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A numerical investigation is made of the effects of compressibility on three- 
dimensional thermal convection in a basally heated, highly viscous fluid spherical 
shell with an inner to outer radius ratio of approximately 0.55, characteristic of the 
Earth’s whole mantle. Compressibility is implemented with the anelastic approxi- 
mation and a hydrostatic adiabatic reference state whose bulk modulus is a 
linear function of pressure. The compressibilities studied range from Boussinesq 
cases to compressibilities typical of the Earth’s whole mantle. Compressibility has 
little effect on the spatial structure of steady convection when the superadiabatic 
temperature drop across the shell AT,, is comparable to a characteristic adiabatic 
temperature. When AT,& is approximately an order of magnitude smaller than the 
adiabatic temperature, compressibility is significant. For all the non-Boussinesq 
cases, the regular polyhedral convective patterns that exist at  large AZ, break down 
at small AT, into highly irregular patterns ; as AZ, decreases convection becomes 
penetrative in the upper portion of the shell and is strongly time dependent at 
Rayleigh numbers only ten times the critical Rayleigh number, (Ra),,. Viscous 
heating in the compressible solutions is concentrated around the upwelling plumes 
and is greatest near the top and bottom of the shell. Solutions with regular patterns 
(and large AEJ remain steady up to fairly high Rayleigh numbers (100(Ra),,), while 
solutions with irregular convective patterns are time dependent at similar Rayleigh 
numbers. Compressibility affects the pattern evolution of the irregular solutions, 
producing fewer upwelling plumes with increasing compressibility. 

1. Introduction 
Convective flow in the Earth’s mantle has been the subject of extensive research 

because of its relevance to plate tectonics and the structure and evolution of the 
terrestrial planets (Oxburgh & Turcotte 1978 ; Schubert 1979 ; Schubert, Stevenson 
& Stevenson & Cassen 1980; Olson, Silver & Carlson 1990). Evidence for convection 
exists in the directly measurable motions of the tectonic plates at the Earth’s surface 
(Minster & Jordan 1978, 1987; Kroger et al. 1987), and in the correlations of 
seismically and gravitationally inferred mantle heterogeneities and core-mantle 
boundary topography with tectonic features (Runcorn 1967 ; Dziewonski 1984 ; 
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Woodhouse & Dziewonski 1984; Hager et al. 1985; Dziewonski & Woodhouse 1987; 
Silver, Carlson & Olson 1988). Subsolidus convection in the mantles of the other 
terrestrial planets is largely inferred from tectonic and volcanic features on the 
surfaces of the planets and relatively sparse gravity measurements (Schubert 1979 ; 
Kaula 1990). 

Since the whole mantle thicknesses of Venus, Earth and Mars are between 45 and 
50% of the mean planetary radius (Stevenson, Spohn & Schubert 1983) global 
models of mantle convection require a spherical geometry (see Roberts 1987). 
Analytic investigations of convection in spherical shells have been performed with 
perturbation methods to determine the horizontal patterns of steady three- 
dimensional flow (Busse 1975; Busse & Riahi 1982, 1988), and mean field techniques 
to  examine heat flow characteristics (Olson 1981 ; Quareni & Yuen 1988). However, 
strongly nonlinear solutions to  the fluid dynamical equations are only attainable 
through experimentation. A limited number of laboratory experiments - whose 
difficulty is compounded by the need for a local central gravity field - have been 
performed (Hart, Glatzmaier & Toomre 1986a; Hart et al. 1986b), while the 
considerably more facile numerical experimentation has been relatively extensive. 
However, most numerical work has been for axisymmetric spherical shells (Hsui, 
Turcotte & Torrance 1972; Zebib, Schubert & Straus 1980; Schubert & Zebib 1980; 
Zebib et al. 1983; Zebib, Goyal & Schubert 1985; Machetel & Rabinowicz 1985; 
Machetel & Yuen 1986, 1987, 1988, 1989; Bercovici, Schubert & Zebib 1988) and/or 
for low Rayleigh numbers (a non-dimensional measure of the vigour of convection) 
(Young 1974 ; Machetel, Rabinowicz & Bernadet 1986). The accessibility of 
supercomputers in recent years has made three-dimensional studies of spherical 
convection at high Rayleigh numbers more realizable (Baumgardner 1985, 1988 ; 
Glatzmaier 1988 ; Bercovici et al. 1989c; Bercovici, Schubert & Glatzmaier 1989a, b ;  
Schubert, Bercovici & Glatzmaier 1990 ; Glatzmaier, Schubert & Bercovici 1990 ; 
Bercovici, Schubert & Glatzmaier 1991). Spherical geometry and three-dimen- 
sionality have been shown to be important in possibly accounting for some of the 
major tectonic features a t  the Earth’s surface (Bercovici et al. 1989a). 

Mantle convection has generally been modelled in the Boussinesq limit. However, 
for a large planet with a thick mantle, compressibility can be significant. For the 
Earth, the density of silicates increases by 60% from the top of the mantle to the 
bottom (taking into account phase and/or compositional changes) (Stacey 1977 ; 
Dziewonski & Anderson 1981). The effects of compressibility have been considered in 
two-dimensional studies of convective flow (Peltier 1972; Turcotte et al. 1974; 
Graham 1975; Hewitt, McKenzie & Weiss 1975; Jarvis & McKenzie 1980; Steinbach, 
Hansen & Ebel 1989; Machetel & Yuen 1989; Solheim & Peltier 1990). While the 
specific nature (e.g. time-dependence, radial structure) of the convective solutions 
has been found to be influenced by compressibility, the overall heat transport and 
horizontally averaged temperature profiles merely reflect the superposition of an 
adiabat on essentially Boussinesq solutions. However, compressibility introduces 
additional nonlinearities (e.g. viscous heating) into the convective equations which 
influence both the temporal evolution and the spatial symmetry of the convective 
solutions. Since the nonlinearities of the Boussinesq equations break the axi- 
symmetry of the marginally stable state into three-dimensional patterns with regular 
polyhedral symmetry (Busse 1975; Busse & Riahi 1982), any further symmetry 
breaking induced by additional nonlinearities must occur in three dimensions. 
Therefore, an investigation of the influence of compressibility on convection should 
account for three-dimensional effects. 
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In this paper, we present a numerical investigation of convection in a basally 
heated spherical shell characteristic of the Earth's whole mantle for the range of 
compressibilities pertinent to the terrestrial mantles. We investigate the effects of 
three parameters that we believe to have the greatest bearing on mantle convection. 
These parameters are the Rayleigh number, the dissipation number (a non- 
dimensional measure of compressibility), and the ratio Fbot/AZa (Fbot is the adiabatic 
reference temperature at the shell's base, and ATa is the superadiabatic temperature 
drop across the shell). The parameter Pbot/Aqa partially controls the super- 
adiabaticity of the fluid. This parameter has not previously been varied in 
investigations of compressible convection, yet compressibility has its greatest effects 
when TbOt/ATa is large. 

The following sections of this paper describe the theory of compressible convection, 
the computational model used for the numerical experiments, a verification of the 
model, a linear stability analysis for the parameter range of this study, and results 
of the experiments for both low- and high-Rayleigh-number solutions. 

2. The theory of compressible convection 
The model equations for subsonic compressible flow employ the anelastic 

approximation (Gough 1969) ; i.e. mass flux is solenoidal. Terrestrial mantle material 
is extremely viscous, thus the infinite-Prandtl-number Pr = V / K  (where v is kinematic 
viscosity and K is thermal diffusivity) approximation is used. With these assumptions, 
the equations of mass, momentum and energy conservation (or entropy transport) 

(2.1) 
are v. (pJ) = 0, 

0 = -VP'+V.a-p'gf ,  (2.2) 

where p,  T ,  P and S are density, temperature, pressure and entropy, respectively; 
barred quantities refer to a spherically symmetric adiabatic hydrostatic reference 
state and primed quantities are perturbations to that state. The adiabatic reference 
state simply defines a typical, average adiabat ; very little of the adiabiatically rising 
or sinking fluid actually passes along this adiabat, but moves instead along either a 
hotter (for warm rising fluid) or colder (cold sinking fluid) adiabat. A linear equation 
of state for the perturbation quantities is derived by carrying out a first-order Taylor 
series expansion of the variables around their adiabatic values. Thus, given entropy 
and pressure perturbations to the reference state S' and P ,  the temperature and 
density perturbations are, respectively, 

where a is thermal expansitivity, c p  is the specific heat at constant pressure, K ,  is the 
bulk modulus (i.e. adiabatic incompressibility) and 

d l n T  - UK, 
y = d l n p - x  
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is the Griineisen parameter. The deviatoric stress tensor is 0 = 2r](C-3V.u)/) and 
the strain rate tensor is e = t(Vu+[VuIt), where v is the velocity vector, 1 
is the identity matrix, and r,~ is the dynamic viscosity (7 = pv). The volumetric 
internal heating rate Q is zero in this study. Gravity g is a function of radius r only 
(? is the radial unit vector), and k is the thermal conductivity (k = p c p ~ ) .  

The linear equation of state (2.4) is a good approximation if T'/T 4 1 or if c p  is 
proportional to T. However, in this study, c p  is assumed constant although TIT is 
not necessarily 4 1 ; this is a necessary inconsistency to provide simple closure of the 
model. Such inconsistencies are often adopted - sometimes inadvertently - in 
compressible models of convection; e.g. the exact differential dS(T, P )  used in other 
formulations (e.g. Jarvis & McKenzie 1980; Machete1 & Yuen 1989; Solheim & 
Peltier 1990) to expand DS/Dt  in terms of T and P has an implied Maxwell relation 
that constrains a N 1/T (if c p  is constant), whereas a is assumed constant or a simple 
function of radius. The results presented later in this paper are a posteriori evidence 
that the linear equation of state does not present a serious inconsistency : when the 
linear equation of state is the poorest approximation (i.e. when T ' /p  is not 4 l),  
compressibility has very little effect. Thus, non-Boussinesq effects that are 
potentially inconsistently calculated because of the linear equation of state are 
negligible when the linear equation of state is least accurate. (Boussinesq effects are 
fully represented with the above equations ; i.e. the Boussinesq equations are 
completely recovered when there is no density or temperature stratification.) 
Although this finding may be affected by the linear equation of state, it makes 
intuitive sense ; i.e. when T'/T - O( l ) ,  thermal anomalies caused by viscous heating 
and the stabilizing effects of stratification are overwhelmed by the large imposed 
superadiabatic temperatures. Furthermore, (2.4) is weakest a t  representing the 
relation between S' and T' when T'/T is not 4 1. However, the leading-order effect 
should be that S' and T' monotonically increase with one another (since more heating 
causes temperature to increase) ; i.e. S' and T' should be odd functions of each other. 
Thus it is unlikely that a second-order correction to (2.4) (in which S and T' are even 
functions of one another) would - or should - be very significant. The most important 
correction to (2.4) is probably of third order, thus corrections to the linear equation 
of state may be smaller than what might be expected. Finally, it  can be shown, for 
a linear equation of state and constant heat capacity, that the coefficient of the 
material derivative of S' on the right-hand side of (2.3) is j@ instead of pT (Bercovici 
1989). 

Equation (2.2) does not include the effects of the perturbation gravitational 
potential which cannot be absorbed into the isotropic stress (i.e. the pressure) as in 
the Boussinesq approximation. This effect was considered in a previous study 
(Glatzmaier 1988) and was found to make no more than a 5 %  difference in the 
solutions. The effect may be even smaller since that study did not include the 
contribution of surface masses that arise from dynamic topography. 

The validity of the anelastic approximation requires p' 4 p (or p). Density 
perturbations due to pressure perturbations P are related to p' by p' - P'/cz (where 
c is the sound speed). In low-Prandtl-number flow, P'-pu2 (where u is a 
characteristic velocity), and thus p' /p  - W ,  where M = u /c  is the Mach number 
(Batchelor 1967 ; Gough 1969). However, in infinite-Prandtl-number flow, a pressure 
perturbation P is balanced by a viscous stress of characteristic magnitude Tu/L 
(where L is a characteristic lengthscale) ; therefore, p'/p N W/Re  (where Re = & / r ]  

is the Reynolds number). Previous studies of infinite-Pr compressible convection 
have justified the anelastic approximation by noting that for the Earth's mantle, 
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M2 - (Jarvis & McKenzie 1980; Glatzmaier 1988; Machete1 & Yuen 1989; 
Bercovici et al. 1989a, b,  c ;  Solheim & Peltier 1990). However, the validity of the 
anelastic approximation for mantle convection actually rests on the fact that 
W / R e  - 

In this paper, the ratio TbOt/AT,, is a variable parameter, defined in $1 .  (In a 
planetary mantle, got is the temperature of the mantle adiabat extrapolated down 
to the base of the mantle and A%, is essentially the sum of the temperature drops 
across the thermal boundary layers.) This parameter partially controls the degree of 
superadiabaticity of the fluid. For example, in a hydrostatic state, the entropy 

which although small is not nearly as small as M2. 

gradient is 
( 2 . 6 ~ )  

(where (dldr), is the radial derivative at constant entropy). If we make the 
substitutions 

T = Tbot a(r )  
dT 

where a(rbot) = 1 and (da/dr) < 0) and 

dT ATf(r) 
dr a 
- = -- 

(where AT = A%, + Tbot - Top is the total temperature drop, d is the shell thickness 
andfis a function of radius, e.g.f(r) = rtoprbot/r2 when the layer is conductive), then 

(2.6b) 

The fluid is subadiabatic or adiabatic (dS/dr 2 0) when the term proportional to 
Tbot/Aqa is positive and large relative to f ( r ) .  Thus the parameter cot/Aqa partially 
controls the degree of super- or subadiabaticity. 

In  this study 7, k, y and c p  are assumed constant. Thus, to non-dimensionalize 
equations (2.1)-(2.4) (with (2.5) substituted into (2.2)), we nondimensionalize time 
by pbot c p  d 2 / k  (where pbot is the density of the reference state a t  the base of the shell), 
distance by d,  pressure and stress by yk/(pbot c p  d 2 ) ,  entropy by c p  Aqa/pbot, and the 
temperature perturbation by AT,, to obtain 

where 

0 = - V P + V 2 v + + V  

p' DS' ~- 
Pbot 'bot Dt 

T - p Di T = -S++T--P. 
'bot pbot Ra 

(2.10) 

The Rayleigh number Ra = g a A T , , d 3 / ( v ~ )  and the dissipation number Di = agd /cp  
can both be functions of radius. Although Di represents stratification due to 
compression (it is the ratio of shell thickness to the adiabatic temperature scale 
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height), the parameter Di/Ru is the ratio of flow-induced heating (e.g. viscous 
heating) to the heating supplied by the energy source, which, in this paper, is a hotter 
underlying core. The Boussinesq equations are exactly recoverable when Di = 0 (if 
Y * 0). 

3. The numerical model 
3.1. The reference-state equations 

The reference state of this study's model is based on the Murnaghan equation 
(Murnaghan 1951; Glatzmaier 1988) in which the bulk modulus K ,  is a linear 
function of the reference-statc pressure 

Equation (3.1) describes only the adiabat defined by P and p ;  neighbouring adiabats 
are treated as perturbations to this one. With (3.1), the substitution p = pbOt 8" and 
non-dimensionalization of r by d ,  the hydrostatic equation becomes the dimensionless 
LaneEmden equation (Glatzmaier 1988) 

where 

ptop is j i  at r = rtop, 8 is the Lane-Emden function (Chandrasekhar 1939; Glatzmaier 
1988), and n = l/(K-1) is the polytropic index. The boundary conditions on 
density and gravity a t  the base of the shell require that 

(3.4) 

where gbot = GMcore/r~ot  (M,,,, is the mass of the underlying core). We constrain 
d2/R2 by requiring that 

at r = rtop. The solutions for 0 and d0/dr  together define the reference state. The 
adiabatic reference-state temperature is = T b o t 8 Y n .  Thermal expansivity a is a 
function of radius (unless K = 1) .  

In  summary, the non-dimensional parameters that define the reference state are K 
(or n),  pbot/ptop, gbot/(4nGpbot d ) ,  and y.  For convenience, we replace the parameter 
jib,t/jitop with a radially averaged dissipation number = y lnpbot/ptop. In the 
Boussinesq limit, gbot/(4xGpbot d )  is the only parameter for the reference state. 
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3.2. The dynamic-state equations 
Equations (2.7)-(2.10) are used to model compressible (anelastic) convection in 
which the reference-state quantities p and T are derived from the previous section. 
With this reference state, the dimensionless coefficients from (2.7)-(2.10) are 

(3.6) 

Therefore, the above relations introduce the three dimensionless numbers : 
AT,(pbotcpd)2/7k (equivalent to Ra/Di at the base of the shell), Z O t / A q a  and 
c p  Tbot/(gbot d ) .  In the remainder of this paper we use a volume-averaged Rayleigh 
number ( R a )  rather than refer to (Aq,(pbotc ,d)2/(yk) .  In summary, the non- 
dimensional input parameters to the numerical model are : 

(i) K' (or n = l/(K'- 1)) which is held fixed at  3.5, characteristic of the Earth's 
whole mantle (Stacey 1977 ; Dzeiwonski & Anderson 1981) ; 

(ii) y = (p/T)(dT/dp), the Griineisen parameter which is held fixed at 1, 
approximately true throughout the Earth's mantle ; 

(iii) = y In (pbot/ptop), the radially averaged dissipation number which, in this 
study, is variable ; 

(iv) gbot/(4~Gpbot d )  which is held fixed at 1.26; 
(v) Tbot/AT, which, in this paper, is variable ; 
(vi) c p  Tbot/(gbot d )  which is held constant at 0.12; 
(vii) rbot/rtop the inner to outer radius ratio, for this study, held fixed at 0.547, 

(viii) ( R a ) ,  the volume-averaged Rayleigh number which is variable. 
The continuity equation (2.1) is satisfied exactly by a poloidal mass flux: 

pv = V x V x ( W f )  ; as in the infinite-Prandtl-number Boussinesq case, the tor- 
oidal flow is identically zero when the viscosity field is spherically symmetric 
(Chandrasekhar 1961 ; Glatzmaier 1988). Thus, the three dependent variables are W ,  
P and s' and the three equations are f .  (2.2), V. (2.2) and (2.3) (see Glatzmaier 1988). 
The boundaries of the shell are impermeable, shear-stress free and isothermal. 
Therefore, the boundary conditions at rtop and rbot are 

characteristic of the mantles of Earth, Mars and Venus. 

W = jhB-(;-y)a7 a2w 2 ~i aw = T - T b  = 0 
(3.10) 

(Glatzmaier 1988). The superadiabatic part of the conductive temperature profile TL 
satisfies the equation 

V2( T / A T a  + T;) = 0 (3.11) 

with isothermal boundary conditions 
/3 at r = rbot; 

= {p-l at rtop 
(3.12) 
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The parameter p (where 0 < /? < 1)  is adjusted to allow the convective temperature 
profile to  coincide with the reference-state adiabat away from the thermal boundary 
layers. 

3.3. The numerical method 
Solutions to  the equations of motion and energy are obtained through a spectral- 
transform Chebyshev-collocation method (Glatzmaier 1984, 1988). The dependent 
variables are expanded in terms of spherical harmonics and Chebyshev polynomials, 

for example, f l  N x c w l " ( l - g [ s f l O + s n N l ) T f l ( z ) ~ m ,  
1-0 m--1 n-0 

where z = 2 (  r -rbot  ) -1 ,  Tfl(z) = cos(ncos-lx) 
'top - 'hot 

The p y  are the associated Legendre polynomials of spherical harmonic degree 1 and 
order m, and the T,, are the Chebyshev polynomials of order n. The spectral 
expansions are only accurate if their power spectra near the truncation levels L and 
N have negligible power. Nonlinear terms are dealiased with an excessive grid point 
method. Time integration is performed via finite differences with a Crank-Nicolson 
scheme for the linear terms and an Adams-Bashforth method for the nonlinear 
terms. The time step size is constrained by the Courant condition. For more details 
on the numerical method, see Glatzmaier (1984, 1988). 

3.4. Veri$cation of the method 
A verification of the model has been carried out in the Boussinesq limit (Bercovici 
et al. 1989~) .  However, this comparison could not validate parts of the model that are 
restricted to the anelastic formulation. We therefore carried out a linear stability 
analysis of compressible convection with both the numerical model described above 
and an independently developed Runge-Kutta, Newton-Raphson two-point 
boundary-value problem solver (see $4). The corroboration of results from the linear 
stability analysis extends the verification of the model to all the anelastic portions 
of the code save the viscous heating term (since it is non-linearizable). To complete 
the verification of the model, we have tested the calculation of viscous heating for an 
arbitrary poloidal velocity field against the same calculation made with a separate 
finite-difference numerical code. The poloidal velocity potential W used for the test 
is 

The calculation is made non-dimensional such that 7 = 1,  rbot = 1.222 and 
rtop = 2.222. For quantitative comparison, the viscous heating is transformed to 
( I ,  m, r)-space, and its volume integral for every l and m is calculated. These spectral 
components of viscous heating for the two codes are shown in table 1. The spectral 
components of the two codes agree within approximately 1% for the dominant 
values and within approximately 2 YO for the smaller terms. This test satisfactorily 
validates the calculation of viscous heating and completes the verification of the 
numerical model. 
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Percent 
1,  m Model (@) Test code (@) difference 

0 ,o  1.82271 x lo-' 1.80688 x lo-' 0.88 
1,o 8.71182 x 8.62661 x lo-' 0.99 
1, 1 5.66751 x lo-' 5.61256 x lo-' 0.98 
2,o 1.93986 x lo-' 1.91327 x lo-' 1.39 
2, 1 - 1.65630 x lo-' - 1.65988 X lo-' 0.21 
2, 2 -3.16455~ lo-' -3.23102 x 2.06 
3,o 6.46865 x lo-' 6.37402 x 1.48 
3, 1 - 1.10307 x lo-' -1.10498~ lo-' 0.17 
3, 2 -1.21119~ lo-* -1.211oox 0.02 
3, 3 -6.17327~ -6.18703 x lo-' 0.22 
4,o 2.02165 x 1.99338 x 1.42 
4, 1 -4.52766 x -4.56107 x lo-' 0.73 
4,2 -6.26190~ lo-' -6.27876 x lo-' 0.27 

4,4 -3.67061 x - 3.68791 x lo-' 0.47 
590 -8.20239 x - 8.28106 x 0.95 
5, 1 -2.27443 x lo-' -2.32422 x 2.14 
5, 2 - 3.22433 x lo-' -3.25946 x 1.08 
5, 3 - 3.74585 x lo-' -3.76782 x 0.58 
5,4 - 3.63300 x lo-' -3.65199 x 0.52 
5, 5 -2.70319~ -2.73021 x 0.99 

TABLE 1.  Comparison of the volume integral of viscous heating (@) for every 1 and m for the 
spectral transform numerical model of this study (Model), and a finite-difference code (Test code) 
developed explicitly for calculating viscous heating. Equation (3.13) (with L = 5 and N = 4) for a 
poloidal velocity potential is used to generate the velocity field from which viscous heating is 
calculated. The spectral-transform code has 25 Chebyshev collocation points in radius, 20 
Gauss-Legendre points in latitude, and 40 evenly spaced (Fourier) points in longitude. To 
compensate for the added accuracy of Chebyshev collocation and Gaussian quadrature, the finite- 
difference test code has a grid with 50,41 and 81 evenly spaced radial, latitudinal and longitudinal 
grid points, respectively. 

4, 3 - 6.12932 x -6.13495~ lo-' 0.09 

4. Linear stability 
The critical Rayleigh number (Ra),, for the onset of convection is dependent on 

the spherical harmonic degree 1 and the non-dimensional parameters (i)-(vii) listed 
at  the end of $3.2; ( R a )  is the eigenvalue of the linearized equations. In  this paper 
we will only examine the dependence of (Ra),, on E, !ibot/Aqa, and spherical 
harmonic degree. 

As mentioned in $3.4, the linear stability analysis is carried out with two different 
techniques to check the numerical method. In one technique, the numerical model 
itself is used to time integrate the linearized conservation equations for various ( R a ) .  
For each spherical harmonic degree, the maximum real growth rate for the WE is 
monitored at  each ( R a ) .  The two Rayleigh numbers with small positive and negative 
real growth rates bracket (Ra),,. Linear interpolation of the growth rate between 
these two values of ( R a )  is used to estimate (Ra),,. The second method employs a 
Runge-Kutta, Newton-Raphson shooting scheme to solve the eigenvalue, two-point 
boundary-value problem posed by the linearized equations. The shooting scheme 
itself is verified by comparing its results in the plane-layer limit (rbot/rtoD + 1) to those 
of a previous analysis of plane-layer compressible convection (Jarvis & McKenzie 
1980; see Bercovici 1989). 
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E AT? 1 = 1  
0 1919 

1 2029 
1899 
1616 
2140 

0.25 

1481 
863 

1;: 
0.50 

2 
915 
979 
920 
78 1 

1039 
722 
420 

3 
733 
795 
750 
633 
847 
591 
342 

4 
75 1 
823 
781 
650 
880 
616 
352 

5 
878 
969 
924 
754 

1037 
727 
409 

TABLE 2. Critical Rayleigh - _  number (Ba),, for the spherical shell anelastic model with 
rbot/rtop = 0.547 for different Di, Tbot/ATm, and 1. The minimum (Ra),, (shown in bold face) occurs 
at 1 = 3 in all cases 

Table 2 lists the (Ra),, versus 1 for the parameters used in this paper. The (Ra),, 
for Tbot/Aqa = 1 increases by only 16% from IX = 0 to 0.5; this is probably due to 
the slight stabilization of fluid near the top of the shell as Di increases. At larger 
values of Tbot/Aqa, increases in have the opposite effect : (Ra),, decreases (nearly 
50% for Tbot/Aqa = 30) as Di increases. 

For large Tb0,/AT,,, the lower half of the shell is destabilized and the upper half is 
stabilized (figure 1 ) .  The stability of fluid near the top of the shell leads to a 
penetrative convection that is exactly opposite in nature to that of the plane-layer, 
constant-Di case (Jarvis & McKenzie 1980). In the plane-layer model, the adiabatic 
temperature profile is an exponential function of height (which corresponds to K = 1 
with gravity and a constant) and the conductive temperature profile is linear. 
Therefore, the superadiabatic temperature gradient in the plane layer is positive in 
the lower half of the layer and negative in the upper half; and so, the top of the layer 
is unstable and the bottom is stable. This emphasizes the difference between 
spherical-shell and plane-layer convection, as well as the effect of the shape of the 
adiabat, which is controlled by K (or n). Penetrative flow a t  the base of the fluid 
layer was also found in the compressible spherical-shell study of Machete1 & Yuen 
(1989). This occurred because that study varied the amount of internal heating until 
the basal heat flux was very low, leading to a subadiabatic temperature gradient near 
the base of the shell. That study also used a constant Di, leading to a very steep 
adiabat near the base of the shell which influenced the internal heating rate a t  which 
penetrative flow occurred. 

Since the critical Rayleigh number is strongly dependent on other parameters, it 
is impossible to hold both the relative convective vigour (measured by (Ra)/(Ra),,) 
and the magnitude of flow-induced heating (measured by Di/(Ra))  fixed while 
exploring the effects of other parameters. Therefore, in $5, we examine the effects of 
various parameters on nonlinear convection while holding (Ra)  constant a t  8000, 
except for = 0.5 and Tbot/Aqa = 30, when we use ( R a )  = 4000. Therefore, (Ra)  
is maintained at  approximately 10(Ra),, while effecting as little change as possible 
on Z / ( R a )  (for a given ( R a ) ) .  

5. Nonlinear solutions for ( R a )  z lO(Ra),, 
In this section, we examine the effects of varying Fi and TbOt/Aqa a t  relatively low 

(Ra)  ( (Ra)  x lO(Ra),,). Using a steady Boussinesq solution from Bercovici et al. 
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FIGURE 1. Adiabatic (0) and conductive (A) temperature profiles (left panels) and superadiabatic 
(0) temperature profiles in units of AT, for = 0.5: (a) Tm/AT, = 1; (b)  10; (c) 30. 

(1989~) as an initial condition, we obtain a steady solution for the case (Ra)  = 8000, 
Di = 0, Tbot/ATm = 1. This solution has a convective pattern with tetrahedral 
symmetry (i.e. dominated by the 1 = 3, rn = 2 spherical harmonic mode). This 
solution is then used to obtain solutions for the cases (Ra)  = 8O00, a = 0.25, 
Tbot/Aqa = 1 , l O  and 30; (Ra)  = 8000, a = 0.5, zot/ATm = 1 and 10; <Ra) = 4000 
(to keep (Ra)  near to lO(Ra),,), = 0.5, Tbot/Aqa = 30. In those cases when 
qot/AXa = 1 truncation levels of L = 21, N = 16 are used, while for Tbot/Aqa = 10 
and 30, L = 31 is used, the reasons for which will become apparent shortly. Figure 
2 shows power spectra for volume-averaged entropy variance and kinetic energy in 
both the spherical harmonic and Chebyshev spectral domains for the different 



694 

0 

-2 

- 8  

- 10 

D .  Bercovici, G. Schubert and G .  A .  Glatzmaier 

0 5 10 15 
n n 

FIGURE 2 (a). For caption see facing page. 

truncation levels. A net drop of four orders of magnitude or more in power indicates 
that a solution is well resolved (see the Appendix for a convergence test). That the 
kinetic energy is better resolved than the entropy variance is typical of high-Prandtl- 
number flow. 

5.1. Temperature and entropy proJiles 
Figure 3 shows spherically averaged temperature and entropy profiles for the 
nonlinear solutions with different Di and Tbot/Aqa. The central portion of the shell 
(i.e. away from the thermal boundary layers) is subadiabatic for all Di. When the 
superadiabatic temperature drop AT,, is large (TbOt/AT,, = l) ,  the thermal boundary 
layers are fully destabilized for all Di. As AZa decreases for Di > 0 the total 
temperature gradient near the top of the shell (where the heat flow per unit area is 
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FIGURE 2. Characteristic power spectra of ( i )  Chebyshev and (ii), (iii) spherical harmonic expansions 
for entropy variance (left panels) and kinetic energy (right panels) for cases with (a) 
(Ra) x 10(Ra),, (the second set of spherical harmonic spectra (iii) are for the time-dependent 
cases with Tbot/ATm = 30 in which L = 31); and ( b )  (Ra) x 100(Ra),,. 

smallest) becomes smaller in magnitude than the adiabatic temperature gradient. 
Thus, at  the top of the shell, the fluid is subadiabatic and stable; this is the exact 
opposite of the plane-layer, constant-Di case (Jarvis & McKenzie 1980) and the 
internally heated spherical-shell case (Machete1 & Yuen 1989) (see discussion in $4). 

5.2. Patterns of convection and the horizontal structure of the velocity 
and thermal fields 

The convective pattern for Tbot/Aqa = 1 and all has a dominant tetrahedral 
( I  = 3, m = 2 )  signature. As in the Boussinesq case of Bercovici et al. (1989c), the 
upwellings are in the form of cylindrical plumes surrounded by an interconnected 
network of downwelling sheets (figure 4). The entropy contours display sharper 
upwelling and downwelling features than the radial velocity contours because of the 
infinite Pr. The maximum upwelling and downwelling velocities and entropy 
anomalies increase slightly with E. The change in velocities probably occurs because 
the mass flux is essentially the same for the different a and since the density 
decreases with height for non-zero Di, the vertical velocities increase accordingly. 

As shown in $5.1, when Tbot/Aqa increases for Di > 0, the entropy drop across the 
upper thermal boundary layer decreases and even reverses its sign. This leads to a 
weakening and eventually a complete loss of fine downwelling structure. For both 

= 0.25 and 0.5, the tetrahedral pattern remains as TbOt/AGa increases from 1 to 10. 
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FIQURE 3. Radial profiles of spherically averaged temperature (top panels) and entropy (bottom 
panels) for = 0 (O), 0.25 (0 )  and 0.5 (A) with (Ra)  x 10(Ra),,. ( a )  qfibat/ATsa = 1 ; ( b )  10; (c) 30. 

(The dependence on zot/Aqa for the case with = 0.25 is essentially identical to 
that with Di = 0.5 and is therefore not shown.) Nevertheless, the downwelling 
regions become less concentrated. As Tbot/AT,, further increases to 30, the pattern 
loses all polyhedral symmetry ; the downwelling structure is virtually nonexistent 
while the upwelling is contained in many (on the order of 10) narrow, concentrated 
cylindrical plumes. (The transition to this pattern with small-wavelength features 
was the reason for the increase in L from 21 to 31.) This is the opposite of what 
occurred in the plane layer, constant-Di study (Jarvis & McKenzie 1980) and the 
internally heated spherical shell study (Machete1 & Yuen 1989) wherein the 
upwellings were virtually eliminated and the downwellings became highly narrow 
and concentrated. Therefore, in those studies, the broadening of upwellings and 
narrowing of downwellings was due to the elimination of the lower boundary layer 
and enhancement of the upper one, and not (as suggested by Jarvis & McKenzie 
1980) from the decompression (compression) of upwelling (downwelling) currents. 

As Tbot/Aqa increases, the unstable portion of the fluid is confined to an ever 
thinner layer in the lower portion of the shell. This causes the horizontal scale of the 
convection cells to decrease as TbOt/Aqa increases, leading to more upwelling plumes. 
For both Di = 0.25 and 0.5, the solutions at TbOt/Aqa = 30 are time dependent ; this 
will be discussed further in 55.5. 

The radial velocity and entropy extrema in table 3 show that the upwelling regions 
become relatively hotter and faster and downwelling regions become warmer and 
slower as the superadiabatic temperature drop AT,, decreases. The downwellings lose 
vigour as TbOt/Aqa increases because the upper boundary layer becomes stabilized. 
The vigour of upwelling increases because the relative entropy drop across the lower 
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v, s' s 
m 
- 
AT- 1 10 30 1 10 30 1 10 30 

f m ,  150 230 130 0.84 1.50 2.3 0.77 0.80 0.80 
Af 10 10 9 0.06 0.10 0.10 0.07 0.10 0.20 

TABLE 3. Contour information for figure 4, where f,,, is the minimum contour value, f,, is the 
maximum contour value, and Af is the contour interval for the variable presented in the top row 

f m l n  -40 -10 -18 -0.18 0 -0.20 -0.35 -1.0 -2.6 

boundary layer increases t o  compensate for the entropy rise in the upper half of the 
shell. 

5.3. Vertical structure 

The vertical structure of the entropy field is not affected significantly by changes in 
dissipation number when Tbot/Aqa = 1. The upwelling plumes have fairly broad 
necks and well-defined mushroom heads as the plumes push into the upper boundary 
layer (figure 4). The upwelling plumes in most of the cases shown are typically thicker 
than the horizontal boundary layers. This is not an artifact of the numerical 
resolution but results from the fluid in the plume moving along a line in the 
meridional plane of the figure while most of the fluid in the horizontal boundary layer 
is out of the meridional plane (see the Appendix). Figure 4 also shows that the 
downwelling regions are not as concentrated as the upwelling regions. As Tbot/Aqa 
increases to 10, the upwellings narrow and the downwellings broaden. For 
Tbot/AGa = 30, the upwelling plumes are very narrow and do not form mushroom 
heads a t  the top boundary since they penetrate into the stable upper portion of the 
shell. Although the fluid in the upper half of the shell outside of the plumes is largely 
stable and conductive, it subsides with a small downward velocity to compensate €or 
the upward mass flux of the plumes; this fluid thus comprises the broad weak 
downwelling . 

5.4 Heat generation and transport 

A global measure of the efficiency of heat transport by convection is the Nusselt 
number Nu (the ratio of spherically averaged total heat flow to heat flow in the purely 
conductive state). By conservation of energy, in a steady state Nu should be the same 
at the top and bottom of the shell ; the percent difference between these Nu is a global 
measure of the accuracy of the solutions and in this paper is never more than 1.5%. 
For cases with (Ra) x lO(Ra),,, Nu decreases with increasing or Tbot/ATsa. For 
E = 0,  Nu is 3.62. When Tbot/Aqa = 1, Nu is 3.21 and 3.01 for = 0.25 and 0.5, 
respectively; when Tbot/Aqa = 10, Nu = 1.77 and 1.65 for = 0.25 and 0.5. When 
Pbot/Aqa equals 30, the solutions are time dependent, and Nu varies between 1.41 and 
1.44 for both Di = 0.25 and 0.5. For a given (Ra) ,  the Nusselt number decreases with 

(where Top = zot e-m) and if either E or Tbot/Aqa increases, (Tbot - IfE,,)/AT,, 
increases while T' and Pc are of order unity. 
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FIGURE -Radial profiles of surface-integrated conductive (A), advective (0) and 
flow for Di = 0 (left) and 0.5 (right) with (a) pb,,,/ATsa = 1 ; (b)  10; (c) 30. Values are 
the maximum heat flow. 

total (0) heat 
normalized by 

The total advective and conductive heat fluxes across any spherical surface A are 

and 

(7, = - 

(5.3) 

respectively. These two quantities and their sum are shown in figure 5. Conduction 
is the dominant form of heat transport in the boundary layers while advection 
dominates in the shell's interior. For E = 0, a small negative conductive heat flow 
occurs in the shell's interior because of the slightly subadiabatic temperature 
gradient there. The total heat flux is constant throughout the shell because there are 
no heat sources within the shell when n = 0. For = 0.5 is shown), the 
conductive heat flux is positive everywhere because the adiabat contributes a 
positive conductive heat flow, As Tbot/Aqa increases, conduction assumes a larger 
role in the net heat transport because the adiabat carries a greater portion of the heat 

> 0 (only 

23 FLM 239 
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FIGURE 6. Radial profiles of surface-integrated advective (n), diffusive (A) and viscous (0) 
heating terms for the same cases as in figure 5. Values are normalized by the  maximum heating. 

flow while the thermal anomalies (which scale as AEa) transported by advection 
become relatively smaller. The advective heat flow maximum and the conductive 
heat flow minimum move to greater depths as Tbot/Aqa increases because the upper 
portion of the shell becomes more stabilized. The total heat flow for > 0 is not 
constant throughout the shell because heat sources and sinks are present in the forms 
of viscous and adiabatic heating. 

Radial profiles of the surface-integrated terms in the energy equation (2.9) that 
contribute to the net heating of the shell pTi3S'/at are shown in figure 6. (The 
negative of the advection term is shown since it indicates advective heating.) The 
diffusion term is large and positive (negative) near the shell's base (top) where the 
boundary layer is conductively heated (cooled) from below (above). Advection is also 
large in the boundary layers as it cools (heats) the lower (upper) boundary layer. At 
Di = 0, the advection and diffusion curves are symmetric about the zero heating line, 
which is expected since their sum must equal zero in steady state. In this case, 
advection and diffusion heat and cool the upper boundary layer more than they cool 
and heat the lower boundary layer which probably reflects the different curvatures 
of the top and bottom boundaries. 

For Di > 0, viscous heating is significant (i.e. between 1 % and 10% of the other 
heating terms) ; i t  is largest in the boundary layers and smallest in the middle of the 
shell. Because viscous heating is always positive, the advection and diffusion terms 
are no longer equal in magnitude a t  any given radius. As Di and Tbot/Aqa increase, 
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- R o t  

ATsa 1 1 1 10 10 10 30 30 30 

T - 
1 0.77 0.55 1 0.77 0.55 1 0.77 0.55 Tto, 

@mar 21.250 1.208 49.989 49.989 5.416 112.476 32.493 11.997 119.970 
A@ 1.250 0.042 2.941 2.941 0.333 4.166 1.250 0.750 7.498 

TABLE 4. Contour information for the viscous heating contours of figure 7, where 
maximum contour value, and A@ is the contour interval; 
always 0. Viscous heating is non-dimensinalized by kAT,,/d2. 

is the 
the minimum contour value, is 

the upper portion of the shell becomes increasingly stabilized causing advection to 
deposit more heat in the shell’s interior and less in the upper boundary layer. 

Figure 7 shows the spatial distribution of viscous heating. Viscous heating at mid- 
depth is highly concentrated in and around the upwelling plumes. When Di > 0 and 
Tbot/Aqa = 1, the viscous heating associated with each plume is contained within 
three bands centred on the plume’s axis. The outermost band surrounding the plume 
is in the downwelling shear zone adjacent to the plume. The other bands inside the 
upwelling region are probably due to the non-uniform thermal buoyancy of the 
plume which is highly focused a t  the plume centre (see figure 4). At the top and 
bottom of the shell, viscous heating is concentrated directly above or below the 
upwelling and downwelling regions. The point of maximum viscous heating in the 
shell occurs where the upwelling plumes meet the upper or lower boundary. This 
corresponds to the observation by Jarvis & McKenzie (1980) that  viscous heating is 
greatest a t  the corners of a two-dimensional convection cell. 

5.5.  Time dependence 
As noted in $5.2, when Eot/Aqe, = 30 for Di > 0, the polyhedral symmetry of 
the convective pattern is broken and the solutions are time dependent a t  
( R a )  x 10(Ra),,. In  these cases, the convective pattern is characterized at  any one 
time by roughly ten narrow cylindrical plumes (figure 8). Though these plumes fuse 
with one another, the total number of plumes remains about the same since plumes 
continuously form. 

When Di = 0.5 and Eot/Aqa = 30, a convective pattern with a single dominant 
mode at I = 6 ,  m = 4 is stable for a very long time (figure 8a). This pattern has 
fourteen plumes and therefore does not have the regular polyhedral symmetry. After 
approximately 0.4 diffusion timescales 7diee = d2pWot c , /k  or roughly 14 overturn 
times, the pattern breaks down. The cluster of five plumes in the left hemisphere 
rapidly collapses to one plume (by time t = 1.118) at the equator. The fusion of these 
plumes correlates with an increase in the maximum velocity (table 5 ) .  This probably 
results from the entire upwelling region being squeezed into a smaller horizontal area 
and/or the net viscous shear resistance to the upwelling being reduced (since the 
regions of shear between plumes are eliminated a t  the same time that the net surface 
area of the upwellings diminishes). Once the pattern becomes a random distribution 
of plumes, its evolution is characterized by a continuous formation and fusion of 
plumes. 

Figure 8 ( b )  shows time series and corresponding frequency-power spectra for the 
volume-integrated kinetic energy ( K E )  of the above solutions. In the same way that 
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FIGURE 8. (a) Contours of radial velocity at different non-dimensional times for = 0.5 and 
TMt/ATm = 30; solid contours denote positive radial velocity and dashed contours denote negative 
radial velocity. (a) Volume-averaged kinetic energy ( K E )  as a function of time and the 
corresponding Fourier power spectrum. See table 5 for contouring information regarding (a). 
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Time 0.698 1.043 1.118 1.164 1.213 1.437 

v,lnf%x 121.17 147.14 155.79 164.45 147.14 129.83 
8.66 8.66 8.66 8.66 8.66 8.66 

TABLE 5. Contour information for the radial velocity contours of figure 8(a),  where vrrni, is the 
minimum contour value, vrmax is the maximum contour value, and Av, is the contour interval. 
Contour information for the first and last times are listed and information for any intermediate 
time is only shown when i t  is different from the previous time. 

Vrrnin - 17.31 - 17.31 -17.31 -8.66 - 17.31 - 17.31 

radial velocity increases with plume fusion, the large jumps in ( K E )  signal the fusion 
of plumes. The dominant non-dimensional frequency for the Di = 0.5 case is a t  5.6, 
characteristic of the envelope of the peaks in ( K E ) .  A secondary peak occurs a t  a 
frequency of 26.0 with roughly 20% of the power at  the largest frequency; this 
frequency is characteristic of the period between peaks in ( K E ) .  These frequencies 
are considerably less than the overturn frequency (based on the maximum upwelling 
velocity in table 5) ; plume fusion occurs only once every four or five overturns. 

6. Nonlinear solutions: ( R a )  > 100(Ra),, 

6.1. Solutions for 10(Ra),, < (Ra)  < 100(Ra),, and Tbiit/Aqa = 1 

The solutions from $5 for Di 2 0 and Tbiit/AEa = 1 were stepped up in Rayleigh 
number to ( R a )  = 80000; all of these solutions were found to be steady. 
Compressibility has very little influence on the three-dimensional structure of 
solutions with Tbot/Aqa = 1. The patterns of convection are identical and 
quantitative changes (e.g. the maximum velocity) are only on the order of 10% and 
not significantly different from what was discussed in $5. These solutions are similar 
to those for the Boussinesq case, hence we defer to Bercovici et al. ( 1 9 8 9 ~ )  for a 
discussion of Boussinesq three-dimensional convection with increasing Rayleigh 
number. For further discussion of the compressible solutions, see Bercovici (1989). 

Compressibility does have a small effect on the Nusselt number-Rayleigh number 
relationship. Figure 9 shows Nusselt versus Rayleigh numbers for E = 0, 0.25 and 
0.5. As discussed in $5.4, N u  decreases with increasing E. If N u  - (Ra)a, then a 
least-squares fit to  the N u  us. (Ra) curves gives p x 0.26 for all three Di. When points 
for ( R a )  < 40000 are included, y decreases slightly (on the order of 2 or 3%) as 
increases from 0 to 0.5. Thus, when TbOt/Aqa = 1 ,  changes in E do not appear to 
significantly affect the exponent of the Nu-Ra relationship. Surface-integrated heat 
flow and volumetric heating do not change significantly with (Ra) and vary with 
similarly to what is discussed in $5. 

6.2. Time dependence for the Case (Ra)  = 16000, Di = 0.5, TbOt/Aqa = 10 

When ( R a )  for the solution with Di = 0.5 and Tbot/Aqa = 10 is increased from 8000 
to 16000, the steady tetrahedral pattern disappears and is replaced by a pattern with 
a dominant spherical harmonic mode a t  I = 6, m = 4 (figure lOa), similar t o  the case 
with (Ra)  = 4000, Di = 0.5, Tbot/Aqa = 30. This pattern is probably established 
because it has a high-wavenumber mode (which is preferred when the unstable 
portion of the shell is effectively thinned as convection becomes penetrative) that has 
immediate access to the energy in the tetrahedral mode (via the quadratic nonlinear 
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Nu 
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( R a )  

FIGURE 9. Nusselt number Nu versus Rayleigh number (Ra)  for three different E. 

interaction of thermal advection). The 1 = 6, m = 4 pattern persists and is nearly 
steady for a very long time (0.77diff, or approximately 10000 time steps) after which 
the solution rapidly evolves to one with a dominant cubic ( I  = 4, m = 0 and I = 4, 
m = 4) signature. (The kinetic energy time series shown in figure 1 0 b  begins once the 
1 = 6, m = 4 solution becomes unsteady.) The transition to the cubic pattern is 
evident in the ( K E )  time series as the two sharp peaks in kinetic energy at t w 0.1. 
Except for a brief distortion of the polar plumes a t  t w 0.26, the cubic solution 
persists until t x 0.4. After this, the cubic pattern becomes unstable and eventually 
evolves into an irregular pattern with four plumes. The four-plume pattern itself 
becomes unstable after some time as the four plumes collapse to two plumes. 
Eventually, the two plumes become connected by sheets of upwelling to form a 
contiguous ring of upwelling by t 1.4. An upwelling plume then forms at the centre 
of the ring by t x 1.6 and the ring collapses to a plume antipodal to the newly formed 
plume ( t  x 1.8). This is followed by an apparent repetition of the process by which 
two plumes are connected by a contiguous ring of upwelling ( t  w 2.4); however, this 
ring is more or less orthogonal to the ring at t w 1.4. In  between many of the time 
frames shown, the simulation displays very erratic behaviour in which plumes form 
and lose appendages, new plumes appear and vanish, etc. The time dependence of the 
kinetic energy of this case (figure lob) is highly irregular and is generally sporadic, 
showing the most oscillations during the flurries of activity in the convective pattern. 

The Nusselt number at the top of the shell for this case varies slightly from 1.78 
to 1.82, while a t  the bottom of the shell Nu varies between 1.72 and 1.92. The greater 
variability in Nu a t  the base of the shell probably reflects the time-dependent 
behaviour of the plumes occurring through instabilities in the bottom boundary 
layer. 

6.3. Time dependence for irregular convective patterns 
Although the regular polyhedral patterns are steady at least up to <Ra) x 100(Ra),, 
(§6 . l ) ,  irregular patterns are not (Bercovici et al. 1989a, b) .  Thus not only are the 
regular polyhedral patterns preferred at the onset of convection (Busse 1975 ; Busse 
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FIQURE 10. Time dependence for the case with (Ra)  = 16000, = 0.5 and Tbot/ATm = 10. (a) 
Contours of radial velocity (at mid-depth) for different times. Solid contours denote positive radial 
velocity and dashed contours denote negative radial velocity. See table 6 for contouring 
information. ( b )  Volume-averaged kinetic energy ( K E )  versus time. 
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Time 0.045 0.125 0.265 0.335 0.437 0.525 0.731 

vrmax 259.65 375.05 282.73 375.05 282.73 375.05 346.20 
A% 17.31 25.96 20.19 25.96 20.19 23.08 23.08 

v,min - 34.62 0 -20.19 0 -20.19 -23.08 -23.08 

TABLE 6. Same as table 5, but for figure 10(a) 

(4 'i';- , -.. ._ 

0.2 

0.05 0.33 
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FIQURE 11  (a). For caption see facing page. 

& Riahi 1982), but they are stable in the strongly nonlinear regime. Irregular 
patterns generated by random initial conditions, on the other hand, lead to time- 
dependent solutions whose patterns are not always related to the least stable modes 
a t  the onset of convection, as are the regular polyhedral patterns. 

In  this subsection we simulate convection with irregular convective patterns (by 
starting the simulations with random initial conditions). To test the influence of 
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Frequency, K / d 2  

FIGURE 11 .  Time-dependent behaviour of convection for the case with random initial conditions, 
( R a )  = 100(Ra),, and Di = 0. ( a )  See caption to figure 10(a) and table 7 for contouring 
information. ( b )  Volume-averaged kinetic energy ( K E )  versus time and the corresponding Fourier 
power spectrum for 0,42 < t < 0.48. 

0 0.034 0.057 0.080 0.118 

-92.32 - 288.50 -317.35 -288.50 - 230.80 
103.86 490.45 577.00 634.70 634.70 

1 1.54 28.85 28.85 57.70 57.70 

0.239 0.334 0.383 0.478 

- 173.10 - 173.10 - 173.10 -173.10 
692.40 750.10 807.80 750.10 
57.70 57.70 57.70 

TABLE 7. Same as table 5, but for figure 1 1  (a )  

compressibility on the pattern evolution and temporal behaviour of these solutions, 
we carry out two simulations, for Di = 0 and 0.5, with identical initial conditions. 
Since we are comparing the temporal behaviour of the two cases, the Rayleigh 
numbers are set exactly equal to 100(Ra),,. Other parameter values are identical to 
those in the cases with Tbot/Aqa = 1 that were previously discussed. These solutions 
have truncation levels N = 18 and L = 31. The power spectra of one of the solutions 
are shown in figure 2(a ) .  After the first 1000 time steps (or 0 . 0 3 ~ ~ ~ ~ ~ )  of the 
simulations, the pattern evolution for the two cases already diverges (figures 11, 12). 



Three-dimensional convection i n  a basally heated spherical shell 709 

. . ..d. i . . . 

0.212 

0.35 
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FIGURE 12(a). For caption see facing page. 

The upwellings in the compresfjible case coalesce into separate plumes faster than in 
the Boussinesq case. At t = 0.08 both cases have the same number of plumes, and by 
t x 0.23, both cases are evolving toward a three-plume configuration. However, by 
t = 0.284, the fusion of two plumes in the Di = 0 case has stalled and the pattern 
settles into a four-plume configuration for the remainder of the simulation. 

= 0.5 case continues its fusion of plumes until reaching the three-plume 
configuration by t x 0.2. This planform lasts for a very long time (from t = 0.19 to 
t = 0.34) until i t  becomes unstable and collapses into a two-plume pattern. This two- 
plume pattern persists for the remainder of the calculation although the plume in the 
southern hemisphere undergoes continuous instabilities as i t  breaks up and 
recoalesces. The plume in the northern hemisphere is, by comparison, very stable. 
The two-plume planform is a fairly robust solution for compressible convection a t  
these <Ra), having been obtained elsewhere with different initial conditions 
(Bercovici et al. 1989a, b ;  Schubert et al. 1990). 

The 
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Freq. = 223.54 

i n .  

0.2 - 

- - -  

Time 0.030 0.080 0.118 0.152 0.178 0.315 0.353 0.387 

vmle.x 692.40 923.20 980.90 1125.15 1038.60 1125.15 1038.60 1038.60 
Av, 57.70 57.70 57.70 86.55 86.55 86.55 86.55 86.55 

vrmin -519.30 -346.20 -288.50 -259.65 -259.65 -259.65 -259.65 -259.65 

TABLE 8. Same as table 5, but for figure 12(a) 

The dominant spherical harmonic modes for both cases decrease in wavenumber 
throughout their pattern evolutions, as is evident by the reduction in the number of 
upwelling plumes. The dominant mode for the initial condition is the 1 = 6, m = 6 
mode, with several other large sectoral modes (at  1 = m = 2 , 3  and 4). At the last time 
step, the dominant mode for the Di = 0 case is a t  1 = 3, m = 1 when measured by the 
entropy variance and a t  I = 2, m = 2 for the kinetic energy. Normally the dominant 
modes for entropy variance and kinetic energy coincide. However, near the end of the 
simulation, a small plume begins to grow near the south pole ; this plume affects the 
thermal field but it has not yet gathered enough buoyancy to  affect the velocity field. 
For = 0.5, the dominant mode at the end of the simulation is at 1 = 2, m = 1 
(evident in the pattern with the two plumes residing in diagonal quadrants of the 
sphere). 

The evolution of the kinetic energy for both cases is characterized by small- 
amplitude irregular oscillations while the patterns evolve to their final configuration, 
after which large-amplitude (with 20 % variations in ( K E ) )  oscillations occur 
(figures l l b ,  12b). The ( K E )  for the Di = 0 case settles into a singly periodic 
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oscillation in the last portion of the calculation. The ( K E )  for the E = 0.5 case is 
strongly periodic once it has reached the two-plume pattern, especially between 
t = 0.35 and t = 0.4; however, the oscillation appears to develop a low-frequency 
modulation once the southern plume begins its erratic behaviour ( t  2 0.5). It is worth 
noting that while the solutions undergo their major transformations, the global 
kinetic energy is relatively quiescent, and after the solutions have (probably) reached 
a final state, the kinetic energy is very time dependent. This may occur because while 
the patterns are still changing there is not enough time for oscillations in the pattern 
to establish a resonance with the convective overturn cycle. This hypothesis is 
supported by the fact that the frequency of the ( K E )  oscillations in the strongly 
variable regimes of the time series is commensurate with the overturn frequencies. 

The most significant difference between the two cases with E = 0 and 0.5 is that 
the final pattern of the Boussinesq case has more upwelling plumes than the final 
pattern of the anelastic-compressible case. This may occur because adiabatic and 
viscous heating in the compressible case weaken downwellings and thus facilitate 
plume fusion. For example, as two plumes begin to coalesce, the downwelling region 
between them becomes highly sheared, creating more viscous heating which then 
warms and weakens the downwelling, thus enhancing plume fusion. 

The Nusselt number for the Di = 0 case varies in time between 6.3 and 6.6. The Nu 
for = 0.5 varies between 4.9 and 5.1. These compare to Nu = 6.7 and Nu = 5.5 for 
the E = 0 and 0.5 cases with ( R a )  = 80000 that are steady and have tetrahedral 
patterns. Even accounting for the difference in ( R a ) ,  the time-dependent cases have 
slightly poorer heat transport efficiencies than the steady, tetrahedral solutions. 

7. Discussion 
7.1. Penetrative convection and time dependence 

In this study, we found that convection becomes time dependent at fairly low 
Rayleigh numbers when qot /Aqs ,  is large ($35.5 and 6.2). The large values of 
Tbot/Aqs, correspond to penetrative convection with the upper portion of the 
spherical shell stable and the upper boundary layer essentially eliminated. Time 
dependence also occurs in compressible convection when the lower boundary layer is 
eliminated (Jarvis & McKenzie 1980; Machete1 & Yuen 1989). In  addition, time 
dependence is known to occur in purely internally heated convection with an 
insulated lower boundary (thus, no lower boundary layer) at Rayleigh numbers well 
below those for purely basally heated convection (Carrigan 1985). These results 
imply that elimination of one boundary layer in convection leads to a greater 
likelihood of time-dependent behaviour. A possible explanation for this is that 
vertical currents have greater freedom to drift when there is only a single boundary 
layer (since they drift through a weak background of return flow). 

7.2. Cylindrical upwellings and planar downwellings 
A fundamental question concerning three-dimensional spherical convection is why 
upwelling occurs in cylindrical plumes surrounded by a network of planar sheet-like 
downwellings for a wide range of compressibilities and heating modes (Bercovici et al. 
1989a, b,  c). In plane-layer basally heated convection with a three-dimensional cell 
structure (e.g. hexagonal or spoke pattern), the upwelling and downwelling currents 
appear sheet-like as they emanate from the bottom or top boundary (Whitehead & 
Parsons 1978; Houseman 1988; Travis, Olson & Schubert 1990; Weinstein & Olson 
1990). These up- and downwelling sheets appear t o  intersect midway through the 
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layer where they cut each other into segments which coalesce into plumes; thus 
upwelling is sheet-like in the lower half of the layer, and plume-like in the upper half 
(and vice versa for downwellings). However, spherical geometry should influence 
where the upwelling and downwelling sheets intersect. The radius at which upwelling 
and downwelling sheets intersect can be estimated by balancing the buoyancy forces 
on two sheets, one sinking and one rising. As a first approximation, we assume the 
sheets have equal horizontal thickness, extend horizontally an angle q5 (such that the 
horizontal length of either sheet a t  a radius r is $ r ) ,  and that their density anomalies 
are nearly constant in radius. With these assumptions, the balance of the two shcets' 

where and gd are, respectively, the horizontally averaged density anomalies of the 
upwelling and downwelling sheets, rc is the radius a t  which the sheets intersect and 
gravity is assumed constant (as it very nearly is in the Earth's mantle and in this 
numerical model). Equation (7.1) is merely a balance of the mass anomaly per unit 
thickness of the two sheets. If the boundary layers are of equal thickness, then by 
conservation of energy ATbotrEot = AT,oprto,,, where ATbot and AT,,, are the 
temperature drops across the bottom and top boundary layers. Since p", and p; are 
proportional to ATbot and ATop, respectively, then p", z (rtop/rbot)zFd and we obtain 

If rbot = rtop-c, then, to second order in E ,  rc = t(rtor,+rbot)-~(~/rtop)2; in the limit of 
e/rtop < 1, rc is midway through the shell, which is the plane-layer result. Equation 
(7.2) thus implies that rc is always less than the radius midway through the shell. The 
effect of the spherical geometry is to move the level a t  which upwelling and 
downwelling sheets cut each other into plumes closer to the bottom boundary. 
Therefore, upwelling will be plume-like and downwellings sheet-like throughout most 
of the shell. When rbot/rtop = 0.547, as in this study, rc/rtop = 0.68, which is about 
70% of the distance to the bottom boundary from the top. However, in this study, 
upwelling is never in the form of sheets and emanates as plumes from the bottom 
boundary; this implies that there are additional effects causing r ,  6 rbot. The 
additional effects may arise from the focusing and defocusing influences of the 
concave upper and convex lower boundaries (Bercovici et al. 1989~) .  

When internal heating is included, the top boundary layer will have a larger 
temperature drop than in the purely basally heated case. Thus, the downwelling 
sheet will have a greater density anomaly, which will move rc away from the bottom 
boundary (since the downwelling sheet will need less volume to balance the buoyancy 
of the upwelling sheet). This is found to  occur in numerical simulations (Glatzmaier 
et al. 1990). 

The formation of plumes probably occurs because the points where the upwelling 
and downwelling sheets intersect are areas of high pressure, while those regions of the 
sheets that do not intersect have lower pressure. Thus, the upwelling is forced into 
narrow currents a t  the resulting pressure minima. 

7.3. Geophysical discussion 

The effects of compressibility on mantle convection are most significant when the net 
superadiabatic temperature drop is small relative to the characteristic adiabatic 
temperature, i.e. when TbOt/Aqa - O( 10). For the Earth, the net superadiabatic 
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FIGURE 13(a). For caption see facing page. 

temperature drop (i.e. the sum of the temperature drops across the thermal boundary 
layers in the mantle) is of the same order as the temperature at the base of the mantle 
adiabat ; i.e. for the Earth’s mantle Tbot/Aqa - O( 1). Thus, compressibility is 
probably not of great importance in determining the spatial structure of mantle 
convection. Yet, as shown in $6.3, compressibility does affect the temporal behaviour 
of convection. 

This study does not include the effects of internal heating which is the primary 
heat source for terrestrial mantles (Turcotte & Schubert 1982). The main influence 
of compressibility on convection when internal heating is present is to  cause 
penetrative convection near the base of the shell (Machete1 & Yuen 1989). This 
occurs because, as the proportion of internal heating increases (while the total heat 
flow remains fixed), the basal heat flow decreases and eventually becomes smaller 
than the conductive heat flow along the adiabat, causing the fluid near the base of 
the shell to become subadiabatic. However, whether this actually occurs in the 
Earth’s mantle can be easily estimated by comparing the heat flow emanating from 
the core to the conductive heat flow along the adiabat at the core-mantle boundary. 
The core heat flow is approximately 20mW/m2 (Stevenson et al. 1983). The 
conductive heat flow along the adiabat a t  the core-mantle boundary is kugTlc, 
evaluated a t  the base of the mantle; this value is about 1 mW/m2. Thus, mantle fluid 
near the coremantle boundary is highly superadiabatic and penetrative convection 
probably does not occur in the Earth’s mantle. 
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FIGURE 13. Power spectra for (a) the Chebyshev and (b) spherical harmonic expansions for the low 
and high resolution cases of the Appendix. The low resolution case has 96 longitudinal and 48 
latitudinal grid points and is referred to in the figure as 96 x 48 ; the high resolution case has 192 
longitudinal and 96 latitudinal grid points and is referred to as 192 x 96. The power spectra for both 
the entropy variance and kinetic energy are shown. 

Previous studies of compressible convection (Jarvis & McKenzie 1980 ; Machetel & 
Yuen 1989) have concluded that mantle compressibility can stabilize the lower 
portion of the mantle, causing penetrative convection there and effectively 
precluding upwelling plumes. However, as shown in this paper, the opposite scenario 
is also possible wherein the upper part of the fluid layer is stabilized and narrow 
downwelling currents are eliminated. The results of the previous studies are 
influenced by their use of a constant dissipation number. A constant Di leads to a 
very steep adiabat at  the base of the fluid layer, and thus increases the chances of 
penetrative convection occurring near the base of the layer. For example, in the 
axisymmetric spherical shell study (Machetel & Yuen 1989), the use of a constant Di 
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192 x 96 96 x 48 

FIGURE 14. Velocity and thermal fields for the two cases of figure 13. (a) Radial velocity contours 
a t  mid-depth (r/rtop = 0.77). Solid contours denote positive radial velocity and dashed contours 
denote negative radial velocity. The minimum and maximum contour values and the contour 
interval are, respectively, -240, lo00 and 80, for both cases. (a) Total entropy contours in a 
meridional plane. The minimum and maximum contour values and the contour interval are, 
respectively, -0.35,0.77 and 0.07, for both cases. 

causes penetrative flow to occur at an unrealistically low internal heating rate due to 
the exaggerated steepness of the adiabat at the base of the shell. When a more 
realistic adiabat is employed, penetrative flow does not occur unless the super- 
adiabatic temperature drop is unreasonably small for the Earth; even when 
internal heating is included, penetrative convection does not readily occur so long as 
the adiabat is Earth-like (Solheim & Peltier 1990). 

In  general, compressibility in mantle convection is important if the conductive 
heat flow along the adiabat is comparable with the total heat flow through the 
mantle. However, both heat flows increase as the size of the planet and its mantle 
increase. While a large terrestrial planet (e.g. Earth) is likely to cause greater 
compression of its mantle than a smaller planet (e.g. Mars), it  will also cool more 
slowly than a smaller planet. (A large planet is also more likely to initiate freezing 
of an inner core because of higher central pressures (Stevenson et al. 1983), and this 
is another heat source by virtue of latent heat release.) Therefore, while a large planet 
is most likely to undergo significant compression, it is also likely to be hotter and 
thus have larger heat flow, which diminishes the significance of compressibility. 
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Computations and graphics were generated on a GRAY X-MP-48 and a GRAY 
Y-MP-864 at SDSC. A portion of the calculations for the appendix were performed on 
a CRAY Y-MP-832 a t  LANL. 

Appendix. Convergence test for horizontal resolution 
A convergence test has been carried out  to examine the accuracy of the spherical 

harmonic expansions used in this study. A steady solution with a tetrahedral pattern 
and ( R a )  = 80000, Di = 0.5 and Tbot/Al& = 1 has been calculated with two 
resolutions, one with 96 longitudinal grid points, 48 latitudinal Gaussian quadrature 
points and 37 Chebyshev collocation grid points in radius, and the other with twice 
the number of grid points in latitude and longitude. 

The Chebyshev and spherical harmonic power spectra (for both entropy variance 
and kinetic energy) are shown in figure 13 for both the lower and higher resolution 
cases. The Chebyshev power spectra are essentially identical in both cases. The 
spherical harmonic power spectrum of the higher resolution case drops nearly eight 
orders of magnitude for the entropy variance and almost ten orders of magnitude for 
the kinetic energy, nearly twice that of the lower resolution case. The higher 
resolution case is, therefore, highly resolved. 

Figure 14 shows plots of radial velocity midway through the shell and entropy 
along a meridional plane for both the higher and lower resolution cases. The radial 
velocity and entropy fields of the two cases are virtually identical except for some 
small-scale features that appear in the lower resolution case. The maximum 
upwelling velocities of the two cases differ by between 0 and 0.1 YO and the maximum 
downwelling velocities differ by between 0 and 0.3%. The maximum upwelling 
entropy anomalies midway through the shell for the two cases differ between 4 and 
5 % ;  the downwelling entropy anomalies differ between 0.5 and 1.5%. The greater 
discrepancy in the entropy field occurs because the thermal field is harder to resolve 
in the limit of infinite Pr,  and the entropy extrema are very small-scale features. 
Therefore, the spectral expansions used elsewhere in this paper are very good a t  
resolving the flow field and are adequate for resolving the large- and medium-scale 
features of the thermal field. As the resolution of a simulation is improved, some 
spurious small-scale features are smoothed out. 

Though the solution for the lower resolution case has finer resolution in radius 
(especially near the boundaries) than horizontally, the upwelling plumes are well 
resolved and naturally thicker than the horizontal boundary layers. The two frames 
of figure 14 (6)  can be superimposed to show that the thickness of the boundary layers 
and upwelling plumes are unchanged a t  double the horizontal resolution. The greater 
thickness of the upwelling plumes occurs because fluid in the upwelling plume is 
moving along a line in the meridional plane while most of the fluid in the horizontal 
boundary layers is out of the meridional plane. 
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