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SUPPLEMENTARY TEXT 

Sourdough Dikes 

When viewed on a large scale (Fig. DR1), the Sourdough dikes appear small in 

number and distributed nearly along strike of each other. With respect to paleomagnetic 

data, this raises concerns about sampling the same cooling units multiple times, thereby 

leading to falsely averaged secular variation. There are a few large Sourdough dikes 

(three over 10 m wide), but the majority are small intrusions that extend for only 

hundreds of meters (eight dikes are under 2.5 m wide). This is especially important in the 

Beartooth Mountains (near Glacier Lake) where a series of intrusions crop out nearly 

along strike of each other (sites BT22, BT23, BT42, and BT43), yet are clearly separate 

cooling units with visible extents (Fig. DR2). Many small dikes also occur in the central 

Bighorn Mountains (Fig. DR3) parallel to each other (BH61-63) and slightly offset along 

strike. In both cases, the extent of dikes are clear enough to distinguish them as separate 
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cooling units, except in the case of BH50 and BH102, which are demonstrably from the 

same large intrusion. 

Each sample locality was assessed for a possible tilt correction according to 

rotations that may have occurred during the Laramide orogeny, when basement blocks 

where vertically displaced up to 7 km (Hoy and Ridgeway, 1997). However, all localities 

were from regions in the center of the Beartooth and Bighorn Mountain ranges, along the 

anticlinal axis of the basement thrust, therefore tilt corrections are negligible (less than 

5º). This is apparent in the paleomagnetic pole for the Sourdough swarm, which is a high-

latitude direction with remarkably high precision (Table DR2).  

 The Sourdough dikes also have a surprisingly large range of orientations (280 to 

345º) for a swarm with such a limited extent. Some dikes in the central Bighorn 

Mountains have large changes in trend along their length (up to 30º). This array of 

orientations is shared by multiple dike swarms in the Beartooth Mountains, including 

both Archean and Neoproterozoic dikes. Correlation of trace element concentrations 

between Sourdough dikes in the two different uplifts (detailed later in supplementary 

text) confirms that all the Sourdough dikes are closely related geochemically, likely being 

from the same magmatic event as the dated dike, T09BH10. 

 

Methods 

Samples were collected in the field by drilling oriented cores or taking in situ 

oriented hand samples from mafic dikes, typically with trends of 290 to 335º and widths 

varying from 1 to 30 meters. One site was typically sampled in each dike, and it 

comprised of six to eight samples oriented with magnetic and sun compasses (when 



possible). One specimen per sample was prepared and measured on an automated 2G-

Enterprises DC SQuID magnetometer with 5 x 10-12 A m2 sensitivity per axis (Kirschvink 

et al., 2008), stored, and demagnetized inside a magnetically shielded room with an 

ambient field less than 500 nT. Measurements of the natural remanent magnetization 

(NRM) were followed by a series of demagnetization–measurement stages, beginning 

with liquid nitrogen immersion (Halgedahl and Jarrard, 1995) and followed by thermal 

demagnetization in 15 to 20 steps up to 580ºC (or until the magnetization was 

randomized). Data were analyzed using free computer software packages (Cogne, 2003; 

Jones, 2002) and assessed using principal component analysis (Kirschvink, 1980) to 

calculate magnetization components and a paleomagnetic pole based upon the mean 

directions from each cooling unit. 

The geochronologic sample (BNB09-WY-203) was collected from the same small 

outcrop as the paleomagnetic samples (site T09BH10). Baddeleyite was separated from a 

crushed sample at the University of Lund following the method of Söderlund and 

Johansson (2002). From the mineral separates, three aliquots of clear baddeleyite grains 

(3 to 6 each) were dissolved and analyzed by isotope-dilution, thermal ionization mass 

spectrometry (ID-TIMS) at the University of Wyoming. 

Geochemical samples consisted of specimens taken from paleomagnetic cores 

approximately a third of a dike-width from the chilled margins. Rock samples were 

slabbed, crushed in a Bico Chipmunk jaw crusher, and ground to a fine powder in an 

agate ring mill. Whole-rock major and trace element contents were determined by fused-

disc X-ray fluorescence spectrometry and solution-mode inductively coupled plasma 

mass spectrometry at the Ontario Geological Survey Geochemical Laboratories, Sudbury, 



Ontario.  The precisions of the data, based on replicate analyses of samples and blind 

standards, along with representative analyses, are listed in Table DR4.   

 

Supplementary Results and Discussion 

Paleomagnetism of Sourdough dikes 

During demagnetization, most samples lost a considerable amount of 

magnetization during the liquid nitrogen immersion step, eliminating contributions from 

viscous remanent magnetizations (VRMs) in multi-domain magnetite (Fig. DR4). The 

majority of samples were single component, often with small random components being 

removed during low-temperature demagnetization steps (<300ºC). Each site also 

contained mid-temperature magnetizations (300–500ºC) that are identical in direction to 

the high-temperature components (530–576ºC). Only the high-temperature components 

were used to calculate mean vectors because they likely represent the magnetization held 

by low-Ti, single-domain magnetite (Fig. DR4). One of the largest dikes, T09BH10, 

provides an age for the Sourdough swarm (Table DR1) along with a representative 

paleomagnetic direction similar to that proved primary by the baked-contact tests. 

Two positive baked-contact tests confirm the high-temperature component is 

primary and also contain definitive thermoremanent profiles from the time of dike 

intrusion (Figs. DR5–7). Baked-contact tests were sampled at sites where Sourdough 

dikes intersected Archean(?) dikes, utilizing the predictable magnetic assemblage of 

mafic country rock (Fig. DR5). In both contact tests (Figs. DR6 and DR7), some samples 

in the “hybrid” zone yielded both baked and unbaked components. For example, in 

sample T11BH100-15 the baked component was held between 300 and 400ºC over a dike 



width away. This is predicted by half-space cooling models of dike intrusion, however 

the correct mineralogy (Ti-rich magnetite) is not always present to preserve a low-

temperature thermoremanent magnetization (TRM) over billions of years. Considered 

along with robust results from 16 different cooling units, there is high confidence that the 

thermoremanent magnetization originates from the initial cooling of the dikes at 1899 ±5 

Ma and is sufficiently averaged to represent geographic north at the time the swarm 

intruded. 

The only samples excluded from baked-contact tests had anomalously high 

NRMs, likely originating from lightning strikes. These anomalously strong samples lost a 

majority of their magnetization during liquid nitrogen immersion, which is typical for 

lighting struck rocks.  

Paleomagnetic poles from the Slave and Superior cratons considered for the 

reconstructions (Fig. 3 in main text) are shown in Table DR3. A full review of 

paleomagnetic poles from Slave is given in Mitchell et al. (2010). We depend mostly on 

the Seton and Kahochella poles because other paleomagnetic poles from Slave have large 

variations in declination, possibly resulting from episodes of rapid true polar wander. If 

this were the case (and there is not currently evidence to deny its possibility) then 

Wyoming and Superior would have experienced rapid changes in latitude at ca. 1.885 Ga, 

possibly from the pole to the equator. However, these rapid movements (or the records of 

them) stabilize by the time Laurentia is consolidated and have not been documented fully 

on other cratons. 

Geochemistry of Sourdough dikes 



 The two major Bighorn Mountain (BH, as opposed to BT–Beartooth Mountains) 

dike groups (e.g., BH10 and BH61) are likely related by fractionation combined with 

small amounts of assimilation of upper crustal rocks (Fig. 2 in main text). The BH61-63 

group is the less evolved of the two groups and has both higher Mg# and eNdT than the 

BH10 group (Fig. DR8).  The BH10 group, more evolved, is more enriched in Th relative 

to La or Nb and has the lower eNdT value, consistent with an assimilated crustal 

component.  The BH10 group also has generally higher abundances of all the 

incompatible elements, including elements like Ti that are not generally enriched in the 

upper crust, so the increase is likely due to fractionation of olivine and feldspar. 

 BH90 has different concentrations than the Bighorn groups - it has much more in 

common with the BT samples.  Both BH90 and BT group have evidence of 

clinopyroxene fractionation, which is not evident in the other BH samples.  Some 

incompatible elements, such as Ti, are lower in the BH60 group and BT samples than the 

two other BH groups, yet most highly-incompatible elements (La, Nb, Th) are 

higher.  BH90 and the BT samples are all enriched in Th relative to Nb and La compared 

to the major BH goups, and along with the very negative eNdT requires a substantial 

crustal component in the dikes.  Overall, BH90 and the BT samples are very close in 

composition and could represent greater crustal contributions or perhaps a second sub-

swarm from different sources. 

 There are not enough samples to accurately distinguish the source(s) of the 

Sourdough dikes. It is possible that the BH10 and BH61-63 groups have an 

asthenospheric source magma (eNdT > 2.0) (Table DR5) that interacted with 

metasomatized lithospheric mantle before getting close to the surface. All of the samples 



are low-SiO2 basalts, around 50% SiO2, so there is no evidence that any of the dike 

magmas assimilated much upper crust (high-SiO2).  BH90 and the BT dike magmas have 

considerably more lithospheric mantle contributions even though they are also low-SiO2 

basalts.  It is possible that all of the BH and BT samples are related by mixing between 

asthenosphere-derived magmas and old, metasomatized lithospheric mantle (see the 

eNdT vs. Th/Nb plot; Fig. DR9), but more samples are needed to confirm this. 

 

Geochronology of Wyoming craton’s western and eastern margins 

The Black Hills have an ambiguous relationship with Wyoming before 1.8 Ga. 

There are a handful of dated Archean rocks in the Black Hills, including the 2.55 Ga 

Little Elk granite, 2.59 Ga Bear Mountain granite (McCombs et al., 2004), and a 2.89 Ga 

xenocrystic zircon from the Little Elk granite (Dahl et al., 2006). In the Wyoming craton, 

2.59–2.55 Ga ages are small in number but appear in five different uplifts (the Granite 

and Beartooth Mountains, and the Wind River, Teton, and South Madison Ranges) 

(Chamberlain et al., 2003; McCombs et al., 2004). This shared range of magmatic ages 

indicates an Archean connection between the Black Hills and Wyoming craton, possibly 

signifying collision with each other and the Superior craton (McCombs et al., 2004; Dahl 

et al., 2006). Wyoming, Superior, and the Black Hills also share similar Paleoproterozoic 

sedimentary sequences that suggest they could have bordered the same basin until 2.1-2.0 

Ga (Roscoe and Card, 1993; Dahl et al., 2006). However, geophysical characteristics 

between the Bighorn Mountains and the Black Hills have been interpreted to indicate 

multiple Paleoproterozoic sutures and shear zones between them (Worthington et al., 

2016). Our model of late Laurentian assembly, proposes that the ultimate juxtaposition 



(and present-day positions) of the Wyoming and the Black Hills occurred during the final 

suturing between the Wyoming and Superior cratons, ca. 1.715 Ga (Nabelek et al., 2001). 

This likely resulted in changes in stress directions recorded by rocks in the Cheyenne belt 

(SE Wyoming) that show dramatic changes in transpressional deformation at 1.78 and 

1.75 Ga, interrupted briefly by syn-collisional extension (Sullivan and Beane, 2013). The 

Black Hills may have remained proximal to Superior or Wyoming after rifting (>2.0 Ga) 

only to be caught between the two block during their final collision ca. 1.715 Ga.  

The eastern boundary of the Wyoming craton, as defined in Figure 1 of the main 

text, is based primarily upon the geophysical interpretations of Worthington et al. (2016) 

in the vicinity of the Bighorn Mountain. We have extrapolated this Archean-Proterozoic 

boundary to the NNW with a slight bend to the north so that the border intersects the 

eastern edge of the MHB, which is defined by subsurface anomalies (Boerner et al., 

1998). The northern extension of this boundary cuts through central Montana, roughly 

following linear discontinuities in aeromagnetic maps, but will require further research to 

accurately define. 

The southern extension of Wyoming’s eastern margin ends at the Cheyenne belt, 

which marks the suture with the Yavapai block. In our model, the Cheyenne belt does not 

extend into South Dakota; this would require an extension of the Wyoming craton into 

South Dakota, also. Most older models that connect 1.77-1.76 Ga deformation in the 

Black Hills and Hartville Uplift with the Cheyenne belt do not incorporate geophysical 

trends in the subsurface as well as our model and others (Worthington et al., 2016). 

It is unknown how far the Archean (Wyoming) craton’s western margin extends. 

Archean rocks crop out in south-central Idaho (Albion Range) and eastern Nevada (East 



Humboldt Range) and are assumed to underlie parts of the Snake River Plain, but are 

separated from Wyoming by the deformed Paleoproterozoic Farmington zone (Bryant, 

1988; Mueller et al., 2011; Nelson et al., 2002). These westernmost Archean rocks may 

be a separate terrane (the Grouse Creek Block) that possibly shared an earlier (>2.45 Ga) 

history with Wyoming or subsequently joined during the assembly of Laurentia (Foster et 

al., 2006; Mueller et al., 2004). 



SUPPLEMENTARY FIGURES 

 

 
Figure DR1. Map of identified Sourdough dikes (red) spanning two Precambrian uplifts, 
slightly exaggerated in size for better visibility. Other undifferentiated dikes are colored 
in black. The Sourdough dikes appear to be nearly in line with each other across the 
Bighorn basin, suggesting that neither uplift was rotated during exhumation. Maps 
modified from Prinz (1964), Lopez (2001), Berg et al. (1999), Osterwald (1978), Ross 
and Heimlich (1972), Armbrustmacher (1977), Hinrichs et al. (1990), Heimlich et al. 
(1973), and Barker (1982). 



  
 

10 km

Bighorn Mtns.

a

44º15’N107ºW

BH10

BH106BH50

BH(61-63)

BH99BH91

BH90

BH96BH98

BH100
BH102

Beartooth Mtns.

b

BT22
BT23

BT43
BT42

45ºN109º22.5’W

 
Figure DR2. Detailed maps of sampling localities (yellow dots) for Sourdough dikes 
(red) in the Beartooth and Bighorn Mountains. Both maps have the same length scale, 
with gray representing Precambrian rock and white representing Phanerozoic rocks. Site 
IDs are labeled in white. Thin gray rectangle defines extent of the Lake Helen quadrangle 
in Figure DR3. Powder River dikes (ca. 2152 to 2161 Ma) are colored in blue, Gunbarrel 
dikes (ca. 780 Ma) are colored in green, and undifferentiated dikes are colored black, 
many of which are likely Archean. Sites BH61, BH62, and BH63 are three small dikes 
(<1.5 m wide) within 100 m of each other. Maps modified from Armbrustmacher (1977); 
Barker (1982); Hinrichs et al. (1990); Lopez (2001); Prinz (1964). 
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Figure DR3. A detailed sample locality map from the central Bighorn Mountains. This 
map has a smaller scale than Fig. DR2 and is shown to emphasize the evidence for many 
discrete intrusions even when sample localities are nearby. Sample localities from 
Archean(?) dikes not discussed in this study are also shown. The localities (green dots 
with site IDs) are plotted on top of the Lake Helen geologic quadrangle (Barker, 1982).
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Figure DR4. Representative demagnetization data for the Sourdough swarm from two 
different sites in each uplift. For each sample (a-d) an equal-area plot, an orthographic 
plot, and a moment vs. thermal demagnetization step plot are shown. Vectors are fit to 
magnetization components observed through different unblocking temperatures. Orange 
vectors indicate the primary magnetization and green vectors represent the random 
VRMs of no significant importance. Primary component vectors are fit to data that likely 
represent the unblocking of Ti-poor magnetite. Blue circles on the equal-area plots 
indicate positive inclinations and red symbols indicate negative inclinations. On the 
orthogonal plots, red squares indicate inclination direction and blue squares represent 
declination. 
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Figure DR5: Site mean results from two baked-contact tests for the same dike, 
BH50/BH102, into different older mafic dikes. In the case of BH100, two unbaked 
components were present in the host rock, which is similar to other Archean(?) dikes in 
the area. Samples nearest to the baked contact contain a strong baked component very 
similar to the mean direction for the Sourdough dike (BH50/BH102). 
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Figure DR6. Demagnetization data of the baked-contact test BH51 for Sourdough dike 
BH50 (also BH102). The test was sampled into an Archean(?) dike with a fully unbaked 
site named BH52. Approximate distance from baked contact is shown along next to 
sample label (intruding dike is ~7 m wide). The baked component vectors are shown in 
orange and the host rock unbaked magnetization is shown in green. A small unbaked 
component still remains in samples ~0.5 m from the intruding dike, suggesting 
temperatures never completely surpassed the unblocking temperature for magnetite. 
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Figure DR7. Demagnetization data from baked-contact test BH100 for Sourdough dike 
BH102 (also BH50). The test was sampled into an older Archean(?) dike that is cross-cut 
by dike BH102/BH50. There are two unbaked components present in the Archean dike 
(blue and green vectors), both of which are completely overprinted by the baked 
component (orange vectors) less than 1.2 m from the baked-contact. Distance from 
baked-contact is given for each sample, with important demagnetization steps labeled 
with corresponding temperatures. A small baked component can be seen at low 
temperatures over a dike width away from the baked contact. This indicates that a large 
assemblage of stable magnetic carriers is present in the Archean dike, none of which has 
experienced a significant amount of heating since the intrusion of the Sourdough swarm. 
 



0.4

0.5

0.6

0.7

0.8

0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

Ca
O

/A
l 2O

3

Mg# (Mg/(Mg + Fe2+))

BH 10,49,96,106
BH 61,62,63
BH 90
BT 22,23,42,43

2

2.5

3

3.5

4

4.5

5

Na
2O

+K
2O

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
Ti

O
2

0.1

1

10

0.1 1 10
Ta/Yb

Th
/Y

b

BH10 group
BH61 group
BH 90
BT group

-4

-3

-2

-1

0

1

2

3

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

eN
dT

La/Sm (pmn)

0

5

10

15

20

25

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
La/Sm (pmn) 

Ce
/P

b

-4

-3

-2

-1

0

1

2

3

0 5 10 15 20 25
Ce/Pb

eN
dT

-4

-3

-2

-1

0

1

2

3

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Th/Nb

eN
dT

-4

-3

-2

-1

0

1

2

3

0.
4

0.
41

0.
42

0.
43

0.
44

0.
45

0.
46

0.
47

0.
48

0.
49 0.
5

eN
dT

Mg#

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.
4

0.
41

0.
42

0.
43

0.
44

0.
45

0.
46

0.
47

0.
48

0.
49 0.
5

Th
/N

b

Mg#  
Figure DR8. Geochemical variation within samples from the Sourdough dike swarm 
comparing concentrations for groups of dikes with slightly different affinities. 
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Figure DR9. Geochemical variation within samples from the Sourdough dike swarm 
comparing concentrations of Th/Yb, Ta/Yb, La/Sm, Ce/Pb, Ce/Pb, Th/Nb and 
143Nd/144Nd ratios relative to the depleted mantle reservoir model (eNdT). Colors 
correspond to Fig. DR8. 



SUPPLEMENTARY TABLES 
 

Co
rre

ct
ed

 a
to

m
ic 

ra
tio

s
W

ei
gh

t
U

Sa
m

pl
e 

Pb
Pb

c
Pb

*/P
bc

Th
/U

20
6 Pb

/20
4 Pb

20
6 Pb

/20
8 Pb

20
6 Pb

/23
8 U

20
7 Pb

/23
5 U

20
7 Pb

/20
6 Pb

20
6/

23
8

20
7/

23
5

20
7/

20
6

Sa
m

pl
e

(µ
g)

(p
pm

)
pp

m
 (p

g)
(p

g)
ra

d.
 (%

er
r)

ra
d.

 (%
er

r)
ra

d.
 (%

er
r)

Ag
e 

(M
a)

Ag
e 

(M
a)

Ag
e 

(M
a)

er
r

Rh
o

%
di

sc
.

W
Y2

03
 p

3 
6g

1.
2

18
5

63
 (7

6)
1

55
0.

18
35

25
19

0.
34

09
 (0

.1
4)

5.
45

42
 (0

.2
4)

0.
11

60
 (0

.1
7)

18
91

18
93

18
96

.1
±3

.1
0.

69
0.

31
W

Y2
03

 p
4 

5g
1.

2
11

6
39

 (4
7)

1
47

0.
13

30
63

26
0.

33
99

 (0
.1

7)
5.

44
62

 (0
.2

6)
0.

11
62

 (0
.1

8)
18

86
18

92
18

98
.6

±3
.3

0.
72

0.
74

W
Y2

03
 p

5 
3g

0.
68

35
7

12
1 

(8
2)

2
46

0.
13

27
99

26
0.

33
71

 (0
.1

2)
5.

40
60

 (0
.1

8)
0.

11
63

 (0
.1

2)
18

73
18

86
19

00
.1

±2
.1

0.
74

1.
66

TA
BL

E 
DR

1.
 U

-P
B 

TI
M

S 
BA

DD
EL

EY
IT

E 
DA

TA

BN
B0

9W
Y2

03
 (T

09
BH

10
) "

So
ur

do
ug

h"
 d

ike
 (4

4°
14

.9
82

'N
; 1

06
°5

7.
46

5'
W

): 
Ba

dd
el

ey
ite

 c
ry

st
al

liz
at

io
n 

ag
e 

= 
18

99
.1

±4
.7

 M
a 

(M
SW

D
=2

.7
) 3

 p
oi

nt
 w

ei
gh

te
d 

m
ea

n 
20

7 Pb
/20

6 Pb
 d

at
e

  N
ot

e:
 B

ad
de

le
yit

e 
di

ss
ol

ut
io

n 
an

d 
ch

em
ist

ry
 w

er
e 

ad
ap

te
d 

fro
m

 m
et

ho
ds

 d
ev

el
op

ed
 b

y 
Kr

og
h 

(1
97

3)
, P

ar
ris

h 
et

 a
l. 

(1
98

7)
 a

nd
 R

io
ux

 e
t a

l. 
(2

01
0)

. B
ad

de
le

yit
e 

gr
ai

ns
 w

er
e 

sp
ike

d 
wi

th
 a

 
m

ixe
d 

20
5 Pb

/23
3 U/

23
5 U 

tra
ce

r (
ET

53
5)

 a
nd

 d
iss

ol
ve

d 
in

 H
Cl

 a
t 1

80
° C

 to
 m

in
im

ize
 d

iss
ol

ut
io

n 
of

 a
ny

 z
irc

on
 ri

m
s.

 O
ne

 d
iss

ol
ut

io
n 

of
 e

ac
h 

sa
m

pl
e 

wa
s 

pr
oc

es
se

d 
th

ro
ug

h 
io

n 
ex

ch
an

ge
 

co
lu

m
ns

 to
 s

ep
ar

at
e 

HF
, b

ut
 th

e 
ot

he
rs

 w
er

e 
ev

ap
or

at
ed

 a
nd

 lo
ad

ed
 w

ith
ou

t c
he

m
ica

l p
ro

ce
ss

in
g.

 P
b 

an
d 

U 
sa

m
pl

es
 w

er
e 

lo
ad

ed
 o

nt
o 

sin
gl

e 
rh

en
iu

m
 fi

la
m

en
ts

 w
ith

 s
ilic

a 
ge

l; 
iso

to
pi

c 
co

m
po

sit
io

ns
 w

er
e 

m
ea

su
re

d 
in

 s
in

gl
e-

co
lle

ct
or

, p
ea

k-
sw

itc
hi

ng
 m

od
e 

on
 a

 M
icr

om
as

s 
Se

ct
or

 5
4 

m
as

s 
sp

ec
tro

m
et

er
 a

t t
he

 U
ni

ve
rs

ity
 o

f W
yo

m
in

g 
us

in
g 

a 
Da

ly 
ph

ot
om

ul
tip

lie
r c

ol
le

ct
or

 
fo

r a
ll i

so
to

pe
s.

 M
as

s 
di

sc
rim

in
at

io
n 

of
 0

.1
98

 ±
 0

.1
0 

%
/a

m
u 

fo
r P

b 
wa

s 
de

te
rm

in
ed

 b
y 

re
pl

ica
te

 a
na

lys
es

 o
f N

IS
T 

SR
M

 9
81

. U
 fr

ac
tio

na
tio

n 
wa

s 
de

te
rm

in
ed

 in
te

rn
al

ly 
fo

r s
am

pl
es

 s
pi

ke
d 

wi
th

 E
T(

53
5)

. A
ll o

f t
he

 c
om

m
on

 P
b 

wa
s 

as
sig

ne
d 

to
 b

la
nk

. I
so

to
pi

c 
co

m
po

sit
io

n 
of

 th
e 

Pb
 b

la
nk

 w
as

 e
st

im
at

ed
 a

s 
18

.7
5±

1,
 1

5.
65

2±
0.

6,
 a

nd
 3

8.
81

±0
.2

 fo
r 2

06
Pb

/2
04

Pb
, 2

07
Pb

/2
04

Pb
 

an
d 

20
8P

b/
20

4P
b,

 re
sp

ec
tiv

el
y. 

U 
bl

an
ks

 w
er

e 
co

ns
ist

en
tly

 le
ss

 th
an

 0
.4

 p
g.

 C
on

co
rd

ia
 c

oo
rd

in
at

es
, i

nt
er

ce
pt

s,
 a

nd
 u

nc
er

ta
in

tie
s 

we
re

 c
al

cu
la

te
d 

us
in

g 
PB

DA
T,

 M
ac

PB
DA

T 
an

d 
IS

O
PL

O
T 

pr
og

ra
m

s 
(b

as
ed

 o
n 

Lu
dw

ig
 1

98
8,

 1
99

1)
; i

ni
tia

l P
b 

iso
to

pi
c 

co
m

po
sit

io
ns

 w
er

e 
es

tim
at

ed
 fr

om
 S

ta
ce

y 
an

d 
Kr

am
er

s 
(1

97
5)

 m
od

el
. T

he
 d

ec
ay

 c
on

st
an

ts
 u

se
d 

by
 P

BD
AT

 a
nd

 
M

ac
PB

DA
T 

ar
e 

th
os

e 
re

co
m

m
en

de
d 

by
 th

e 
I.U

.G
.S

. S
ub

co
m

m
iss

io
n 

on
 G

eo
ch

ro
no

lo
gy

 (S
te

ig
er

 a
nd

 J
äg

er
, 1

97
7)

: 0
.1

55
12

5 
x 

10
-9

/y
r f

or
 2

38
U,

 0
.9

84
85

 x
 1

0-
9/

yr
 fo

r 23
5 U 

an
d 

pr
es

en
t-d

ay
 

23
8 U/

23
5 U 

= 
13

7.
88

. s
am

pl
e:

 p
_=

pi
ck

 id
en

tif
ie

r, 
_g

=n
um

be
r  

of
 g

ra
in

s.
 s

am
pl

e:
 p

_=
pi

ck
 id

en
tif

ie
r, 

_g
=n

um
be

r  
of

 g
ra

in
s.

 s
am

pl
e 

Pb
: s

am
pl

e 
Pb

 (r
ad

io
ge

ni
c 

+ 
in

itia
l) 

co
rre

ct
ed

 fo
r l

ab
or

at
or

y 
bl

an
k.

 M
ea

n 
sq

ua
re

 w
ei

gh
te

d 
de

via
tio

ns
 (M

SW
D)

 a
re

 n
or

m
al

ize
d 

ch
i-s

qu
ar

ed
 p

ro
ba

bi
lity

 te
st

s 
wi

th
 e

xp
ec

ta
tio

n 
va

lu
es

 o
f c

a.
 1

. P
bc

: t
ot

al
 c

om
m

on
 P

b 
(b

la
nk

 p
lu

s 
sa

m
pl

e 
in

itia
l P

b)
. 

Pb
*/P

bc
: r

ad
io

ge
ni

c 
Pb

 to
 to

ta
l c

om
m

on
 P

b 
(b

la
nk

 +
 in

itia
l).

 C
or

re
ct

ed
 a

to
m

ic 
ra

tio
s:

 m
ea

su
re

d 
20

6 Pb
/20

4 Pb
 c

or
re

ct
ed

 fo
r m

as
s 

di
sc

rim
in

at
io

n 
 a

nd
 tr

ac
er

, a
ll o

th
er

s 
co

rre
ct

ed
 fo

r b
la

nk
, 

m
as

s 
di

sc
rim

in
at

io
n,

 tr
ac

er
 a

nd
 in

itia
l P

b,
 v

al
ue

s 
in

 p
ar

en
th

es
es

 a
re

 2
 s

ig
m

a 
er

ro
rs

 in
 p

er
ce

nt
 (%

er
r).

 R
ho

: 20
6 Pb

/23
8 U 

vs
. 20

7 Pb
/23

5 U 
er

ro
r c

or
re

la
tio

n 
co

ef
fic

ie
nt

. %
di

sc
.: 

pe
rc

en
t d

isc
or

da
nt

.



Width Trend Dec. Inc. a95 n(p)/N k Plat. Plong. A95 Tunb
ID (m) (º) deg. min. deg. min. (º) (º) (º) (ºN) (ºE) (º) (ºC)

T09BH10 ~30 335 44 14.982 106 57.465 57.1 76.9 9.6 7(1)/8 37.2 52.8 288.9 17.2 500-555
T10BT22 1 295 45 0.557 109 32.312 101.3 73.8 5.2 5/6 173.8 32.8 286.3 8.9 450-575
T10BT23 10 315 45 0.405 109 31.718 21.3 82.3 10.9 3/6 83.8 58.7 261.0 21.0 500-580
T11BT42 0.14 290 45 0.940 109 33.108 37.9 74.8 4.5 8/8 134.0 62.6 290.0 7.8 550-574
T11BT43 0.7 300 45 0.961 109 33.121 77.8 78.6 5.4 6/8 157.0 45.4 281.8 9.9 560-577
T10BH49 ~5 345 44 20.423 107 8.392 109.7 78.0 8.6 7/8 43.4 33.3 279.0 15.6 545-568
T10BH50 7 320 44 20.711 107 8.411 81.2 77.2 7.7 8/8 46.7 43.0 286.8 13.8 540-575
T10BH61 0.5 290 44 17.164 107 9.930 257.6 -67.3 13.2 3/8 58.6 -39.4 127.0 20.1 530-582
T10BH62 0.5 295 44 17.150 107 9.945 25.1 70.0 7.1 8/8 53.9 71.1 303.2 11.4 520-580
T10BH63 2.5 285 44 17.150 107 9.945 87.8 69.8 7.3 5/8 88.9 35.4 299.4 11.6 520-570
T11BH90 1.3 330 44 22.263 107 14.816 32.5 64.9 3.4 8/8 232.2 67.3 324.9 4.9 450-573
T11BH91 6 345 44 20.951 107 14.173 35.5 59.9 4.8 7/8 134.3 63.8 338.1 6.4 550-580
T11BH96 1.4 315 44 22.506 107 14.041 97.9 69.5 4.0 8/8 171.4 30.1 296.0 6.3 480-571
T11BH98 ~10 330 44 22.208 107 14.204 56.8 73.0 5.9 6/6 109.5 53.2 299.5 9.9 565-576
T11BH99 0.3 320 44 20.794 107 8.560 61.5 79.7 3.9 7/8 201.6 50.7 281.1 7.4 500-576
T11BH102 7.5 320 44 20.800 107 8.551 79.7 79.8 12.6 6(1)/8 26.3 44.5 280.7 23.5 540-580
T11BH106 ~20 315 44 20.033 107 6.987 108.8 74.6 6.4 7/8 77.7 30.1 284.7 11.1 450-515
BH50+BH102 7-7.5 320 N.A.* N.A.* N.A.* N.A.* 80.2 78.3 6.5 14(1)/16 39.3 43.8 284.4 11.5 540-580

Mean (All) 65.1 75.2 4.7 16 21.8 49.2 292.0 8.1
Bighorn Mean (ex. BH90) 69.7 74.3 5.8 11 22.7 46.6 294.2 9.8

Sites used for baked-contact tests
T10BH51 (bkd) 2.5 35 44 20.711 107 8.411 54.7 62.1 16.5 5/9 18.0 51.3 324.3 22.6 200-480 and 400-573
T10BH51 (unbkd) 2.5 35 44 20.711 107 8.411 353.1 -26.5 10.2 4(1)/9 67.6 -31.4 260.6 8.1 520-578
T11BH100 (bkd) 3 65 44 20.801 107 8.568 46.8 70.1 6.2 7/15 97.3 58.6 307.9 9.8 N.D†

T11BH100 (unbkdMT) 3 65 44 20.801 107 8.568 345.9 -31.4 6.2 9/15 70.2 -27.4 268.0 5.2 515-565
T11BH100 (unbkdHT) 3 65 44 20.801 107 8.568 117.3 -31.9 8.8 7/15 48.1 31.4 156.6 7.4 568-580
T11BH100 (unbkdLT) 3 65 44 20.801 107 8.568 64.2 68.3 10.4 4/15 79.2 47.8 309.3 16.1 200-480

   †N.D.= multiple discrete temperature ranges represent this baked-contact test's unblocking spectrum, so no single range is defined

TABLE DR2. PALEOMAGNETIC DATA FOR THE SOURDOUGH DIKE SWARM
Site Lat.(N) Site Long.(W)

   Note: Italicized sites represent dikes yieldeding positive baked-contact tests, both sampled at intersections with older mafic dikes. Coordinates in WGS84. 
Dec.(Inc.) = declination (inclination) of mean magnetization, a95 (A95) = 95% confidence interval of mean direction in local (pole) coordinates. n=# of samples 
(p=plane-fits) used in mean, N=# of samples collected, k=precision parameter, Plat. (Plong.) = paleolatitude (paleolongitude) of paleomagnetic pole, 
Tunb=unblocking temperature range of magnetization, bkd="baked" magnetization, unbkd="unbaked magnetization. 
   *N.A. = not applicable, this site is the average of the two localities indicated that are from different portions of a dike along its length

 
 



Rock/Formation ID Plat (ºN) Plong (ºE) A95 (º) Age (Ma) References

Slave
Martin Fm lavas (Rae†) Marti -9 288 8.5 1818±4 Evans and Bingham (1973)
Sparrow dikes (Rae†) Spar 12 291 7.9 1827±4 McGlynn et al. (1974), Bostok and 

van Breeman (1992)
Et-Then Grp Et 4 310 8 ca. 1780(?) Irving et al. (1972)*
Tochatwi Fm Toch -14 204 12 ca. 1885-1870 Evans and Bingham (1976)*
Stark Fm Star -11 199 8 ca. 1885-1870 Evans et al. (1980)*
Douglas Peninsular Fm DougP -17 245 16 ca. 1885-1870 Irving and McGlynn (1979)*
Pearson Fm basalts Pearson -22 269 6 1870±4 McGlynn and Irving (1978)*
Kahochella Grp Kahoch -12 285 7 1882±4 Reid et al. (1981)*
Ghost dikes Ghost 2 254 6 1886±5 Buchan et al. (2016)
Seton Fm volcanics Seton -6 260 4 1885±5 Irving and McGlynn (1979)*
Rifle Fm Rifle 19 353 9 1963±6 Evans and Hoye (1981)*
Indin dikes Indin 36 284 7 2126-2108 Buchan et al. (2016)

Superior
Cleaver dikes Cleav 19.4 276.7 6.1 1736-1745 Irving et al. (2004)
Post-Hudsonian mean P-Hud 21 265 5.2 ca. 1750 Irving et al. (2004)
Dubawnt Grp Dubaw 7 277 8 1800-1830 Park et al. (1973), Rainbird and Davis 

(2007)
Laurentian Mean 1870 Ma LM1870 1 245.8 3.9 1870±1 Schmidt (1980), Hamilton et al. 

(2009)
Molson dikes Mols 36.6 209.8 3.8 1877+7/-4 Zhai et al. (1994), Halls and Heaman 

(2000), Evans and Halls (2010)
Minto dikes Mint 38.7 171.5 13.1 1998±2 Buchan et al. (1998), Evans and Halls 

(2010)
Marathon dikes, Normal Marath-N 54.1 188.9 7.7 2126-2121 Buchan et al. (1996), Halls et al. 

(2008), Evans and Halls (2010)
Biscotasing dikes Bisco 26 223.9 7 2172-2167 Buchan et al. (1993), Halls and Davis 

(2004), Evans and Halls (2010)

Wyoming
Rabbit Creek-Powder River-
South Pass dikes

RC-PR 65.5 339.2 7.6 2171-2152 Kilian et al. (2015)

Sourdough dikes SD 49.2 291 8.1 ca. 1900 this study

TABLE DR3. PALEOMAGNETIC POLES USED/CONSIDERED IN RECONSTRUCTION

  Note: All paleopoles older than 1875 Ma from Superior are given in the Eastern Superior reference frame, see Evans and 
Halls (2010).
  *Reviewed, corrected, and recalculated by Mitchell et al. (2010).
  †Units are located in the Rae craton, but are used for the Slave craton reference frame because the cratons unite at ca. 
1.9 Ga.  



BH10 BH49 BH50 BH61 BH62 BH63 BH90 BH96 BH98 BH99 BH106 BT22 BT23 BT42 BT43 Int. Std. 1σ
d,w 8,30+ ?,5+ 2,7 0.2,0.5 0.2,0.5 0.7,2.5 0.4,1.3 0.4,1.4 1.4,5–10 0.1,0.3 ?,20–25 0.3,1 3,10 0.04,0.14 0.2,0.7
SiO2 48.96 49.18 48.33 49.70 49.81 49.56 49.40 49.14 48.72 48.65 49.85 47.36 47.74 48.35 47.36 50.5 0.36
TiO2 2.71 2.69 2.88 2.28 2.36 2.32 2.12 2.85 2.86 2.63 2.87 2.41 2.42 2.44 2.26 2.45 0.03
Al2O3 12.31 12.42 12.14 12.68 12.71 12.56 13.92 12.07 12.01 12.25 11.93 12.91 13.09 12.97 13.26 13.64 0.09
Fe2O3

T 16.62 16.80 16.56 14.58 14.83 14.76 14.58 17.15 16.38 16.91 15.39 15.98 16.08 16.47 15.96 13.41 0.05
MnO 0.22 0.22 0.20 0.18 0.17 0.19 0.20 0.22 0.21 0.18 0.19 0.22 0.22 0.20 0.22 0.24 0
MgO 5.10 5.18 5.33 6.10 5.88 5.93 5.11 5.31 5.77 5.89 5.20 5.14 5.25 5.16 5.46 4.02 0.05
CaO 9.16 8.84 9.38 9.32 9.51 9.70 7.96 8.92 9.02 8.67 9.38 9.13 7.32 6.46 7.60 7.47 0.11
Na2O 2.19 2.07 1.79 1.84 2.21 2.00 2.34 1.95 2.11 1.83 2.11 1.83 3.30 1.85 2.47 3.16 0.05
K2O 0.79 0.90 0.64 0.80 0.61 0.35 1.42 0.79 0.50 0.54 0.41 0.92 1.30 1.17 1.50 1.85 0.04
P2O5 0.29 0.30 0.32 0.24 0.25 0.24 0.25 0.32 0.33 0.29 0.31 0.30 0.29 0.30 0.27 1.17 0.01
LOI 1.11 0.91 1.82 1.53 1.39 1.64 1.87 0.80 1.52 1.90 1.66 3.10 2.25 3.40 2.54 1.62 0.33
Total 99.46 99.51 99.39 99.25 99.73 99.25 99.18 99.53 99.42 99.74 99.30 99.30 99.25 98.76 98.90 99.53 ---
Mg# 0.403 0.404 0.415 0.479 0.466 0.469 0.435 0.405 0.437 0.434 0.426 0.414 0.418 0.408 0.429 0.397 0
V 386 359 370 378 378 388 288 378 383 365 376 357 369 364 351 337 13
Cr 173 108 110 143 130 121 99 86 91 95 86 117 100 102 109 19 5
Co 51.5 51.5 48.5 45.3 43.9 45.3 50.8 51.5 54 53.8 42.8 51 49.8 47.4 53 29 3
Ni 71 69 67 89 87 86 54 68 66 73 62 44 44 43 51 12 3
Zn 126.4 151.0 130.4 140.8 121.2 107.2 100.3 150.4 139.6 128.7 131.5 121.4 130.1 134.4 140.4 133 7
Rb 23.2 21.2 18.7 30.0 20.8 12.6 54.5 28.5 14.2 16.9 12.7 20.5 49.3 47.1 61.5 40 3
Sr 199 223 215 183 208 207 186 177 171 204 196 207 185 154 200 408 5
Y 40.0 40.1 42.1 34.3 35.3 35.4 27.6 42.1 44.2 37.9 41.7 31.9 31.9 32.2 29.8 47 4
Zr 229 225 238 167 174 160 143 236 241 186 241 169 160 148 146 149 5
Nb 15.5 15.4 16.5 11.9 12.3 11.9 12.6 16.4 16.9 14.9 16.7 16.5 17.0 16.9 15.4 8 1
Ba 182.2 227.8 177.5 439.6 191.5 97.4 383.1 209.1 110.8 195.3 155.6 496 763.1 1312.7 1141.8 2202 143
La 21.22 21.14 22.4 14.71 15.32 15 20.79 22.17 22.88 20.62 20.55 25.54 25.13 27.44 24.05 26.68 0.55
Ce 50.82 50.54 53.06 36.13 37.69 36.68 43.1 52.49 54.15 48.59 50.27 53.85 53.1 57.04 50.37 58.55 0.21
Pr 7.02 7.08 7.49 5.22 5.5 5.28 5.7 7.34 7.53 6.78 7.14 6.93 6.73 7.32 6.52 8.41 0.08
Nd 31.55 31.63 33.33 24.06 24.98 24.46 24.14 32.95 33.49 30.58 32.08 28.57 28.68 30.69 27.12 39.39 0.42
Sm 7.87 7.93 8.33 6.24 6.49 6.34 5.69 8.23 8.31 7.51 8.21 6.62 6.52 6.72 6.19 9.47 0.06
Eu 2.4 2.37 2.53 2.07 2.24 2.03 1.8 2.42 2.49 2.24 2.4 2.11 2.1 2.11 1.99 3.82 0.1
Gd 8.38 8.35 8.82 6.98 7.21 7.09 5.68 8.74 8.87 8.01 8.59 6.58 6.4 6.9 6.26 9.92 0.35
Tb 1.287 1.306 1.375 1.09 1.124 1.106 0.859 1.363 1.385 1.235 1.348 0.99 0.984 1.026 0.953 1.45 0.02
Dy 7.95 8.14 8.45 6.8 6.98 6.96 5.4 8.36 8.49 7.55 8.19 6.16 6.09 6.35 5.79 8.81 0.16
Ho 1.56 1.55 1.62 1.3 1.36 1.36 1.04 1.6 1.63 1.45 1.59 1.2 1.18 1.22 1.12 1.76 0.01
Er 4.38 4.36 4.64 3.65 3.8 3.78 2.97 4.53 4.54 4 4.56 3.43 3.34 3.45 3.23 4.94 0.01
Tm 0.591 0.597 0.628 0.506 0.518 0.53 0.418 0.613 0.627 0.544 0.624 0.471 0.463 0.471 0.442 0.68 0.01
Yb 3.77 3.78 3.93 3.15 3.29 3.32 2.71 3.86 3.86 3.44 3.96 3.00 2.90 2.95 2.80 4.33 0.06
Lu 0.54 0.55 0.57 0.45 0.47 0.48 0.4 0.56 0.57 0.5 0.58 0.45 0.43 0.41 0.39 0.64 0.02
Cs 0.86 0.53 0.84 0.46 0.4 0.6 0.51 1.04 0.52 0.54 0.5 0.58 1.09 0.89 1.78 1.73 0.04
Hf 6.01 5.88 6.29 4.46 4.65 4.44 3.86 6.12 6.15 5.15 6.19 4.51 4.22 4.08 3.98 4.09 0.05
Ta 1 1 1.1 0.8 0.8 0.8 0.8 1.1 1.1 1 1.1 1.1 1.1 1.1 1 0.47 0.03
Th 2.63 2.56 2.73 1.65 1.67 1.63 4.69 2.65 2.65 2.24 2.67 4.07 4.1 4.1 3.85 4.08 0.32
U 0.72 0.71 0.8 0.46 0.51 0.46 1.1 0.73 0.73 0.59 0.76 0.75 0.77 0.82 0.71 1.52 0.11
Sc 34.7 34.5 34.9 35.8 34.7 36.3 32.5 35 36 34.6 36.2 37.2 36.6 37 36 37.6 0.5
Pb 2.9 3 2.3 6.4 6.5 3.8 6.3 4.3 3.8 3.4 4.5 5.8 6.2 5.7 19.2 6.95 0.07

  Note: Major oxides by XRF in wt. %, trace elements by ICP-MS in weight ppm, and LOI = loss on ignition. Mg# = Mg/(Mg+Fe2+). Int. Std. is standard basalt 
from Lake Tahoe, California submitted as blind standard. Precision is shown in final column, 1σ (S.D.). d = estimated distance (in meters) of sample from the 
closest margin of the dike, w = total width of dike (in meters). ? = unkown distance from margin of dike, given when measurement uncertainty precludes a 
meaningful estimate. 

TABLE DR4. GEOCHEMICAL RESULTS FROM THE BIGHORN AND BEARTOOTH MOUNTAINS DIKES

 



Sm (ppm) Nd (ppm) 147Sm/144Nd 143Nd/144Ndm 2-sigma εNd pres 143Nd/144Nd(T) εNd (T) Tdm  (Ma)
BH10 7.72 30.73 0.1518 0.512084 0.000008 -10.81 0.510187 0.14 2521
BH50 7.90 31.57 0.1513 0.512092 0.000008 -10.64 0.510200 0.42 2483
BH61 5.90 22.75 0.1568 0.512242 0.00001 -7.73 0.510281 2.01 2325
BH90 5.36 23.16 0.1400 0.511755 0.000008 -17.22 0.510005 -3.41 2793
BT22 6.17 27.39 0.1362 0.511765 0.000014 -17.03 0.510061 -2.29 2640
BT42 6.46 28.93 0.1351 0.511754 0.000007 -17.25 0.510065 -2.23 2624
  Note: m=measured; pres=present day; T=ratio at time of crystallization at 1900 Ma, based on the U-Pb age (this 
study); Tdm=depleted mantle model age.

TABLE DR5. ISOTOPIC DATA FOR SELECTED SOURDOUGH DIKES
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