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Transverse ridges are regions of anomalously high uplift that, run parallel to many of the trans- 
form fattits at mid-ocean ridges. Previous models of the formation of these ridges generally fail 
to explain the magnitude of uphft (between 1 and 8 km) or account for geophysical observations 
(which indicate that the ridges are dynamically uphfted by neutral or heavy, but not buoyant, 
material). However, the potentially large Maxwell relaxation time of the lithosphere and the high 
strain rates and finite deformation of transform faults imply that nonlinear viscoelasticity may 
play an important role in the formation of these ridges. We present simple theoretical and exper- 
imental models of viscoelastic flow beneath a transform fattit to show that the purely horizontal 
motion of the fattit can generate vertical uplift typical of transverse ridges. The theoretical model 
is of an infinite half-space of fluid driven from above by two plates moving parallel and in op- 
posite directions to one another. The constitutive relation for the viscoelastic rheology is for a 
second-order fluid; i.e., nonlinear viscoelastic effects are treated as perturbations to Newtonian, 
purely viscous flow. The theoretical model not only predicts the two transverse ridges that are 
often observed on either side of the transform fault, but the central transform valley that sep- 
arates them as well. For typical hthospheric flexural rigidity and deformation associated with 
transverse ridges, the viscoelastic effect provides sufficient vertical stress to produce the observed 
uplift. Further, the dynmnic uplift, is a purely mechanical effect (i.e., it does not involve buoyant 
materiM) which corresponds to geophysical observations. The experimental model is comprised of 
a viscoelastic fluid (2% aqueous solution of high molecular weight carboxymethylcellulose) driven 
by a rotating plate. This is analogous to a t. ransk,rm fattit because the boundary of a spiroting 
circular tectonic plate (surrounded by stationary plates) is one continuous transform fattit. The 
experiment produces a large ridge of fluid along the edge of the plate with a shght trough outside 
of the ridge; this result is qualitatively described by a cyhnch-ical version of of the above theoret- 
ical model. In conclusion, both experimental and theoretical models show that when nonlinear 
viscoelasticity is accorotted for, uphft characteristic of transverse ridges caa• be generated from 
purely horizontal motion typical of transform faults. 

INTRODUCTION 

Transverse ridges are an enigmatic feature of the Earth's 
mid-ocean spreading centers. They are relatively narrow 
zones of extreme uphft, with peaks ranging between 1 and 
8 km above the seafloor, flanking many oceanic transform 
faults (Figures 1 a and 1 b). Rocks along these ridges may be 
elevated from beneath the seafloor to above the sea surface 
to form islets such as St. Paul's Rocks near St. Paul's 

Fracture Zone in the equatorial Atlantic Ocean [Melson and 
Thompson, 1971]; other instances of uphft to sea level are 
suggested by wave cut platforms and corm reefs, such as at 
the Romanche Fracture Zone in the Atlantic [Bonatti and 
Honnorez, 1971, 1976; Honnorez et al., 1975; Bonatti and 
Chermak, 1981; Bonatti et al., 1983; Fisher and Sclater, 
1983; Dick et al., 1990]. 

Previous models of the formation of these ridges (see be- 
low) do not accord with either the total amount of uplift or 
geophysical observations. The high strain rates (i.e., com- 
pared with typical geodynamic strain rates) and finite de- 
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formation across the transform faults, along with the large 
hthospheric Maxwell relaxation time (i.e., a characteristic 
time for elastic stresses to be relaxed away by viscous flow), 
have led us to consider a new model concerning the purely 
mechanical effects of nonhnear viscoelasticity. We show with 
relatively simple theory and a laboratory experiment tl•at 
nonhnear viscoelasticity can turn the horizontal motion of 
transform faults into vertical uphft that (in shape, size, and 
correlation with observations) is highly suggestive of trans- 
verse ridges. 

Transverse Ridges: Geological Observations 

Transverse ridges generally occur or are most pronounced 
at slow spreading centers (e.g., the Mid-At]antic Ridge with 
spreading velocities of the order of I cm/yr). These ridges 
can appear on both sides of the transform fault (as at the 
Romanche Fracture Zone) or one side of the fault (e.g., the 
Vema Fracture Zone in the Atlantic Ocean) (Figure lb). At 
slow spreading centers, there is typically also a central trans- 
form valley centered along the transform fault. The valley 
is typically 4 to 5 km deep in relation to normal seafloor, 
with the greatest depths along the active transform fault 
occurring in the nodal basins loca.ted at or near the ridge- 
transform intersection. 
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Fig. I a. A three-dimensional bathymetric image, made from high-resolution Sea Beam data, of the transverse 
ridges flanking the central transform valley at the Atlantis II Fracture Zone in the Indian Ocean. 

While oceanic fracture zones typically extend beyond the 
active transform fault region into the plate interiors (thereby 
xnarking the pMcotrace of the transform), transverse ridges 
generally do not. The opposing walls of the fracture zone 
valley in these inactive fracture zones have very different ori- 
gins: one wall having passed through the transform tectonic 
zone, while the other has not. Transverse ridges, common 
on transform and pMeotransfonn walls, are generally ab- 
sent along nontransform walls. Thus the origin of the ridges 
is possibly hnked to the shearing •notion Mong transform 
faults. ß 

Transverse ridges the•nselves may be continuous (e.g., at 
the Verna Fracture Zone) or a series of undulations Mong 
the length of the ridge (e.g., the Kane Fracture Zone in 
the North Atlantic). Where the rift valley of the spread- 
ing center and the transform walls intersect, there is fre- 
quently great uphft, forming what is know as an "inside cor- 
ner high" which can, extend above sea level (e.g., St. Paul's 
Rocks) [Melson and Thompson, 1971; Searle and Laughton, 
1977; Karson and Dick, 1983; Fox and Gallo, 1984; Sevring- 
haus and Macdonald, 1988]. The abundant exposure of plu- 
tonic rocks, particularly •nantle peridotites, over large re- 
gions along the lengths and crests of •nany of these ridges 
indicates unusual tectonic processes not occurring at the ad- 
jacent •nid-ocean spreading centers [Dick et al., 1990]. 

Previous Models 

Since the first observation of transverse ridges, severM 
models have been developed to explain their presence, mor- 
phology, and anomalous uphft. One of the earbest models 
developed to explain the formation of the nodM basin in- 
volves viscous head loss of a conduit (or sheet) of fluid pas- 
sively upwelhng Mong a spreading center [Sleep and Biehler, 
1970]; i.e., the conduit •naintains a negative hydrauhc head 
at the surface and thus a pressure low to sustain flow frown 
the asthenosphere into the conduit (in other words, the 
spreading •notion generates a suction force in the conduit 
so that the conduit can be replenished). The negative hy- 
drauhc head creates the rift valley Mong the spreading center 
and is enhanced at the transform fault-spreading center in- 
tersection (because additionM •nateriM is being drawn frown 
the conduit into the transform fault, thus a larger pressure 
low is required to feed the conduit) to form the nodM basin. 
MateriM carried out of the pressure low rebounds to hydro- 
static equilibriu•n, creating the uphfted blocks on the rift 
valley walls and the transverse ridges the•nselves. This i•n- 
phes that the transverse ridges are isostatically supported 
and are thus nonnM crust that only appear to be ridges 
by virtue of contrast with the centrM transform valley and 
nodM basin. This would then i•nply that the ridges should 
essentially be of the sa•ne elevation as the rift valley walls; 
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Fig. 1 b. Cross-sectional profiles of the transverse ridge systems at the Conrad and Islas Orcadas fracture zones 
in the southwest Indian Ocean [Sclater et al., 1978] and the Verna and Romanche fracture zones in the Equatorial 
Atlantic [Bonatti and Honnorez, 1976]. 

as transverse ridges rise in some instances to sea level, this 
mechanism is probably not adequate to explain the forma- 
tion of the ridges. 

Based on the frequent exposure of serpentinized peri- 
dotite, which has a relatively low density compared with 
basalt, gabbro, or mantle, a number of authors have sug- 
gested that ongoing serpentinization of the mantle due to 
percolation of seawater down faults in the transform fault 
region would produce vertical uplift from both volume ex- 
pansion and buoyancy caused by the reduction in density 
from hydration of mantle rock [Bonatti, 1978; Macdonald 
et al., 1986; Dick et al., 1990]. While this mechanism may 
account for the small median tectonic ridge along the floor 
of the central transform valley, it cannot account for the 
relief of the transverse ridges, the existence of the central 
transform valley, and the fact that the ridges consistently 
fl•nk the transform fault and the central transform valley. 
Furthermore, both this mechanism and that of viscous head 
loss suggest that the ridges are isostatically supported. How- 
ever, examination of the gravity field over transverse ridges 
at the Kane, Romanche, and Verna fracture zones in the At- 

lantic and the Atlantis II Fracture Zone in the Indian Ocean 

[Cochran, 1973; Robb and Kan½, 1975; Loudcn and Forsyth, 
1982; J. Snow, personal communication, 1990] shows that 
these ridges are not only dynamically (i.e., nonisostatically) 
supported but are compensated at depth by heavy, not buoy- 
ant, material; i.e., although uplift is dynamic, it is not from 
buoyancy forces. Seismic refraction studies of these ridges 
have been hindered by the rough •terrain and extreme re- 
lief, but what little data are available concur with the grav- 
ity data [Derrick and Purdy, 1980; Abrams ½t al., 1988j. 
Thus mechanisms involving isostatic compensation or dy- 
namic support from buoyant material are more or less pre- 
cluded by the available data. 

One possible nonisostatic, nonbuoyant mechanism for the 
formation of transverse ridges is lithospheric buckling under 
compressional stresses, augmented by thermal bending mo- 
ments, across transforms [Wess½l, 1990]. Plate reconstruc- 
tions of many fracture zones, however, demonstrate that 
transient changes in spreading direction c•used the trans- 
form faults to undergo extension during the formation of 
large transverse ridges [Tucholke and Schouten., 1988; Dick 
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et al., 1990]. Although lateral density variations accross the 
fracture zone [Bonatti, 1978] can also cause uplift near a 
transform fault, they generally cannot induce the observed 
large relief. 

In summary, a successful model of the formation of trans- 
verse ridges should involve dynamic, yet nonbuoyant, uplift 
of the oceanic lithosphere near transform faults. In the re- 
mainder of this paper, we present a new model based on non- 
linear viscoelastic deformation that satisfies these require- 
ments in addition to generating the requisite topography. 

VISCOELASTICITY 

Viscoelastic deformation occurs when a medium under- 

goes irrecoverable (viscous) deformation yet still has mem- 
ory of past (elastic) deformations. Viscoelasticity is less a 
materiM property than a characteristic of the time scale over 
which deformations occur. The relevance of viscoelasticity 
is determined by the ratio of the Maxwell relaxation time 
t• to the typical time scale for deformations, or fluid flow, 
to occur tf; this ratio is the Deborah number De -- t•/t! 
[Bird et al., 1987]. The Maxwell relaxation time t• = •///• 
(where • is a characteristic dynamic viscosity and /z is an 
elastic modulus, typically the modulus of rigidity) is the 
characteristic time for the relaxation of elastic stresses by 
viscous flow (i.e., stresses decay as e-t/tr). The flow time 
scale t! is determined by the velocities and geometry of the 
deforming medium; e.g., fluid flowing at a maximum veloc- 
ity v in a channel of width d has a time scale of deformation 
tf = d/v; thus tf can also be considered the inverse of the 
characteristic strain rate. For De • 1, elastic stresses are 
relaxed away much faster than the medium is deforming 
and hence the flow is almost purely viscous; this is typi- 
cally the case in most geodynamic settings, such as mantle 
convection. Alternatively, for De )) 1, the medium be- 
haves as an elastic. Viscoelastic behavior occurs when De 

is neither •(1 nor ))1. In the Earth sciences, viscoelastic 
behavior is primarily only treated when estimating the vis- 
cosity (and viscosity structure) of the Earth's mantle from 
data on the postglacial rebound of high-latitude continen- 
tal bodies [Cathies, 1975; Peltier, 1982; Yuen et al., 1982]. 
At transform faults, t• = 104-107 years (based on mate- 
rial properties of the oceanic lithosphere) [Beaumont, 1976; 
Watts et al., 1982; De Bremaecker, 1985], which can be much 
larger than the value of t• for the Earth's mantle because 
the lithosphere is relatively cold and has a very high viscos- 
ity. The flow or deformation time scale tf is typically the 
inverse shear strain rate across the transform fault; thus t! 
is typically 105-106 years [Fox and Gallo, 1984]. (We show a 
posterJori that t i is based on the strain rate across the fault 
and not another time scale.) Therefore the Deborah number 
for transform faults can be of the order of I or greater, im- 
plying that where continuous deformation occurs near the 
faults, viscoelastic effects may be considerable. 

The classical treatment of viscoelasticity in geophysics 
is for linear viscoelasticity. This is usuMly modeled as a 
combination of elastic springs and viscous dashpots which 
lead to constitutive stress-strain relations involving partial 
time derivatives only (the strain rate, however, is the full 
and not the partial time derivative of the strain) [Bird et 
al., 1987; Turcotte and Schubert, 1982]. A typical viscoelas- 
tic model is the Maxwell body with an elastic spring and a 
viscous dashpot in series; this leads to the constitutive rela- 

tion r + t•Or/Ot = 2'q•, where r is a one-dimensional stress 
(and thus a scalar) and • is the one-dimensional strain rate. 
Since the instantaneous strain rate • is the same for both 

linear and nonlinear viscoelastic theories, it is kept distinct 
from other time rates of change. This theory is only valid 
in the limit of infinitesimal deformation, or strain, and thus 
is called linear since the constitutive relation is linearized. 

When deformation is finite, as it is along transform faults, 
it is necessary when treating viscoelasticity to consider finite 
relative strain, which is a nonlinear function of the displace- 
ment gradients [Malvern, 1969]. This leads to a nonlinear 
constitutive relation in which the partial time derivatives 
of stress and strain rate from linear theory are replaced by 
convective time derivatives [Bird et al., 1987]; e.g., Or/Or in 
the constitutive relation for the Maxwell body is replaced 
by 

Dr 

Dt {(Vv) t ._r_ + r__. (Vv)} (1) 
where r_ is the stress tensor, v is the velocity vector, D/Dr -- 
O/Ot + v. X7 is the material derivative, and (Vv) t is the 
transpose of the velocity gradient tensor (Vv). Equation (1) 
is the contravariant convective time derivative of r-; other 
convective derivatives are also possible [Bird et al., 1987]. 
Physically, the convective derivative represents the time rate 
of change and advection of the stress or strain rate fields (the 
D/Dt term) and the rotation and deformation of these fields 
by the flow (the {-.} term). 

Nonlinear viscoelastic effects are well documented in the 

field of polymeric fluid dynamics. For the purposes of 
this paper, the most important, and perhaps well known, 
are "rod-climb" [Garner and Nissan, 1946], the Quelleffekt 
[BShme et al., 1985], and the secondary flow in a disk- 
cylinder configuration [Kramer and Johnson, 1972; Hill, 
1972; Nirschl and Stewart, 1984]. Rod-climb occurs when a 
spinning rod is placed in a polymeric fluid' instead of fluid 
spinning away from the rod under centrifugal acceleration, 
it moves in toward and climbs up the rod. The Quellef- 
fekt is a similar phenomenon wherein a disk spinning at the 
base of a cylinder of polymeric fluid causes the surface of 
the fluid to be deflected upward at the axis of the disk and 
downward at the walls of the cylinder. The secondary flow 
in a disk-cylinder configuration is virtually identical to the 
Quelleffekt: a disk spinning on top of a cylinder of polymeric 
fluid creates a secondary flow with a downward jet along 
the disk axis and upwelling at the cylinder walls, opposite 
in sense to what would be caused by centrifugal effects in a 
NewtonJan fluid. It is easy to see that when the secondary 
flow is turned upside down, it will cause the Quelleffekt. An 
adaptation of the disk-cylinder experiment is in fact used 
for our experimental model. From an intuitive approach, 
these effects are essentially due to the elastic components of 
the fluid winding around the axis of the rotor (analogous to 
rubber bands winding around a spinning shaft), creating an 
inward tension which results in vertical stress (by the inward 
squeezing of the fluid) and hence uplift in the rod-chmb ex- 
periments and the Quelleffekt, and the secondary flow in the 
disk-cyhnder experiment. For a review of these effects and 
more, see Bird et al. [1987]. 

Nonhnear viscoelastic effects have also been considered in 

several geophysical contexts, such as glacial flows [Mc Tigue 
et al., 1985; Man and Sun, 1987] as well as landshdes and 
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granular flows [Savage, 1984]. In these studies, nonlinear 
viscoelastic effects are referred to as normal stress effects 

because of the fact that nonlinear,viscoelasticity allows nor- 
mal stresses to arise from shear flows. 

Finally, it should be emphasized that there is no known, 
unique viscoelastic theology, linear or nonlinear, for the 
Earth's lithosphere and mantle. We argue that nonlinear 
viscoelastic effects may be important at transverse ridges 
because (1) the Maxwell relaxation time of the lithosphere 
is possibly quite large, (2) the deformation time scales of 
transform faults are quite small, and (3) deformation at 
transform faults is finite; the argument is based on time 
scales and on amplitude of deformation, not on any specific 
rheology. Thus the theoretical and experilnental work pre- 
sented here comprises an idealized investigation of viscoelas- 
tic effects as they might occur beneath transverse ridges, but 
they do not represent a rigorous model of oceanic lithosphere 
near a transform fault. The models will account for normal 

stresses generated through nonlinear viscoelasticity, but not 
for the effects of temperature- and stress-dependent viscosi- 
ties that are normally associated with lithospheric material. 
In this respect, it is important to note that under the strain 
rates near a transform fault, the effective viscosity of the vis- 
cously deforming lithosphere may be much lower than the 
surrounding, less rapidly deforming lithosphere because of 
non-Newtonian pseudo-plastic behavior and/or shear heat- 
ing [Schubert and Turcotte, 1972; Forsyth and Uyeda, 1975]. 
These effects would tend to diminish the importance of vis- 
coelastic behavior by reducing De. For this present simple 
analysis, we will not consider the effects of variable viscosity 
beneath the transform fault, although such effects must be 
noted when drawing conclusions from our simple models. 

THEORETICAL MODEL 

The Second-Order Fluid and Other Assumptions 

Viscoelastic fluids are known to exhibit fairly exotic flows; 
hence a rigorous theoretical model of nonlinear viscoelastic 
deformation would invariably require an involved numerical 
calculation. However, for a first analysis, we use a theoreti- 
cal model that is greatly simplified to facilitate a straightfor- 
ward analytic solution. The constitutive relation we employ 
is for a second-order fluid [Bird et al., 1987]: 

r_-- 2,(e_' + •. - (Vv_) t .e_'- •. (Vv_) + 2.•e_'- e_') (2) 

where e_' - «(Vv + (Vv_) t) is the strain rate tensor, and 
A• and A• are retardation ti•ne constants. (Retardation 
time constants are analogous to t• except that they mea- 
sure the retardation of a viscoelastic material's response to 
an instantaneous stress instead of relaxation of stress af- 

ter an instantaneous strain; the retardation effect is char- 
acterized by the Kelvin-Voigt body in linear viscoelasticity; 
see Turcotte and Schubert [1982].) It can be shown from 
continuum mechanics considerations that A• • 0 and from 

molecular theories that A• is also typically negative for an 
undiluted system of polymers [Bird et al., 1987]. A first- 
order fluid (A• -- A•. -- 0) would simply be a Newtonian 
viscous fluid; thus (2) contains the lowest order viscoelas- 
tic perturbation to purely viscous flow. The second-order 
fluid approximation and higher-ordered approximations are 

closely related to the Rivlin-Ericksen expansions; for an out- 
line of the derivation of the ordered fluid approximation or 
Rivlin-Ericksen expansions, see Tanner [1985, p. 133]. 

A second-order fluid is a significant simplification, and 
thus there are several limitations to its applicability. It 
leads to spurious instability in unsteady flows and is not 
a good approximation for flows around sharp corners [Tan- 
ner, 1985]. Also, since it is a perturbation expansion around 
a Newtonian viscous constitutive equation, it is only valid 
for small De. 

If we set A• = A2 ---- A, we can exploit the three- 
dimensional flow theorem of Giesekus [ Giesekus, 1963] which 
states that a velocity field that satisfies the Newtonian, in- 
compressible equation for Stokes (i.e., creeping) flow also 
satisfies the equation for Stokes flow of an incompressible 
second-order fluid; the pressures and stresses of the Newto- 
nian and second-order fluids, however, will be different. We 
can therefore calculate a Newtonian flow field and deter- 

mine the resultant nonlinear viscoelastic stress without nec- 

essarily determining any secondary flow. However, we must 
note that our assumption that )q = •2 = • • 0 cannot be 
rigorously justified; this emphasizes the importance of per- 
forming laboratory experiments (discussed in the following 
section) to empirically test the validity of our assumptions. 

As an aside, we note that it is not, in fact, necessary for 
A1 = A2 for the Newtonian and second-order fluids to have 

the same velocity field. The rectilinear flow theorem of Lan- 
glois, Rivlin, and Pipkin [Pipkin and Rivlin, 1963; see Bird et 
al., 1987] also specifies that the two fluids will have the same 
flow field if the only nonzero component of the Cartesian ve- 
locity vector v_ = (u, v, w)is u(y, z), v(x, z), or w(x, y), even 
when A1 and A2 are independent of one another. However, 
in the final analysis, the stresses proportional to A• are not 
used in our problem; thus it is irrelevant which theorem we 
use. 

Given the above assumptions and approximations, our 
basic methodology is to (1) calculate the velocity field for 
a Newtonian constant viscosity fluid beneath an idealized 
transform fault, (2) use this velocity to calculate the non- 
Newtonian viscoelastic stresses from equation (2), and (3) 
use these viscoelastic stresses to determine the vertical up- 
lifting stress beneath the transform fault. 

NewtonJan Viscous Flow Beneath a Transform Fault 

Our theoretical model configuration of a transform fault 
is comprised of two plates moving parallel and in opposite 
directions to one another over an infinite half-space of fluid 
(Figure 2). The inner and outer edges of the two plates 
are separated by a distance 21 and 2L, respectively. The 
region of width 21 separating the plates represents the shear 
zone of the transform fault. We assume that the velocity 
everywhere is only in the direction of the plates' motion, the 
y direction, and is only a function of depth z and distance x 
perpendicular to the shear zone (the centerline of the shear 
zone is at x = 0). We also assume that the velocity v0 at 
the surface z = 0 is a function of x: 

-V -L •_ x _• -l v0() = (S) 
V l_•x_•L 

The function f(•) is one of two simple functions. For the 
first f(•)= f• (•) we assume that l(( L, and thus velocity 
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Fig. 2. Schematic diagram of the theoretical model. See text 
for discussion. 

varies linearly with x between the plates; i.e., f•(x) = •/1. 
However, this velocity profile creates discontinuities in ve- 
locity gradients which the second-order fluid approximation 
is poor at resolving. Thus to insure that such discontinuities 
do not cause spurious effects, we also try a smooth function; 
i.e., f(x)= f2(x)= •(3•/1- x3//3). 

The Stokes equation (i.e., the force balance equation for 
creeping flow) for an incompressible, constant viscosity New- 
tonian fluid without body forces is 

0 = -VP + •V•_ (4) 

where P is the nonhydrostatic pressure. For flow in the 
y direction, where there is no y dependence, this equation 
is simply the two-dimension• h•rmonic equation for the • 
component of the velocity r: 

0 • v 0 • v 
+ = o . (5) 

5oa;y co,diios = 0 
v is finite as z • -•, the solution for v is 

v(•, z)= • 2• [b•(•)-cos(n•)] sin (n•/L)e •/• (6a) 
where 

b•(•) = •'½ [•in(•,½) _ cos(nw•)] /(•) =/a(•) ' 
(S•) 

• =l/L and we have assumed that v0(•) is periodic with 
period 2L. Equation (6) reduces to the Fourier series for 
a step function (i.e., b•(•) • 1)in the hmit • 0. Th• 
purely horizontal velocity field w• be used to cMculate the 
vertical up•ft due to viscoelastic stresses. 

Viscoelastic Vertical Stresses 

An equation for the total vertical stresses at the surface 
of the fluid is obtained by adding Or•/O• (where ril is the 
component of stress acting in the j direction on surfaces 
facing in the i direction) to both sides of the x component 
of the Stokes flow equation (written in terms of stresses and 
independent of y): 

oP or= 
o = + + 

and rearranging: 

0 (e-,,)= 0 •)+ . (S) Oq •(• - 
The totM verticM stress P- r• causes uphft at the surface, 
and the amount of uphft depends on the surface's flexurM 

rigidity. For example, if the surface is free (i.e., no flexural 
ridigity), then the vertical stress causes a hydrostatic head; 
i.e., by continuity of vertical stress across z = O, Apgh = P- 
rzz, where Ap is the density contrast between the fluid and 
overlying medium, g is gravity, h is the height of the uphft 
above the surface, and we have assumed that the overlying 
medium is inviscid. 

Proceeding, we use (2) (assuming steady state) with 
),• = ),2 = ), < 0 to calculate the stress components r•, 
rz,, r•, in terms of the velocity v; these we insert into (8). 
The indefinite integral of (8) over ß (with the integration 
constant taken to be zero such that there is no net or mean 

uphft) yields an equation for the vertical stress: 

(ov) /o (ovov) ] 
(s) 

With (6) substituted for v, we evaluate (9) at the surface 
z = O, and after some algebra, we arrive at an expression 
for the dimensionless uphfting stress at the surface: 

P-rzz •o oo 
= 

z=O n=l m=l 

x{cos[(n q- m)a'x/L] (1 6,•m)n q- m -- -- •cos[(n - m)•rx/L]} •--m 

(10) 
where B,•(e) = b,•(e)-cos(na'). When written in the manner 
of (10), the nondimensional uplift is relatively insensitive to 
e. Note that if = - •/•, then IAI•(V/I) 2 - i•De 2, 
which implies that a De defined in terms of the strain rate 
across the transform fault is the relevant Deborah number 

for this problem. (We might just as easily have nondimen- 
sionalized P- r,• by but then, since the right 
side of (10) is insensitive to •, the amplitude of the dimen- 
sionless uplift would be proportional to •-2, and this would 
again verify that the width of the shear region determines 
the magnitude of the viscoelastic stresses.) 

When (10)is plotted versus z/1 (Figure 3), the curves 
are functions of • only. However, the curves in fact vary 
only slightly in amplitude and shape with • (for a given 
b•(e) defined in (6b)); thus they are essentially representa- 
tive of uplift for any value of •. For the linear shear zone 
(i.e., f(z)= •/1 in dimensionless units), two sharp ridges 
are predicted to occur at the inner boundaries of the plates, 
and these ridges are separated by a smooth valley. For the 
smooth shear zone (i.e., f(z)= «(3z/1- zø/l'•)), two ridges 
separated by a valley again occur; yet the ridges are not 
sharp peaks, which insures that the uplift is not a spurious 
effect of velocity-gradient discontinuities. Comparing the 
two curves of Figure 3, one can see that the sharpness and 
amplitudes of the ridges are partially determined by the ve- 
locity gradients in the vicinity of z - 4-1. This implies that 
the ridges can be asymmetric across the shear zone if the 
velocity gradients are different at z =-l and • = 1. 

A physical understanding of how the ridges and troughs 
form can be gained by considering the direction of elastic 
stresses in the vicinity of the model transform fault. Both 
viscous and elastic stresses oppose the motion of the plates; 
yet the elastic stress also has a component of tension perpen- 
dicular to the plate motion. This can be seen by imagining 
a rubber band at some angle 0 to the plate edges (either 
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Fig. 3. Nondiznensional uplift (in terms of vertical stress) versus 
nondimensional distance a:/l (such that the shear zone always 
occurs in the region -1 _< a•/l _< +1) for the theoretical model 
with e = 0.25 and a velocity profile across the shear zone at the 
surface that is either hnear (sona line) or smooth (a•shealine). •n 
both cases, the series solution of (10) is truncated at n, m = 500, 
whereas the series converges for n, m > 200. 

in or out of the plane of the plates) being stretched by the 
shearing znotion such that it has tension T along its length. 
The elastic stress opposing the plate •notion is T cos O, and 
the tension perpendicular to the plate edges is T sin 0. The 
latter tension exerts a stress on the fluid directed perpen- 
dicular to the plate edges; this tension can drive fluid flow 
at right angles to the direction of plate •notion. For ex- 
ample, vertical shear Ov/Oz stretches a hypothetical rubber 
band dipping down into the fluid, causing a vertical ten- 
sion which pulls fluid upward. Similarly, horizontal elastic 
tension across the fault (induced by horizontal shear Ov/Ox 
stretching a rubber band placed across the fault) drives con- 
vergent flow toward x = 0 and thus a downwelling motion 
(or equivalently a pressure low), with subsequent downward 
deflection, occurs at x = 0. 

However, not all the elastic tensions induced by the vari- 
ous shearing motions contribute equally to the net uplifting 
stresses. Close examination of the three terms on the left 

side of (9) shows that the second term (proportional to rzz 
or (Ov/Oz) 2) is primarily responsible for the shape and am- 
phtude of the uplift; this term represents the vertical stress 
induced by the stretching of the elastic component of the 
fluid under vertical shear. The other terms make a smaller 

contribution to the net stress: the first term on the right 
side (r•) enhances the trough between the peaks, while 
the third term reduces the amphtudes of both the trough 
and peaks but is much smaller than the first two ternis. 
Therefore the lateral variation in uplift leading to the ridge- 
valley-ridge surface morphology is primarily due to lateral 
variation in the vertical shear. This lateral variation occurs 

because v decays with depth within a characteristic length 
proportional to the horizontal wavelength of the surface ve- 
locity field (see (6)). Far from the fault, the surface velocity 
field is smooth, hence the dominant horizontal wavelength 
is large; in the vicinity of the fault, the velocity field has 
a horizontal wavelength characteristic of the fault width. 
Therefore the velocity field decays much more rapidly with 
depth beneath the fault than far from the fault (physically, 
because the high strain rates beneath the fault are much 
harder for the fluid to support), leading to a larger absolute 
value of Ov/Oz (and thus greater vertical elastic tension) in 
the vicinity of the fault. The trough occurs because the ver- 
tical shear goes to zero at the fault itself (i.e., x = 0) since 
v = 0 there. Therefore the maximum vertical shear (and 
thus the maximum vertical elastic stress) occurs near the 
fault but not on the fault itself where there is a local min- 

imum in [Ov/Oz[; since the system is symmetric about the 
fault (i.e., the results of this analysis should not depend on 
whether we are looking up or down the strike of the fault), 
there must be two identical maxima in [Ov/Oz I on either 
side of the fault and thus two symmetric peaks. This phys- 
ical explanation is lacking, however, because it imphes a 
secondary flow while the above theory does not account for 
secondary flow. However, later we will see that the second- 
order fluid theory essentially predicts the uphft as if there 
were secondary flow. 

Induced Uplift and Lithospheric Flexure 

To compare the theoretical results with geophysical ob- 
servations, we first determine what stresses are approxi- 
mately necessary to generate the observed uplift of a trans- 
verse ridge. We first assume that in the region of the fault 
itself-l <_ x <_ l, the hthosphere is comprised of highly 
sheared and loose material of httle or no flexural rigidity. 
In this region, the downwarping leading to the transform 
valley merely results from hydrostatic compensation of the 
downward viscoelastic normal stresses. The more restric- 

tive uplift occurs at the flanks of the fault zone, where the 
hthosphere is bent upward. For an order of magnitude cal- 
culation, we assume that the uplift of either flank of fault 
zone is due to a hue load applied at the free edge of the 
plate. The relation between a hue load I4/(units of newtons 
per meter) apphed to the edge of a broken hthospheric plate 
and the resulting flexural uphft h is [Turcotte and Schubert, 
1982, p. 127] 

W- Apgo•h (11) 

where Ap is the density contrast between the mantle and 
overlying water and g is gravitational acceleration. The flex- 
ural wavelength c• is given by 

a-- 3(1 -- •,)Apg (12) 
where d is the thickness of the hthospheric plate being bent 
and • is Poisson's ratio. Using values of Ap = 2300 kg/m a, 
g = 10 m/s •', It -- 28 GPa, • = 0.25 [Turcotte and Schu- 
bert, 1982], and d -- i km (for a characteristic hthospheric 
thickness near the ridge axis), we find that c• = 5736 m; the 
typical uplift h for a transverse ridge is of the order of 1 
km (though it may reach extremes of 8 kin), for which we 
therefore require W = 132 GPa m. 



14,202 BERC¸VICI ET AL.: VISC¸ELASTICITY AND TRANSVERSE RIDGES 

To relate the line load to the viscoelastic stress, we es- 
timate 14 r by calculating the area of the curve beneath one 
of the positive flanks on the normal stress curve (Figure 3). 
As either one of these flanks (for either the hnear or smooth 
shear zones) is nearly a triangle, we approximate the hue 
load by the relation 

W = 2-•max(P- (13) 

where lib is the base width of the triangle, and we estimate 
b to be 2.8 and 1.3 for the linear and smooth shear zones, 
respectively. (The base width is determined by fitting a tri- 
angle to either positive hump of the stress curve, truncating 
the tails that occur as x • +L.) It should be noted that 
the hue load approximation is best when l/(2b) << a and 
fails outright if 1/(2b) > a, as the flexural response to the 
normal stress max(P- rzz) would then be greater than the 
hydrostatic response (for which max(P- rzz) = Apoh). 

From Figure 3, the maximum stress is 

max(P- r•z) = &t• t,,lV• 2 (14) 

where & is 0.75 and 0.63 for the hnear and smooth sitear 

zones, respectively, and we have assumed that I1- 
For plate velocity, we use V- 5 cm/yr. Since viscosity un- 
dergoes orders of magnitude change across the lithosphere, 
it is unclear what the most appropriate choice is for viscos- 
ity r/. The choice for the fault half-width 1 is also vague, 
as there is no well-defined shear zone and the observed ge- 
ometry of the transverse-ridge systems is hkely influenced 
by flexural damping. Thus we simply determine the vis- 
cosity necessary to generate the uphft h = 1 km (or hue 
load W = 132 GPa m) for a range of fault widths in which 
1 km < 1 < 10 km. It should be noted that while the 

line load approximation is sufficient at. 1 = 1 km, it worsens 
as 1 --• 10 km; yet, for all fault widths, 1/(2b) < a if not 
<<a. For these fault widths, and the two shear zone cases, 
the necessary visosity lies in the range 2 x 1021 Pas <_ r/<_ 
1 x 1022 Pa s, which are reasonable mantle viscosities. (Obvi- 
sously, a change in plate velocity V by a factor c will change 
the hatits of the viscosity range by a factor l/c, while 
change in uplift h by a factor c' will change the hmits by 
a factor x/• 7. Given the typical variabihty of V and h, the 
viscosity range is fairly robust.) Thus the viscoelastic mech- 
anism can generate the requisite uphft given the available 
mantle and/or lower hthosphere viscosities. In fact, as titere 
is, to our knowledge, no information about mantle viscos- 
ity inherent in the theoretical model or the above rough 
calculation, it is intriguing (or coincidental) that r/ should 
be so close to an actual mantle viscosity. However, it is 
by no means certain that the viscosity of the lithosphere be- 
neath the fault is actually within or over the above range; as 
was mentioned previously, shear heating or non-Newtonian 
pseudo-plasticity may cause the effective viscosity to be well 
below this range. 

One apparent inconsistency is that if the above vis- 
cosity range is assumed, excessive horizontal shear stress 
r• u • ,/l/•l is generated beneath the fault. For the chosen 
velocity, viscosities and fault widths, the shear stress hes in 
the range 1 GPa < rxu < 5 GPa while rocks undergo brittle 
failure at approximately 1 GPa [Ranalii, 1987]; for the vis- 
codastic mechanism to exist, the hthosphere must deform 

viscously, not by discontinuous failure. However, given the 
approximate nature of the theoretical model and the uncer- 
tainty in the above flexure calculation, this inconsistency is 
marginal and does not necessarily preclude the viscoelas- 
tic mechanism. If sufficient viscoelastic uphft could occur 
with viscosities shghtly less than the above range, such that 
rx• < 1 GPa, then the hthosphere would, at worst, fail 
plastically (since the plastic yield stress is of the order of 
100 MPa); since the medium would deform viscously after 
plastic failure (e.g., as in a Bingham model for a plastic fluid 
[Bird et al., 1960]), there would be no inconsistency (at least 
with respect to shear stresses). 

Finally, it is worth noting that for a constant hue load, 
the uphft h decreases with plate thickness as d -3/4. Thus 
even though the viscoelastic normal stresses of the theoreti- 
cal model are symmetric across the fault and uniform along 
the fault, the uphft will diminish with hthospheric age and 
be asymmetric across the fault where there is an age offset, 
as is typically observed at transverse ridges. 

EXPERIMENTAL MODEL 

Because of the limitations of the second-order fluid 
proximation and to test the validity of assumptions made 

in our theoretical mode], we have experimentMly examined 
nonlinear viscoelastic uplift in a real fluid. However, it 
should be noted that neither the experimental test fluid nor 
Earth materials have precisely known or unique viscoelastic 
theologies; thus there is not necessarily a real analogy be- 
tween the test fluid and the Earth's hthosphere. The experi- 
ments described here are meant to demonstrate a rather gen- 
eral viscoelastic effect, i.e., the generation of normal stresses 
from si,nple shearing flow, and to verify that the theory 
does correctly describe viscoelastic behavior (at least quali- 
tatively); they are not meant to represent a rigorous model 
of the Earth's lithosphere. 

Our experimental model has a different configuration 
from that of the simple theoretical model presented above. 
The model is comprised of a disk of radius Ra spinning at 
angular frequency • on the surface of a viscoelastic fluid 
of depth H contained in a cylinder of radius Rc (Figure 
4a). This model is analogous to a tectonic plate with 
transform fault because the boundary of a spinning circu- 
lar tectonic plate (surrounded by stationary plates) is one 
continuous transform fault. Thus the spinning disk model 
essentially isolates the plate's motion along the transform 
fault. (It could also be said that the rotating disk repre- 
sents the purely rotational motion of fluid in the shear region 
-l < x < 1 of the theoretical model.) 

The viscoelastic fluid is comprised of a 2% aqueous 
solution of high molecular weight carboxymethylcellulose 
(CMC). (The exact CMC aqueous solution contains 220 
g of dry CMC 7H3S [Aqualon Company, 1989] per 1 L of 
isopropyl alchohol, to suspend and disperse CMC particles 
prior to solution in water, per 10 L of distilled water.) CMC 
is a cellulose gmn used in the cosmetics, foods, and pharma- 
ceutical industries as an emulsion stabilizer and thickener. 

High molecular weight (or high viscosity) CMC at these con- 
centrations is highly viscoelastic, which can be witnessed by 
its recoil after stirring. However, the long polymers that 
provide CMC with elasticity also cause its viscosity to be 
non-Newtonian shear thinning (because of the ahgnment of 
polymers in shear flow) over a certain regime of stress-strain 
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Fig. 4. (a) Sd•ematic diagram of the disk-cylinder experimental 
apparatus and { b) a sketch of fluid •notion in the experi•nent as 
inferred from particle motions. See text for discussion. 

rate space. If the constitutive relation in the shear thinning 
regime obeys an Ostwald-de Waele (i.e., power law) model 
d • •.n (where shear thinning implies that n > 1), then n 
would be between 1.4 and 3 [Metznet, 1956]. The upper 
and lower asymptotes on viscosity as d -• 0 and • for a 1% 
solution are 2800 centipoise (cP) and 1000 cP, respectively; 
a 2% solution's viscosities are approximately a factor of 4 or 
5 larger than these [Aqttalon Cornpan!t, 1989]. 

Approximately 10 L of the CMC solution are placed in a 
plexiglass cylindrical drum of radius Rc = 12 cm. A circular 
plastic disk attached to the shaft. of a variable speed Bodine 
motor is lowered into the cyhnder such that the disk rests 
on the surface of the fluid. The motor is spun up to its max- 
imum revolutions per minute (rpm) to enhance couphug be-. 

tween the disk and fluid. This is necessary because at first 
the shear thinning property of CMC causes the disk and 
fluid to decouple. However, at high rpm, the normal upward 
stresses (due to viscoelastic uplift) build rapidly to a critical 
value where a secondary flow begins that couples a larger 
volume of fluid to the disk (by mixing high-momentum fluid 
with stationary fluid). Once the fluid is fully coupled to the 
disk, a ridge of uphfted fluid appears at the edge of the disk. 
Figure 4b shows a schematic of the fluid flow in the exper- 
iment as inferred from observations of particle motions in 
the fluid. Figure 5 displays photographs of the actual ex- 
periment. Although the ridge width and amplitude depend 
on the rpm of the disk, the ridge is typically 2-4 cm wide by 
1 - 2 cm tall. At a some critical rpm the ridge dissappears 
altogether, while at the maximum rpm, the hydrostatic pres- 
sure in the ridge eventually forces the fluid to flow in toward 
the shaft, inundating the disk. Finally, outside of the ridge 
a shght trough can often be observed. 

For comparison, the same experiment was carried out 
with pure Karo corn syrup, known for being purely viscous 
with a Newtonian (albeit temperature-dependent) viscosity. 
The surface of the syrup was unaffected by the rotating disk, 
except at high rpm centrifugal acceleration created a shght 
parabohc uplift at the wall of the cyhnder. Thus we can 
safely conclude that the uphft at the disk's edge in the ex- 
periment with CMC is due to viscoelasticity. 

A crucial point about the apphcability of viscoelastic- 
ity to deformation at transform faults is whether De equals 
trde (where de is the strain rate across a shear zone such 
as a transform fault) instead of, say, trFt (Ft is analogous to 
the angular frequency of the tectonic plate rotating about 
its Euler pole). Only if the former is true will viscoelasticity 
be relevant at transform faults (because for a tectonic plate, 
t•f• << 1). Although the thickness of the shear zone appears 
in the theoretical model, an experimental verification that 
the relevant De is proportional to d• and not Ft is desirable. 
Thus we run the disk-cyhnder experiment with CMC with 
disks of different size •vhile maintaining the same Ra/H ra- 
tio. (The R•/Rc ratio probably has no serious effect because 
the flow decays rapidly with radius r such that fluid motion 
ceases well before r = R•; thus, in essence, there are negh- 
gible edge effects and R• could effectively be infinite.) We 
assume the ridge first appears at some critical De = D½• for 
all the trials. With different disks, we locate the f• (i.e., the 
rpm) at which uplift first occurs. If De = t•], then uphft 
should occur at the same rpm for all cases. Alternatively, 
if De = t•e, then since de • •]Rd/(R•- Rd) depends on 

, the size of the disk, a larger disk will require a lower rpm 
to create the ridge. The latter case in fact occurs: as the 
disk radius increases, a smaller Ft is required to generate the 
minimu,n uplift (Table 1). Therefore from an experimental 
perspective, De = t•de is the relevant Deborah number. 

TABLE 1. Disk Angular Frequency (rpm) at the First 
Appearance of the Ridge in the Disk-Cylinder 
Experiment for Different Disk Radii Rd and 
Ratios of Disk Radius to Fluid Depth lqd/H 

Frequency (at Onset of Ridge), rp•n 
tqd/H tqd, cm Trial 1 Trial 2 Trial 3 Trial 4 

I 4.7 22 20 20 19.5 

1 6.0 14 14 13 13 

1 / 2 4.7 30 29 30 30 
1/2 6.0 22 19.5 19 19 
The revolutions per minute (rpm) listed are not for the disk 

itself but for the low gear shaft on the Bodine motor. 
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Fig. 5. Photograph of the disk-cylinder experiment with carboxymethylcellulose. See text for discussion. 

THEORETICAL DESCRIPTION OF EXPERIMENT 

To test the validity of the theoretical model, we present a 
cylindrical version of the model for tile experiment described 
above. •Ve do not intend to match the experiment exactly 
because a shear thinning rileology cannot be described by 
a second-order fluid which assumes a constant viscosity. A 
higher-order fluid [Ta•er, 1985; Bird et al., 1987] may be 
more appropriate; yet the flow theorems that aJlow us to 
use NewtonJan velocity fields in the viscoelastic model are 
only valid for a second-order fluid. Thus we only seek to 
show that the theory qualitatively predicts the experimen- 
tally observed uplift. 

We assume that the flow in the experiment is cyhndrically 
axisymmetric, in which case the tangential component of 
tile Stokes equation for an incompressible constant viscosity 
Newtonian fluid is 

0 1 0(rv) 0 •v 
Or r Or -b •z• -- 0 (15) 

where v is the tangential velocity. The solution to this equa- 
tion with no slip boundary conditions at the base z = 0 and 
the wall of the cylinder r - R• is 

v(r, z) = • A,,J, (k•r) sinh(k•z) (16) sinh (k• H ) 

where J• is a Bessel function of the first 'kind and first order, 
the k• are the roots of the equation J• (kR•) = O, and the 
A• are the coefficients of the Bessel series. The boundary 
conditions at z - H require that the tangential velocity 
v - •r for 0 _• r _• Ra (i.e., no slip beneath the disk) and 
Ov/Oz - 0 for Ra _• r _• R• (i.e., free slip between tile 
disk edge and the cylinder wall). The coefficients A• can be 
found numerically via collocation by truncating the series in 
(16) at n - N and solving the linear set. of N equations 

N 

• C, mAn -- B,•, m -- 1, ...,N (17a) 

wilere 

Cmn -- { ,]1 (knTm) 0 __< Tm __• Rd ,]1 (kn'rm)kn coth(knH) Rd __• Tm __• Rc ' 

B,• -- { 9r,• 0 _• r,,. _• Rd 0 Rd • rm • Rc (17c) 
and rm • (m- 1)R•/(N- 1) are the radial collocation 
points. A truncation level of N • 20 creates a well-resolved 
solution for v(r,z); yet N • 40 is required for the strfin 
rates and viscoelastic stresses to be well resolved. 

This solution for v is inserted into (2) with A• - A2 = A • 
0, and the resulting stress components are substituted into 
the equation for vertical stress (i.e., the cylindrical analog 
to (s)) 1987]- 

Orr• O (•_•)_ O (•_•)+ •--•00 • . (lS) O• • r Oz 

The indefinite integrM of (18) over r yields the vertical uplift 
(in terms of stress) as a function of r; this relation, evMu- 
ated near the surface, is shown in Figure 6. A sharp ridge 
is predicted to occur just inside of r -- Ra, and a trough 
with slightly smMler amplitude occurs just outside the disk. 
Although both a ridge and a sma• trough occur in the ex- 
periment, both occur at r • Ra. However, the disk is rigid, 
which may cause secondary effects, such as the extrusion 
of fluid &ore under the disk. The theory at least predicts 
that a ridge and sm•er trough occur near the edge of the 
disk. This correlates with the QueHeffekt and experiments 
to study the secondary flow in a disk-cylinder configuration 
(however, in these systems the disk extends to the cylin- 
der wall; hence the effects leading to the trough are not 
observed). The theoretical model also adequately predicts 
stresses in the presence of secondary flow even though the 
theory does not account for secondary flow. 

DISCUSSION 

In summary, we have shown that because of tile relatively 
high strain rates, potentially large Maxwell relaxation time, 
and finite deformation in tile transform fault environment, 
nonlinear viscodasticity may play an important role in the 
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Fig. 6. Nondimensional uplift (in terms of stresses) versus di- 
mensionless radius for the theoretical model of the disk-cylinder 
experiment. The curve is derived from the integration of (14) 
(With Ra/Rc = 0.5, H/Rc = 1 and the integration constant 
constrained such that no uplift occurs at r = 0) evaluated at 
z = 0.95H; this depth was chosen because at z = H the velocity 
gradients are nearly discontinuous at r = Rd (i.e., at r/Rc - 0.5) 
which compromises the validity of the second-order fluid approx- 
imation. The Bcssel function series solution for the uplift is trun- 
cated at n = 160, whereas the solution is well resolved for n > 40. 
The vertical dashed line shows where r = R d. 

formation of transverse ridges. We have further demon- 
strated with both a simple theory and a laboratory experi- 
ment that nonlinear viscoelasticity can turn the purely hor- 
izontal motion of transform faults into vertical uphft char- 
acteristic of transverse ridges: not only does the uphft have 
the approximate shape and amphtude of a transverse ridge, 
it arises from dynamic yet nonbuoyant support, in accord 
with geophysical observations. 

However, there are several caveats and drawbacks to our 
model that are worth enumerating. First, we must reiterate 
that the viscosities required for the viscoelastic mechanism 
to be significant may lead to excessive shear stress beneath 
the fault zone. Furthermore, the viscoelastic effect will be 
diminished if the high strain rates of the transform fault 
reduce the effective viscosity of ductile lithosphere benea.th 
the fault through pseudo-plasticity or intense shear heating. 
Second, the theoretical model is two dimensional, inherently 
symmetric about the transform fault, and time indepen- 
dent. Across-fault asymmetries and tnonotonic along-strike 
variations in the transverse ridges may be accounted for by 
changes in elastic plate thickness due to age variations and 
offsets. H•:.vever, the model presently cannot predict the 
often three-dimensional structure of the ridges, e.g., undu- 
lations along the ridge crests. Even so, it tnay be possible to 
explain these three-dimensional features by considering that 
the viscoelastic effect is very sensitive to the width of the 
transform shear zone and the viscoslty of ductile hthosphere 

in the vicinity of the transform fault (although, if the ductile 
lithosphere is pseudo-plastic or softened from shear heating, 
these two quantities are not necessarily independent). Any 
event which broadens the zone of transform shear, or lowers 
the effective viscosity of the mantle beneath the transform 
fault, may inhibit formation of a transverse ridge. The width 
of the shear zone may be very sensitive to the state of stress 
existing across a transform fault which can vary radically 
with transient changes in spreading direction from compres- 
sive to tensile. Furthermore, at slow-spreading ridges mantle 
flow beneath the ridge axis is believed to be highly nonuni- 
form with mantle upwelling believed concentrated at regu- 
larly spaced points along the ridge axis [Whitehead et al., 
1984]. This should be accompanied by significant lateral 
variations in mantle temperature beneath the ridge axis. 
In the case where a center of mantle upwelling is situated 
close to a ridge transform intersection, this nfight sufficiently 
lower the effective viscosity to elinfinate the viscoelastic ef- 
fect and inhibit the formation of a transverse ridge for long 
periods of time. 

These simple models also do not account for the vertical 
viscosity structure of the lithophere and especially the as- 
thenosphere where viscosity is low enough to possibly elim- 
inate viscoelastic effects. However, the velocity and stress 
fields beneath the transforxn fault decay away within a depth 
approximately equal to the dominant horizontal wavelength 
of these fields (see (6a)) which is the typical width of the 
transform fault, between 1 and 10 kin. Thus the important 
viscoelastic stresses are probably generated within a narrow 
region in the lower lithosphere. 

Transverse ridges also do not occur at all transform faults: 
they are generally most pronounced at slow spreading cen- 
ters. While this is contrary to our hypothesis that vis- 
codastic effects can cause transverse ridges (because De 
should theoretically be larger at a faster spreading ridge 
and thus cause greater viscoelastic stresses), fast spreading 
ridges have hotter, thinner lithospheres, effectively reduc- 
ing the region in which viscoelastic deformation may occur. 
Furthermore, because of higher strain rates at fast spreading 
ridges, viscous flow will not predonfinate over brittle failure 
until considerably lower viscosities, nearer to the astheno- 
sphere; thus the region where viscoelastic effects can occur 
may be confined to a much narrower region than for slower 
spreading ridges, and possibly eli•ninated altogether. 

Nonlinear viscoelasticity does not obviate previous mod- 
els of transverse ridges. We simply offer this effect as a pos- 
sible explanation for an enigmatic phenomenon. Whether or 
not viscoelastic stresses are the cause of transverse ridges is 
perha. ps a minor point; that they can cause the ridges is an 
important indication that a heretofore unexplored dynamic 
mechanism may be at play at narrow plate boundaries. Be- 
cause of their high strain rates, large tr (due to the high 
viscosity of the lithosphere), and finite deformation, narrow 
plate boundaries (not just. transform faults) are good candi- 
dates for maintaining nonlinear viscoelastic phenomena. 
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