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ABSTRACT

Physical processes that control ENSO are relatively fast. For instance, it takes only several months for

a Kelvin wave to cross the Pacific basin (Tk ’ 2 months), while Rossby waves travel the same distance in about

half a year. Compared to such short time scales, the typical periodicity of El Niño is much longer (T ’ 2–7 yr).

Thus, ENSO is fundamentally a low-frequency phenomenon in the context of these faster processes. Here, the

author takes advantage of this fact and uses the smallness of the ratio «k 5 Tk/T to expand solutions of the ocean

shallow-water equations into power series (the actual parameter of expansion also includes the oceanic

damping rate). Using such an expansion, referred to here as the low-frequency approximation, the author

relates thermocline depth anomalies to temperature variations in the eastern equatorial Pacific via an explicit

integral operator. This allows a simplified formulation of ENSO dynamics based on an integro-differential

equation. Within this formulation, the author shows how the interplay between wind stress curl and oceanic

damping rates affects 1) the amplitude and periodicity of El Niño and 2) the phase lag between variations in

the equatorial warm water volume and SST in the eastern Pacific. A simple analytical expression is derived for

the phase lag. Further, applying the low-frequency approximation to the observed variations in SST, the

author computes thermocline depth anomalies in the western and eastern equatorial Pacific to show a good

agreement with the observed variations in warm water volume. Ultimately, this approach provides a rigorous

framework for deriving other simple models of ENSO (the delayed and recharge oscillators), highlights the

limitations of such models, and can be easily used for decadal climate variability in the Pacific.

1. Introduction

Interactions between the tropical ocean and the atmo-

sphere produce El Niño–Southern Oscillation (ENSO)—

the dominant mode of climate variability in the tropics.

This climate phenomenon causes a nearly adiabatic, hor-

izontal redistribution of warm surface water along the

equator: during an El Niño, weakened zonal winds permit

the warm water to flow eastward so that the ocean ther-

mocline becomes more horizontal, which induces warm

SST anomalies in the east. Strong zonal winds during

La Niña years pile up the warm water in the west, caus-

ing the thermocline slope to increase and exposing cold

water to the surface in the east. This zonal adjustment is

accompanied by meridional mass redistribution. Numer-

ous studies over the past decades (e.g., Wang et al. 2004;

Clarke 2008; Fedorov et al. 2003) have produced a hier-

archy of models describing ENSO, including general cir-

culation models (GCMs) that simulate El Niño with a

good degree of fidelity (Guilyardi et al. 2009).

Despite the increasing availability and better perfor-

mance of ocean–atmosphere GCMs, a large share our

understanding of El Niño still comes from intermediate

coupled models based on the shallow-water equations of

the ocean (as in Zebiak and Cane 1987). To a large de-

gree, this is because the ocean response to slow (low

frequency) wind variations plays a key role in explaining

El Niño, and shallow-water models reproduce this re-

sponse rather accurately.

A class of even simpler models, based on one or sev-

eral ordinary differential equations that typically de-

scribe changes in SSTs in the eastern equatorial Pacific

and variations in the depth of the equatorial thermo-

cline, is also critical to our understanding of El Niño.

These models include the broadly used delayed (Battisti

and Hirst 1989; Suarez and Schopf 1988) and recharge

oscillators (Jin 1997a,b; Jin and An 1999; Meinen and
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McPhaden 2000; Kessler 2003; Clarke et al. 2007; also

Philander and Fedorov 2003; Fedorov and Brown 2009).

For a summary and brief description of other simple

models, see Wang (2001). Some of these models are

based on fairly different physical assumptions of the key

mechanisms involved; others use different means to rep-

resent ocean adjustment.

While conceptual models are extremely valuable for

understanding ENSO dynamics, their derivations usu-

ally involve either ad hoc assumptions or approxima-

tions that cannot be rigorously justified. For example,

the delayed oscillator equation is based on a time delay

that is not clearly defined. Similarly, the recharge oscillator

employs simplifying assumptions for ocean adjustment

that are difficult to justify mathematically. Consequently,

such models reproduce the full ENSO physics only with

limited accuracy as compared to coupled GCMs (Mechoso

et al. 2003). The goal of the present study is to circumvent

these problems by developing a method of solving the

shallow-water equations via a perturbation expansion in

terms of a small parameter.

The main idea of this method is to take advantage of

the slow, low-frequency essence of the ENSO cycle—slow

relative to a number of fast physical processes involved

in this phenomenon. In fact, ENSO-related climate var-

iability is characterized by a spectral peak at periods be-

tween T 5 2 and 7 yr, but the time scales associated with

the low-order, dynamically important equatorial waves

and other equatorial processes are much shorter. For

instance, it takes Tk 5 2–3 months for free baroclinic

equatorial Kelvin waves to cross the Pacific basin (and

less than 7–8 months for first-mode baroclinic Rossby

waves).

Accordingly, we will treat all variables as functions of

a small parameters «–a complex number made up by

combining «k 5 Tk/T and the nondimensional oceanic

damping rate «m (typically, both numbers are small: «k,

«m ; 0.05–0.10). The new parameter will be used for

solving the shallow-water equations via an expansion

procedure. Since «k is proportional to the characteristic

frequency of ENSO, we will refer to this approach as

the low-frequency approximation or limit. This limit

will describe the net adjustment of the ocean (rather than

propagation of separate waves) and provide an alterna-

tive to the method of solving the shallow-water equa-

tions by means of parabolic cylinder functions describing

Kelvin and Rossby waves of different modes (Battisti

1988; Fedorov and Brown 2009).

This expansion will allow us to derive a new model of

ENSO based on a simple integro-differential equation

for temperature variations in the eastern equatorial Pa-

cific. This model will offer a quantitatively more rigorous

alternative to the conventional simple models of ENSO

(the delayed and recharge oscillators), will provide a

mathematical framework for deriving those two models

and, at the same time, highlight their limitations.

As part of the low-frequency approximation, we will

also obtain explicit expressions for anomalies in the

mean thermocline depth, and thermocline anomalies in

the eastern and western equatorial Pacific, as functions

of temperature in the eastern equatorial Pacific. We will

then calculate these anomalies using the observed SST

and compare them with the observed variations in the

warm water volume (WWV) in the west, east and entire

equatorial basin; the results will show a good agreement

with the observations.

The volume of water warmer than 208C, also known

as the basinwide equatorial WWV, is an important in-

dicator of the ocean heat recharge and a key element

of ENSO dynamics. The WWV typically increases ap-

proximately six months to one year in advance of an

El Niño event. Our method will allow us to compute the

expected phase lag between the ocean recharge (the

mean depth of the equatorial thermocline in the model)

and SST variations in the eastern equatorial Pacific. We

will derive an analytical expression for the phase lag as a

function of the oscillation frequency, oceanic damping

rates, and the curl of wind stress anomalies. As we will

show, the lag can vary in a broad range for these variables.

For typical ocean parameters and the oscillation period

T 5 4 yr, the model predicts the phase lag of about 608.

Note that the term ‘‘low frequency’’ appears in re-

lation to ENSO in several different contexts. Cane and

Moore (1981) used it to distinguish a simplified version

of the shallow-water equations with the meridional ac-

celeration neglected, which eliminates short eastward-

propagating Rossby waves; this approximation is now

commonly called the long-wave or long-wavelength ap-

proximation (McCreary 1985). Clarke (1992) studied the

low-frequency reflection of Kelvin waves from the east-

ern boundary and assumed that the wave frequency was

small with respect to parameters related to the basin ge-

ometry. Jin (2001) used the term ‘‘very low frequency’’ to

describe free modes of the system (no wind stress forcing

applied) in the absence of explicit damping. In the present

study, we use the term low frequency to emphasize that

the oscillation frequency is small with respect to time

scales associated with Kelvin wave propagation and other

fast processes [there are similarities here with the recent

study of Clarke (2010)].

The structure of the paper is as follows. In section 2 we

formulate the problem. In sections 3 and 4, we describe

the expansion procedure for solving the shallow-water

equations. The SST equation is discussed in section 5,

whereas section 6 combines all relevant equations into

a simple ENSO model in the low-frequency limit. In
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section 7 we derive the delayed and recharge oscillators

from the new model. Section 8 discusses variations in

the thermocline depth (and the WWV of the equatorial

Pacific). Section 9 concludes the paper.

2. Formulation

The ocean dynamics relevant to ENSO can be described

by the linear reduced-gravity shallow-water equations

on the equatorial b plane in the long-wave approxima-

tion (Cane and Sarachik 1981). For simplicity, symmetry

with respect to the equator and no annual forcing are

assumed:

u
t
1 g9h

x
� byy 5 t/rD� «

m
u, (2.1)

g9h
y

1 byu 5 0, and (2.2)

h
t
1 H(u

x
1 y

y
) 5�«

m
h. (2.3)

The notations are conventional, with u 5 u(x, y, t) and

y 5 y(x, y, t) denoting the ocean zonal and meridional

currents, respectively; H is the mean depth of the ther-

mocline, h 5 h(x, y, t) are the thermocline depth anom-

alies; t 5 t(x, y, t) are the zonal components of the wind

stress; r is the mean water density; Dr is the difference

between the density of the upper (warm) layer and the

density of the deep lower layer; and g9 5 gDr/r is the

reduced gravity. Here D is the nominal depth, charac-

terizing the effect of surface winds on the ocean ther-

mocline (frequently, it is assumed that D 5 H). The

subscripts t, x, and y indicate the respective derivatives.

The system includes simple Rayleigh friction in the

first momentum equation and a linear parameterization

of water entrainment at the base of the mixed layer in

the continuity equation. The same oceanic damping rate

«m is routinely used in both equations (e.g., Zebiak and

Cane 1987; Battisti and Hirst 1989).

We now nondimensionalize these equations using sev-

eral characteristic scales: the zonal coordinate is scaled

by the basin width L; the meridional coordinate is scaled

by the equatorial Rossby radius of deformation LR 5

(c/b)1/2, where c 5 (g9H)1/2 is the phase velocity of linear

baroclinic Kelvin waves; and time is scaled using the

basin crossing time for the Kelvin wave, Tk 5 L/ck. Some

typical values for the tropical Pacific ocean are Dr/r 5

0.006; L 5 1508, H 5 120 m; D 5 75 m; ck 5 2.7 m s21,

LR 5 340 km; Tk 5 2.4 months; and «m 5 2.0 yr21

(Table 1).

The nondimensionalization is completed by substitut-

ing the following the equations into the shallow-water

Eqs. (2.1)–(2.3):

u! u 3 c
k

y ! y 3 c
k
(L

R
/L) h! h 3 H, (2.4)

x! x 3 L y! y 3 L
R

t! t 3 L/c
k
, and (2.5)

t ! t 3 rc2
k(D/L) «

m
! «

m
3 c

k
/L

R
. (2.6)

Using the same notations for the nondimensional vari-

ables, we rewrite the system as

u
t
1 h

x
� yy 5 t � «

m
u, (2.7)

h
y

1 yu 5 0, and (2.8)

h
t
1 u

x
1 y

y
5�«

m
h. (2.9)

The standard no-flow boundary condition is applied at

the eastern ocean boundary (x 5 1), and the no-net-flow

condition at the western boundary (x 5 0) of the basin

(see Cane and Sarachik 1977):

ð‘

�‘

uj
x50

dy 5 0 and (2.10)

ujx51
5 0. (2.11)

Following Münnich et al. (1991), Jin and Neelin (1993)

and other authors, we adopt a simple model for surface

winds, in which the wind stress t 5 t(x, y, t) is related

to the SST anomaly at the equator T 5 T(x, t) through

a linear relation,

TABLE 1. Standard parameters used in the shallow-water equa-

tions for the tropical Pacific and the SST equation in the equatorial

strip.

Parameter Dimensional Nondimensional

Basin size L 1508 1

Kelvin wave speed ck 2.7 m s21 1

Basin crossing time Tk 2.4 months 1

Basin western

boundary xw

1308E 0

Rossby radius of

deformation LR

340 km 1

Oceanic damping rate «m 2 yr21 0.1

Location of the wind

maximum xc

1708W 0.4

Wind stress amplitude to 0.02 N m22 8C21 0.62 (8C)21

H 120 m 1

D 75 m 0.63

Wind extent parameter n (308)22 25

Wind extent parameter a (98)22 0.12

Thermal damping rate «T (125 days)21 0.57

d 50 m 0.42

D 8 m 8C21 0.067 8C21

we 1 m day21 0.6

go 0.5 0.5
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t 5 A(x, y) � T, (2.12)

where A(x, y) is a linear integral operator. Following Jin

(1997a,b), we adopt the simplest form of the operator

A(x, y), taking

t 5 t
o
G(x)e�ay2

T
e
, (2.13)

where

G(x) 5 e�n(x�x
c
)2

, (2.14)

Te 5 hT i is the temperature anomaly in the eastern

Pacific (e.g., averaged over the Niño-3 region), and G(x)

approximates the shape of the zonal wind stress anomaly

along the equator.

We will refer to a as the wind stress curl parameter, since

the curl of wind stress anomalies 2›t/›y is proportional to

a, which makes this parameter critical for assessing me-

ridional water exchange important for ENSO dynamics.

We could also refer to a as the meridional wind extent

parameter. The meridional e-folding decay scale of wind

stress anomalies is proportional to a21/2, so that for larger

a, wind anomalies are confined closer to the equator.

The typical nondimensional values for the wind stress

parameters a, n, and to (Table 1) correspond to the

meridional e-folding decay scale of roughly 98 of lati-

tude, 308 of longitude for the zonal decay, and the wind

stress amplitude of 0.02 N m22 8C21, respectively. These

values can be obtained by regressing observed wind stress

anomalies onto the Niño-3 SST (Fig. 1; also Wittenberg

2004).

Now, formally applying the Fourier transform to h, u,

y, and t in Eqs. (2.7)–(2.13), that is, calculating integrals

1

2p

ð‘

�‘

( . . . )e�ivt dt (2.15)

and using the same notations as those used for the orig-

inal variables, we obtain

«u 1 h
x
� yy 5 t, (2.16)

h
y

1 yu 5 0, and (2.17)

«h 1 u
x

1 y
y

5 0, (2.18)

where

« 5 «
m

1 iv. (2.19)

Note that a number of studies invoked the fast-wave

approximation or limit to describe ENSO. In that limit

the speed of Rossby and Kelvin waves is assumed infinite,

which implies an instantaneous adjustment of the ther-

mocline to wind stress anomalies (Neelin 1991; Hao et al.

1993; Cane 1992; Galanti and Tziperman 2000). Formally,

it would be equivalent to setting v to zero in Eq. (2.19). In

this study, we assume that v is nonzero, albeit small. Only

when considering the ocean response to steady winds will

we set v 5 0.

It can be easily shown that Eqs. (2.16)–(2.18) can be

rewritten as

h
x
� «y2h 5 t � yt

y
1 «(yu

y
� u), (2.20)

u 5�h
y
/y, and (2.21)

y 5�t
y

1 «(yh 1 u
y
). (2.22)

The very last equation of this system, Eq. (2.22), is a

modified form of the Sverdrup balance that determines

FIG. 1. (a) A regression of the observed wind stress variations

onto SST averaged over the eastern equatorial Pacific (defined

here as the eastern half of the basin), in units of 1023 N m22 8C21

and based on the Florida State University pseudostress (Stricherz

et al. 1997; also see Wittenberg 2004). (b) The normalized zonal

structure of the observed wind stress anomalies (averaged between

58S and 58N) and the model (heavier line). (c) The normalized

meridional structure of the observed wind stress anomalies (aver-

aged between 1508E and 1308W) and the model (heavier line). The

nondimensional model parameters are n 5 25, a 5 0.12, and xc 5 0.4.
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the meridional flow given the wind stress [note that

nonlinear terms can become important for this balance

in the vicinity of the equator; see Brown and Fedorov

(2010a)]. An additional equation for SSTs will be needed

to close the system (as described in section 5).

3. Singular perturbation expansion for the
shallow-water equations

Now we will solve Eqs. (2.20) and (2.21) using a per-

turbation method that assumes, for the time of deriva-

tion, that « is a constant. This approach is frequently used

in theoretical physics, when deriving the nonlinear Schro-

dinger equation or other evolutionary equations for ocean

surface waves, for example (e.g., Zakharov 1968). It can

be applied as long as the spectrum of the process under

consideration has a relatively narrow peak; in other

words, only when a limited range of « close to the maxi-

mum of the spectrum is relevant for the problem.

We will assume that the wind stress and thermocline

depth anomalies vary on time scales much longer than

the time needed for a free Kelvin wave to cross the

Pacific and that oceanic damping is relatively weak,

which implies that j«j ,, 1.

We rewrite the system of governing equations as

h
x
� «y2h 5 (1� y›

y
)t � «(1� y›

y
)u and (3.1)

u 5�h
y
/y. (3.2)

It is crucially important for our approach that the second

term on the left-hand-side of Eq. (3.1) be formally con-

sidered of the same order as the first term; this is because

«y2h can become sufficiently large for large jyj. In fact,

it is exactly the part of the equation that accounts for

the delayed ocean adjustment to wind variations (ocean

memory, e.g.; Neelin et al. 1998; Fedorov and Brown

2009). In other words, these equations represent a sin-

gular perturbation problem.

Also, technically we should consider solutions in the

ocean basin bounded by the condition jyj , Y, where

Y ; «21/2, which would keep the second term on the left-

hand-side of Eq. (3.1) bounded and not larger than O(1).

However, it turns out that the solutions for h decay ex-

ponentially for large jyj, as long as x 6¼ 1, so that this

requirement is not critical.

Now we can formally expand h and u in powers of «,

assuming that j«j is a small parameter:

h 5 h(0) 1 h(2) 1 � � � and (3.3)

u 5 u(1) 1 u(3) 1 � � � , (3.4)

where the terms in Eqs. (3.3) and (3.4) are proportional

to powers of «, as indicated by the superscripts. As

shown in appendix A, the terms in Eq. (3.3) proportional

to odd powers of « and the terms in Eq. (3.4) pro-

portional to even powers of « are identically zero.

Accordingly, the zeroth-order solution for h (and the

first order for u) will satisfy two simple equations:

h(0)
x � «y2h(0) 5 (1� y›

y
)t and (3.5)

u(1) 5�h(0)
y /y. (3.6)

Integrating Eqs. (3.5) and (3.6) gives

h(0) 5 e«y2(x�1)h
o
�
ð1

x

e«y2(x�s)(1� y›
y
)t(s, y) ds and

(3.7)

u(1) 5 2«(1� x)e«y2(x�1)h
o

�
ð1

x

e«y2(x�s)[›
yy

1 2«(s� x)(1� y›
y
)]t(s, y) ds,

(3.8)

where ho is the thermocline depth anomaly at the

eastern boundary (x 5 1) and the no-flow condition has

been already applied (for the higher-order terms of the

expansion, see appendix A).

Using the no-net-flow condition at the western bound-

ary (x 5 0) and integration by parts give

h
o

5

ð1

0

ð‘

�‘

te�«y2xx dx dy

ð‘

�‘

e�«y2

dy

�

5 p�1/2«1/2

ð1

0

ð‘

�‘

t(x, y)e�«y2xx dx dy. (3.9)

Since the prescribed meridional shape of wind stress

anomalies is such that

t(x, y) 5 t(x)e�ay2

, (3.10)

we can integrate Eq. (3.9) once to obtain

h
o

5

ð1

0

t(x)x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«

«x 1 a

r
dx, (3.11)

where

t(x) 5 t(x, y)jy50
. (3.12)

Formally, Eq. (3.11) is similar to the expression for the

thermocline depth at the eastern boundary in the ‘‘fast-

wave limit’’ (as discussed in Hao et al. 1993; also Cane
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and Sarachik 1981; Cane et al. 1990), but here « incor-

porates the frequency v, not just oceanic damping. In

general, one would need to specify the branch of the

square root in Eq. (3.11), but this will not alter the end

results.

In principle, one could further expand the expression

for ho in Eq. (3.11), assuming that j«j is small; however,

in practice j«j and a can be of the same order, making

it necessary to find a different approach to simplify Eq.

(3.11). Since wind stress anomalies are confined to the

western and central equatorial Pacific and t(x) is local-

ized in the vicinity of xc (the location of the maximum of

wind stress anomalies), with a good accuracy we can

replace Eq. (3.11) with

h
o

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«

«x
c
1 a

r ð1

0

t(x)x dx. (3.13)

This expression will be used in a simple model of ENSO

discussed shortly.

Next, using Eq. (3.10) we arrive at the following

equations for h and u:

h 5 e«y2(x�1)h
o
�
ð1

x

t(s)(1 1 2ay2)e«y2(x�s)�ay2

ds and

(3.14)

u 5 2«(1� x)e«y2(x�1)h
o
�
ð1

x

t(s)[�2a 1 4a2y2

1 2«(s� x)(1 1 2ay2)]e«y2(x�s)�ay2

ds. (3.15)

To understand the properties of the solutions described

by Eqs. (3.14) and (3.15), let us assume that the wind

stress forcing is proportional to Re(eivt) and that the

oscillation frequency v is fixed. Then the spatial struc-

ture of the thermocline at two instances separated by a

quarter period of the oscillation is given by Re(h) and

Im(h), where h can be calculated from Eq. (3.14). In an

example shown in Fig. 2, thermocline depth anomalies

are forced by wind variations with T 5 4 yr. The ocean

damping time scale was set to 2 yr (nondimensional

«m 5 0.1), consistent with estimates by Fedorov (2007)

and Brown and Fedorov (2010b).

The spatial patterns of the thermocline depth anom-

alies are easy to recognize. In fact, Figs. 2a and 2b show

typical thermocline anomalies during and preceding an

El Niño event, respectively. The agreement between

these solutions and those obtained from the full shallow-

water equations (not shown) is nearly perfect. Figure 2b

also clearly demonstrates the ocean warm water recharge,

that is, the deepening of the equatorial thermocline pre-

ceding El Niño.

4. Thermocline depth variations along the equator

Next, we will focus on thermocline variations along

the equator. Accordingly, to the leading order at the

equator (y 5 0),

h 5 h(x) 5 h
o
�
ð1

x

t(s) ds

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«

«x
c
1 a

r ð1

0

t(s)s ds�
ð1

x

t(s) ds. (4.1)

Since wind stress anomalies along the equator are pro-

portional to toG(x)Te, we can rewrite Eq. (4.1) as

FIG. 2. The leading-order response of the ocean thermocline to

wind stress variations for T 5 4 yr: (a) Re(h), (b) Im(h), (c) wind

stress anomaly t at its peak. The complex expression for h is given

by Eqs. (3.11) and (3.14); the wind stress is given by Eqs. (2.13)

and (2.14). Thermocline depth is in meters, wind stress in units

of 1023 N m22. The amplitude of the temperature anomaly Te is

set to 48C, corresponding to a strong El Niño. Plots (a) and (b) can

be interpreted as thermocline displacements at two different in-

stances: one corresponding to an El Niño state with a reduced

thermocline slope along the equator and the other describing a

recharged state with the mean equatorial thermocline deeper than

normal by approximately 10 m, respectively. The ocean state in (a)

lags that in (b) by a quarter period. Longitude and latitude are

nondimensionalized using the basin length and the Rossby radius

of deformation, respectively. Note the typical forced quasista-

tionary Rossby and Kelvin wave patterns. The nondimensional

parameters are «m 5 0.1, to 5 0.6, a 5 0.12, xc 5 0.4, and n 5 25.
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h 5 t
o

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«

«x
c
1 a

r
1 R

 !
T

e
with (4.2)

R 5 R(x) 5�
ð1

x

G(s) ds and (4.3)

q 5

ð1

0

G(s)s ds. (4.4)

Averaging Eq. (4.2) over the eastern equatorial Pacific

(e.g., over the Niño-3 region) gives

h
e
5 t

o
r 1 q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«

«x
c
1 a

r !
T

e
, (4.5)

where

h
e
5 hhi5 1

l
e

ð1

1�l
e

h dx and (4.6)

r 5 hRi5 1

l
e

ð1

1�l
e

R dx (4.7)

and [1 2 le, 1] is the averaging interval. Equation (4.5) will

be used for deriving a simple model of ENSO in the next

sections. The values of q and r depend only weakly on

relevant parameters (n and xc). For the standard choice

of parameters given in Table 1 and le 5 ½, we compute

q 5 0.142 and r 5 20.014.

To go back to the time-dependent variables, we will

now use the inverse Fourier transform, the convolution

theorem, and the integralð‘

�‘

eivtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«(« 1 â)

p dv 5�
ð‘

�‘

ieivt dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(v� i«

m
)(v� i«

m
� iâ)

p
5 2u(t)e�«

m
tI

1
(ât), (4.8)

where

I
1
(ât) 5

ð1

0

e�âtsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(1� s)

p ds and (4.9)

â 5 a/x
c
, (4.10)

and u(t) is the step function. Using the same notations

for the corresponding variables, we convert (4.5) into

h
e
5 t

o
rT

e
1

t
o
q

p
ffiffiffiffiffi
x

c

p (›
t
1 «

m
)

ð‘

0

e�«
m

t9I
1
(ât9)T

e
(t � t9) dt9.

(4.11)

Further simplifications and applying the identity I1(0) 5 p

give

h
e
5 t

o
rT

e
1

t
o
qffiffiffiffiffi
x

c

p T
e
1

1

p

ð‘

0

e�«
m

t9I(â, t9)T
e
(t � t9) dt9

� �
,

(4.12)

where

I(â, t) 5
d

dt
I

1
(ât) 5�â

ð1

0

e�âts

ffiffiffiffiffiffiffiffiffiffiffi
s

1� s

r
ds. (4.13)

As shown in appendix B, the integral I(â, t) behaves

asymptotically for large t as

I(â, t) ;�1

2

px
c

a

� �1/2

t�3/2. (4.14)

The parameter a being in the denominator of Eq. (4.14)

emphasizes that this result is critically dependent on the

nonzero wind stress curl.

We can rewrite Eq. (4.12) as

h
e
5 t

o
q

r

q
1

1ffiffiffiffiffi
x

c

p

 !
T

e

"

1
1

p
ffiffiffiffiffi
x

c

p
ð‘

0

e�«
m

t9I(â, t9)T
e
(t � t9) dt9

#
. (4.15)

This is the central result of this section. The first term

on the right-hand side of Eq. (4.15) gives rise to the

Bjerknes feedback, that is, weaker zonal winds lead to

a deeper thermocline in the eastern equatorial Pacific,

warmer SSTs there, and even weaker winds (e.g., Fedorov

2002). The second term describes the slow ocean adjust-

ment. By virtue of this expression, the thermocline depth

in the eastern equatorial Pacific depends at time t both on

the instantaneous temperature Te(t) and on temperatures

integrated over a time interval preceding this instance.

The duration of this interval is determined by the rate

with which the kernel in Eq. (4.15) decays for large t and

is controlled by the oceanic damping rate «m and the

parameter a/xc.

5. The SST equation

To derive a simple model of ENSO, one would need

an additional equation describing changes in sea surface

temperatures. Following Jin and Neelin (1993), we ap-

proximate the dynamics of SST anomalies along the

equatorial strip with a linearized equation in which the

rate of temperature change is balanced by the mean

upwelling and thermodynamic damping:

T
t
1 wT

z
5�«

T
T . (5.1)
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Here, w is the time-mean vertical velocity in the equa-

torial strip and «T is thermal damping. We have neglected

the effects of anomalous upwelling and zonal and me-

ridional advection. These additional terms can be easily

added to the model. Variables in this equation (except

for temperature T) are nondimensionalized using time

Tk as the temporal scale, H as the scale for the vertical

coordinate, and ckH/L as the scale for the vertical velocity.

The effect of upwelling on the surface temperature is

then estimated using a finite difference:

T
t
1 g

o

w

d
(T � T

ent
) 5�«

T
T, (5.2)

where Tent 5 Tent(h) is a temperature anomaly entrained

at the base of the mixed layer of thickness d, and go is the

efficiency of upwelling. Following Fedorov and Philander

(2001), we choose d 5 50 m and go 5 0.5. Note that

Galanti and Tziperman (2000), for instance, chose d 5

75 m and go 5 0.75, yielding the same ratio go /d.

In the linear approximation, the temperature Tent is

related to the thermocline depth anomaly h as

T
ent

5 h
›T

›z

����
z52d

5
h

D
, (5.3)

where

D 5
1

›T/›zjz52d
. (5.4)

The parameter D describes the thickness of the tropical

thermocline, or more exactly the nondimensional ver-

tical length scale over which the subsurface temperature

changes by 18C. The dimensional value of the mean

temperature gradient across the thermocline is set here

to 0.138C m21.

Using Eq. (5.3) we can rewrite Eq. (5.2) as

T
t
1 g

o

w

d
T � h

D

	 

5�«

T
T or (5.5)

T
t
1 g

o

w

d
1 «

T

	 

T 5 g

o

w

d

h

D
. (5.6)

Averaging Eq. (5.6) over the eastern Pacific, neglecting

nonlinear terms, and introducing

T
e
5 hTi, h

e
5 hhi, w

e
5 hwi and (5.7)

«
W

5 g
o

w
e

d
, (5.8)

we arrive at the temperature equation

d

dt
T

e
1 («

w
1 «

T
)T

e
5 «

w

h
e

D
, (5.9)

which describes the dominant temperature tendency in

the eastern equatorial Pacific. Other terms, such as zonal

advection of temperature or anomalous vertical upwell-

ing, can be easily included in the equation. For future use

we also introduce «h as

«
h

5 t
o

«
w

D
5 g

o

w
e

d

t
o

D
. (5.10)

The parameter «h reflects the coupling between ther-

mocline and SST anomalies.

Choosing the appropriate value for the upwelling ve-

locity we in Eqs. (5.7)–(5.10) is not straightforward.

Available observational estimates are indirect and typ-

ically based on calculating the divergence of horizontal

currents. Meinen et al. (2001) evaluated the annual mean

vertical velocity at 50-m depth at 0.3 6 0.03 m day21

when averaged over the region 58S–58N, 1558–958W.

Johnson et al. (2001) estimated, however, that the mean

vertical upwelling at 50 m was roughly 0.7 6 0.2 m day21

when the averaging region is bounded by 3.68S–5.28N,

1708–958W. Johnson et al. also concluded that the vertical

velocity in the vicinity of the equator at 50 m peaked at

1.6 6 0.8 m day21. Different ocean analyses give max-

imum values of upwelling averaged between 28S and 28N

in the range 1–2 m day21, more or less within the error

bars of the observations (Behringer et al. 1998, Capotondi

et al. 2006).

The averaging in this study will use the area bounded

along the equator by 1558–808W, which covers the eastern

half of the basin, is only slightly different from the Niño-3

region, and is shifted eastward by 158 with respect to the

region used by Johnson et al. Averaging within the band

28S–28N (where most of the upwelling takes place; Brown

and Fedorov 2008) appears to be appropriate. Given the

uncertainty in the available data, we choose our standard

value for the vertical velocity we 5 1 m day21, which

is lower than used by Galanti and Tziperman (2000)

but slightly higher than Johnson et al.’s average value.

Choosing a different upwelling rate is partially equiva-

lent to modifying to in Eq. (5.10).

6. A simple ENSO model in the low-frequency
limit

Now we can combine the results of the earlier sections

with the SST equation

d

dt
T

e
1 («

w
1 «

T
)T

e
5 «

w

h
e

D
(6.1)
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and obtain a single equation for temperature Te:

d

dt
T

e
1 «

w
1 «

T
� r 1

qffiffiffiffiffi
x

c

p

 !
«

h

" #
T

e

5
q«

h

p
ffiffiffiffiffi
x

c

p
ð‘

0

e�«
m

t9I(â, t9)T
e
(t � t9) dt9. (6.2)

We rewrite Eq. (6.2) as

d

dt
T

e
1 aT

e
5 b

ð‘

0

e�«
m

t9I(â, t9)T
e
(t � t9) dt9, (6.3)

a 5 «
w

1 «
T
� r 1

qffiffiffiffiffi
x

c

p

 !
«

h
and b 5

q«
h

p
ffiffiffiffiffi
x

c

p . (6.4)

One can also rewrite Eq. (6.3) as

d

dt
T

e
1 aT

e
5 bK � T

e
, (6.5)

where K stands for the integral operator in Eq. (6.3).

This is a simple ENSO model that describes variations in

the temperature Te of the eastern equatorial Pacific with

an integro-differential equation. Wind stress curl is es-

sential for this model because of the role of a in the

integral operator.

The right-hand side of Eq. (6.5) gives a rigorous rep-

resentation of the effect of the delayed response of the

thermocline to changes in temperature Te over a pre-

ceding time interval and hence to past wind variations.

There is no explicit representation of Rossby or Kelvin

waves in the model, but rather the net oceanic adjust-

ment. The time delay originates from this adjustment

and is described by the cumulative effect of past tem-

perature variations on current temperature Te.

To calculate the complex frequency s 5 v 2 ig of

the oscillations that can occur in this system (a positive

g corresponds to unstable oscillations), we substitute

Te ; eist into Eq. (6.3) and obtain

is 1 («
w

1 «
T
� r«

h
) 5 «

h
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«

m
1 is

(«
m

1 is)x
c
1 a

s
or (6.6)

(is 1 «
w

1 «
T
� r«

h
)2[(«

m
1 is)x

c
1 a] 5 «2

hq2(«
m

1 is).

(6.7)

This is a third-order algebraic equation that can be easily

solved. Next, we will explore how the solutions of this

equation depend on m (the effective coupling strength

between the ocean and the atmosphere), on a (the pa-

rameter that controls the meridional structure of the

wind stress anomalies and wind stress curl), and on «m

(oceanic damping).

First, we introduce the normalized wind stress am-

plitude m 5 to/to,standard, which can be interpreted as the

effective coupling strength between the ocean and the

atmosphere. Figure 3 shows the bifurcation diagram on

the (v, g) plane for the physically sound solutions of

Eq. (6.7). Oscillatory solutions emerge as a result of a

Hopf bifurcation when m is reduced to a proper value.

The ellipse corresponding to oscillatory solutions oc-

cupies both the upper and lower half-planes, indicating

that both growing and decaying oscillations are possible.

The range of the coupling strength allowing oscillatory

solutions is rather broad: m ’ 0.3–1.6 (Fig. 4).

For m 5 1, the model produces a weakly damped os-

cillation with the period T ’ 3 yr and the damping time

scale jg21j’ 2 yr (Fig. 4). Decreasing m leads to stronger

damping of the oscillations. Increasing m makes the os-

cillation unstable and increases its period. At the critical

value of m ’ 1.6, the period of the oscillation becomes

infinite (T / ‘ or v / 0).

As the next step, we fix the coupling strength m 5 1

and consider the properties of the solutions as a function

of the wind stress curl a and the oceanic damping rate

«m—both are clearly important for the oscillations. In-

creasing «m leads to stronger decay rates and longer

oscillation periods (Fig. 5). On the other hand, increasing

FIG. 3. A bifurcation diagram showing the frequency v 5 Re(s)

and the growth rate g 5 2Im(s) of the oscillation given by Eq. (6.7)

for different values of m 5 to/to,standard, as produced by our simple

model in the low-frequency limit. Negative g indicate damped os-

cillations. Oscillatory solutions emerge as a consequence of a Hopf

bifurcation when m decreases from larger values to roughly m 5 1.6.

The nondimensional parameters are «m 5 0.1, a 5 0.12, xc 5 0.4,

and n 5 25. The reference wind stress amplitude to,standard 5

0.02 N m22 8C21. The third family of solutions (not shown) is not

physical.
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a (and hence strengthening the wind stress curl) reduces

the oscillation period (Figs. 5 and 6). In fact, for larger

values of a—that is, for wind anomalies too narrowly

confined about the equator—ENSO becomes nearly bi-

ennial. This is consistent with the behavior of coupled

GCMs such as Community Climate System Model, ver-

sion 3 (CCSM3; Deser et al. 2006; Capotondi et al. 2006).

For a broad range of a and «m, oscillations remain

damped. Only for small values of a and «m, one finds

growing oscillatory solutions (the lower left corner of

Fig. 5b). The boundary between oscillatory and purely

growing/decaying solutions in Fig. 5 (colored and white

areas, respectively) is given by the condition v /
0 (T / ‘).

Increasing the coupling strength m, say, by 25% does

not change the character of solutions qualitatively. For

the standard combination of a and «m, the period T in-

creases roughly to 3.5 yr and the oscillation becomes

weakly unstable with the e-folding growth time scale

g21 ’ 3 yr (Fig. 4a). The range of a and «m with oscillatory

FIG. 4. (a) The period and the growth time scale of the oscillation

(heavy and light lines, respectively) as a function of the effective

coupling strength m 5 to/to,standard. Negative and positive fre-

quencies produce identical solutions. Negative growth rates (time

scales) indicate damped oscillations. (b) The same for v 5 Re(s)

and g 5 2Im(s) of the oscillations. Relevant parameters are as in

Fig. 3. For m 5 1 the model produces a weakly damped oscillation

with T ’ 3 yr and g21 ’ 22 yr. For large values of m, there are no

oscillatory solutions.

FIG. 5. (a) The period and (b) the growth rates of the ENSO-like

solutions as functions of «m and a. There are no oscillatory solu-

tions in the white area (v 5 0). The dark red area in (a) indicates

periods 10 yr and longer. At the boundary between the dark red

and white areas, v 5 0 (T / ‘). The white inclined line in (b)

corresponds to neutral stability (g 5 0). The white cross indicates

the standard tropical mean state with «m 5 0.1 and a 5 0.12, pro-

ducing a weakly damped oscillation with T ’ 3 yr and g21 ’ 22 yr.

The maximum values of «m and a in the plot correspond to the

oceanic damping time scales of six months and the meridional

extent of the wind anomalies of 68, respectively. For xc 5 0.4 and

n 5 25. The dimensional wind stress amplitude to 5 0.02 N m22 8C21

(m 5 1).
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solutions shrinks; eventually, with further increase in m,

oscillatory solutions can no longer exist.

7. Relation to the delayed and recharge oscillator
models

The main equation of the simple ENSO model de-

rived in the previous sections using the low-frequency

approximation is

d

dt
T

e
1 aT

e
5 b

ð‘

0

e�«
m

t9I(â, t9)T
e
(t � t9) dt9, (7.1)

where a and b are constants related to other parameters

of the system [see Eq. (6.4)]. This equation has simi-

larities with the delayed oscillator model (Schopf and

Suarez 1988; Battisti and Hirst 1989; also Fedorov and

Philander 2001); however, it is rigorously derived. The

Bjerknes feedback, modified by damping terms, is de-

scribed by the term proportional to a. The delayed ocean

adjustment is represented by the integral in the right-

hand-side of the equation; the wind stress curl and oce-

anic damping are explicitly included in this latter term.

To obtain the delayed oscillator equation from this

model, one can evaluate the integral in Eq. (7.1):

ð‘

0

e�«
m

t9I(â, t9)T
e
(t � t9) dt9 ’ Be�«

m
t
o I(â, t

o
)T

e
(t � t

o
),

(7.2)

where to are B are constants chosen to give the best fit

for this integral. Then Eq. (7.1) can be rewritten as

d

dt
T

e
1 aT

e
5 ~bT

e
(t � t

o
), (7.3)

where ~b is a new constant that has replaced b. This is the

classical linear delayed oscillator, in which to plays the

role of the time delay. The problem with such an ap-

proach, however, is that the time delay is not clearly de-

fined. It results from an ad hoc approximation for several

different processes and actually leads to a degeneracy of

this equation. The simple model of Eq. (7.1) avoids this

problem by introducing the time delay through an in-

tegral operator applied to Te.

One can also obtain an equivalent of the recharge

oscillator model of ENSO. First, we denote the integral

on the right-hand side of Eq. (7.1) as W 5 W(t). This

term is related to the warm water volume anomaly or

ocean heat recharge in the western Pacific. However, it

excludes the portion of the WWV anomaly proportional

to Te (see section 8). Calculating the time derivative of W

transforms Eq. (7.1) into two equations

d

dt
T

e
1 aT

e
5 bW and (7.4)

d

dt
W 5�

ð‘

0

e�«
m

t9I(â, t9)
d

dt9
T

e
(t � t9) dt9. (7.5)

After integrating by parts, we can approximate the in-

tegral in Eq. (7.5) as

ð‘

0

e�«
m

t9I(â, t9)
d

dt9
T

e
(t � t9) dt9 5�I(â, 0)T

e
(t)

�
ð‘

0

T
e
(t � t9)

d

dt9
[e�«

m
t9I(â, t9)] dt9 ’�I(â, 0)T

e
(t).

(7.6)

Here, we have neglected the second integral in Eq. (7.6),

which is relatively small, but contains all effects of «m. In

appendix B we obtain

I(â, 0) 5�p

2
â 5�pa

2x
c

. (7.7)

Now we can reduce the system of Eqs. (7.4) and (7.5) to

d

dt
T

e
1 aT

e
5 bW and (7.8)

d

dt
W 5�cT

e
with (7.9)

a 5 «
w

1 «
T
� r 1

qffiffiffiffiffi
x

c

p

 !
«

h
; b 5

q«
h

p
ffiffiffiffiffi
x

c

p ; c 5
pa

2x
c

.

(7.10)

FIG. 6. (a) The period and the growth rate of the oscillation

(heavy and light lines, respectively) as functions of a. Negative g

indicates damped oscillations. There are no oscillatory solutions to

the left of the dashed line. The nondimensional parameters are

«m 5 0.1, xc 5 0.4, and n 5 25. The wind stress amplitude to 5

0.02 N m22 8C21.
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These equations are formally similar to the recharge–

discharge oscillator model by Jin (1997a,b); however, in

a clear improvement, they include a quantitatively rigor-

ous representation of the effect of wind stress curl on the

ocean heat recharge [here, there is a direct link with

the empirical model for the ocean heat recharge used by

Clarke et al. (2007)]. The simplified equations agree well

with the full model of Eq. (7.1) in the limit of very small a

and «m (i.e., in the lower-left corner of the panels in Fig. 5).

Both derivations (of the delayed and recharge oscil-

lators) using our model as a starting point emphasize

that these two frequently used conceptual models of

ENSO, while reasonable, are based on relatively crude

approximations. Therefore, obtaining good quantitative

agreement with data from coupled GCMs or observa-

tions is often more reliant on the method used to fit the

model to the data (e.g., Mechoso et al. 2003).

8. Mean thermocline depth and WWV variations

The low-frequency approximation is ideally suited to

study variations in the WWV of the equatorial Pacific,

which is an important element of the recharge–discharge

paradigm of ENSO (e.g., Meinen and McPhaden 2000).

According to observations, variations in the basinwide

equatorial WWV lead SST variations in the eastern

equatorial Pacific by roughly six months to one year.

Figure 2b shows a nearly uniform deepening of the

equatorial thermocline prior to an El Niño event consis-

tent with these observations (in our idealized approach,

the mean depth of the thermocline along the equator

represents WWV). Here, we will investigate the phase

difference between variations in the mean thermocline

depth hm and the temperature Te of the eastern equato-

rial Pacific. We will also consider hw and he, which cor-

respond to WWV anomalies in the western and eastern

Pacific.

The mean (zonally averaged) depth of the equatorial

thermocline is defined as

h
m

5

ð1

0

h(x) dx. (8.1)

We have used the subscript m to distinguish averaging

over the entire length of the basin from averaging ap-

plied over the eastern equatorial Pacific.

We can go back to the Fourier space (again, using

the same notations for the corresponding variables) to

obtain

h
m

5 t
o

r
m

1 q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«

«x
c
1 a

r !
T

e
, (8.2)

where

r
m

5

ð1

0

R(x) dx. (8.3)

Integrating Eq. (8.3) by parts and using Eqs. (4.3)–(4.4)

give rm 5 2q. Therefore, Eq. (8.2) can be rewritten as

T
e
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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«x
c
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We now define

f 5 f(v) 5 arg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«

«x
c
1 a

r
� 1

 !�1

5�arg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«

«x
c
1 a

r
� 1

 !
. (8.5)

Here, f is the phase difference between variations in hm

and Te. Negative values of f would indicate that varia-

tions in hm lead variations in Te (i.e., Te is lagging hm).

We now set « 5 «m 1 iv and assume that the oscil-

lation is close to neutral stability, neglecting potential

growth/decay rates (including the growth/decay rates

would be equivalent to modifying «m), so that

f 5�arg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
«

m
1 iv

(«
m

1 iv)x
c
1 a

s
� 1

" #
. (8.6)

Even though this expression was derived within the

shallow-water equations, it has a universal character since

it depends only on the oscillation frequency, oceanic

damping, and the structure of wind stress anomalies (i.e.,

their meridional extent and the location of wind maxi-

mum). To the leading order, this expression neither

depends on the zonal extent of the wind anomalies nor

on their amplitude, and is more general than the results

of the simple model in Fig. 5.

Figure 7 shows the dependence of the phase lag f on

the oscillation period T 5 2p/v for various values of the

wind stress curl parameter a. For realistic combinations

of a and «m and for the range of periods relevant to

ENSO, the phase difference increases with the oscilla-

tion period but typically remains smaller than 908. For

example, for T 5 4 yr and our standard combination of a

and «m, the model gives jfj’ 608 or approximately eight

months. Decreasing a and hence reducing the meridio-

nal Sverdrup flow or increasing oceanic damping rates

reduces the lag (Fig. 8).

Many coupled GCMs produce wind stress anomalies

confined too close to the equator (Capotondi et al. 2006;

Deser et al. 2006), which corresponds to too-large values
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of a. Figures 7 and 8 suggest that the phase lag between

the WWV and the temperature in the Niño-3 region for

these models can become too large, even greater than

908, unless the effect of a on the phase lag is counter-

acted by strong oceanic damping rates or a too-short

period of the simulated oscillation.

Next, to take into account the entire range of available

frequencies, we apply the inverse Fourier transform to

Eq. (8.2) and arrive at a full expression for the mean

thermocline depth hm in terms of an integral operator

applied to Te. Similar expressions are obtained for he

and hw (thermocline depths in the eastern and western

equatorial Pacific, respectively):

h
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o
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1ffiffiffiffiffi
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c
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e
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ð‘
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e�«
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t9I(â, t9)T
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#
. (8.9)

These expressions allow us to calculate changes in hm,

he, and hw for a given structure of wind stress anomalies

and fixed oceanic damping rates if temperature varia-

tions in the eastern equatorial Pacific are known. Note

that Eq. (8.8) was already derived in section 4. Aver-

aging in Eq. (8.9) is done over the western half of the

Pacific basin. For a realistic combination of parameters,

the largest contribution to he comes from the term pro-

portional to Te, whereas the expression for hw is domi-

nated by the second term.

The results of calculations are shown in Fig. 9, for

which the thermocline depths were calculated using the

observed Niño-3 SST in place of Te (Fig. 9a). Compar-

ison between computed hm, he, and hw and observed

WWV variations demonstrates a very good agreement,

especially for such an idealized linear model based on

several approximations with the low-frequency limit being

FIG. 7. The phase lag f between variations in the temperature of

the eastern equatorial Pacific Te and the mean thermocline depth

hm, as measured in (a) degrees and (b) months. Negative values

indicate that Te lags hm. Different lines correspond to different

values of the meridional extent of wind stress anomalies (i.e., dif-

ferent values of a). From the bottom line to the top: the wind stress

meridional decay scales are 58, 78, 98, 118, 158, and 208 of latitude (a

5 0.4, 0.2, 0.12, 0.08, 0.043, 0.024). The thick line corresponds to the

standard case with a 5 0.12. For «m 5 0.1 and xc 5 0.4.

FIG. 8. The phase lag f (8) between variations in the temperature

of the eastern equatorial Pacific Te and hm as a function of «m and a,

for the period of the oscillation T 5 4 yr. Negative values of f mean

that Te lags hm. The three contour lines correspond to the lag f 5

2908, 2608, 2308. The white cross indicates standard tropical

conditions with «m 5 0.1 and a 5 0.12. For xc 5 0.4.
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one of them. The correlation between the observed hw and

calculated WWV in the west reaches 0.85, indicating that

our approximation captures ocean heat recharge in the

western tropical Pacific quite nicely.

9. Discussion and conclusions

In this study we have proposed the low-frequency

limit as a useful approximation to describe the ocean

response to slow wind variations and ENSO dynamics

in general. Using this limit, we have formally derived a

model of ENSO based on a simple integro-differential

equation that uses an integral operator to compute the

ocean adjustment. The derivation is based on expanding

the shallow-water equations into the powers of a small

parameter «, which is related to the ratio Tk/T and the

oceanic damping rate «m (Tk is the time needed for a

Kelvin wave to cross the Pacific).

The proposed approach efficiently integrates the ef-

fects of equatorial Kelvin and Rossby waves of different

FIG. 9. (a) Variations in the Niño-3 SST from the extended dataset of Kaplan et al. 1998.

(b)–(d) Variations in the thermocline depth (blue, m) and the WWV (magenta, m3 3 1013) in

the eastern, western, and the basinwide equatorial Pacific, respectively. Thermocline depths are

calculated using the low-frequency approximation, Eqs. (8.7)–(8.9), and the observed Niño-3

SST in place of Te. Correlation coefficients between thermocline depth variations and WWV

are shown in the bottom-left corner of each panel. Note that the scaling of WWV variations is

different for each case. The WWV data (integrated between 58S and 58N) are from the Tropical

Atmosphere Ocean Project (TAO, see http://www.pmel.noaa.gov/tao/elnino/wwv). The non-

dimensional parameters are «m 5 0.1, a 5 0.12, and xc 5 0.4.
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modes, thus eliminating the necessity to treat these waves

explicitly and providing an analytical expression for spa-

tial and temporal changes in the thermocline depth. When

averaged over the eastern equatorial Pacific, this expres-

sion reduces to a formula for the thermocline anomaly

he as a function of SST variations in the eastern Pacific.

Used together with an approximate SST equation along

the equator, this description of thermocline depth anom-

alies leads to our model of ENSO in the low-frequency

limit.

The method has some parallels with the fast-wave

limit of ENSO (Neelin 1991; Hao et al. 1993; Cane

1992). However, the original fast-wave limit treats ocean

waves as instantaneous and hence does not take into

account the time necessary for the ocean thermocline

to adjust (thus neglecting ocean memory). As a result,

that limit produces unrealistic oscillations (Galanti and

Tziperman 2000). In contrast, our approach, while also

assuming that the ENSO period is much longer than

wave time scales, does allow for the slow ocean ad-

justment, thereby incorporating the essential physics of

ENSO related to the delayed or recharge/discharge

dynamics.

How accurate is the low-frequency approximation?

The commonly accepted range of the ENSO-like cli-

mate variability is 2–7 yr. For oceanic damping time

scale of approximately two years, this gives the range of

the expansion parameter j«j from approximately 0.2 to

0.6. The longer the period, the smaller this parameter is.

Since the late 1970s (e.g., Fedorov and Philander 2000,

2001), the dominant ENSO period has been 5 yr (j«j ’
0.25), which is reasonably small for applying the low-

frequency approximation. For decadal climate variations

and ocean response to steady wind forcing, « is O(0.1),

which makes the method even more accurate.

Moreover, the leading-order expansion term for ther-

mocline anomalies is even more accurate than one might

think just estimating the magnitude of j«j. The reason

is twofold: first, the first term of the expansion is O(1),

whereas the next-order term is already proportional to «2;

and second, higher-order corrections to the thermocline

depth (appendix A) affect the thermocline only at some

distance away from the equator (several Rossby radii)

and thus do not modify the dominant, large-scale pattern

of the ocean response to wind stress. A comparison of

our leading-order expression with the full solution of the

shallow-water equations indicates that the low-frequency

limit may work well even for periods of the forcing close

to one year.

Whereas the present paper considers only wind per-

turbations that are zonal and centered along the equa-

tor, a complimentary study (M. Parker and A. V.

Fedorov 2010, unpublished manuscript) extends the

low-frequency limit onto arbitrary wind forcing with

both zonal and meridional components. Our model of

ENSO in the low-frequency limit yields simple algebraic

constraints on the frequency and growth or decay rate of

ENSO-like oscillations. In particular, the results clearly

show that how the interplay between the curl of wind

stress anomalies and oceanic damping rates affect both

the periodicity and the growth (or decay) of the ENSO

mode. The importance of the meridional wind structure,

and hence the wind stress curl, and oceanic damping rates

for ENSO dynamics has been emphasized recently by

other authors as well (Capotondi et al. 2006; Clarke

et al. 2007; Brown and Fedorov 2010b).

With further simplifications, our model can be re-

duced to either a delayed or recharge oscillator. In the

latter case the recharge oscillator would explicitly in-

clude the effect of the wind stress curl. These new der-

ivations are more accurate mathematically than the

original derivations; they also highlight the limitations of

the traditional ENSO paradigms and explain why those

paradigms, while very useful conceptually, do not nec-

essarily produce sufficient quantitative agreement when

compared to comprehensive coupled models or obser-

vations (Mechoso et al. 2003). Thus, the proposed sim-

ple model of ENSO in the low-frequency limit gives a

quantitatively more rigorous alternative to the traditional

models of ENSO.

As part of calculations, we have derived a simple an-

alytical expression for the phase lag between SST vari-

ations in the eastern equatorial Pacific and variations

in the mean thermocline depth along the equator (the

equatorial warm water volume and ocean heat content

are useful proxies for this depth). This phase lag is an

essential element of the ocean recharge–discharge phys-

ics during the ENSO cycle. We show that the lag critically

depends on the frequency of the oscillation, the wind

stress curl and oceanic damping rates, and is not neces-

sarily equal to 908 as sometimes assumed. In fact, for an

oscillation with a 4-yr period and close to neutral stability,

the model predicts a phase difference of roughly 608 for

typical oceanic conditions.

Our results demonstrate that the low-frequency limit

is a useful approximation that can be applied in a broad

range of frequencies of the wind stress forcing—from

nearly annual to decadal (and for considering ocean re-

sponse to steady winds). The method also provides explicit

expressions for estimating interannual changes in the

mean depth of the equatorial thermocline (and hence the

equatorial warm water volume) and thermocline depth

variations in the eastern and western equatorial Pacific.

A good agreement between the observed variations in

WWV and those hindcast by our method gives another

justification for the low-frequency approximation.
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APPENDIX A

Higher-Order Corrections for h

We start from the two equations derived in the main

body of the paper for h and u:

h
x
� «y2h 5 (1� y›

y
)t � «(1� y›

y
)u and (A.1)

u 5�h
y
/y. (A.2)

Assuming that j«j is a small parameter, we expand h and

u in powers of «:

h 5 h(0) 1 h(2) 1 � � � and (A.3)

u 5 u(1) 1 u(3) 1 � � � , (A.4)

where the terms in Eqs. (A.3) and (A.4) are proportional

to powers of « as indicated by the superscripts. The

terms proportional to odd and even powers of « fall out

from the series for h and u, respectively, as long as the

solutions are symmetrical with respect to the equator.

Formally, as discussed in section 3, a constraint on

the basin size could be imposed such that jyj, Y, where

Y ; «21/2, to keep the second term on the left-hand-side

of Eq. (A.1) not larger than O(1). However, as we will

show next, the solutions for h decay exponentially for

large jyj as long as x 6¼ 0, so that this constraint can be

relaxed.

Using Eqs. (A.3) and (A.4) in Eqs. (A.1) and (A.2)

yields a set of recurrent equations for different terms of

the expansion as

h(2n)
x � «y2h(2n) 5 (1� y›

y
)t(2n) and (A.5)

u(2n11) 5�h(2n)
y /y, with (A.6)

t(n) 5
t for n 5 0

�«u(2n�1) for n 5 1, 2, 3 . . .

�
.

(A.7)

Similar to the expressions in the main body of the text,

their solutions are

h(2n) 5 e«y2(x�1)h
2n
�
ð1

x

e«y2(x�s)(1� y›
y
)t(2n) ds and

(A.8)

u(2n11) 5 2«(1� x)e«y2(x�1)h
2n
�
ð1

x

e«y2(x�s)[›
yy

1 2«(s� x)(1� y›
y
)]t(2n) ds with (A.9)

h
2n

5 p�1/2«1/2

ð1

0

ð‘

�‘

t(2n)e�«y2ss ds dy. (A.10)

When calculating these integrals, in the terms t(2n)(x, y),

variable x should be replaced with s. We have assumed

that t(2n)
yy # O(«). Note that both h and u decay expo-

nentially for large jyj, as long as x 6¼ 1, while u is

identically zero for x 5 1 (i.e., at the eastern bound-

ary). In principle, Eqs. (A.7)–(A.10) solve the problem

completely.

Calculating the first few terms in the expansion gives

h(0) 5 e«y2(x�1)h
o
�
ð1

x

e«y2(x�s)(1� y›
y
)t ds and (A.11)

u(1) 5 2«(1� x)e«y2(x�1)h
o

�
ð1

x

e«y2(x�s)[›
yy

1 2«(s� x)(1� y›
y
)]t ds with

(A.12)

h
o

5 p�1/2«1/2

ð1

0

ð‘

�‘

te�«y2ss ds dy. (A.13)

The next order terms are

h(2) 5 e«y2(x�1)h
2

1 «

ð1

x

e«y2(x�s)(1� y›
y
)u(1) ds and

(A.14)

u(3) 5 2«(1� x)e«y2(x�1)h
2

1 «

ð1

x

e«y2(x�s)[›
yy

1 2«(s� x)(1� y›
y
)]u(1) ds with (A.15)

h
2

5 p�1/2«3/2

ð1

0

ð‘

�‘

u(1)e�«y2ss ds dy. (A.16)

Assuming that

t 5 t(s)e�ay2

, (A.17)

we obtain

h
o

5

ð1

0

s

(s 1 a/«)1/2
t(s) ds, (A.18)
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h
2

5�1

3
«2h

o
1 2«2

ð1

0

ð1

s

(p� s)s

(p 1 a/«)1/2
t(p) dp ds

1 2«2

ð1

0

ð1

s

ps2

(p 1 a/«)3/2
t(p) dp ds, (A.19)

and so on.

Figure A1 shows the first three terms in the expan-

sion Eqs. (A.3) and (A.4) and the resultant h and u

obtained by adding these terms together. The higher-

order corrections are rather small, and for practical

purposes just one or two first terms of the expansion are

sufficient.

FIG. A1. The first three terms of the low-frequency expansion for (left) thermocline and (right) zonal velocity

anomalies and the resultant h and u for the oscillation period T 5 4 yr. Only the real parts of h and u are shown (both

variables, longitude and latitude are nondimensionalized). The spatial structure of the imposed wind stress as in

Fig. 2c. The nondimensional parameters are «m 5 0.1, to 5 1, a 5 0.12, xc 5 0.4, and n 5 25.
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APPENDIX B

Estimating the Integral I(â, t)

Here, we consider the properties and the asymptotes

of the integral I(â, t) used in the kernel of the integro-

differential operator in Eq. (4.12):

I(â, t) 5
d

dt
I

1
(ât) 5

d

dt

ð1

0

e�âtsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(1� s)

p ds. (B.1)

For large t

I(â, t) ;
d

dt

ð1

0

e�âtsffiffi
s
p ds ;

d

dt

ð‘

0

e�âtsffiffi
s
p ds

5 2
d

dt

ð‘

0

e�âts2

ds 5
d

dt

ffiffiffiffiffi
p

tâ

r
5�1

2

p

â

� �1/2

t�3/2.

(B.2)

For small t

I(â, t) 5
d

dt

ð1

0

1� âts 1 1/2(âts)2 � � � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(1� s)

p ds

5
d

dt
p 1� ât

2
1

3â2t2

16
� � � �

	 

’�p

â

2
� 3â2t

8

	 

,

(B.3)

where

â 5 a/x
c
. (B.4)

Figure B1 shows the behavior of I(â, t) evaluated

numerically.
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