider the entire plateattesys-
tem as a single medium with a complex rheology.

The complex rheology necessary to produce the plate-tecton
style of mantle convection is, however, not immediatelyiobs. It
is generally assumed that plate-like behavior is due pilynrthe
interaction of convective flow with a plastic or pseudo-fitaghe-
ology (wherein the viscosity is stress dependent such ltteafiwid
weakens with an increase in stress). Numerical models ofemen

tistical arguments, hypothesized that the present stateroidal-
poloidal near equipartitioning occurs because plastic sgugo-
plastic rheology causes the plates (and the underlyingemtion
cell, if one is present) to be decoupled from each other textent
that the plates drift nearly independently of one another.

One of the primary limitations in the studies of how plateeli
flows are generated from non-Newtonian thermal convectahat
they involve strongly nonlinear models of convection itsehich
are numerically intensive, especially in the three-dinemsneces-
sary to obtain toroidal motion (Christensen & Harder 19%jur-
ther limitation on these models is the use of mantle-like goelaw
rheologies. Such rheologies are empirically determineidather-
mal viscometric flows (uni-directional shear flow) or uniaixex-
tension/compression (Weertman & Weertman 1975; RanaBv L9
These rheologies might possibly have little to do with theuak
rheology of the plate-mantle system as a whole, with itsirtdist
three-dimensional flow, occurrence of lithospheric faluecha-
nisms, extensive volatile entrainment, viscous heatitg, e

In this study we present a simple model of non-Newtonian
flow that does not explicity involve convection. By its singjtly
we alleviate some of the numerical restrictions encounteserig-
orous models of convection. In this model, toroidal motisrne-
stricted to the lithosphere which we assume is a shallow Fayidr
(see also Ribe 1992; Weinstein & Olson 1992). Moreover, as th
toroidal flow is, in the end, driven by poloidal flow (i.e., iat no
energy source other than its mechanical coupling to poloiuz
tion), we assume all flow is driven by a prescribed poloidébeity
potential. In other words, the model involves two-dimensidiow
driven by sources and sinks; the sources and sinks reprdsent
vergent and convergent zones (or upwellings and downvgsl)in
respectively. The model is thus both kinematic (in that ésaribes
the poloidal component of the flow field) and dynamic (in that i



solves for the toroidal componenent of the flow field from theaa
tions of motion). An important caveat is that since the paddflow

is prescribed, the model can only partially examine theraution

of rheology and flow; it does not account for the rheologidal e
fects at divergent and convergent margins (e.g., riftind subduc-
tion zone dynamics). The model can only allow us to examimwe ho
strike-slip motion arises from the interaction of a giverigidal
field with a particular rheology.

The primary purpose of this study is to determine the best rhe
ology with which a given poloidal flow field can excite sign#itt
toroidal motion. While we primarily concentrate on straate soft-
ening rheologies, we do not limit ourselves to a mantle-ikever-
law viscosity. In this paper, we examine a simple Cartes&sion
of the model using idealized but well calibrated test caseslu-
cidate the more basic physics of plate generation. In a taier-
panion paper, we apply this to the real Earth. The presenpliag
motions are an ideal data set for this model in that we can s@po
the observed horizontal divergence of the Earth’s platea tmin
non-Newtonian spherical fluid shell (representing the lEaliitho-
sphere) and examine what rheologies lead to the best regtiodu
of the observed strike-slip motion, and hence generatidhevfic-
tual tectonic plates themselves.

2 THEORY
2.1 Model Assumptions

We model the Earth’s lithosphere — defined for our purposdbes
upper boundary layer of mantle convection — as a shallow; con
stant thickness, incompressible layer of non-Newtoniaid flo
Cartesian geometry, bounded above and below by relatinglg-i
cid media, i.e., the atmosphere above and a low viscosiheaet
sphere below. The relevance of this model to the Earth hitges
a large extent on the assumption of a relatively inviscidhexsb-
sphere, thus this assumption deserves some discussiolnvisie
cid asthenosphere assumption is valid as long as the vigaufSi
the lithospheric layer is everywhere much greater than stigeso-
spheric viscosity. This assumption may be compromised sexa
with highly non-Newtonian rheologies in which rapidly defo
ing regions may have very low viscosity. However, the vigigos
contrast between the lithosphere and asthenosphere igreans
tively between10® and 107 (where the asthenospheric viscosity
is betweenl0'® and10?® Pa s while a typical lithospheric viscos-
ity is 10%® Pa s or higher; see Beaumont, 1976; Watts, Karner &
Steckler 1982). Therefore, an extremely large viscosiypdrom
plate interior to plate margin would be required to invatel#his
model. Such an intraplate viscosity drop, however, carheeibe
excluded nor assumed, as it has never been quantified foettie. E
In this study, the model viscosity drop within the fluid layisr
typically three orders of magnitude — much less than theh&art
lithosphere-asthenosphere viscosity contrast — and & dhleast
self-consistent as a model of the lithosphere.

The inviscid asthenosphere approximation also impliaty
sumes that all forces balance within the lithospheric layed
thus basal tractions are negligible. Studies of forces ertghtonic
plates have yielded varied conclusions about the influefegse
cous drag from the asthenosphere. Forsyth & Uyeda (197%idfou
that the independence of plate velocity on plate area wasand
tive of negligible asthenospheric drag. However, in thadlgt ridge
push was modelled as an edge force. Hager & O’Connell (1981)
modelled ridge push as a force associated with lithosphieio&-
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ening distributed over the area of the plate. Neither thisdmor as-
thenospheric drag are negligible, however they tend toalatitus
also leading to plate velocities independent of plate areamodel
presented in this study can more or less accommodate eibher ¢
clusion regarding viscous drag. A negligible asthenosphdnag

is explicitly in keeping with the inviscid asthenosphereixi-
mation. On the other hand, as this model also does not account
for lithospheric thickening, one may argue that distrilbut&lge
push and asthenospheric drag balance and are thus cancetled
in the model. Naturally, this latter argument is problemais it is
never safe to assume that the mantle flow forcing or beingetbrc
by lithospheric motion is easily predictable. The model ntey
made more realistic by the inclusion of underlying viscoreggcand
layer thickening, though by the conclusions of Hager & O’@elh
(1981) it is probably wiser to assume these effects caneel th
include one without the other. Nevertheless, these eftesiseven-
tually be incorporated into a shallow layer model such asotie
presented here, as was shown by Ribe (1992) and Weinstein & Ol
son (1992). As this would introduce extra complications deel
grees of freedom, we presently opt for a simpler model to éxam
the more basic physics of non-Newtonian lithospheric flow.

2.2 Equationsof Motion

Given the above considerations, the boundaries of the kxgeas-
sumed to be free-slip surfaces. With these boundary camditiand
the narrowness of the layer, we further assume that theie vari-
ation of stress or velocity with depth across the layer, amy bor-
izontal velocities exist in the layer. To drive the flow, wegpcribe
mass sources and sinks, or, equivalently, the horizontalgience,
in the layer; thus upwelling appears as sources, downvgehis
sinks. Our field of souces and sinks is described by the sainte
functionS(z, y) (wherex andy are the two horizontal coordinates)
wherein, by continuity,

ov
+ oy S
whereV;,, = (%, g—y,O) is the horizontal gradient operator, and
v = (u,v,w) is the Cartesian velocity vector. There is no verti-
cal flow in the layer itself. However, because of the sources a
sinks, there is implicitly a nonzero vertical gradient ir thertical
velocity; i.e., by equation (l)%” =-S.

We next define the horizontal velocity vectay = (u, v,0)

by a Helmholtz representation:

Vn =V + Vi X (P2) (2)

where¢ is a velocity potential representing the poloidal flow (in
factop = %—VZV whereW % is the poloidal velocity vector potential)
andq) is the horizontal stream functioi;z is exactly equivalent to
the toroidal velocity vector potential. Combining equasq1) and

(2), we see thap obeys Poissons equation:

Vig=25

vh.viau

b= (1)

®3)

thus, specifying the sources and sinks throdgtirectly prescribes
the poloidal potentiap. All that remains is to determing.

The stream function) is found through the Stokes equation
for conservation of momentum

0=-VP+V-(2n¢) (4)

where P is the nonhydrostatic pressure (such that body forces and
hydrostatic pressure have been removeédy 1(Vu+ [Vo]") is
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the strain-rate tensor, angis the non-Newtonian laterally varying
viscosity which is a function of andv. For now, we simply define
n as a general function af andy until specifying a rheology later.
To obtain an equation fap, we takez - V x of equation (4); with
the assumptions that, v and thus are independent of (because
of the free-slip boundaries and shallow layer), and that ‘g—f: =

g—ij = 0 while 2% = —S in the layer, we arrive at
. y 82 82
DViG 4+ OVan- VaViu 4 ATpATy 4421 O
0xdy 0xdy
9% 9%n
z-V VinS +2A"n—=— —2 A* 5
2o Vni X VaS ”axay oxdy ¢ )

whereA™ = % — g—;z. Equation (5) is an inhomogeneous equa-
tion for v being forced by potential (or source-sink) flow via gra-
dients in viscosity. Iy is constant, equation (5) becomes a homo-
geneous biharmonic equation fgryielding a null solution (i.e.,
1» = 0) if the boundary conditions are homogeneous (as they are
bound to be unless an artificial source of toroidal motionujgdied
at some boundary in ther, y) domain).

Before explicitly defining a rheology, we simply assume that
1 = non(x,y) wherer is a dimensionless viscosity. We also define
the domain of interest as L, < x < Lu, =Ly < y < Ly
and assume a density of the fluid layerNondimensionalizing:
andy by L, (such that the domain now lies in the rangé <
z,y/b < 1 whereb = L,/Lg), n by n., ¢ and¢ by n,/p, and
S by n./(pL2), we simply regain equation (5), dropping the tilde
on 7. The dimensionless equation (5) is then solved by a spectral
transform, under-relaxation method (see Appendix andst#misen
and Harder, 1991).

2.3 Rheology

The rheology we employ in this study accounts for nonlinear
plastic-type behavior in which the fluid viscosity decreaséth

an increase in strain-rate (or stress); this rheology istrfikely

to yield plate-like flows as it is necessary for creating weédte
margins (regions of high deformation) and strong plateriate
(regions of little deformation).

As the source-sink flow described here is strictly isothéyma
viscosity cannot be explicitly dependent on temperatuvéver,
we can approximate temperature dependence by noting thahin
vective flows, temperature is usually strongly correlatéith wither
vertical velocity (in the deep interior regions where hontal ve-
locities are small) or horizontal divergence (near theawefwhere
vertical velocities are small); i.e., fluid is generally lfoold) where
itis either upwelling (downwelling) in the deep mantle oveliging
(converging) at the Earth’s surface. Thus, it is possiblapgproxi-
mate temperature by some linear combination@ndV, -v = S.
This can then be employed in a temperature-dependent dyeolo
Although we will not investigate this effect here, we notéoit fu-
ture reference.

For generality, we employ the following equation for dimen-
sionless viscosity

n=(y+eH)Hve (6a)
where
2 s ao|(0u\ g2 gOu| 1 (0u  Ow\®
¢ _3'5_2[(837) +5 Sax +2 8y+8x
(6b)

is the second invariant of the strain-rate tensor (withimetdr of
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Figure 1. Stress versus strain-rate relation of equation (7) for ikeosity
of equation (6) with various values of the power-law indexPower-law
rheologies corresponding to values wf> 1 are shown, along with the
Whitehead-Gans (W-G) stick-slip rheology with= —1. For all curves
~ = 1073, Stress is normalized by its maximum valdg,..; for the
power-law casesmaq. = 1, while for the W-G casemar = (2,/7) 1.

-2). This equation is essentially a simplification of thei@au rhe-
ology (see Bird, Armstrong & Hassager 1987) for pseudotpas
flows. In the limit ofy — 0, the basic power-law Ostwald-de Waele
rheology is recovered. We retain the parametéo proscribe vis-
cosity singularities (in the cases wheréy — 1 < 0 andé? = 0)
and hence prescribe a maximum valuenofThe parameter is
the power-law index for > 0, where dilatancy (i.e., strain-rate
hardening) occurs i < 1 and pseudo-plasticity (strain-rate soft-
ening) if v > 1. The rheologies withv > 1 are typical of those
used in geodynamical studies of non-Newtonian flow. Anoiper
cial class of rheologies exists for< 0. These rheologies are also
strain-rate softening. However, they further allow stresbuild up
toward a maximum value with increasing strain-rate and there-
leased with increased deformation; i.e., they induce astat-off
(Figure 1). If we consider the root-mean-square stresas¢ag,
the square-root of the second stress invariant)

(7)

(whereg is the deviatoric viscous stress tensor), then stress is max
imized atée = ++/—v7. A stress maximum can thus occur at a
real value ofé for v < 0. Beyond the stress maximum (i.e., for

lé] > /—v7), the material is self-lubricating in that the faster it de-
forms the less it resists deformation. The occurence oessimax-
imum has importance in this problem because, as will be shown
later, it allows plate-like flows to sharpen their velocityofiles,
rather than spread their profiles by the outward transfer of m
mentum. This class of rheologies is also important as a iconin
model of stick-slip behavior. That is, it can model the rapidid

up of stress with little strain-rate, followed by the releas stress
once the cut-off strain-rate (i.e., thieat which the stress maxi-
mum occurs) is exceeded. Such a rheology was used for the case
of v = —1 by Whitehead & Gans (1974) in their simple yet ele-
gant zero-dimensional continuum model of earth-quake \beha

this rheology leads to a nonlinear harmonic oscillator iatds

a nearly saw-tooth periodicity highly suggestive of striegsd-up

and release during earth-quake sequences. Similar agnaitela-

tions have also been used in kinematic dynamo theory tcerétat

“«” parameter to magnetic inductids; this is termed “quenching”
in the dynamo literature and leads to a nonlinear B-fieldllasci

g = g

1o =2né



tor suggestive of geomagnetic field reversals (e.g., Olsdtagee
1990; see Roberts & Soward 1991).

The class of rheologies for < 0 will be referred to as stick-
slip rheologies. They are in fact merely theoretical rhg@s that

have no empirical basis. However, as Whitehead & Gans (1974)

demonstrated, the rheology with = —1 can arise, in a simpli-
fied sense, from the combination of temperature-dependscs+
ity and shear heating. This combination was also shown thl yie
an inverse dependence of stress on plate velocity and the-a s
lubricating mechanism for shallow mantle flow (Schubert &-Tu
cotte 1972), as well as surge behavior in glaciers (Yuen &uSeht
1979). If we assume a simplified temperature-dependentsiisc
(Whitehead & Gans 1974)

n=mnoll —a(T = T,)] (®)

and a steady-state relation between shear heating andaheifm
fusion

K(T —T,) = né* (9)

(whereK is a heat transfer coefficient) then elimination of the tem-
perature anomaly” — T, between equations (8) and (9) yields

B K/d
1T K o) + &
Thus, in an idealized way, rheologies with< 0 potentially ac-
count for nonisothermal behavior at zones of high deforomaths
the rheology forr = —1 is most physically justifiable, we will con-
centrate to some extent on that case; this rheology will kered
to as the Whitehead-Gans, or W-G, stick-slip rheology.

(10)

2.4 TheSource-Sink Function

In this study we examine only one simple flow pattern to il
the basic physics of plate generation. Our source-sink gorst
tion is derived from the motion of a single rectangular plate
square plate, as shown by Olson & Bercovici (1991) is the sim-
plest paradigm for a tectonic plate. The presumed activiorec
plates (i.e., plates attached to signficant subductingsklab the
Earth have convergent (subduction) zones that effecticein-
prise between 20 and 30% of the plates’ circumferences yEors
& Uyeda 1975); a square plate drifting perpendicular to ohe o
its edges has a convergent zone (i.e., a leading edge) that-is
cisely 25% of its net circumference. Under such uniformtdaf
square plate’s kinetic energy is exactly equipartitionetween
toroidal and poloidal parts, and an ensemble of indepehderift-
ing square plates produces a distribution of plate margatiser
closely resembling that of the real Earth. However, mostdamp
tantly for this study, the toroidal flow field of a rectangufalate
is precisely known. Thus we here treat the rectangular glatie
standard we wish to achieve. We separate the poloidal coempon
of the plate’s velocity field by taking its horizontal divengce and
use it as our source-sink function. The sources and sinkssrém+
resent the trailing and leading edges of the plate, resytilt
remains to our model to generate the strike-slip sides optate,
i.e., the toroidal motion. We thus use this configuration ¢ted
mine which rheology best reproduces the original plate.

To derive the source-sink functio$, we consider a rectangu-
lar plate with sides of lengtPa and2/3 in thez’ andy’ directions,
respectively;’ andy’ are coordinates arbitrarily rotated relative to
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Figure 2. Velocity vectorsw, source-sink function (or horizontal diver-
gence)S, and vertical vorticityw, for the square plate standarfl.andw.
are described by equations (13) and (14), respectiveljy avi= 3 = 0.25.
The maximum nondimensional velocity(s045. The maximum and mini-
mum values of botls andw. are4-0.98 and the contour interval i8.13.

immobile medium. At a given instant, we define the origin & th
plate’s center. The velocity field of the plate as a functibn’cand
y'ist = VF(x'/a)F(y'/B). The functionF defines the shape of
the plate; e.g., for a discontinuous pldfas a step function, i.e.,

0 &< -1
=41 -1<¢<1
0 ¢£€>1

(&) (11)

However, since a discontinuous plate leads to singularitiehor-
izontal divergence and vorticity, we employ &hthat is infinitely
differentiable. A plate-like shape can be obtained withighsly
modified super-Gaussian, i.e.,
F(g) =e "7,

p=>1. (12)

Forp = 1, a regular Gaussian profile is recovered, while in the
limits of p — oo andp — 0, step- and delta-functions are obtained,
respectively. A reasonable step-like plate is obtainecgfor 4; in
this study we exclusively uge= 8. With these considerations, we
employ a normalized source-sink function:

1—-L 2p—1
_ (2 YN L -t e
2p—1 B
(13)

In this study, ther’-y’ axes are rotated clockwists® relative to
thez-y frame; i.e.,(z',y’) = (z — y, = + y)/V/2. The rotation of
the plate and hence the source-sink field is done to avoidikell

o0v

= oy

thex-y axes to allow the plate a general trajectory. The plate moves flows caused by the periodic boundaries employed in the iect

at a velocityV in the in they’ direction and is surrounded by an

transform method. Similarly, the plates vertical vortyds, for later
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comparison to the dynamically generated vorticity,

. ov
W, =2-VX0=—
- ox
1
_ _é % 1-% {L'_/ 2p—1 6_%@//&)2;,6_%(?///[3)2;)
a\2p—1 «@

(14)
For a square platex{ = 3) S andw. map precisely into one an-

other by interchanging’ andy’. Thus, because of equation (3),

and sinces, = — V34 (where) is the toroidal potential, or stream
function, for the plate), the net kinetic energy of a squdegepis
equipartitioned between poloidal and toroidal parts. Tihasince
both the toroidal and poloidal potentials satisfy Poiss@tuation
for forcing functions which differ only by a rotation of axethen
the toroidal and poloidal flow fields also only differ by a cdisr
nate rotation, and thus bear the same kinetic energy (se©#sn
& Bercovici 1991). Figure 2 shows the velocity field source-
sink function .S and vertical vorticityw. for a square plate with
a = =0.25andp = 8.

The success of our continuum model relies on its ability to

reproduce

(i) the plates original vorticityo.

(i) kinetic energy equipartitioning given th& derived from a
square plate

(iii) the original plate’s functional dependence of thediolal to
poloidal kinetic energy ratio o3/«

(iv) the strength (or viscosity) distribution of the platedasur-
rounding flow; a perfect plate has a uniform strength distitn in
its interior with distinctly weak margins.

It should be noted that the actual tectonic plates do natfgatieal
plate behavior since intraplate deformation is certaigyigicant.
However, the precise quality of plate-like behavior at thetE's
surface is difficult (if not impossible) to assess and qugntiis is
of course why the plate tectonic model, wherein the platesaar
sumed ideal or rigid, is used to determine surface velacifibere-
fore, for the sake of simplicity we seek to attain the well dedi
but perhaps most difficult goal of ideal plate behavior.

3 NUMERICAL EXPERIMENTS: RESULTSAND
ANALYSIS

The following results are generated by the numerical sotutf
equation (5) (combined with equation (3)) or2a6 x 256 grid
with the rheology of equation (6) and the source-sink fuorctf
equation (13); see Appendix for further details about theerical
solutions. The domain aspect ratias held constant at and the
parametep is kept at8. The rheological parametetsandv, and

the plate aspect rati6/« are varied. For the power-law cases, we
allow v to be as high as 21 to display possible asymptotic behavior
of various quantities a8 — oo. Furthermore, although the deep

mantle is probably characterized by 3, it is doubtful that such
a low power-law index is sufficient to capture the behaviothef
entire plate-mantle system (see Christensen & Harder \@in-
stein & Olson 1992).

In Figure 3, we show the velocity vector field contours of
the generated vorticity. = —V34, and dimensionless viscosity

n for non-Newtonian flow driven by the source-sink function of

Figure 2; rheologies include selected power-law cases (1) and
the W-G stick-slip case{ = —1). The velocity field forv = 1,

‘IMI!U!!“II!\W1!“ |

l Ll ﬂ

Figure 3. Velocity vectorsv (a), contours of vertical vorticityw, (b),
and a three-dimensional surface representation of viscgsic), for non-
Newtonian flow driven by the source-sink function of Figureith various
values of power-law index andy = 10~3. Vorticity and viscosity for
v = 1 are not shown since, for that case, = 0 andn is constant. The
maximum velocity forr = 1, 3, 21 and—1 are0.026, 0.039, 0.042 and
0.046, respectively. The maximum and minimum vorticity fer= 3, 21
and—1 are,4+0.22, +0.34 and+0.46, respectively; the vorticity contour
interval is0.061 for all values ofv.
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Figure 4. Vorticity deviation(2, defined in equation (15), versus power-law
indexv for the source-sink function of Figure 2 and the power-laealbgy
(v > 1) and two different values of. The value of for the W-G stick-slip
rheology (withy = 10~3) is shown for comparison.

0.3

the Newtonian case, is shown to illustrate completely atiohal
flow, i.e., wheny) = 0. Clearly, the velocity and vorticity fields
become more like those of the original square plate axreases
to 21; yet, they are most similar to the fields of the squareepia
shape and magnitude, for the W-G stick-slip rheology= —1).
However, while the largest generated velocity (for the WaSe)
is essentially the same as that for the original plate, theirmam
generated vorticity (again for the W-G case) is less thafithat of
the square plate.

The viscosity field (Figure 3c) changes little in shape in the
power-law cases for > 3. The W-G stick-slip case, however, is
quite distinct, producing the most plate-like strengthtriisition.

In all cases, the viscosity lows are aligned with conceiunatin S
andw.; yet the lows are most sharply defined for the W-G rheol-
ogy. Furthermore, the W-G rheology produces nearly uniforgh
viscosity regions in the plate interior and the medium sumaing
the plate. In the power-law cases, even for very higthe viscos-
ity of the plate region is strongly spatially varying, maiinting a
distinct saddle-shape.

A quantitative measure of how closely the induced toroidal
flow matches that of the original plate is contained in a gityante
call the vorticity deviation

Ja(w= —w.)?dA
[, w.2dA

wheredA = dxdy and A is the area contained in the domain
—1 < z,y/b < 1. The vorticity deviation contains information
not only about the ratio of amplitudes of the two vorticitigse
term in equation (15) that goes 45 w2dA/ [, w.>dA) but also
the spatial correlation between the vorticities (the crtesm that
goes agf,, w-w.dA/ [, w.>dA). A perfect match between. and
w, yields Q = 0. Assuming that the Newtonian case & 1),
which can generate no vorticity, produces the worst mateén t
Q) = 1 represents the poorest fit. While it is conceivable thateher
are even worse fits than in the Newtonian case (e.g., dilptzases,
in which0 < v < 1, produce weak plate interiors and strong mar-
gins), for these strain-rate softening rheologiess never> 1.
Figure 4 shows? versusv for the power-law cased (< v <
21) and, for comparison, the value @ffor the W-G stick-slip case
(v = —1); inall casese. = B = 0.25. The W-G case has =
1073, yielding a maximum dimensionless viscosity 1600. Two
curves are shown for the power-law cases. One curve hasiie sa

Q= (15)
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1.0

.W—G stick-slip (v =-1)

0.8
L

power-law (y :5x10'7)
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KET/KE p
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S 1 é 1‘1 1‘6 21
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Figure5. The ratio of toroidal to poloidal kinetic enerdy Er/K Ep ver-
susv for the same cases as Figure 4.

~ as the W-G case, and the other haga 5 x 10~7 such that the
maximum viscosity at = 21 is the same as that for the W-G case.
This is done to avoid any inequitable comparisons.

The largest vorticity deviation occurs at= 1, as expected.
For the power-law cases, the minimum deviation is approtetya
0.5. While the solutions with largest viscosity contrase.(iwith
~v = 5 x 1077) yield more plate-like characteristic in other cat-
egories (e.g., kinetic energy partitioning; see belowgyttisplay
larger vorticity deviation than for the cases with= 102, ap-
proaching? = 0.7 asv — 21. One of the most interesting features
of the power-law cases is th& appears to reach an asymptote as
v — oo. Thisimplies that a power-law rheology has an upper limit
on how well it can produce a plate-like vorticity. The voitycde-
viation for the W-G stick-slip rheology is shown for comsm,; at
0.4, it is the lowest value shown in Figure 4.

The toroidal to poloidal kinetic energy ratio

LA Va2 dA
L4 IVro2dA

versusv is shown in Figure 5 for the same cases as in Figure 4.
For an ideal square plate this ratio is unity, while for a Newi&n
fluid it is zero. For the power-law cases with= 1072 andy =

5 x 1077, KEr/KEp approachs 0.5 and 0.65, respectively, as
v — 21. In this category, the higher viscosity contrast casedlyiel
better plate-like behavior. However, as with vorticity dgion, the
kinetic energy partitioning appears to reach an asymptatice as

v — 00, again suggesting that the power-law rheology is limited in
its ability to produce plate-like flows. In contrast to thenmu-law
cases, the W-G stick-slip rheology yields the largEsi/ K Ep
shown of 0.88, a quite reasonable reproduction of the idkeaé p
partitioning.

For completeness, we show in FiguréX%and K Er /K Ep
versusy for several stick-slip cases with10 < v < 0 andy =
10~3. The minimum vorticity deviation of 0.3 occurs at= —2,
while the maximumK Er /K Ep of 0.9 occurs av = —0.3. In
these categories, the stick-slip rheologies clearly areeraoccess-
ful at reproducing the ideal square plate.

Finally, we examine the dependence &fE;/KEp on
the aspect ratigg/a (Figure 7). For the ideal rectangular plate,
KEr/KEp =~ (/a, as shown by the dashed curve in Figure
7. This differs from the plate model used by Olson & Bercovici
(1991) whereink B/ KEp = (3/a)?; in that study, the domain
size and plate size were linearly dependent, whereas heyeatie

KEr/KEp = (16)
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Figure 6. Vorticity deviation 2 and kinetic energy ratid\ Er/K Ep for

the stick-slip cases witlr < 0 and the source-sink function of Figure 2.

For all casesy = 10~ 3.

22

ideal plate’,x’/

i P W-G stick-slip
Pias (v=-1)

power-law (v=21)

o
0.4 0.8 12 16 20

Figure 7. Kinetic energy ratiok E1/ K Ep versus plate aspect ratigy o

for the source-sink function derived from the velocity fiedfl a general
rectangular plate. Curves are shown for the power-law dwolvith v =

21 (and two values ofy) and the W-G stick-slip rheology with = —1

(andy = 10~3). The dashed curve shows Er /K Ep for the original,
ideal rectangular plate

independent. Figure 7 also showser /K Ep versus3/a for the
power-law rheology withv = 21 and the W-G stick-slip rheol-
ogy. The same values of as Figures 4 and 5 are used amds
held constant at 0.25. Although, the power-law case dodd gie
increase inK Er /K Ep with increasing3/«, its curves diverge
considerably from that of the ideal plate and do not evenexehi
equipartitioning agl/«a — 2. In contrast,K Er /K Ep for the W-
G rheology follows the curve for the ideal plate relativelgsely,
and exceeds equipartitioning/@fa = 1.2.

4 DISCUSSION
4.1 Power-Law versus Stick-Slip Rheologies

The results of this study suggest that plate-like flow, amtkehe
generation of plate tectonics from mantle convection, isread-
ily attained with a power-law rheology, not with a mantig@&jiaw
with v = 3, nor an extreme one witlr = 21 (or perhaps, as
suggested, even in the limit of — o0). A power-law rheology

yield strong plates and weak margins, itis far from a comensive
model of the various failure mechanisms (especially disnapus
brittle failure) in the Earth’s lithosphere. Furthermorgnisother-
mal effects (frictional heating) are not accounted for inaietric
experiments. The myriad influences of water, suggested &
mary cause for the Earth’s unique version of tectonics (see
Kaula 1990), may also not be appropriately accounted fohén t
power-law rheology. Although rheometric experiments hbeen
performed with wet silicates (e.g., Chopra & Paterson 19884),
the influence of water on melting at ridges, serpentinizatibperi-
dotite at transforms (Bonatti 1978), lubrication of subtitue by
muds and enhancement of pore pressure (Shreve & Cloos 1986),
has yet to be comprehensively accounted for in a single olggol
(see Kirby & Kronenberg 1987 for review). While it is unlikghat

a single rheology could in actuality incorporate all theffeats, itis
important to recognize that the power-law rheology may beliyh
inadequate for describing the plate-mantle system.

In this study, the rheology that is most successful at produc
ing plates is the hypothetical stick-slip or self-lubricatrheology
with v < 0. The stick-slip rheology does not represent any em-
pirical or physically rigorous rheology. However, it doeapture
an important physical effect which may aid in understandirngt
rheology is necessary to generate plates. The stick-séplogy
is better at producing plate-like flow than the power-lawalbgy
because, as shown earlier, the stress—strain-rate reliatimono-
tonic for the power-law case, but non-monotonic for theksslip
case (see Figure 1). Thus, in the stick-slip case if the maxim
strain-rate in the flow exceedg—v~, there can be a local stress
minimum at the strain-rate maximum; i.e., in the zones ofefsts
deformation, there can be a stress minimum (though not satgs
the minimum stress). It is this property which allows thelstslip
rheology to yield the best plate-like behavior. This can bees-
stood by considering the transfer of momentum from the edge o
a moving plate (or wall) to a neighboring infinite viscous riueal.
The plate moves in the positivedirection with its edge at = 0;
the fluid extends to the left to = —oo. The strain-rate is always
largest at the plate edge as the fluid only comes into equilibas
time ¢t — oo. In a Newtonian or power-law fluid, the shear stress
Ony = 77% is also largest at the wall, as illustrated in Figure 8, and
decreases as — —oo. The force (per unit volume) on the fluid
in the y-direction isf,, = Bg;y , which for all power-law cases is
always> 0. Thus a positive force is exerted by the plate on all parts
of the fluid; this force acts to bring the fluid into equilibmiuwith
the plate. Momentum is always transferred outward from tagep
into the fluid.

In the stick-slip case, however, if the strain-rate maximatm
the plate’s edge is- /—v~, then a stress minimum is at the plate’s
edge; the stress maximum occurs at samg 0 where the strain-
rate isy/—v~. Physically, this implies that the fluid is so weakened
near the wall that the strong (high viscosity) fluid actuabiyains
more stress than fluid at the wall. Since stress decreasesdahe
plate’s edge, the region of fluid between the stress maximuoan a
the plate edge has a retrograde force on it, ifg..< 0. This re-
verse force causes the weak fluid by the wall to deceleratss, th
inducing the velocity profile near the wall to sharpen. Tharpbn-
ing of the velocity profile causes the shear strain-rate toeiase,
the shear stress near the wall thereby to decrease, anchthustt
rograde force to increase further. The cycle continuesstitting

has always been employed in the past as it is what experilnenta a feedback mechanism which causes the velocity profile ifiulte

evidence has provided. However, although pseudo-plgsticay

to become plate-like.



v=-1

Figure 8. An illustration of shear stress,,, imparted to a fluid half-space
(extending tar = —o0) by a plate (or wall) atz = 0 moving in the+y-
direction. Stress is determined for several non-Newtonigeologies for an
arbitrary velocity prescribed to be= %[1 + tanh(4x)] at a given instant
in time; velocity (increased by 50%) is shown by the dashedecu

4.2 Boundary Layer Theory

The above arguments can be demonstrated more rigorougiyawit
simple boundary layer theory. The above idealization i<desd
by the dimensional momentum equation, in this case

ov_10 (0
ot pox oz

= (17)
where the acceleration term is retained because the fluicizhois

an infinite half-space and cannot, therefore, ever be inlieguim.

To be able to employ similarity arguments, we take the linfit o
~ = 05 in this case, the stress maximum for flow with the stick-slip
rheology occurs at = —oo. Viscosity is thus defined as

v 1/v—1
=A|l— .
! (6w)
where A is a constant. We assume thais only dependent on the
similarity variable¢ = x/4(t), whered(¢) is the thickness of the
velocity boundary layer. Combining equations (17) and (Li8)ng
v = v(¢), and, after some manipulation, integrating the resulting

equation over the extent of the boundary layer, i.e., everK ¢ <
0, leads to an equation for

1/ dd _
dt

(18)

— 140[’[/(0) — vl(z__ll)/]u (19)
pv 7, ¢(dv/dC) d¢

The growth of the boundary layer, determined by equatior),(19
represents the transfer of momentum from the plate edgeeto th
adjacent medium (since the size dfs indicative of the amount
of fluid dragged along by the plate). At the plate edge= V,
and at the extent of the boundary layer (i.e.{at —1) v = 0.

We thus approximate the velocity within the boundary laysr a
v = V(¢ + 1)3. The cubic function is chosen so thatits slope
and curvature are continuous with the essentially unmofling
beyond the boundary layer; i.e.,= v = v” = 0at{ = —1.In
this case, integration of equation (19) yields

o

A(6v—2)(5v—2) (1) v B
)= PV4,<3V)1_1/" t+C l/?é 1 (20)
_ _56A +
o€ p(3V)2 v=—1

whereC' andd, are arbitrary integration constants (see also Bird,
Stewart & Lightfoot 1960, ch. 4). (Equation (20) is not valithen
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v = % orv = %; however, since we are mainly interested in rhe-
ologies withvy > 1 andv < 0, we will not concern ourselves
with these special cases.) For the power-law casesmithl, the
constantC' = 0 if the plate’s motion begins instantaneously (i.e.,
¢ = 0 att = 0). Thus, the velocity boundary layer thickness always
grows forv > 1. Momentum is always transferred away from the
plate, even for very large. However, in the stick-slip cases with
v < 0, § can diminish with time, depending on the choice(gf

in the W-G case o = —1, § can only shrink with time. Thus,
the velocity profile can sharpen (and must sharpenvfee —1)
near the plate edge. Momentum transfer can thus be inkdbitte
blocked altogether for the stick-slip rheologies.

The stick-slip rheologies, therefore, can cause velocity p
files to sharpen into plate-like flows and can reduce or elat@n
the transfer of momentum from a fast moving region to a slower
one. This property allows for the generation of a distinett@llike
flow that is decoupled from the surrounding medium; i.e.|ybog
resistive forces that act to smooth the flow and distributener-
tum are greatly reduced. In short, this rheology providestlie
forming of the plates as well as efficient lubrication of itges.

5 CONCLUSIONS

We have employed a relatively simple model of source-siikedr
non-Newtonian lithospheric flow to determine what rheolady
lows for the most efficient generation of tectonic plates. diese
as our standard a rectangular plate drifting perpendicidasne
of its edges. The horizontal divergence of the plate’s vglogas
used as a source-sink function (where a source occurs atathe t
ing edge, and a sink occurs at the leading edge). This functio
was then applied to the model to drive fluid flow for various hon
Newtonian rheologies to determine which rheologies begtore
duced the original rectangular plate. The rheologies useldided

a range of power-law (i.e., pseudo-plastic Carreau) @tatand a
theoretical rheology that models stick-slip behavior.

In the limit of Newtonian flow, no plate-like behavior is gen-
erated, as expected. As the power-law indejs increased, the
power-law rheology appears to reach an asymptotic limittén i
rather modest ability to generate plate-like behavior. Stiek-slip
rheologies, while not able to generate the ideal plate, ansider-
ably more successful at producing plate-like flows. An asialpf
momentum transfer and a boundary-layer theory indicatastte
stick-slip rheology is more successful at generating plaecause
it can cause velocity profiles to sharpen and impedes or Ipitshi
the transfer of momentum from the plate-like flow to the suna-
ing medium; i.e., it induces considerable lubrication.

These results imply that the non-Newtonian rheology that ca
best describe plate behavior is one that not only permigérstate
softening (and thus strong plate interiors and weak plateyims)
but also a negative feedback between stress and strainfiage
latter effect (the negative feedback) leads to sharpenfngjate
edges as well as lubrication of plate margins (see also ®thub
& Turcotte 1972). The negative feedback mechanism may aso b
facilitated by the presence of water (as lubrication calyas), and
this is in line with present theories of the role of water atpl
margins and why Earth appears to be the only planet with Iglear
defined plate tectonics. Although the stick-slip rheolsgised in
this study are merely hypothetical, they indicate that treofogies
required to allow plate tectonics to arise from mantle cotioa
must incorporate mechanisms not accounted for by standanden
rheologies.
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Appendix: Solution Method

The dimensionless toroidal and poloidal functiahand¢ are as-
sumed periodic over the domain with period 2 in thelirection
and2b in the y-direction. Thus

- Yw

m=-—00 Nn=—00

)eimwzeinwy/b . (Al)

The infinite series are truncatedsat n = +N/2. From equation
(3), .y, is automatically prescribed by

wherek2,, = 7%(m? 4+ n?/b*) and

(42)

1 [t b A o
Sinn = 4_b/ S(z,y)e ™ e P dxdy . (A3)
-1 Jop

In most cases, our rheological law involves an irrationalcfu
tion of derivatives ofyy and ¢, thus there is no guarantee that our
viscosity field has the same periodicity as assumed/f@and ¢.
Any apparent linear trend in viscosity across one fundaaigre-
riod of the domain will lead to spurious high wavenumber aais
a Fourier representation gf this occurs because linear trends lead
to discontinuities at the boundaries of the domain. To tlieaar

trends inn separately from the Fourier representation, we assume,

regardless of rheology, that

77:ao+a1x+a2y+a31’y+ﬁ/(x7y) - (A4)

The polynomial portion defines a two-dimensional functicattap-
proximates the linear trend in; the foura; are determined, for
speed and simplicity, by requiring this function to coireidith n

at the four corners of the domain, i.e.,.at= +1,y = +b. The
remaining viscosity perturbation’ has little, if any, spurious high
wave-number modes from edge discontinuites. Thus, we mag mo
safely Fourier analyzg’. Equation (5) becomes

0 0 0?
aoVith + <2a18 + 2as 8y) Vi + das aa:gy = B(z,y)
(A5)
where B(z,y) contains all the remaining nonlinear and

nonconstant-coefficient terms of equation (5). Employig t
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Figure 9. Frame a (top):Vorticity deviation €2 and kinetic energy ratio
KEr/KEp versus N (the mode at which the Fourier series in the
spectral-transform method are truncated; see equatiod) fad the W-G
stick-slip case of Figure 3. Convergence is adequatelinatiaatN = 256.

Frame b (bottom)Power spectrum of the Fourier coefficients of the toroidal

stream function for the W-G stick-slip case of Figure 3 with = 256.
Because of dealiasing, power fpi|, |m| > 64 is zero and therefore not
shown. Since the stream functiahis a real quantity, coefficients fatm
are linearly dependent and are therefore combined in theepspectrum.
The power undergoes a ten-order of magnitude drop whiclcates that
the solutions are well resolved.

Fourier representation, equation (A1), we obtain

Un = Bmn [aokfnn — inkfnn (ma1 + naz/b) — 4a3mn7r2/b]
(A6)
where

1 +1 r+b ) ) b
Bon = E/ B(xz,y)e M e b qrdy . (AT)
—b

Equation (A6) is used to find th&,,,, for one iteration. Then),

¢ and appropriate derivatives are determined frém,, and ®,,,,,
via use of fast Fourier transforms (FFT), as advocated by&ys
(1971, 1980); clearly, howevep, and its derivatives need be calcu-
lated only once. From these functions the non-Newtoniacogity

7 is calculated from the rheological equation (6). The patanse
ai, i = 0,1,2,3, are updatedy’ is redetermined and appropri-
ate derivatives of)’ are found via FFT’s. All nonlinear terms are
then consolidated to updatB(x,y), which is then transformed
via FFT's to B, and used to solve equation (A6) fdr,,, on
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the next iteration. Aliasing is reduced by settifty,,, = 0 for
Iml, |n| > N/4. Under-relaxation is used to facilitate numerical
stability. If ¥,,,,, is the solution to equation (A6) at iteratignthen

U9 = W, + (1= p) oy (A8)

where the superscript denotes iteration number= 0.9 yields
reasonable and consistent convergence. Iterations pracei the
convergence criterion

> S [ Wi — Wi P
S X [T

is satisfied. Solution convergence for increasi¥igs also tested.
The kinetic energy ratid{ £+ /K Ep and vorticity deviatior2 vs

N (up toN = 512) are shown in Figure 9a for one of the most nu-
merically demanding solutions, i.e., the W-G stick-sligeaCon-
vergence is sufficiently attained &f = 256 which is employed
throughout the paper. Accuracy of solutions is also estchhat/ ex-
amining the power spectrum fdr,,,,,. Figure 9b shows the power
spectrum also for the W-G case; clearly, a drop of ten ordérs o
magnitude in spectral power implies that the solutions agt re-
solved.

107° (A9)



