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Abstract

The Newfoundland ridges are covered by large-scale sediment drift deposits that ac-
cumulated under the Deep Western Boundary Current during the Late Cretaceous 
and early Paleogene greenhouse. The area is famous because it is the resting place of 
RMS Titanic, which sank after colliding with an iceberg en route from Southampton, 
England, to New York City, USA, in April 1912. Integrated Ocean Drilling Program 
(IODP) Expedition 342 will drill a depth transect between ~2400 and 5000 m water 
depth into a sequence of rapidly accumulated sediment drifts of Paleogene age on J 
Anomaly Ridge and Southeast Newfoundland Ridge. Drilling this transect will allow 
us to study multiple extreme climate events at unprecedented temporal resolution 
from a high-latitude site during an interval of time when Earth was much warmer 
than today, featuring a genuinely green Greenland and estimated atmospheric carbon 
dioxide levels similar to those projected for the end of this century. The targeted sed-
imentary sequences accumulated directly under the flow path of the Deep Western 
Boundary Current. These sediments, therefore, will provide an archive of changes in 
chemistry, flow history, and depth structure of waters exiting the Nordic seas and Arc-
tic Ocean during the transition from an ice-free peak Cenozoic warm interval in the 
early Eocene to the onset of Arctic sea ice formation and the growth of major ice 
sheets on Antarctica. Our drill sites are located in a region that climate modeling sug-
gests should have a particularly high-amplitude climate response to orbital forcing, 
which, together with excellent age control from magnetostratigraphy seen in existing 
drill cores, should help extend the astronomical timescale through the Cenozoic.

Approximately two days of Expedition 342 ship time will be spent testing the Motion 
Decoupled Hydraulic Delivery System (MDHDS). The MDHDS is an IODP-funded en-
gineering development and will serve as a foundation for future penetrometer and 
other downhole tool deployments. The tests will take place at Ocean Drilling Program 
Site 1073 (Leg 174A), offshore New Jersey, by deploying both the SET-P and T2P pore 
pressure penetrometers.

Schedule for Expedition 342

Expedition 342 is based on Integrated Ocean Drilling Program (IODP) drilling 
Proposal 661-Full2 (available at iodp.tamu.edu/scienceops/expeditions/
newfoundland_sediment_drifts.html). Following ranking by the IODP Scientific 
Advisory Structure, the expedition was scheduled for the R/V JOIDES Resolution, 

http://iodp.tamu.edu/scienceops/expeditions/newfoundland_sediment_drifts.html
http://iodp.tamu.edu/scienceops/expeditions/newfoundland_sediment_drifts.html
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operating under contract with the U.S. Implementing Organization. At the time 
of publication of this Scientific Prospectus, the expedition is scheduled to start 
in St. George, Bermuda, on 18 June 2012 and to end in St. John’s, Newfoundland, 
on 17 August 2012. A total of 60 days will be available for the drilling, coring, 
downhole measurements, and tool testing described in this report (for the cur-
rent detailed schedule, see iodp.tamu.edu/scienceops/). Further details about 
the facilities aboard the JOIDES Resolution and the United States Implementing 
Organization (USIO) can be found at www.iodp-usio.org/. Supporting site survey 
data for Expedition 342 are archived at the IODP Site Survey Data Bank.

Introduction

On 15 April 1912, the RMS Titanic, en route westward from Southampton, England, 
to New York City, USA, hit an iceberg off the Grand Banks of Newfoundland and sank, 
killing more than 1500 people. The two halves of the wreck lie between the volcanic 
seamounts of the Southeast Newfoundland Ridge because there the southward-flow-
ing surface waters of the cold Labrador Sea carry icebergs to their intersection with 
the warm tongue of the Gulf Stream. Today the Titanic is bathed by the Deep Western 
Boundary Current because these new abyssal waters pass at depth under the Gulf 
Stream on their circuit throughout the deep basins of the world oceans (Fig. F1). IODP 
Expedition 342 is designed to study the nature of this deep current system near its 
northern sources during the balmy climates of the Paleogene (65.5 to ~21.8 Ma).

During the early Paleogene, global temperatures were considerably warmer than to-
day and supported forests rather than ice sheets in the high polar latitudes (Green-
wood et al., 2010). The early Paleogene greenhouse world represents a radiative 
forcing state that we are rapidly re-approaching. At current and projected rates of fos-
sil fuel consumption, atmospheric greenhouse gas concentrations are set to rise to 
Paleogene levels in the next 80 y (National Research Council, 2011). How did the cli-
mate and ecosystems of the Paleogene world work? What should we expect in the 
next century? Although the Eocene is not a perfect analogue to the near future (Hay-
wood et al., 2011), understanding Eocene climate dynamics will provide information 
on what to expect from a warmer planet.

The primary objectives of our program are to obtain a depth transect of drill cores be-
tween ~5 and 2 km water depth. Because the ocean is layered, with different water 
masses formed in various parts of the planet arranged above one another, our depth 

http://iodp.tamu.edu/scienceops/
http://www.iodp-usio.org/
http://ssdb.iodp.org/SSDBquery/queryResults.php?subQuery=&propArray%5B%5D=Exp342&latitudeNorth=&longitudeWest=&longitudeEast=&latitudeSouth=&sitenames=&expedition=&datatype=&dataObjectType=&format=&accesscontrol=&startDate=&endDate=
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transect of drill sites will permit a detailed reconstruction of the chemistry, circula-
tion, and history of Greenhouse Earth. Furthermore, because we will target sediment 
drifts that accumulate faster than typical deep-sea sediments, we should also be able 
to reconstruct the history of a warm Earth with unusual fidelity. These two things—
detailed assessment of the structure and circulation of the warm-world ocean and un-
usually detailed climate history—will help us test models of Earth’s climate and eco-
system evolution that have been difficult or impossible to resolve with typical deep-
sea or land-based records of the Eocene.

Our drilling target is J Anomaly Ridge and Southeast Newfoundland Ridge offshore 
Canada’s Grand Banks. The drill sites, not far from the Titanic’s resting place, are po-
sitioned to monitor the strength and chemistry of deepwater formation in the Atlan-
tic as well as outflows from the Arctic basins through Baffin Bay and the Norwegian 
seaway (Fig. F2). Today, both the northward-flowing Gulf Stream and the southward-
flowing Deep Western Boundary Current cross over the drilling area, leaving a record 
of their flow strength, chemistry, and biology in the sediment drifts beneath them 
(Fig. F1). The shape of the North Atlantic margin suggests that a similar current con-
figuration occurred in the past, with any deep waters formed in the North Atlantic 
constrained to flow over the Newfoundland ridges. Therefore, Expedition 342 sites 
will be particularly useful to monitor the overturning history of the North Atlantic 
Ocean.

The Newfoundland ridges are mantled with some of the oldest sediment drifts known 
in the deep sea and range in age from the Late Cretaceous to Paleogene. Pliocene–
Pleistocene drifts in the northeastern Atlantic commonly have sedimentation rates of 
4–20 cm/k.y. and therefore can be used to study rates of abrupt climate change (Chan-
nell et al., 2010). Previous drilling of drifts on Blake Nose (off the southeastern United 
States) revealed sedimentation rates in the middle Eocene of ~5–6 cm/k.y., far higher 
than the ~1 cm/k.y. rates typical of previous Paleogene-focused drilling targets (Norris
et al., 2001b). If, as expected, the Newfoundland sediment drifts also have high accu-
mulation rates, we will obtain records of warm-period climates and evolution with 
unusual fidelity, and these will be particularly useful for assessing rates of change in 
the Earth system during both transient episodes of extreme warming (analogous to 
the near future) and transitions form warm climates into the glaciated world.

Expedition 342 is focused on the Paleogene record on the Newfoundland ridges. Al-
though there is an extensive Cretaceous record of both drifts and fossil reefs in the 
seismic record, we do not have time to do justice to Cretaceous objectives without sac-
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rificing our studies of the Paleogene system. Furthermore, although we will likely ob-
tain a record from the majority of the Paleogene, our particular area of focus will be 
the middle Eocene to Oligocene interval where thick sediment drift deposits preserve 
unusually expanded records of the transition from the greenhouse world of the Eo-
cene climatic optimum to the glaciated world of the Oligocene. Therefore, our expe-
dition has four major objectives:

• First, we aim to reconstruct a detailed history of the carbonate saturation state of 
the North Atlantic through numerous episodes of abrupt global warming. An inter-
val of particular focus will be the middle Eocene to early Oligocene record, where 
we expect to find expanded records of hyperthermal events and the middle Eocene 
climatic optimum. This history of the carbonate system, coupled with detailed geo-
chemical studies, will allow us to test theories for the origin of “hyperthermals”—
abrupt periods of greenhouse gas–fueled warming known to punctuate the Paleo-
cene and Eocene (Galeotti et al., 2010; Quillévéré et al., 2008; Sexton et al., 2011). 
Natural experiments with global changes such as hyperthermals can enhance our 
understanding of the consequences of abrupt climate change for Earth’s ecosys-
tems, climate, and chemistry. This record will be enhanced by our efforts to obtain 
the first depth transect that captures the truly deep ocean as well as the intermedi-
ate depths captured in previous drilling programs (Norris, Kroon, Klaus, et al., 1998; 
Bralower, Premoli Silva, Malone, et al., 2002; Lyle, Wilson, Janecek, et al., 2002; Er-
bacher, Mosher, Malone, et al., 2004; Zachos, Kroon, Blum, et al., 2004; Pälike, 
Lyle, Nishi, Raffi, Gamage, Klaus, and the Expedition 320/321 Scientists, 2010; 
Zachos et al., 2005).

• Second, we aim to obtain a very detailed record of the flow history of the Deep 
Western Boundary Current issuing from the North Atlantic. Today, deepwater for-
mation draws warm water into the Nordic seas, keeping them warm. Our work will 
show how far back this pattern of overturning circulation extends and its influence 
on climates of the past greenhouse world.

• Third, we aim to obtain a detailed record of the Eocene–Oligocene transition (EOT; 
~33.7 Ma) and the onset of major glaciation following the warm climates of the Eo-
cene. Our drill cores through the EOT will not only provide a highly resolved record 
of the events leading up to and following the greenhouse-to-icehouse transition, 
but they are also well positioned to display how Greenland and the high northern 
latitudes responded to this event.

• Fourth, we aim to address major uncertainties in the development of the geologic 
timescale by obtaining records of the Eocene that can be used to link the astronom-
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ical timescale developed for the last ~40 m.y. to the “floating” timescale of the early 
Paleogene developed over a series of IODP and earlier drilling expeditions.

This drilling proposal completes the North Atlantic objectives laid out in a 1997 Ma-
rine Aspects of Earth System History (MESH) workshop on warm period dynamics and 
the Ocean Drilling Program (ODP) “Extreme Climates” program planning group 
(PPG) (see www.odplegacy.org/program_admin/sas/ppg.html). This proposal also 
addresses initiatives of the IODP Initial Science Plan in the areas of extreme climates 
and rapid climate change. Finally, our expedition takes up proposals of the recent Na-
tional Research Council report Understanding Earth’s Deep Past: Lessons for Our Climate 
Future (National Research Council, 2011), which advocates focused efforts to resolve 
the timescale and use mechanisms of past hyperthermal events as possible analogues 
for future global change.

Background

Structure and stratigraphy of J Anomaly Ridge and Southeast 
Newfoundland Ridge

The J Anomaly and Southeast Newfoundland Ridges (Fig. F1) formed along the axis 
of the mid-Cretaceous Mid-Atlantic Ridge in a fashion analogous to the modern Reyk-
janes Ridge and Iceland (Tucholke and Ludwig, 1982). The tops of both ridges were 
above sea level in the Aptian and subsequently subsided to abyssal depths by the Late 
Cretaceous (Tucholke and Vogt, 1979). Aptian rudist platform carbonates were drilled 
at Deep Sea Drilling Project (DSDP) Site 384 (now at 3900 m) (Tucholke, Vogt, et al., 
1979), and buried reeflike seismic features are present on the flank of J Anomaly and 
Southeast Newfoundland Ridges. Pelagic carbonates began to blanket the tops of the 
ridges by ~75–80 Ma (Tucholke, Vogt, et al., 1979) and accumulated to a total thick-
ness of nearly 1.5 km by the late Neogene.

There are five principal sedimentary sequences on the Newfoundland ridges, 
bounded by reflection Horizons A–D (Fig. F3). The uppermost sequence of Pleistocene 
age displays well-defined internal reflections and mantles the northern side of South-
east Newfoundland Ridge. Nearly all piston cores collected from the Newfoundland 
ridges (Figs. F4, F5) are of Pleistocene age, including “long piston” Core MD95-2027. 
The presence of thick Pleistocene sections on the north side of the Newfoundland 
ridges may reflect the accumulation of iceberg-transported sediment derived from the 
Hudson Bay and Greenland. To the south, on Southeast Newfoundland and J Anom-

http://www.odplegacy.org/program_admin/sas/ppg.html
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aly Ridges, the Pleistocene cover is nearly absent and is represented by only a thin (3–
5 m thick) layer of Pleistocene foraminifer sand mixed with glacially transported sed-
iments. This thin Pleistocene cover over our target sediments likely reflects the barrier 
imposed by the warm Gulf Stream to icebergs drifting southward along the New-
foundland margin. Pleistocene glacial sand protects the Paleogene sediment drifts 
from extensive erosion and preserves them in unconsolidated condition, as seen in 
piston Cores KNR179-1-13PC and KNR179-1-15PC from Southeast Newfoundland 
Ridge.

The second sequence, bounded by reflection Horizons A and B, displays poorly de-
fined, discontinuous reflections (Fig. F3) and is probably of Oligocene and Neogene 
age on the basis of its similar acoustic character to other drifts in the North Atlantic 
(Davies et al., 2001). In some areas, the discontinuous reflections can be resolved as 
fields of sediment waves, suggesting that much of the unit was deposited under 
strong, directional bottom currents. Large parts of the southern flank of Southeast 
Newfoundland Ridge and the northern end of J Anomaly Ridge are covered by this 
sequence, which has thicknesses of >700 m. We have no cores that firmly date this 
sequence because of failure of the hydraulic winch during our site survey cruise.

The third sequence, bounded by reflection Horizons B and C, is seismically transpar-
ent and has a poorly defined contact with the overlying sequence of discontinuous 
reflections (Fig. F3). The absence of a strong reflector between these seismic units sug-
gests that seismic Unit 3 has a conformable relationship with overlying Unit 2. Piston 
cores and seismic ties to DSDP Site 384 show that this sequence is of early Eocene age 
(nannofossil Zones NP14 and NP15) and younger. Its great thickness (up to 800 m; 
Fig. F6) suggests an unusually expanded sequence of lower and middle Eocene sedi-
ments on J Anomaly Ridge. Furthermore, the gradational relationship of this se-
quence into overlying strata may mean that there is a complete EOT in the drilling 
transect on Southeast Newfoundland Ridge (Fig. F7). Piston core samples show the 
main lithology in the lower to middle Eocene section is a clay-rich, white to yellow 
nannofossil ooze. The absence of strong internal reflections suggests that the se-
quence is not punctuated by major hiatuses but was deposited steadily like many 
modern Pliocene–Pleistocene drifts in the North Atlantic. This sequence thins below 
~4.5 km present water depth (~4 km in the Eocene), reflecting reduced sedimentation 
rates in the lysocline and below the calcite compensation depth (CCD). Thinning of 
the Eocene package at ~4 km paleodepth is broadly consistent with the position of 
the Eocene CCD estimated from prior North Atlantic drilling (Fig. F8) (Tucholke and 
Vogt, 1979).
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The fourth sequence, bounded by reflection Horizons C and D (Fig. F3) of Cretaceous/
Paleogene age, is >500 m thick and crops out on the base of J Anomaly Ridge (e.g., 
Site JA-1; Fig. F6) and in numerous places on the crest of Southeast Newfoundland 
Ridge, including outcrops in moats around several seamounts. These strata also dis-
play driftlike morphology, albeit of smaller size than the Eocene drifts, and mostly 
well-defined parallel reflections like the Pleistocene cover section. This sequence was 
drilled at DSDP Site 384 (Fig. F9), which recovered Campanian to lowermost Eocene 
beige calcareous ooze and soft chalk with excellent magnetic stratigraphy, well-pre-
served foraminifers and calcareous nannofossils, as well as radiolarians in the late Pa-
leocene (Berggren et al., 2000). The unconformities at the Cretaceous/Paleogene 
boundary and the Paleocene/Eocene boundary at DSDP Site 384 are to be expected 
because the site is located in a condensed section on top of a ridge. All recent Paleo-
gene/Cretaceous drilling expeditions (ODP Legs 171B, 198, 199, 207, and 208 [Norris, 
Kroon, Klaus, et al., 1998; Bralower, Premoli Silva, Malone, et al., 2002; Lyle, Wilson, 
Janecek, et al., 2002; Erbacher, Mosher, Malone, et al., 2004; Zachos, Kroon, Blum, et 
al., 2004]) recovered one or more of these boundary sections despite their absence in 
older DSDP holes upon which the new drilling legs were based.

The fifth sequence, underlying reflection Horizon D, displays dense but parallel re-
flections (Fig. F3) and crops out on the northwest slope of J Anomaly Ridge, the crest 
and flanks of Southeast Newfoundland Ridge, and apparently in the pelagic caps of 
several seamounts. It consists of several discrete seismic sequences separated by pos-
sible unconformities that are indicated by truncations of reflectors. The entire seismic 
package is likely of mid-Cretaceous to early Late Cretaceous age on the basis of seismic 
ties to DSDP Site 384. Some of these sequences lap up against seismically identified 
buried reefs and are as thick as 450 m. The reefs and surrounding sediments are prob-
ably Barremian/Albian in age on the basis of results from DSDP Site 384 (Tucholke 
and Vogt, 1979) and Sr isotope stratigraphy (P. Wilson, unpubl. data), in keeping with 
the estimated ages of buried reefs off Florida (Hutchinson et al., 1995; Norris et al., 
2001a). Representative summaries of our interpretations of the sequence of sedimen-
tary packages on J Anomaly and Southeast Newfoundland Ridges are given in Figures 
F10 and F11, respectively.

The modern Deep Western Boundary Current

The area east of the Grand Banks is a region critical to understanding the history of 
deepwater circulation in the North Atlantic because it is the gateway between bottom 
water sources in the Norwegian-Greenland and Labrador Seas and the main basins of 
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the North Atlantic to the south. Denmark Straight overflow water is the main deep-
water mass, centered at ~3500 m and overlain by Labrador Sea water at ~1500 m (Pick-
art et al., 1999). Southeast Newfoundland Ridge is a major barrier to deep southward 
flow, and it diverts the Deep Western Boundary Current offshore into the path of the 
northeasterly flow of the Gulf Stream. The deepest part of the bottom current follows 
submarine contours around the southeastern end of the ridge and continues west 
around J Anomaly Ridge and along the Nova Scotian continental rise (Fig. F1). Shal-
lower portions of the current follow contours around the crest of Southeast New-
foundland Ridge and also interact with seamounts on the ridge, forming local moats 
and drifts.

The Gulf Stream actually reaches the seafloor over Southeast Newfoundland Ridge 
and may contribute to bottom scouring. East of the ridge, Meinen and Watts (2000) 
found that the mean North Atlantic Current clearly extends to the bottom. Their 
measured bottom currents are strong enough to suspend sediments but probably not 
strong enough to cause extensive erosion. Still, we must bear in mind the possibility 
that erosion on J Anomaly and Southeast Newfoundland Ridges is related to a south-
ward-flowing deep boundary current and/or a northward-flowing surface current that 
regionally extends to the bottom.

History of the Deep Western Boundary Current

Something akin to modern North Atlantic Deep Water appears not to have been pro-
duced until the late Miocene or early Pliocene, when a combination of tectonic sub-
sidence of the Greenland-Scotland Ridge and Northern Hemisphere refrigeration 
began to form cold, dense overflow waters in the Nordic seas and the Labrador Sea 
(Oppo et al., 1995; Wright and Miller, 1993; Wright et al., 1992). However, northern-
component deep waters clearly formed in the North Atlantic throughout the Neogene 
and Oligocene, judging from geochemical differences between Atlantic and Indo-Pa-
cific waters (Wright et al., 1992). Intensification of deepwater formation in the North 
Atlantic is proposed to account for acceleration of the Deep Western Boundary Cur-
rent during the Oligocene, leading to widespread erosion along continental margins 
and formation of the seismic reflection, Horizon Au in the western North Atlantic; 
subsequent current-controlled sedimentation formed major sediment drifts through-
out the North Atlantic (Arthur et al., 1989; Miller and Fairbanks, 1985; Miller et al., 
1987; Tucholke and Mountain, 1986; Tucholke, 1979; Tucholke and Vogt, 1979).
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Direct evidence for significant flow in a deep boundary current before the Oligocene 
is sparse (Davies et al., 2001). Tucholke and Mountain (1986) suggested that the Eirik 
and Gloria Drifts south of Greenland may have begun to grow in the middle Eocene, 
based on interpreted ages of deep reflections in the drifts. The presence of onlapping 
reflectors and depositional structures on Blake Nose along the mid-Atlantic margin 
suggest erosion by an intermediate water mass centered above 2000 m water depth in 
the early Eocene (Katz et al., 1999; Norris et al., 2001a, 2001b). The seismic record 
from Blake Nose also shows evidence of condensed sections and slumps on the tip of 
Blake Nose (~2600 m) that could indicate deeper erosional flow along the Blake Es-
carpment in the early Eocene (Norris, Kroon, Klaus, et al., 1998). Erosion on Blake 
Nose may have been caused by shallow parts of the Deep Western Boundary Current 
rather than by the northward-flowing Gulf Stream. The area of erosion is more than 
100 km east of the main flow of the Gulf Stream, which is constrained by the location 
of the Florida Straight and Suwanee Channel. In the deep basin, Mountain and Miller 
(1992) presented seismic evidence for late Paleocene bottom currents over the Ber-
muda Rise that could have a source analogous to Antarctic Bottom Water. Although 
limited, all of these data suggest that both a southern-source water mass and a north-
ern-source water mass may have been present in the deep North Atlantic and circu-
lated strongly enough to control seafloor deposition and erosion during the relatively 
warm climates of the early Paleogene. This eventuality raises the possibility that our 
drilling operations can expand upon some of the extraordinary paleoclimate results 
yielded during IODP coring in the Arctic (e.g., Brinkhuis et al., 2006; Moran et al., 
2006; Pagani et al., 2006b; Sluijs et al., 2006).

Newfoundland sediment drifts

One of the main advantages of drilling the Newfoundland sediment drift complex is 
the near-absence of Neogene sedimentary cover. Most areas were swept by sufficiently 
strong currents during the later Cenozoic to prevent extensive deposition of younger 
strata on the southern side of the ridges or in patches around the seamounts. Al-
though we do not have firm dates on when these strong currents were initiated, they 
are probably a post-Oligocene feature (on the basis of sedimentation rate changes at 
ODP Site 1267 in the Newfoundland Basin) and may reflect the full development of 
North Atlantic Deep Water, possibly in combination with a strengthened Gulf Stream. 
Before this time, the remarkable thickness, absence of internal reflections, and drift 
morphology suggest that the Paleogene section is likely to be hugely expanded, with 
sedimentation rates much higher than the 1–2 cm/k.y. typically encountered in the 
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deep sea (Figs. F6, F7). A similar transition from drift deposition to nondeposition was 
encountered on Blake Plateau off the Florida-South Carolina margin during ODP Leg 
171B (Norris, Kroon, Klaus, et al., 1998) in the latest Eocene. On Blake Nose, the Eo-
cene and older sections were unusually expanded, with deposition rates as high as 6 
cm/k.y. throughout the Eocene (Norris et al., 2001a, 2001b). We view the Leg 171B 
results as a favorable prognosis for the outcome of drilling the Newfoundland ridges.

The primary drilling targets for Expedition 342 are in plastered drifts that exist in 
three places: (1) the southern toe and eastern flank of J Anomaly Ridge, (2) the south-
ern flank of Southeast Newfoundland Ridge, and (3) the north-facing slopes of sea-
mounts on Southeast Newfoundland Ridge. In addition, we target the pelagic cap of 
one of the seamounts to obtain the shallow end-member of the depth transect.

Drift sedimentation clearly has a complex history on the Newfoundland ridges, with 
an initial phase of drift formation on the eastern flank of J Anomaly Ridge in the Late 
Cretaceous (probably starting in the Campanian or early Maastrichtian, judging from 
DSDP Site 384 drilling results [Berggren et al., 2000; Tucholke and Ludwig, 1982]) and 
continuing through most or all of the Paleocene. DSDP Site 384 was spot cored in a 
highly condensed section, and the Paleocene/Eocene boundary was not obtained. 
However, acoustic character does change at some point in the late Paleocene or early 
to middle Eocene with the creation of an acoustically transparent layer (seismic Unit 
3). This transparent seismic unit is our primary drilling target because the absence of 
internal reflectors suggests that it is a conformable sequence with a good likelihood 
of being correlative across the depth transect.

Drift morphology suggests that the primary drift deposits formed mostly under a 
southward-flowing bottom current in the Eocene. This current formed plastered drifts 
on the north faces of seamounts on Southeast Newfoundland Ridge, as well as a long 
episodically growing and accreting ridge system between J Anomaly Ridge and South-
east Newfoundland Ridge. The southeastern flank of Southeast Newfoundland Ridge 
has a very thick seismically transparent drift (part of seismic Unit 3) that is overlain 
by a younger drift deposit that displays complex internal reflectors suggestive of sed-
iment waves (seismic Unit 2). We provisionally assign the transition between these 
drift packages to the EOT.

The considerable thickness of the middle Eocene to ?upper Eocene seismically trans-
parent interval (seismic Unit 3) means that traditional methods of coring Paleogene 
targets will have to give way to more focused drilling objectives. Most previous Paleo-
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gene and Cretaceous drilling was designed to obtain records spanning tens of millions 
of years. In contrast, previous drilling legs that targeted Pleistocene drifts typically 
cored the upper parts of the sediment packages in order to obtain highly expanded 
records of the late Pleistocene. Our goal will be to follow the “Pleistocene strategy” in 
which we will core expanded drift records at the expense of long time series.

Scientific objectives

Expedition 342 is focused on Paleogene records on the Newfoundland ridges. Al-
though there is an extensive Cretaceous record of both drifts and fossil reefs evident 
in the seismic record, we do not have time to do justice to Cretaceous objectives with-
out sacrificing our studies of the Paleogene system. Furthermore, although we are 
likely to obtain a record of the majority of the Paleogene during the expedition, a par-
ticular interval of focus is the middle Eocene to Oligocene, where there are thick sed-
iment drift deposits that should preserve unusually expanded records of the 
transition from the greenhouse world of the Eocene climatic optimum to the glaci-
ated world of the Oligocene. Drilling the Newfoundland sediment drifts will allow us 
to address key problems in paleoceanography, paleoclimate, and biotic evolution.

1. Recover data on the history of the Paleogene carbonate compensation depth and forcing factors for 
Paleogene hyperthermals.

One of the primary objectives of Expedition 342 is to provide data on the history and 
dynamics of the Paleogene carbon cycle. A particular goal is to use the carbon isotope 
data sets in combination with depth reconstructions of the carbonate lysocline to 
provide constraints for carbon cycle models. An extremely successful result of ODP 
Leg 208 (Zachos, Kroon, Blum, et al., 2004) was the acquisition of a ~2000 m depth 
transect that permitted estimation of the magnitude of CCD fluctuations in the Paleo-
gene, particularly the Paleocene/Eocene Thermal Maximum (PETM) (Zachos et al., 
2005). This depth transect showed that the CCD excursion associated with the PETM 
was >2000 m and suggested that the amount of CO2 added to the biosphere during 
the PETM must have been much greater than previously documented (Panchuk et al., 
2008). In turn, these data have been interpreted to suggest that the source of green-
house gases could not have been primarily gas hydrates because the combined mag-
nitude of the temperature excursion, the CCD fluctuation, and the size of the δ13C 
anomaly all suggest a carbon source more similar to marine organic carbon than bac-
terial methane (Panchuk et al., 2008). This example emphasizes how important it is 
to capture the magnitude of these carbonate preservation excursions because they 
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provide a direct estimate of the change in ocean undersaturation and hence the tran-
sient change in CO2 storage during extreme climate events. Further, when combined 
with δ13C data sets, the size of the CCD excursion can be used to study the source of 
isotopically light carbon transferred during such events and, ultimately, climate sen-
sitivity to CO2 forcing (e.g., Pagani et al., 2006a; Goodwin et al., 2009; Dunkley Jones 
et al., 2010).

Understanding the spatial and depth dimensions of the CCD change is clearly key to 
modeling the likely sources and amounts of carbon added to the biosphere during the 
PETM, but our current observational data do not yet provide a clear picture of either 
variable. If the methane hydrate hypothesis is untenable for the PETM and other hy-
perthermals, then it becomes even more important to identify a viable alternative—
a task that would be made much easier if we had a clear idea of the total amount of 
CO2 put into the ocean and atmosphere during the PETM and other Paleogene hyper-
thermal events. A well-resolved depth transect that could be used to identify the full 
depth range of the CCD excursion is critical to resolving the amount and type of car-
bon introduced into the biosphere during Paleogene hyperthermals. Recent evidence 
that the PETM and Paleogene global warming events may be orbitally forced or at 
least conditioned (Lourens et al., 2005; Galeotti et al., 2010; Sexton et al., 2011) im-
plies that the source of carbon was not an impact or one-time volcanic eruption (Kent 
et al., 2003; Svensen et al., 2004). Thus, long astronomically calibrated records of 
CCD changes through the warm Eocene may be critical to unraveling the origins of 
the PETM and other Paleogene events (e.g., the middle Eocene climatic optimum, a 
prominent reversal in the long-term global cooling trend from peak Cenozoic 
warmth in the early Eocene) (Bohaty et al., 2009; Bilj et al., 2010).

In addition to reconstructing the sources and fate of carbon that produces extreme 
climate events, we also need to know the rate and full magnitude of these events and 
the response of marine biota. In most deep-sea records, slow sedimentation rates 
mean that the full magnitude of the events may have been bioturbated or dissolved 
away (Zeebe and Zachos, 2007). As has long been capitalized on by the Pleistocene 
paleoclimate community, the first solution to the problem of resolving transient 
events is to target sites where sedimentation rates are higher than the ocean average. 
Expedition 342 is aimed first and foremost at obtaining highly expanded records suit-
able for studies of Paleogene climate by targeting drift sediments of hypothesized Oli-
gocene–middle Eocene age. The depth transect approach and acquisition of expanded 
carbonate-rich sections near the limits of their northern extent will allow us to study 
faunal and floral processes such as population turnover and latitudinal and strati-
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graphic range expansion during intervals of ocean acidification and global warming 
(e.g., Gibbs et al., 2006; Edgar et al., 2010).

The record on the Newfoundland ridges should allow a companion study to Walvis 
Ridge drilling (Leg 208) to be conducted under the flow path of northern-source deep 
waters. We have not previously obtained a good record of the history of the carbonate 
chemistry of the Deep Western Boundary Current because the Leg 208 transect on 
Walvis Ridge is likely influenced mainly by southern source waters by virtue of its lo-
cation on the eastern side of the South Atlantic Basin. Furthermore, we can see in the 
Newfoundland seismic data that the toe of J Anomaly Ridge (at ~5 km depth) lies 
close to the average depth of the CCD because the drift package thins markedly at this 
point. Therefore, proposed drilling on J Anomaly Ridge, combined with the shallower 
sites on Southeast Newfoundland Ridge, should position us to recover a depth 
transect spanning ~4 km. It is of course possible that the amplitude of CCD shift dur-
ing the most extreme Paleogene transient events could still exceed our transect, but 
we are better placed to obtain a record of the full magnitude of CCD excursions than 
previous studies. Our proposed transect is particularly suited to resolving fluctuations 
in the carbonate chemistry of the truly deep ocean—a big change from most Paleo-
gene sites, which rarely have been targeted at paleodepths below ~2500 m.

The carbonate content of deep-sea sediments is a sensitive measure of the productiv-
ity, weathering, and fluxes of carbon within the biosphere. The CCD reflects changes 
in carbon erosion, deposition, and silicate weathering and in association with δ13C of 
marine and terrestrial proxies (benthic foraminifers, terrestrial biomarkers, and plank-
tonic-benthic gradients) can be used to gauge changes in the size and distribution of 
carbon reservoirs (Higgins and Schrag, 2006; Leon-Rodriguez and Dickens, 2010). 
However, although the general form of CCD changes is moderately well known for 
the various ocean basins (Peterson et al., 1992), we have little information on the 
rates and amplitude of change in the CCD on short timescales, which are so impor-
tant to understanding transient episodes such as the various extinction events, hyper-
thermals, and glacial events of the Paleogene.

Although the PETM marks a pronounced global warming and ocean acidification 
event, the obverse is true of the EOT, where the Pacific Ocean appears to undergo pro-
nounced de-acidification associated with the onset of major Cenozoic polar ice sheets 
(Fig. F12) (Coxall et al., 2005; Merico et al., 2008). Ultimately, ice sheet initiation ap-
pears to have been triggered by an orbitally forced interval of cool summers, but some 
other factor, probably long-term drawdown in atmospheric carbon dioxide levels, 
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must have conditioned the climate system (DeConto and Pollard, 2003; Coxall et al., 
2005; DeConto et al., 2008). Records from the tropical Pacific (ODP Leg 199 [Lyle, 
Wilson, Janecek, et al., 2002]) demonstrate that the CCD deepened permanently (by 
~1 km) in the earliest Oligocene—much faster than previously documented—in two 
40 k.y. “jumps” and in lockstep with the stepwise onset of Antarctic glaciation, as re-
corded in benthic foraminifer δ18O (Coxall and Wilson, 2011; Coxall et al., 2005). 
However, it is unclear to what extent this lockstep behavior represents the global pic-
ture because sufficiently complete EOT depth transects from other ocean basins and 
latitudes are not available. Comparatively low-resolution records across a highly con-
densed and reworked Eocene/Oligocene boundary from Walvis Ridge (Leg 208 
[Zachos, Kroon, Blum, et al., 2004]) have been interpreted in terms of a much smaller 
(~200 m) and nonpermanent CCD deepening. Thus, it is not clear whether CCD be-
havior in the equatorial Pacific represents the global picture, driven by wholesale 
change in deep-sea CO3 ion concentration, or is to some extent a regional signal 
driven by changes in export production with important implications for our under-
standing of contemporaneous carbon cycling (Dunkley Jones et al., 2008; Coxall and 
Wilson, 2011).

Additional large, but temporary, CCD deepening events are also documented in the 
middle Eocene of the equatorial Pacific (Lyle et al., 2005). These calcium carbonate 
accumulation events have been interpreted (by analogy with the EOT and on the ba-
sis of discontinuous stable isotope records) to be a lithologic expression of large-scale 
bipolar continental glaciation (Tripati et al., 2005, 2007), but this interpretation is 
contested (Edgar et al., 2007; Eldrett et al., 2007, 2009; DeConto et al., 2008). The 
middle Eocene to lower Oligocene depth transect on the Newfoundland ridges pres-
ents an ideal opportunity to generate high-resolution records of changes in mass ac-
cumulation of CaCO3 needed to test the hypothesis that the CCD changes recently 
documented in the equatorial Pacific are globally representative and intimately asso-
ciated with the onset of continental glaciation. Together with the floral, faunal, and 
geochemical proxy records such as compound-specific δ13Corg and δ11B in foraminif-
eral calcite (e.g., Pagani et al., 2005; Pearson et al., 2009) that could be generated, it 
would be possible to test for biotic turnover and pCO2 drawdown across these inter-
vals, with important implications for our understanding of the causes and conse-
quences of Cenozoic climate deterioration.
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2. Determine the flow history of the Atlantic Deep Western Boundary Current.

Deep ocean circulation is critical to defining the global climatic regime and its stabil-
ity for two reasons. First, the sinking of surface waters distributes thermal energy 
around the globe. Second, the chemistry and nutrient composition of the dominant 
deepwater masses influence the partitioning of CO2 between the deep ocean and the 
atmosphere. The pattern, strength, and stability of thermohaline circulation arise 
from a combination of wind forcing (Toggweiler and Samuels, 1995) and thermal or 
salinity density contrasts.

Numerous models suggest that thermohaline circulation can exist in multiple equi-
librium states (e.g., Marotzke and Willebrand, 1991), with the potential for cata-
strophic disruption or collapse. For example, in the recent past the warmth and 
stability of interglacial climates is notably distinct from the rapid and abrupt cycles 
of warming and cooling that pepper the cold of glacial periods (e.g., Dansgaard et al., 
1993). It has been proposed that enhanced climate instability during cold periods 
may originate from salinity feedbacks, which set up multiple thermohaline modes 
(Keeling and Stephens, 2001; Rahmstorf, 1995; Stommel and Arons, 1960), or from 
instabilities that lead to periodic purges and the collapse of large ice sheets (Alley and 
Clark, 1999). Analogues to Pleistocene ice sheet–driven cycles could exist in Oligo-
cene climate records where geochemical studies suggest that both poles may have 
been glaciated, although other evidence suggests that only Antarctica supported ma-
jor ice sheets (DeConto et al., 2008; Edgar et al., 2007). Salinity-driven feedbacks are 
a potential source of rapid climate shifts in Eocene and older records before the large-
scale development of polar ice caps.

The proposed drilling transect lies directly under the flow path of the Atlantic Deep 
Western Boundary Current and therefore is ideally placed to monitor the chemistry 
and temperature of waters exiting the Nordic basins in the Paleogene. Therefore, the 
J Anomaly and Southeast Newfoundland Ridge sites are perfectly placed to act as end-
members for studying the contribution of northern source waters to the rest of the 
global ocean. We already have a South Atlantic/Southern Ocean end-member site 
(ODP Site 690, Weddell Sea) and Pacific end-member sites (Shatsky Rise, ODP Leg 
198), but we have nothing equivalent in the North Atlantic except for the subtropical 
Blake Nose (ODP Leg 171B) sites, many of which are located in water depths that are 
too shallow to truly record Deep Western Boundary Current properties.



Expedition 342 Scientific Prospectus

18

Why do we need end-members? If all we had were equatorial sites (far from the high-
latitude sites of deepwater formation) we could still determine whether Atlantic wa-
ters were being exported into the Pacific and vice versa, but we would not know where 
those waters originated. Barring the unexpected revival of models of warm saline deep 
water (Brass et al., 1982; Friedrich et al., 2008), it seems most likely that deep waters 
dominantly form at high latitudes (Bice and Marotzke, 2002; Bice et al., 1997), as is 
the case today and as is predicted in ocean circulation models for the Paleogene. 
Hence, in order to offer any concrete observational data to test ocean modeling for 
past warm climates, we must know where deep waters are sourced and how deepwater 
production varies during different climate states. Drilling Newfoundland Ridge sedi-
ment drifts offers a first-rate opportunity to obtain a true North Atlantic end-member 
for these studies. The large depth range covered by the proposed depth transect also 
will allow studies of the full range of ocean properties from the abyss to thermocline 
waters, really for the first time anywhere in the Paleogene.

In order to capture such nuances and rapid shifts in circulation patterns, it is critical 
to obtain records that allow us to reconstruct climate at suborbital temporal resolu-
tion. The Newfoundland sediment drifts offer an unprecedented opportunity to 
achieve this goal from sites close to the source of northern overflow waters in the 
Paleogene and to resolve the changes in circulation that accompany various Paleo-
gene extreme climate events.

A case in point is the inferred reversal in deepwater overturning during the PETM (Nu-
ñes and Norris, 2006; Tripati and Elderfield, 2005). A compilation of δ13C data from 
benthic foraminifers suggests that the “aging-gradient” in δ13C between Southern 
Ocean and Northern Hemisphere sites abruptly reverses during this interval of global 
warming (Fig. F13) (Nuñes and Norris, 2006). Southern Ocean overturning in the late 
Paleocene is interpreted to give way to northern overturning during the PETM and 
then gradually revert to Southern Ocean deepwater formation over the next ~100–
150 k.y. An alternative explanation is that the reconstructed gradient reversal is a stra-
tigraphic artifact created by the effects of dissolution on sediment accumulation in 
northern Atlantic sites (Zeebe and Zachos, 2007). A reversal in deep ocean circulation 
is seen in global climate model experiments of the PETM (e.g., Bice and Marotzke, 
2001) and may have occurred during other Paleogene climate events. Drilling on the 
Newfoundland ridges can be used to look for such reversals in deepwater formation 
during a host of extreme climate events using three techniques. First, we can use 
depth transects to produce highly resolved records of the vertical structure of deep 
waters at critical sites such as the Newfoundland Ridges. Second, we can examine geo-
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graphic gradients in benthic foraminifer geochemistry (e.g., δ13C) using the New-
foundland sites as a northern end-member for comparison with sites elsewhere in the 
world. Third, we can use the history of drift formation itself to qualitatively monitor 
the strength of the Deep Western Boundary Current and estimate the rate of forma-
tion of deep waters in the North Atlantic.

Depth transects have been shown to produce highly resolved records of changes in 
the source of deep waters in the Pleistocene (e.g., ODP Leg 154 [Curry, Shackleton, 
Richter, et al., 1995]) and the Paleogene (Legs 198, 207, and 208). For example, the 
hypothesized change in deepwater circulation during the PETM may have similarities 
to changes in deepwater formation during Pleistocene interstadials, in which out-
flows from the Nordic seas shift from deepwater formation to intermediate water for-
mation as North Atlantic overturning waxes and wanes. In the Pleistocene, reduced 
North Atlantic overturning is associated with the intrusion of Antarctic Bottom Water 
well into the northern North Atlantic beneath Glacial North Atlantic Intermediate 
Water (Oppo and Lehman, 1993). We can look for similar changes in deepwater 
source areas by geochemical analysis of benthic foraminiferal calcite along depth 
transects. Appropriately well-preserved material can also be used to generate proxy re-
cords for the total CO32– content of the deep and intermediate waters using plank-
tonic foraminifer weight and percent fragmentation.

Our deepest sites lie within the carbonate lysocline in the Paleogene. None of our sites 
are strictly below the depth of carbonate accumulation, but the deepest site may have 
very little carbonate given the condensed nature of the transparent (Eocene) horizon. 
Foraminifer preservation will clearly suffer in sediments that have been subjected to 
extensive calcite dissolution and may well preclude foraminifer-based geochemical 
studies, particularly in planktonic foraminifers. However, if the sites can be correlated 
(by physical property records) to well-dated upslope sites (as was done during ODP 
Leg 154), we can use the deepwater site to pin the depth of the CCD and therefore 
evaluate the full magnitude of CCD variations throughout the Paleogene. The deep-
water sites should also preserve a record of more refractory substrates such as fish 
teeth that can be used in Nd isotope studies of deep ocean flow paths (e.g., Via and 
Thomas 2006; Scher et al., 2011; Thomas et al., 2003).

An additional approach for identifying patterns of deepwater formation relies on dat-
ing drift sedimentary packages and analyzing their thicknesses and distributions in 
seismic profiles. The dates we currently have for the sediment drifts on the New-
foundland ridges strongly suggest that major drift formation began in the early Eo-
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cene with the deposition of thick acoustically transparent sequences and then 
changed character in the early Oligocene to a more mud-wave dominated system. 
Verification of early Eocene drift formation would require a major reassessment of our 
inferences of the relationship between the rates of deepwater formation and polar gla-
ciation because it has been generally held that drift formation began at the major on-
set of Antarctic glaciation in the earliest Oligocene (Davies et al., 2001).

Studies of deposition rates, sediment sources, and grain size would do much to eval-
uate the origins and current regimes under which these drifts formed, as well as pro-
vide precise dates for changes in drift formation that could be compared with 
geochemical evidence for changes in deepwater sources. To achieve these primary 
goals we propose to combine proxies from sedimentology, clay mineralogy, and or-
ganic/isotope geochemistry to be applied specifically to the current-sensitive silt frac-
tion. Continuous granulometric records will provide direct information on the 
variability of current strength and thus the history of the Deep Western Boundary 
Current. Clay mineral assemblages are excellent tracers for provenance studies, and 
organic matter composition will support the identification of source areas of fine-
grained material and the presence of allochthonous organic matter from higher 
northern latitudes. As a working hypothesis we consider that periods of enhanced 
strength of the Deep Western Boundary Current should have resulted in stronger ad-
vection of a higher latitude component and generally coarser grain sizes in the silt 
fraction, whereas periods of reduced current activity should primarily record more lo-
cal sediment sources and surface-ocean signatures as well as finer grained sediments.

3. Obtain high-resolution records of the onset and development of Cenozoic glaciation.

The canonical view of the onset of Cenozoic glaciation is that it took place in two 
main steps: (east) Antarctic ice sheets were established around the time of the EOT 
(~33 Ma), whereas Northern Hemisphere glaciation was not triggered until ~3–7 Ma 
(e.g., Miller et al., 1987; Zachos et al., 2001). However, on the basis of sediments re-
covered in the last phase of ODP and the initial phase of IODP, it has been suggested 
that this view of Earth’s climate history may need revision. Dropstones have been re-
ported from the Arctic (IODP Expedition 303) in sediments of ~45 Ma age (Backmann 
et al., 2005). Discontinuous δ18O records in bulk and benthic foraminiferal calcite 
from the equatorial Pacific (ODP Leg 199) have been interpreted in terms of extensive 
ice sheet development in both hemispheres, together with a huge (>150 m) eustatic 
sea level fall around 42 Ma (Tripati et al., 2005, 2007). This interpretation is contro-
versial (Lear et al., 2004; Edgar et al., 2007; DeConto et al., 2008). Records from the 
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Norwegian-Greenland Sea and the Arctic Lomonosov Ridge suggest that winter sea ice 
formation was initiated around the start of the middle Eocene and that isolated alpine 
outlet glaciers existed on Greenland by the late Eocene (Eldrett et al., 2007; Stickley 
et al., 2009). In contrast with early interpretations (Lear et al., 2000), it is now also 
clear that the magnitude of the δ18O increase across the EOT (~33.5 Ma; Fig. F11) is 
too large to reflect ice growth on Antarctica alone (Coxall et al., 2005), and there is 
growing evidence for contemporaneous global cooling (Lear et al., 2004, 2008; Liu et 
al., 2009; Eldrett et al., 2009).

Expedition 342 provides an opportunity to shed new light on these aspects of Paleo-
gene climate in the high northern latitudes in unprecedented stratigraphic detail. The 
middle to upper Eocene and lower Oligocene sections targeted here will allow us to 
generate the high-resolution records of changes in sedimentation rate, clay mineral 
assemblage, and occurrence and provenance of ice-rafted debris (IRD) that are 
needed. A potential problem exists with differentiating between putative Paleogene 
IRD and sediment eroded from the continental margin. In Pleistocene strata, IRD is 
often identified because of its coarse grain size (sand-sized and larger) and its distinc-
tive provenance (e.g., “red-coated grains” from Labrador; basalt from Iceland) (Bond 
and Lotti, 1995; Hemming et al., 1998). IRD in the silt fraction has been identified by 
a number of techniques, including modeling of end-member components using a 
wide spectrum of grain-size analyses (Weltje, 1997; Weltje and Prins, 2003; Prins et 
al., 2002). IRD might also be identified by combining grain-size (especially sand con-
tent) and mineralogical information during “cold” events inferred from light stable 
isotope studies and geochemical assessment of provenance.

Clay minerals are excellent tracers of provenance in the modern North Atlantic and 
should have broadly similar distributions in the Paleogene. Continental-sourced clays 
should dominate the west Greenland and Canadian margins, whereas volcanic-
sourced clays should be more typical of the Paleogene flood basalt province in eastern 
Greenland. In the modern North Atlantic, smectite, illite, chlorite, and kaolinite con-
stitute the major proportion of the clay fraction. Smectite has been regarded as a ma-
jor tracer for Iceland-Faeroe-derived material (Fagel et al., 1996) and could be 
expected from the Greenland volcanic province in the Paleogene. Where smectites 
are lacking, chlorite is the typical high-latitude clay from old metamorphic sources. 
A lack of volcanogenic and weathered basalt-derived clays (nontronite and amor-
phous minerals) would suggest a rather restricted contribution from eastern Green-
land and mid-ocean-ridge sources. Clay mineral type (e.g., montmorillonite versus 
beidellite) and percentage data and Sm-Nd ratios in the clay fraction of Reykjanes 
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Ridge sediments indicate a dominant terrigenous contribution from young continen-
tal crust that may derive from Europe and/or the Arctic (Fagel et al., 2001; Innocent 
et al., 2000). Today, the clay fraction may also contain terrigenous calcites and dolo-
mites deriving from glacier milk in the Hudson Bay area. Such a signal could be trans-
ported for much longer distances than sand-sized IRD.

4. Extend the astronomical calibration of biostratigraphic and magnetostratigraphic markers and the 
geological timescale.

A detailed geological timescale that can be applied widely has always been a primary 
goal. Indeed, a highly resolved timescale is becoming increasingly critical in studies 
of Paleogene paleoceanography as we extend work on millennial timescales into deep 
time and require increasingly high-resolution correlation to evaluate the evolution of 
interbasin geochemical gradients. Determination of the rates at which Earth processes 
take place and how these rates change are key not only to developing an understand-
ing of Earth history but also to accurately describing the nature and rate of the pro-
cesses themselves.

The discovery of orbitally driven variations in Earth’s climate, and their preservation 
in the marine sedimentary record, has been the latest advance in chronostratigraphy. 
The application of this technique is not without assumptions, including the predict-
ability of the exact beat of the climatic metronome (Pälike et al., 2000, 2004). How-
ever, if constrained by a paleomagnetic reversal stratigraphy, and if the same ages are 
obtained for geologic boundaries in different regions with different sensitivities to 
each of the different orbital forcings, we can develop a strong confidence in the time-
scale. A complete orbitally tuned Cenozoic timescale can provide estimates of process 
rates that have comparable precision throughout the Cenozoic.

We are working toward an astronomically tuned Cenozoic timescale. There is a semi-
anchored astronomical timescale back to 30 Ma (mostly from ODP Leg 154). No mag-
netostratigraphy was recovered during Leg 154 (Curry, Shackleton, Richter, et al., 
1995), but investigations from ODP Legs 177 (Gersonde, Hodell, Blum, et al., 1999) 
and 199 have resulted in verification and refinement of results from Leg 154 (e.g., Bil-
lups et al., 2004; Wade and Pälike, 2004), as well as an extension of the tuning across 
the EOT (Coxall et al., 2005). Several other ODP legs and IODP expeditions have pro-
vided suitable data for work of this sort—most recently from the Pacific Equatorial 
Age Transect (Expedition 320/321 [Pälike, Lyle, Nishi, Raffi, Gamage, Klaus, and the 
Expedition 320/321 Scientists, 2010]). Additional records are available for the time in-
tervals of 35–42 Ma (Pälike et al., 2001; ODP Legs 171B and 177), ~45–56 Ma (ODP 
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Leg 207; Westerhold and Röhl, 2009), 53–57 Ma (Norris and Röhl, 1999; Lourens et 
al., 2005; ODP Legs 171B, 198, and 208), and 62–65 Ma (ODP Legs 165 [Sigurdsson, 
Leckie, Acton, et al., 1997], 171B, 198, and 208). From this perspective, acquisition of 
an astronomically tuned record of the late Eocene and the early middle Eocene would 
be extremely important to span existing gaps in our tuning efforts and to provide sin-
gle-site, high-resolution data that allow splicing, verification, and extension of previ-
ous efforts.

For the Paleocene and Eocene, a shallow CCD has hampered efforts to get long, un-
interrupted carbonate sequences that allow high-resolution paleoclimatic studies 
with traditional geochemical studies (e.g., stable isotope analysis). The tectonic set-
ting of the sites targeted by Expedition 342 is likely to overcome this problem because 
the proposed sites track above the CCD for the critical time slices needed, with poten-
tially very expanded Paleocene, Eocene, and Oligocene sedimentary deposits. In ad-
dition, for the time intervals that have already been astronomically tuned, a 
comparison between low-latitude sites from the Pacific and Atlantic will be comple-
mented by the North Atlantic setting of Expedition 342, offering the chance to deci-
pher the processes controlling the amplification of, for example, ~41 k.y. obliquity 
versus ~100 and 405 k.y. eccentricity cycles and to test the hypothesis that there are 
different dominant astronomical forcings between Earth’s warm and cool periods.

Drilling strategy

Expedition 342 will begin with a 2 day transit to ODP Site 1073 to conduct a 2 day 
engineering test of the newly developed Motion Decoupled Hydraulic Delivery Sys-
tem (MDHDS), a device that should enhance the quality of formation temperature 
and pressure measurements (see “MDHDS tool testing”). After an additional ~4 days 
of transit, the vessel will arrive at the main operations area (Fig. F14). An overview of 
primary and alternate drill sites, including links to figures showing site positions 
along the single-channel, high-resolution seismic survey lines, is given in Table T1.
Additional operational planning detail is given in Tables T2 (primary sites) and T3 (al-
ternate sites).

Our primary goal is to drill a depth transect in high deposition rate, middle Eocene–
?upper Eocene and ?Oligocene drift sites. Our depth transect consists of six drill sites, 
each of which will be cored three times to obtain continuous spliced sections (Tables 
T1, T2). We propose to start with the deepest end of the depth transect on J Anomaly 
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Ridge to pin the deep end of the depth transect (Fig. F1) This first site (JA-1A) will be 
drilled 400 meters below seafloor (mbsf) through the middle and ?upper Eocene sed-
iment package into the lower Eocene and Paleocene (Figs. F4, F6, F10). Two addi-
tional sites (JA-14A and JA-5A) will be drilled to ~250 mbsf on this same drift higher 
on the flank of J Anomaly Ridge (Figs. F4, F6, F10). These sites are intended to sample 
a very expanded record of the ?upper Eocene and upper middle Eocene. We will then 
move to Southeast Newfoundland Ridge to drill the ?upper Eocene and ?Oligocene 
boundary sections at Site SENR-16A to 400 mbsf (Figs. F4, F7, F11). Next, we will 
move to Site SENR-11A, where we will drill the upper part of one of the plastered drifts 
on the north flank of one of the seamounts to sample the ?upper Eocene and middle 
Eocene (300 mbsf) (Figs. F4, F15). We will then finish drilling operations by coring 
the ?upper Eocene to middle Eocene pelagic cap of the seamount (Site SENR-19B; 250 
mbsf) (Figs. F4, F16). All holes will be triple cored, with the option to extend two 
holes to 400 m subbottom and log them. Advanced piston corer (APC) penetration 
will be maximized by “drilling over” the APC barrel until this is no longer safe or prac-
tical, at which point the extended core barrel (XCB) will be used to achieve the depth 
objective.

Two alternative scenarios have also been considered and may be implemented in 
some form depending on the results from Sites JA-1A and SENR-16A. In both alternate 
scenarios we would drill both Sites JA-1A (targeting the Paleocene–Eocene drift sec-
tion at the deep end of the transect) and SENR-16A (to target the EOT).

In the first alternative scenario, we may find that drilling at Site JA-1A makes a com-
pelling case to prioritize Paleocene–lower Eocene sections over upper Eocene drift de-
posits. A Paleocene–lower Eocene depth transect could be obtained by drilling a 400 
m section at alternate Site JA-15A, a 400 m section at alternate Site SENR-18A, and a 
200 m section at alternate Site SENR-1B (Figs. F4, F6, F17, F18). This strategy would 
yield a four-point depth transect only slightly (280 m) shorter than the transect fo-
cused on middle Eocene–?upper Eocene sediments. However, we would likely en-
counter more unconformities in the section (likely near the lower Eocene/middle 
Eocene boundary) and more chert.

In the second alternative scenario, we may find that drilling results make a compel-
ling case to prioritize capturing a continuous high deposition–rate section in the mid-
dle Eocene–Oligocene record over the depth transect aspect of our plan. This would 
involve drilling Site JA-1A (400 m penetration) and then a combination of Site JA-14A 
(250 m penetration) in the middle Eocene–?upper Eocene, followed by ~200 m pen-
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etration at alternate Site JA-15A (to the lower Eocene/middle Eocene boundary) (Figs. 
F4, F6, F10). The combined record of Sites JA-14A and JA-15A would provide a com-
plete record of the acoustically transparent drift package on J Anomaly Ridge. Coring 
would then switch to Site SENR-16A to obtain the 400 m thick Oligocene–upper Eo-
cene section, followed by Site SENR-11A to 400 m to obtain the lower part of the mid-
dle Eocene (Figs. F4, F7, F10, F15). If time allowed, we would core the pelagic cap at 
either Sites SENR-19B or SENR-1B (both ~200–250 m penetration; Figs. F4, F16, F17,
F18). We would obtain a four-point depth transect with this strategy in the middle 
Eocene and a three-point transect in the ?upper Eocene as long as there were time to 
core both pelagic caps. A further possibility under this alternative scenario targeted at 
capturing a continuous high deposition–rate section in the middle Eocene to Oligo-
cene would involve drilling alternate Site SENR-10A to 200 m, depending on the re-
sults of drilling at Site SENR-16A.

Our drilling strategy depends on maintaining a balance between (1) multiple coring 
at sites to obtain continuous sections, (2) collecting long enough records to capture 
numerous “critical boundaries,” (3) maximizing the total depth range captured by our 
coring transect, (4) obtaining logging records to fill gaps in discontinuously cored sec-
tions, and (5) providing log data to create synthetic seismograms to tie cores to seis-
mic records. Two additional considerations are (1) to produce logs that will help us 
tackle the problem of differential compaction in cores and (2) to maximize the logged 
record relative to hole depth. These objectives are not fully compatible because all re-
quire trade-offs in operations time. We rank these priorities in favor of (1) obtaining 
the depth transect, (2) maximizing sedimentation rate in local sections instead of tar-
geting long time series records, (3) collecting spliced records of physical core, (4) ob-
taining logging records to bridge core gaps, and (5) constructing synthetic 
seismograms for core-seismic integration. We rank the effort to tackle the differential 
compaction problem and acquire logs in shallow holes as a lower priority.

Downhole measurements strategy

Wireline logging

On the basis of the drilling strategy outlined above, we propose to prioritize logging 
operations according to the accumulated value of each of the logging-related criteria 
for expedition science. Hence, we will give less consideration to logging shallow pen-
etration holes where we anticipate complete core recovery and sites that sample the 
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acoustically transparent Eocene drift sediment package where we have no acoustic re-
flection record to compare with synthetic seismograms. Conversely, sites that have 
deep penetration, sample acoustically complex sections, and those where the core re-
covery is incomplete will be higher priorities for logging. Therefore, our priority log-
ging sites are JA-1A, SENR-16A, and SENR-11A. Other sites (JA-14A, JA-5A, and SENR-
19B) have lower priority for logging because they have shallow penetration, are pro-
posed for triple coring, and are in acoustically transparent sections.

Two standard IODP tool string configurations will be deployed in each logging hole: 
the triple combination (triple combo) and the Formation MicroScanner (FMS)-sonic 
tool strings (Fig. F21). The first run will be the triple combo tool string, which logs 
formation resistivity, density, porosity, natural gamma radiation (NGR), and borehole 
diameter. The diameter log provided by the caliper on the density tool will allow as-
sessment of hole conditions (e.g., any washouts of sandy beds), log quality, and the 
potential for success of the following runs. The second run will be the FMS-sonic tool 
string, which provides an oriented 360° resistivity image of the borehole wall and logs 
of formation acoustic velocity, NGR, and borehole diameter.

The Magnetic Susceptibility Sonde (MSS) currently under development at Lamont-
Doherty Earth Observatory Borehole Research Group is anticipated to be available for 
deployment during Expedition 340 Lesser Antilles, and therefore also during Expedi-
tion 342. If the MSS is available, the triple combo will be modified to replace the Dual 
Induction Tool (DIT) resistivity tool with the MSS; this modified tool string will be 
called the “paleo combo” (Fig. F22). Details of the logging tools are available at 
iodp.ldeo.columbia.edu/TOOLS_LABS/tools.html.

Downhole logging data will provide the only stratigraphic data where core is not re-
covered and aims to provide characterization of in situ formation properties and es-
tablish the link between features in the borehole and reflectors in the seismic 
sections. To provide the link between borehole stratigraphy and the seismic section, 
sonic velocity and density data will be combined to generate synthetic seismograms 
for detailed well-seismic correlations.

Logging time estimates for each site are given in Tables T1, T2, and T3.

http://iodp.ldeo.columbia.edu/TOOLS_LABS/tools.html
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Formation temperature measurements

The downhole measurement plan includes a depth series of reconnaissance tempera-
ture measurements for all sites. Typically, ~3–5 measurements are made in one hole 
per site using the advanced piston corer temperature tool (APCT-3). The scientific ob-
jective of the temperature measurement plan is to provide sufficient data to recon-
struct the thermal gradient at each site.

MDHDS tool testing

Background and summary

Approximately two days of ship time during Expedition 342 will be spent testing the 
Motion Decoupled Hydraulic Delivery System (MDHDS). The MDHDS is an IODP-
funded engineering development led by the University of Texas in conjunction with 
the USIO and Mohr Engineering. The MDHDS will serve as a foundation for future 
penetrometer and other downhole tool deployments. We will test the MDHDS at ODP 
Site 1073 (Leg 174A), offshore New Jersey, by deploying both the SET-P and T2P pore 
pressure penetrometers. Because of previous drilling at Site 1073, we know the lithol-
ogy and material properties of this site. This sea trial is the culmination of multiple 
land-based tests, and a successful deployment will mean this tool can be reliably de-
ployed during future expeditions. There is also significant scientific value to the test. 
During Leg 174A, the presence of pore overpressure near the seafloor was predicted 
(Dugan and Flemings, 2000). A successful test of the MDHDS and recovery of pore 
pressure measurements in this shallow section would illuminate at what depth pore 
pressure starts and the current stability of the sediments near the seafloor, which are 
critical questions for both hydrodynamic models of shallow sedimentary sections and 
our understanding of the process of slope failure. The MDHDS will be run with a real-
time data link through the logging wireline to observe system behavior.

Motivation for testing and relevance to IODP goals

The ability to measure pressure and permeability in mudstone is critical to achieving 
the scientific goals of IODP as expressed in the Initial Science Plan (ISP) (IODP Inter-
national Working Group, 2001). In the ISP, issues directly related to fluid pressure/
flow include the occurrence, stability, and dissociation of gas hydrate (Hyndman and 
Davis, 1992; Kvenvolden, 1993; Dickens et al., 1997; Ruppel, 1997; Dillon et al., 2000; 
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Liu and Flemings, 2009) and the geometry, structure, fluxes, and earthquake mechan-
ics of accretionary complexes (Davis et al., 1983; Dahlen et al., 1984; Bekins and 
Dreiss, 1992; Saffer and Bekins, 2002; Screaton et al., 2002). Models of these systems 
await validation because of the lack of direct pressure measurements; IODP has 
started to implement short-term measurements via penetrometers (Flemings et al., 
2008) and downhole formation testers (Saffer, McNeill, Byrne, Araki, Toczko, Eguchi, 
Takahashi, and the Expedition 319 Scientists, 2010) and long-term observatories 
(Fisher et al., 2005). The Engineering Development Panel prioritized measurements of 
in situ pressure as one of the critical technologies in need of development and sup-
ported the development of the MDHDS. The Science and Technology Panel defines 
the measurement of in situ pressure as a “standard measurement,” which shall, when-
ever practical, be carried out.

The new science plan for future scientific drilling emphasizes the need for observatory 
science relating to pore pressure, gas hydrate dynamics, and geohazards, including 
those related to fluid flow and slope failure (www.iodp.org/Science-Plan-for-2013-
2023/). Our pore pressure measurements will illuminate the role of pore fluids in con-
tinental slope geomorphology (Johnson, 1939; Rona, 1969), the cause of low-angle 
landslides (Terzaghi, 1950; Bombolakis, 1981), and the effect of focused flow along 
permeable layers on the timing and distribution of failure (Haneberg, 1995; Dugan 
and Flemings, 2000, 2002; Boehm and Moore, 2002; Flemings et al., 2002).

Why the MDHDS?

Previously, the T2P and the SET-P (formerly the DVTP-P), the two penetrometers used 
by IODP, were deployed by wireline on the Colleted Delivery System (CDS). The CDS 
is analogous to an old-style pointer, in which a series of cylinders slide past each other 
to increase or decrease the system’s length. In this configuration, the penetrometer is 
pushed in by the drill string, and then the drill string is raised to decouple the drill 
string from the formation; however, the penetrometer remains connected to the drill 
string through the CDS, which should expand and contract during ship heave. Anal-
ysis of previous deployments showed that when the drill string was raised, the pene-
trometer was pulled out of the formation >80% of the time (Fig. F23). When this 
occurs, the measured pressure drops rapidly and the measurement is compromised 
(Fig. F23E–F23G). This occurs with both the T2P and the SETP.

The MDHDS (Fig. F24) was specifically designed to overcome this problem. More 
broadly, it is envisioned to be the foundation for future downhole tool deployment 

http://www.iodp.org/Science-Plan-for-2013-2023/
http://www.iodp.org/Science-Plan-for-2013-2023/


Expedition 342 Scientific Prospectus

29

and is designed to allow real-time communication between the tool and the rig floor 
via the logging wireline. It is a wireline-deployed system that uses mud pressure to ad-
vance a penetrometer into the formation (Fig. F24). After hydraulic deployment of 
the penetrometer, the bottom-hole assembly (BHA) is raised to completely decouple 
the tool from the BHA, thus eliminating the adverse effects of pipe heave. The MD-
HDS also uses mud pressure to insert the tool rather than lowering the BHA, which 
eliminates the mud plugging problem that has plagued the CDS.

The MDHDS can be deployed either on the coring wireline or on an armored conduc-
tor cable such as the logging line. If deployed on the wireline, complete decoupling 
will occur because of separation of the wireline from the tool. Alternatively, if de-
ployed on the conductor cable, a continuous signal can communicate with the tool. 
The capability of a “hotline” to the tool opens a range of exciting possibilities for fu-
ture tool developments. Unlike the CDS, which is driven into the formation by low-
ering the BHA to the bottom of the borehole, the MDHDS allows the BHA to remain 
2 m off the bottom of the borehole (Fig. F24). This clearance greatly reduces the pos-
sibility of jamming borehole cuttings or other detritus inside the BHA, which could 
result in coupling between the tool and the BHA. The penetrometer is extracted from 
the formation by lowering the wireline through the upper latch union, allowing the 
RS (the RS or “Running Shoe” is designed to retrieve downhole tools by wireline) over-
shot to latch onto the RS fishing neck attached to the upper piston rod. In the case of 
a “hotline” deployment, the soft tether will recoil itself inside the upper piston rod, 
allowing the RS overshot to latch onto the RS fishing neck.

Operations at Site 1073

Prior to arrival at Site 1073, considerable time will be spent with Schlumberger per-
sonnel, core technicians, and the drilling crew to review the rig floor procedure for 
deploying the MDHDS.

Site 1073 is at 639 m water depth (Fig. F25). Sediments encountered will be soft mud-
stone (Fig. F26). We will wash down (or core) to ~100 m before deploying the MDHDS 
and associated penetrometers multiple times. We will also test the real-time data link 
via the logging wireline. Before each new deployment we will need to wash down 
~10 m. The T2P will need to be tested with and without the logging wireline. The 
SET-P will be tested without the wireline. We have requested six penetrometer deploy-
ments. The core technicians will also need time to work out the field deployment of 
the tool and the deck-handling procedure.
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Risks and contingencies

Three principal factors could affect implementation of the drilling plan:

1. Adverse hole conditions at the principal sites because of dropstones and chert 
and adverse formation conditions (e.g., if we were to encounter sediments that 
do not allow generation of high-quality composite sections suited to modern 
paleoceanographic analysis).

2. Weather conditions that could limit the ability to drill, particularly hurricanes 
early in the hurricane season.

3. Time delays arising from equipment breakdowns, tools lost downhole, or mea-
sures taken to respond to hole conditions.

Hole conditions

Poor hole conditions at all sites will be dealt with in the first instance by using fre-
quent high-viscosity mud sweeps and or heavy mud to condition the holes. The only 
possible remedial action if hole conditions prove to be insurmountable is to plug and 
abandon the hole and move to an alternate hole/site. In the event that we encounter 
formations that do not allow us to build high-quality composite sections suited to 
modern paleoceanographic analysis, a primary site may be shortened or dropped 
from the schedule. Such a decision will only be made following consultation with the 
science party.

Weather conditions

Hurricane season at the operation area is between August and November; thus, Expe-
dition 342 is scheduled (mid-June to mid-August) to be largely outside this window. 
However, we had to abandon the site survey for 3 days to run south into the North 
Atlantic Gyre due to Hurricane Alex in mid-August 2004.

Timing

If significant time is spent responding to poor hole conditions, slower-than-expected 
penetration rates, or weather-related delays, a primary site may be shortened or 
dropped from the schedule. Such a decision will only be made following consultation 
with the science party.



Expedition 342 Scientific Prospectus

31

Alternate sites

Alternate sites may be cored and logged if poor hole conditions or other operational 
difficulties are encountered at the respective primary sites and if better conditions are 
expected at the alternate sites. Seismic profiles of all proposed alternate sites (as well 
as of all primary sites discussed above) are included in “Site summaries.” The opera-
tions plans for the alternate sites can be found in Tables T1 and T3.

Sample and data sharing strategy

Shipboard and shore-based researchers should refer to the IODP Sample, Data, and 
Obligations Policy (www.iodp.org/program-policies/). This document outlines the 
policy for distributing IODP samples and data. It also defines the obligations incurred 
by sample and data recipients. All requests for data and core samples must be ap-
proved by the Sample Allocation Committee (SAC). The SAC is composed of the Co-
Chief Scientists, Staff Scientist, and IODP Curator on shore and curatorial representa-
tives in place of the Curator on board the ship.

Every member of the science party is obligated to carry out scientific research for the 
expedition and publish. For this purpose, shipboard scientists are expected to submit 
sample requests (at smcs.iodp.org:8080/smcs/) detailing their science plan ~3–4 
months before the beginning of the expedition (exact time line will be established 
when staffing is complete). On the basis of sample requests (shore based and ship-
board) submitted by this deadline and input from the scientific party, the SAC will 
prepare a tentative sampling plan that will be revised on the ship as dictated by re-
covery and cruise objectives. The sampling plan will be subject to modification de-
pending on the actual material recovered and collaborations that may evolve 
between scientists during the expedition. This planning process is necessary to coor-
dinate the research to be conducted and to ensure that the scientific objectives are 
achieved. Modifications to the sampling plan and access to samples and data during 
the expedition and the 1 y postexpedition moratorium period require the approval of 
the SAC.

All sample frequencies and sizes must be justified on a scientific basis and will depend 
on core recovery, the full spectrum of other requests, and the expedition objectives. 
Some redundancy of measurement is unavoidable, but minimizing the duplication of 
measurements among the shipboard party and identified shore-based collaborators 
will be a factor in evaluating sample requests. Success will require collaboration, inte-

http://www.iodp.org/program-policies/
http://smcs.iodp.org:8080/smcs/
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gration of complementary data sets, and consistent methods of analysis. Substantial 
collaboration and cooperation are highly encouraged.

Shipboard sampling will be restricted to acquiring ephemeral data types and to low-
resolution sampling for shipboard data acquisition (e.g., biostratigraphic sampling, 
pore waters, and shipboard geochemistry) so that we can rapidly produce age-model 
data critical to the overall objectives of the expedition and plan for higher resolution 
sampling postcruise. Sampling may also include “toothpick” (~0.5 cm3) samples for 
preliminary shore-based stable isotope investigations where they are likely to materi-
ally aid the identification of critical intervals for the sampling party, as long as they 
do not threaten the integrity of the core. The bulk of sampling for scientists’ personal 
research will be postponed until a shore-based sampling party to be implemented ~4–
5 months after the expedition at the Bremen Core Repository (BCR) in Bremen, Ger-
many. The BCR houses cores collected from the Atlantic and Arctic Oceans.

There may be considerable demand for samples from a limited amount of cored ma-
terial for some critical intervals. Critical intervals may require special handling, a 
higher sampling density, reduced sample size, or continuous core sampling for a set 
of particular high-priority research objectives. The SAC may require an additional for-
mal sampling plan before critical intervals are sampled, and a special sampling plan 
will be developed to maximize scientific return and scientific participation and to pre-
serve some material for future studies. The SAC can decide at any stage during the ex-
pedition or during the 1 y moratorium period to identify recovered intervals as 
“critical.”

All collected data and samples will be protected by a 1 y postexpedition moratorium, 
during which time data and samples are available only to the Expedition 342 Science 
Party and approved shore-based participants. Because of the decision to hold a sam-
pling party ~4–5 months postcruise, the moratorium will in fact extend to 1 y follow-
ing the completion of the sampling party.
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Table T1. Expedition 342 operations summary. 

TWT = two-way traveltime. APC = advanced piston corer, XCB = extended core barrel. TC = triple combination tool string, FMS = Formation MicroScanner-sonic tool string. MDHDS = Motion 
Decoupled Hydraulic Delivery System.

Proposed
site Location

Water
depth
(m)

TWT
(s)

Target
penetration
depth (m)

Requested
penetration
depth (m) Coring Logging Objective

Time (days)
Figure 

referenceTransit Coring Logging On site Total

Primary Port call 2.0
1073 39°13.52′N, 72°16.55′W 650 100 300 single-APC MDHDS test 2.2 2.0 2.0 4.2
JA-1A 39°55.00′N, 51°47.00′W 4940 6.5 400 700 3-APC/XCB TC, FMS upper–middle Eocene to Paleogene, 

deep end
3.8 10.7 1.0 11.7 15.5 F6, F10, F19

JA-14A 40°3.00′N, 51°49.00′W 4250 5.7 250 700 3-APC/XCB upper–middle Eocene drift 0.0 6.3 6.3 6.3 F6, F10, F19
JA-5A 40°13.00′N, 51°40.00′W 3900 5.1 250 700 3-APC/XCB upper–middle Eocene drift 0.1 5.9 5.9 6.0 F6, F20
SENR-16A 40°14.00′N, 47°30.00′W 4150 5.4 400 900 3-APC/XCB TC, FMS Oligocene to upper Eocene 0.8 9.4 1.0 10.4 11.2 F7, F11
SENR-11A 41°37.00′N, 48°58.00′W 3300 4.4 300 600 3-APC/XCB TC, FMS upper–middle Eocene drift 0.4 6.3 0.8 7.1 7.5 F15
SENR-19B 41°40.00′N, 49°18.00′W 2470 3.3 250 300 3-APC/XCB upper–middle Eocene drift, shallow 0.1 5.8 5.8 5.9 F16

Transit to St. John’s 1.5 1.5
Totals: 8.8 46.4 2.8 49.2 60.0

Alternate
JA-15A 40°10.00′N, 51°50.00′W 4290 5.7 200 500 3-APC/XCB middle Eocene + Paleogene drift 4.9 4.9 F6, F10, F20
JA-15A 40°10.00′N, 51°50.00′W 4290 5.7 400 500 3-APC/XCB TC, FMS middle Eocene + Paleogene drift 9.4 1.0 10.4 F6, F10, F20
SENR-10A 40°4.00′N, 47°43.00′W 4250 5.7 200 800 3-APC/XCB upper Eocene 4.8 4.8 F7, F11
SENR-10A 40°4.00′N, 47°43.00′W 4250 5.7 400 800 3-APC/XCB TC, FMS upper Eocene 9.4 1.0 10.4 F7, F11
SENR-11A 41°37.00′N, 48°58.00′W 3300 4.4 400 600 3-APC/XCB TC, FMS upper–middle Eocene drift 8.2 0.9 9.1 F15
SENR-1B 41°36.00′N, 49°18.00′W 2750 3.7 200 500 3-APC/XCB Paleogene, shallow end 4.1 4.1 F17
SENR-18A 41°04.00′N, 49°17.00′W 3540 4.8 400 600 3-APC/XCB TC, FMS Paleogene 8.6 0.9 9.5 F18
JA-13A 40°0.00′N, 51°49.00′W 4710 6.2 250 600 3-APC/XCB upper–middle Eocene drift 6.2 6.2 F6, F10, F19
JA-3A 40°3.00′N, 51°37.00′W 4725 6.3 250 700 3-APC/XCB upper–middle Eocene drift, deep 6.3 6.3 F6, F19
JA-4A 40°10.00′N, 51°38.00′W 4250 5.7 250 700 3-APC/XCB upper–middle Eocene drift, 14A 5.8 5.8 F6, F19



Expedition 342 Scientific Prospectus

44

Table T2. Expedition 342 primary sites operations plan. 

2.0

2.2

Site 1073 39°13.52'N 650 0 2.0 0.0

EPSP 72°16.55'W

to 0 mbsf

2.0

3.8

JA-1A (400 m) 39°55.00'N 4951 0 3.7 0.0

EPSP 51°47.00'W 0 3.2 0.0

to 0 mbsf 0 3.8 1.0

11.8

0.0

JA-14A (250 m) 40°3.00'N 4261 0 2.2 0.0

EPSP 51°49.00'W 0 1.8 0.0

to 0 mbsf 0 2.3 0.0

6.2

0.1

JA-5A (250 m) 40°13.00'N 3911 0 2.1 0.0

EPSP 51°40.00'W 0 1.7 0.0

to 0 mbsf 0 2.1 0.0

5.9

0.8

SENR-16A (400 m) 40°14.00'N 4131 0 3.3 0.0

EPSP 47°30.00'W 0 2.8 0.0

to 0 mbsf 0 3.3 0.9

10.4

0.4

SENR-11A (300 m) 41°37.00'N 3311 0 2.2 0.0

EPSP 48°58.00'W 0 1.8 0.0

to 0 mbsf 0 2.3 0.8

7.1

0.1

SENR-19B (250 m) 41°40.00'N 4131 0 2.1 0.0

EPSP 49°18.00'W 0 1.6 0.0

to 0 mbsf 0 2.1 0.0

5.8

1.5

8.8 46.4 2.8

2.0
49.2

Transit
(days)

Drilling/
Coring
(days)

LWD/
MWD log 

(days)

St. George, Bermuda Begin Expedition port call days

Site
Location
(latitude,

longitude)

Seafloor depth 
(mbrf) Operations description

Transit ~552 nmi to Site 1073 @ 10.5

Hole B - APC down to 100 m and begin testing MDHDS

Subtotal days on site:

Transit ~947 nmi to JA-1A (400 m) @ 10.5

Hole A - APC/XCB to 400 mbsf with orientation

Hole B - APC/XCB to 400 mbsf

Hole C - APC/XCB to 400 mbsf; log with triple combination and FMS-sonic

Subtotal days on site:

Transit ~8 nmi to JA-14A (250 m) @ 10.5

Hole C - APC/XCB to 250 mbsf

Hole A - APC/XCB to 250 mbsf with orientation

Hole B - APC/XCB to 250 mbsf

Hole C - APC/XCB to 250 mbsf

Subtotal days on site:

Transit ~12 nmi to JA-5A (250 m) @ 10.5

Hole A - APC/XCB to 250 mbsf with orientation

Hole B - APC/XCB to 250 mbsf

Subtotal days on site:

Transit ~191 nmi to SENR-16A (400 m) @ 10.5

Hole A - APC/XCB to 400 mbsf with orientation

Hole B - APC/XCB to 400 mbsf

Hole C - APC/XCB to 400 mbsf; log with triple combination and FMS-sonic

Subtotal days on site:

Transit ~106 nmi to SENR-11A (300 m) @ 10.5

Hole C - APC to 250 mbsf

Hole A - APC/XCB to 300 mbsf with orientation

Hole B - APC/XCB to 300 mbsf

Hole C - APC/XCB to 300 mbsf; log with triple combination and FMS-sonic

Subtotal days on site:

Transit ~15 nmi to SENR-19B (250 m) @ 10.5

Hole A - APC to 250 mbsf with orientation

Hole B - APC to 250 mbsf

Subtotal days on site:

Transit ~382 nmi to St. John's @ 10.5

St. John's End expedition

LWD = logging while drilling, MWD = measurement while drilling. EPSP = Environmental Protection and Safety Panel. MDHDS = Motion Decoupled Hydraulic Delivery System. APC = 
advanced piston corer, XCB = extended core barrel. FMS = Formation MicroScanner.

Port call: Total operating days: 58.0
Subtotal on site: Total expedition: 60.0
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Table T3. Expedition 342 alternate sites operations plan.

JA-3A (250 m) 40°3.00'N 4736 2.3 0.0

EPSP 51°37.00'W 1.7 0.0

to 0 mbsf 2.2 0.0

6.3

JA-4A (250 m) 40°10.00'N 4261 2.1 0.0

EPSP 51°38.00'W 1.6 0.0

to 0 mbsf 2.1 0.0

5.8

JA-13A (250 m) 40°0.00'N 4721 2.3 0.0

EPSP 51°49.00'W 1.7 0.0

to 0 mbsf 2.2 0.0

6.2

JA-15A (200 m) 40°10.00'N 4301 1.8 0.0

EPSP 51°50.00'W 1.3 0.0

to 0 mbsf 1.9 0.0

4.9

JA-15A (400 m) 40°10.00'N 4301 3.3 0.0

EPSP 51°50.00'W 2.8 0.0

to 0 mbsf 3.3 1.0

10.4

SENR-1B (200 m) 41°36.00'N 2761 1.7 0.0

EPSP 49°18.00'W 1.0 0.0

to 0 mbsf 1.3 0.0

4.1

SENR-10A (200 m) 40°4.00'N 4261 1.8 0.0

EPSP 47°43.00'W 1.3 0.0

to 0 mbsf 1.7 0.0

4.8

SENR-10A (400 m) 40°4.00'N 4261 3.3 0.0

EPSP 49°35.00'W 2.8 0.0

to 0 mbsf 3.3 1.0

10.4

SENR-11A (400 m) 41°37.00'N 3311 2.9 0.0

EPSP 48°58.00'W 2.4 0.0

to 0 mbsf 2.8 0.9

9.1

SENR-18A (400 m) 41°4.00'N 3551 3.0 0.0

EPSP 49°17.00'W 2.5 0.0

to 0 mbsf 3.0 0.9

9.5

LWD/
MWD log 

(days)

Hole A - APC to 250 mbsf with orientation and APCT-3 measurements

Hole B - APC to 250 mbsf

Site
Location
(latitude,

longitude)

Seafloor depth 
(mbrf) Operations description

Drilling/
Coring
(days)

Hole C - APC to 250 mbsf
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Figure F1. Location of Southeast Newfoundland and J Anomaly Ridges relative to the flow paths of the Deep Western Boundary 
Current. Deep Sea Drilling Project (DSDP) Site 384 is the primary deep borehole that will provide stratigraphic control for Expedi-
tion 342 seismic records. Location of the RMS Titanic is also shown.
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Figure F2. Paleogeographic map for the North Atlantic at the beginning of the Paleogene. Note the narrow, and mostly shallow, 
connections between the North Atlantic and Arctic Basins. The presence of sediment drifts on J Anomaly Ridge suggests that there 
was strong deepwater formation somewhere in the basins adjacent to Greenland or Norway or that there was overflow from the Arc-
tic itself. Expedition 342 drilling will sample these sediment drifts with the objective to understand the paleoceanography and cli-
mate implications of deepwater formation in the northern basins of the Atlantic.
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Figure F3. Reflection Profile V3202 over the crest of Southeast Newfoundland Ridge, with simplified 
interpretation (location in Fig. F4). Seismic sequences are discussed in the text. Differential deposi-
tion and moats around the seamounts were caused by seafloor currents and are responsible for sea-
floor outcrops and irregular thicknesses in seismic sequences for Reflections A, A–B, and B–C, the 
lowest of which may be as old as Eocene. The location of Reflection A is difficult to discern in this 
1972 SCS line.
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Figure F4. Track map for the Newfoundland ridges. Green lines are single-channel seismic (SCS) lines collected during R/V Knorr site 
survey Cruise 179-1. Additional seismic profiles (gray lines) that support Expedition 342 drilling are shown. Also shown is Deep Sea 
Drilling Project (DSDP) Site 384, which provides stratigraphic control for interpretation of the seismic data set. MCS = multichannel 
seismic.
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Figure F5. Bathymetry for the Newfoundland ridges. Red lines are interpreted single-channel seis-
mic (SCS) profiles shown in Figures F10 and F11. SENR = Southeast Newfoundland Ridge. DSDP = 
Deep Sea Drilling Project. MCS = multichannel seismic.
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Figure F6. Single-channel seismic lines for J Anomaly Ridge running along-dip, with locations of re-
lated Expedition 342 drill sites. Profile KNR 179-1, Line 5, crosses J Anomaly Ridge through DSDP 
Site 384. Note the thinning of the transparent seismic unit of early?–late Eocene age between cross-
ing Lines 10 and 12, here interpreted as erosional thinning of the carbonate section through the car-
bonate lysocline. Line 12 crosses Line 5 close to the depth of the CCD.
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Figure F7. Single-channel seismic Profile KNR 179-1, Lines 46 and 49, for Southeast Newfoundland 
Ridge, with locations of related Expedition 342 drill sites.
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Figure F8. Subsidence estimates for North Atlantic Deep Sea Drilling Project (DSDP) records, with an 
interpretation of calcite compensation depth (CCD) history. Red dashed lines report the calculated 
subsidence history of the base of J Anomaly Ridge, DSDP Site 384 on the crest of J Anomaly Ridge, 
and the tops of the Southeast Newfoundland Ridge (SENR) seamounts. Seismic data suggest, in con-
trast to the reconstructed CCD record, that carbonate sediments extend nearly to the base of J 
Anomaly Ridge during the Paleogene (shown in the yellow band). Expedition 342 will core a depth 
transect in Paleogene sediments to refine our understanding of CCD history.
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Figure F9. Generalized interpretation of seismic and sedimentary stratigraphy of the J Anomaly 
Ridge and adjacent Southeast Newfoundland Ridge. Sedimentary stratigraphy is based on the cored 
record in Deep Sea Drilling Project (DSDP) Site 384, whereas the seismic stratigraphy is based on 
seismic ties between single-channel seismic reflection profiles and DSDP Site 384.
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Figure F10. Single-channel seismic Profile KNR 179-1, Line 7, and interpretation. Cretaceous reefs 
(red) are overlain by pelagic sediment drifts (orange) and later by Eocene sediment drifts (green).
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Figure F11. Single-channel seismic Profile KNR 179-1, Line 46B, and interpretation. Cretaceous sed-
iments are overlain by Eocene through ?Oligocene–Miocene drifts.
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Figure F12. Eocene–Oligocene transition from the equatorial Pacific (ODP Site 1218), showing the 
lockstep-wise deepening of the CCD together with onset of major Antarctic glaciation (Coxall et al., 
2005). MAR = mass accumulation rate, VPDB = Vienna Peedee belemnite.
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Figure F13. Compilation of benthic δ13C data through the PETM. Northern Hemisphere sites typically show more positive δ13C in 
the core of the PETM than Southern Ocean sites, indicating most deep water was formed in the northern basins. Before and after the 
PETM, however, the δ13C gradient is reversed, indicating southern sources of deep water. From Nuñes and Norris (2006). VPDB = Vi-
enna Peedee belemnite. DSDP = Deep Sea Drilling Project, ODP = Ocean Drilling Program.
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Figure F14. Overview of North Atlantic Ocean showing the location of Expedition 342 drill sites 
and port calls.
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Figure F15. Single-channel seismic Profile KNR 179-1, Lines 22 and 25, showing Expedition 342 pri-
mary Site SENR-11A.
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Figure F16. Single-channel seismic Profile KNR 179-1, Lines 27 and 24, showing Expedition 342 pri-
mary Site SENR-19B.
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Figure F17. Single-channel seismic Profile KNR 179-1, Lines 52 and 20, showing Expedition 342 al-
ternate Site SENR-1B.
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Figure F18. Single-channel seismic Profile KNR 179-1, Lines 53 and 31, showing Expedition 342 al-
ternate Site SENR-18A.
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Figure F19. Single-channel seismic Profile KNR 179-1, Lines 10, 12, and 14, showing strike profiles 
of Expedition 342 primary Sites JA-1A and JA-14A, and alternate Sites JA-3A, JA-4A, and JA-13A.
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Figure F20. Single-channel seismic Profile KNR 179-1, Line 16, showing strike profiles of Expedition 
342 primary Site JA-5A and alternate Site JA-15A.
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Figure F21. Triple combination (triple combo) and Formation MicroScanner (FMS)-sonic wireline 
logging tool strings. HNGS = Hostile Environment Natural Gamma Ray Sonde, HLDS = Hostile Envi-
ronment Litho-Density Sonde, APS = Accelerator Porosity Sonde, GPIT = General Purpose Inclinom-
etry Tool, DIT = Dual Induction Tool, DSI = Dipole Sonic Imager.
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Figure F22. “Paleo combo” logging tool string, including the new Magnetic Susceptibility Sonde 
(MSS). GPIT = General Purpose Inclinometry Tool, HNGS = Hostile Environment Natural Gamma 
Ray Sonde, APS = Accelerator Porosity Sonde, HLDS = Hostile Environment Litho-Density Sonde.
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Figure F23. Schematic showing typical deployment of T2P and SET-P penetration probes. A, B. Drill 
string pushes probe into formation. C. Successful deployment in which probe stays in ground and 
bottom-hole assembly slides upward as drill string is raised. D. Unsuccessful deployment in which 
partial coupling occurs between drill string and Colleted Delivery System, partially pulling tool out 
of hole. E. Good penetration record characterized by abrupt increase in pressure, followed by slow 
dissipation of pressure while tool is left in ground. F. Poor penetration record characterized by sharp 
drop in pore pressure during pullout, resulting in subhydrostatic pressure that gradually builds back 
to formation pressure. G. Pressure and temperature response during an unsuccessful deployment. 
When the drill string is raised (bit depth decreases), pore pressures drop abruptly and temperature 
rises because the probe is being pulled out of the formation. UTC = Universal Time Coordinated.
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Figure F24. Stages of penetrometer deployment. A. RS overshot and lower latch released. B. Drill 
string pressurized to pump penetrometer into formation. C. Penetrometer raised.
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Figure F25. A. Bathymetric map of New Jersey continental slope (National Geophysical Data Cen-
ter, www.ngdc.noaa.gov/mgg/bathymetry/hydro.html). ODP Leg 174A Site 1073 is located at 
639 m water depth on a smooth portion of the slope (Austin, Christie-Blick, Malone, et al., 1998). 
B. Two-way traveltime dip seismic Line 1002 showing regional Miocene–Pleistocene stratigraphy 
(Austin, Christie-Blick, Malone, et al., 1998). Black lines identify age boundaries. In the smooth 
zone, Pleistocene sediments completely cover Miocene strata, whereas the Miocene is exposed 
where canyons are present (Hampson and Robb, 1984). Modified from Dugan and Flemings (2000).
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Figure F26. Core data from ODP Site 1073 (Fig. F23) (Austin, Christie-Blick, Malone, et al., 1998). 
Porosity was determined from wet and dry measurements of mass and volume of core samples. Val-
ues denoted by P* are overpressures predicted from porosity. The solid line on the P* plot is the re-
duced lithostatic stress (Sv – ρwgz). Pleistocene sedimentation rates far exceed Miocene and Pliocene 
sedimentation rates, as inferred from biostratigraphic data. Modified from Dugan and Flemings 
(2002). Vf. = very fine.
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Site summaries

ODP Site 1073

Priority: Primary

Position: 39°13.52′N, 72°16.55′W
Water depth (m): 650

Target drilling depth (mbsf): 100

Approved maximum 
penetration (mbsf):

Request 300; pending EPSP approval

Survey coverage: NA

Objective: MDHDS engineering test

Coring program: • NA
• Hole B: wash down to 100 mbsf and test MDHDS
• See Table T1

Wireline logging program: NA

Anticipated lithology:
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Site summaries (continued)

Site JA-1A

Priority: Primary

Position: 39°55.00′N, 51°47.00′W
Water depth (m): 4940

Target drilling depth (mbsf): 400

Approved maximum 
penetration (mbsf):

Request 700; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 7, SP 204 0520
• Crossing line: KNR 179-1, Line 10, SP 206 0227

Objective: Deep end of depth transect in shallowly buried lower Eocene to Albian drift; 
deepwater chemistry and history of the Deep Western Boundary Current; 
Paleogene hyperthermals; PETM. This site has the deepest water depth in 
the proposed drilling program. Below Eocene CCD.

Coring program: • Hole A: APC/XCB to 400 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 400 mbsf 
• Hole C: APC/XCB to 400 mbsf 
• See “Drilling strategy” and Tables T1, T2

Wireline logging program: • Hole C: Wireline logging with triple combo and FMS-sonic
• See “Downhole measurements strategy” and Tables T1, T2

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site JA-14A

Priority: Primary

Position: 40°3.00′N, 51°49.00′W
Water depth (m): 4250

Target drilling depth (mbsf): 250

Approved maximum 
penetration (mbsf):

Request 700; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 7, SP 204 0747
• Crossing lines: KNR 179-1, Line 14, SP 206 1345

Objective: Lower end of depth transect; lower to upper Eocene and possible Eocene/
Oligocene boundary (entire section of Eocene strata is ~500 m thick at this 
site, allowing potential deeper penetration than currently proposed); early 
Eocene warm period; Eocene hyperthermals; middle and late Eocene 
impacts; transition to icehouse climate; Eocene CCD; chemistry of Eocene 
deep water. Just above Eocene CCD.

Coring program: • Hole A: APC/XCB to 250 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 250 mbsf 
• Hole C: APC/XCB to 250 mbsf 
• See “Drilling strategy” and Tables T1, T2

Wireline logging program: • NA
• See “Downhole measurements strategy” and Tables T1, T2

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site JA-5A

Priority: Primary

Position: 40°13.00′N, 51°40.00′W
Water depth (mbrf): 3900

Target drilling depth (mbsf): 250

Approved maximum 
penetration (mbsf):

Request 700; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 5, SP 203 2037
• Crossing lines: KNR 179-1, Line 16, SP 206 1750

Objective: Lower middle of depth transect; lower to upper Eocene and possible Eocene/
Oligocene boundary (entire section of Eocene strata is ~700 m thick at this 
site, allowing potential deeper penetration than currently proposed); early 
Eocene warm period; Eocene hyperthermals; middle and late Eocene 
impacts; transition to icehouse climate; Eocene CCD; chemistry of Eocene 
deep water.

Coring program: • Hole A: APC/XCB to 250 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 250 mbsf 
• Hole C: APC/XCB to 250 mbsf 
• See “Drilling strategy” and Tables T1, T2

Wireline logging program: • NA
• See “Downhole measurements strategy” and Tables T1, T2

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site SENR-16A

Priority: Primary

Position: 40°14.00′N, 47°30.00′W
Water depth (mbrf): 4150

Target drilling depth (mbsf): 400

Approved maximum 
penetration (mbsf):

Request 900; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 46, SP 218 2155
• Crossing line: MCS Line RC2510 11B, SP 1600Z 3073

Objective: Lower Oligocene and upper Eocene with record of E/O boundary; biotic 
changes around the E/O and late Eocene; late Eocene impact horizons; 
transition to different type of drift sedimentation and associated changes in 
flow characteristics of the Deep Western Boundary Current; CCD evolution; 
middle of depth transect.

Coring program: • Hole A: APC/XCB to 300 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 300 mbsf 
• Hole C: APC/XCB to 300 mbsf 
• See “Drilling strategy” and Tables T1, T2

Wireline logging program: • Hole C: Wireline logging with triple combo and FMS-sonic
• See “Downhole measurements strategy” and Tables T1, T2

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site SENR-11A

Priority: Primary

Position: 41°37.00′N, 48°58.00′W
Water depth (m): 3300

Target drilling depth (mbsf): 300

Approved maximum 
penetration (mbsf):

Request 600; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 22, SP 208 0637
• Crossing line: KNR 179-1, Line 25, SP 210 0120

Objective: Upper middle of depth transect (entire section of Eocene strata is ~550 m thick 
at this site); early Eocene warm period; eocene hyperthermals; chemistry of 
Eocene deepwater. This is the shallowest highly expanded section of Eocene 
in the survey area, with excellent potential for very high sedimentation rates.

Coring program: • Hole A: APC/XCB to 300 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 300 mbsf 
• Hole C: APC/XCB to 300 mbsf 
• See “Drilling strategy” and Tables T1, T2

Wireline logging program: • Hole C: Wireline logging with triple combo and FMS-sonic
• See “Downhole measurements strategy” and Tables T1, T2

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site SENR-19B

Priority: Primary

Position: 41°40.00′N, 49°18.00′W
Water depth (m): 2470

Target drilling depth (mbsf): 250

Approved maximum 
penetration (mbsf):

Request 300; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 27, SP 210 1637
• Crossing line: KNR 179-1, Line 24, SP 209 2120

Objective: Shallow end of depth transect; lower Eocene to upper Eocene pelagic cap; 
record of early Eocene warm period; transition to icehouse climate; middle 
and late Eocene impacts; Eocene hyperthermals.

Coring program: • Hole A: APC/XCB to 250 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 250 mbsf 
• Hole C: APC/XCB to 250 mbsf 
• See “Drilling strategy” and Tables T1, T2

Wireline logging program: • NA
• See “Downhole measurements strategy” and Tables T1, T2

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site JA-15A  

Priority: Alternate

Position: 40°10.00′N, 51°50.00′W
Water depth (mbrf): 4290

Target drilling depth (mbsf): 200, possibly 400

Approved maximum 
penetration (mbsf):

Request 500; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 7, SP 204 0840
• Crossing line: KNR 179-1, Line 16, SP 206 1605

Objective: Middle of depth transect; lower to upper Eocene and possible Eocene/
Oligocene boundary. The entire section of Eocene strata is ~200 m thick at 
this site, and the Eocene section is probably contaminated with younger 
sediments because the site sits in a basin; however, this site has ~250 m of 
Cretaceous–Paleogene strata under ~200 m burial. These strata crop out just 
north of JA-4 (where there is ~300 m of Cretaceous–Paleogene sediments), 
but we have no crossing line.

Coring program: • Hole A: APC/XCB to 200 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 200 mbsf 
• Hole C: APC/XCB to 200 mbsf 
• See “Drilling strategy” and Tables T1, T3

Wireline logging program: • If deeper drilling, logging with triple combo and FMS-sonic
• See “Downhole measurements strategy” and Tables T1, T3

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site SENR-10A

Priority: Primary

Position: 40°4.00′N, 47°43.00′W
Water depth (m): 4250

Target drilling depth (mbsf): 200, possibly 400

Approved maximum 
penetration (mbsf):

Request 800; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 46, SP 218 1915
• Crossing lines: KNR 179-1, Line 49, SP 221 0753

Objective: Lower Eocene to upper Eocene/Oligocene carbonate ooze and calcareous 
claystone; Eocene hyperthermals; middle and late Eocene impacts; early 
Eocene warm period and transition to icehouse; Eocene/Oligocene 
boundary in an expanded drift deposit; refined cyclostratigraphic timescale 
and magnetic chronology; middle of depth transect.

Coring program: • Hole A: APC/XCB to 300 mbsf with orientation
• Hole B: APC/XCB to 300 mbsf 
• Hole C: APC/XCB to 300 mbsf 
• See “Drilling strategy” and Tables T1, T3

Wireline logging program: • If deeper drilling, logging with triple combo and FMS-sonic
• See “Downhole measurements strategy” and Tables T1, T3

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site SENR-1B

Priority: Alternate

Position: 41°36.00′N, 49°18.00′W
Water depth (m): 2750

Target drilling depth (mbsf): 200

Approved maximum 
penetration (mbsf):

Request 500; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 20, SP 207 1610 (alternate site: SP 207 
1555, but no crossing line)

• Crossing lines: KNR 179-1, Line 52, SP 224 0410

Objective: Shallow end of the depth transect; ~200 m of lower Eocene to Campanian 
ooze, overlying ~200 m of Albian–Coniacian pelagic sediments and reef 
strata; PETM; Paleocene hyperthermals.

Coring program: • Hole A: APC/XCB to 250 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 250 mbsf 
• Hole C: APC/XCB to 250 mbsf 
• See “Drilling strategy” and Tables T1, T3

Wireline logging program: • NA
• See “Downhole measurements strategy” and Tables T1, T3

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site SENR-18A

Priority: Alternate

Position: 41°04.00′N, 49°17.00′W
Water depth (mbrf): 3540

Target drilling depth (mbsf): 400

Approved maximum 
penetration (mbsf):

Request 600; pending EPSP approval

Survey coverage: • Primary line(s): KNR 179-1, Line 53, SP 224 0850
• Crossing line: KNR 179-1, Line 31, SP 211 1451

Objective: Upper middle of depth transect (the entire section of Eocene strata is ~100 m 
thick beneath ~100 m of Pleistocene, with >350 m of Cretaceous–Paleogene 
below this); early Eocene warm period; Eocene hyperthermals; chemistry of 
Eocene and Cretaceous deep water; Cretaceous OAEs; Cretaceous climate; 
K/P boundary; Cretaceous CCD.

Coring program: • Hole A: APC/XCB to 400 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 400 mbsf 
• Hole C: APC/XCB to 400 mbsf 
• See “Drilling strategy” and Tables T1, T3

Wireline logging program: • Hole C: Wireline logging with triple combo and FMS-sonic
• See “Downhole measurements strategy” and Tables T1, T3

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site JA-13A

Priority: Alternate

Position: 40°0.00′N, 51°49.00′W
Water depth (m): 4710

Target drilling depth (mbsf): 250

Approved maximum 
penetration (mbsf):

Request 600; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 7, SP 204 0615
• Crossing line: KNR 179-1, Line 12, SP 206 0455

Objective: Lower end of depth transect; lower to upper Eocene and possible Eocene/
Oligocene boundary (the entire section of Eocene strata is ~500 m thick at 
this site, allowing potential deeper penetration than currently proposed); 
early Eocene warm period; Eocene hyperthermals; middle and late Eocene 
impacts; transition to icehouse climate; Eocene CCD; chemistry of Eocene 
deep water. Just above the Eocene CCD.

Coring program: • Hole A: APC/XCB to 250 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 250 mbsf 
• Hole C: APC/XCB to 250 mbsf 
• See “Drilling strategy” and Tables T1, T3

Wireline logging program: • NA
• See “Downhole measurements strategy” and Tables T1, T3

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site JA-3A

Priority: Alternate

Position: 40°3.00′N, 51°37.00′W
Water depth (mbrf): 4725

Target drilling depth (mbsf): 250

Approved maximum 
penetration (mbsf):

Request 700; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 5, SP 203 2314
• Crossing lines: KNR 179-1, Line 12, SP 206 0645

Objective: Lower end of depth transect; lower to upper Eocene and possible Eocene/
Oligocene boundary (the entire section of Eocene strata is ~400 m thick at 
this site, with another 350 m of Cretaceous–early Paleogene); early Eocene 
warm period; Eocene hyperthermals; middle and late Eocene impacts; 
transition to icehouse climate; Eocene CCD; chemistry of Eocene deep 
water. Thinning of Eocene section from JA-7 suggests the site is within the 
Eocene lysocline but still has a respectable Eocene sediment cover.

Coring program: • Hole A: APC/XCB to 250 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 250 mbsf 
• Hole C: APC/XCB to 250 mbsf 
• See “Drilling strategy” and Tables T1, T3

Wireline logging program: • NA
• See “Downhole measurements strategy” and Tables T1, T3

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Site summaries (continued)

Site JA-4A

Priority: Alternate

Position: 40°10.00′N, 51°38.00′W
Water depth (m): 4250

Target drilling depth (mbsf): 250

Approved maximum 
penetration (mbsf):

Request 700; pending EPSP approval

Survey coverage: • Primary line: KNR 179-1, Line 5, SP 203 2145
• Crossing lines: KNR 179-1, Line 14, SP 206 1140

Objective: Middle of depth transect; lower to upper Eocene and possible Eocene/
Oligocene boundary (the entire section of Eocene strata is ~700 m thick at 
this site, allowing potential deeper penetration than currently proposed); 
early Eocene warm period; Eocene hyperthermals; middle and late Eocene 
impacts; transition to icehouse climate; Eocene CCD; chemistry of Eocene 
deep water.

Coring program: • Hole A: APC/XCB to 250 mbsf with orientation and APCT-3
• Hole B: APC/XCB to 250 mbsf 
• Hole C: APC/XCB to 250 mbsf 
• See “Drilling strategy” and Tables T1, T3

Wireline logging program: • NA
• See “Downhole measurements strategy” and Tables T1, T3

Anticipated lithology: Carbonate ooze, hemipelagic clay, shallow-water carbonates
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Scientific participants

The current list of participants for Expedition 342 can be found at iodp.tamu.edu/
scienceops/expeditions/newfoundland_sediment_drifts.html.

http://iodp.tamu.edu/scienceops/expeditions/newfoundland_sediment_drifts.html
http://iodp.tamu.edu/scienceops/expeditions/newfoundland_sediment_drifts.html
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