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Abstract

In this paper we describe an interdisciplinary collabora-
tion between researchers in machine learning and oceanog-
raphy. The collaboration was formed to study the prob-
lem of open ocean biome classification. Biomes are regions
on Earth with similar climate (e.g., temperature and rain-
fall) and vegetation structure (e.g., grasslands, coniferous
forests, and deserts). To discover biomes in the open ocean,
we apply leading methods in high dimensional data anal-
ysis, clustering, and visualization to oceanographic mea-
surements culled from multiple existing databases. We com-
pare traditional approaches, such as k-means clustering
and principal component analysis, to newer approaches
such as Isomap and maximum variance unfolding. Our
work provides the first quantitative classification of open
ocean biomes from an automated statistical analysis of mul-
tivariate data. It also provides a valuable case study in the
use (and misuse) of recently developed algorithms for high
dimensional data analysis.

1 Introduction

It is now widely recognized that advances in machine
learning are ushering in a new era of computational and ex-
perimental science. This era will be characterized by in-
creasingly powerful, automated, and large-scale methods
in data analysis and visualization (Mjolsness & DeCoste,
2001). The full potential of machine learning will only be
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Figure 1. The global projection of oceanic

biomes produced by k-means clustering (k =
11) after data analysis by maximum variance

unfolding; see section 4 for details. The

biomes are colored according to cluster mem-

bership and sorted by the first principal com-

ponent of the cluster centroids.

realized, however, by making the field’s leading algorithms
available and accessible to researchers in other data-driven
and computation-intensive areas of science.

As a successful example of this practice, in this paper
we describe an interdisciplinary collaboration between re-
searchers in machine learning and oceanography. The col-
laboration was formed to study the problem of open ocean
biome classification. Biomes are regions on Earth with sim-
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ilar climate (e.g., temperature and rainfall) and vegetation
structure (e.g., grasslands, coniferous forests and deserts).
Ecologists are interested in biomes as units of classifica-
tion because they correspond broadly with the community
structure and dynamics of the organisms that live there. In
essence, dividing the world into meaningful biomes pro-
vides a rough estimate of the number, location, and sim-
ilarity of the different ecosystems on Earth. Moreover,
this problem is ripe for automated analysis because oceanic
biomes are large relative to the resolution of available data.
In particular, the available data makes it especially feasible
to classify surface waters of the open ocean—namely, that
part of the ocean that is offshore and restricted to the upper
200 meters of water.

In this paper, we provide the first quantitative classifica-
tion of open ocean biomes based on a fully automated, sta-
tistical analysis of climatological and primary production
parameters. To discover these biomes, we applied leading
methods in high dimensional data analysis, clustering, and
visualization to oceanographic measurements culled from
multiple databases and previous ecological studies. Fig. 1
provides an overall visualization of our results.

While our results are interesting in their own right,
they also showcase the real-world applicability of several
recently developed algorithms for high dimensional data
analysis. In addition to standard procedures such as k-
means clustering and principal component analysis, we also
experimented with spectral clustering (Ng et al., 2002),
Isomap (Tenenbaum et al., 2000), and maximum variance
unfolding (Weinberger et al., 2004; Sun et al., 2006). No-
tably, our most interesting results were obtained not from
the original implementations of these algorithms, but by
adapting the algorithms in various ways and incorporating
advances suggested by follow-up work (de Silva & Tenen-
baum, 2003; Weinberger et al., 2007).

Our results also illuminate certain stark differences be-
tween these algorithms. For the most part, recently devel-
oped algorithms for “manifold learning” yield fairly similar
results on the carefully controlled data sets used to bench-
mark algorithms in this area. The basic assumptions behind
these algorithms also appear to be satisfied by most real-
world data sets on which they have been tested. The ocean
data set in this paper, however, appears to violate the basic
assumption of (at least) one popular algorithm for manifold
learning, leading to fairly divergent results in a real-world
application of interest. We highlight the reasons for this di-
vergence in the discussion of our methods and experimental
results. Our work on this particular application thus serves a
broader purpose than the application itself. More generally,
it provides a valuable case study for researchers in the area
of manifold learning.

Our paper is organized as follows. In section 2, we de-
scribe the problem of open ocean biome classification in

more detail, as well as the data set compiled for this task. In
section 3, we briefly survey our methods for data analysis.
In section 4, we analyze the results from different methods
and compare the different aspects of biome structure that
they reveal. Finally, in section 5, we conclude with general
lessons from our work.

2 Open ocean biome classification

The endeavor to classify open ocean biomes is not a new
one. Oceanic biomes have been identified for more than
100 years based on species range distributions (Giesbrecht,
1892; McGowan, 1971), with the explicit acknowledgment
that some set of habitat characteristics were likely driving
the patterns. However, it was only in the last decade that
oceanic biomes were first determined from physical, chemi-
cal and biological habitat characteristics (Longhurst, 1998).
This advance was made possible by the recent accumulation
of multiple long-term global databases of shipboard mea-
surements and satellite images. This manual classification
of oceanic biomes and provinces was based on a visual as-
sessment of a decade of ocean color images corroborated
by numerous physical, chemical, and biotic factors. While
this biome classification has proven useful, the methodol-
ogy behind it has limitations. It is difficult to determine the
relative importance of biome separations or to assess the
similarity of geographically separate regions. Furthermore,
visual biome assessments are not readily adapted to oceano-
graphic analyses on different temporal or spatial scales and
they offer no systematic method for evaluating the effect of
additional variables on biome assignment. In spite of these
limitations, there has yet to be a quantitative, multivariate
assessment of the identity, location, and similarity of ocean
biomes. Automated methods have the potential to (i) pro-
vide further insight into the structure, distribution, and in-
terrelationships of surface ocean ecosystems; (ii) enable the
identification of biomes on a range of temporal scales; and
(iii) support quantitative intercomparisons of open ocean
biomes.

In this study we characterize open ocean biomes based
on both the long-term annual mean and the average an-
nual range of the following seven global ocean charac-
teristics: temperature (�C), salinity, 10 to 200m den-
sity difference, photosynthetically active radiation (PAR,
Einsteins/m2/day), phosphate (µmol/L), dissolved oxygen
(ml/L), and net primary productivity (NPP, mg C/m2/day).
These measurements were considered at a 2� by 2� reso-
lution (latitude by longitude), resulting in a d = 14 di-
mensional data set of n = 9105 geographic locations.
All measurements except PAR and NPP were obtained as
objectively analyzed annual and monthly climatologies in
a 1� by 1� resolution from the World Ocean Atlas 2005
(WOA05) (Locarnini et al., 2006; Antonov et al., 2006;
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Garcia et al., 2006a; Garcia et al., 2006b), with 10 to 200m
density difference calculated from WOA05 temperature and
salinity climatologies. Monthly NPP and PAR from 1998-
2005 at 1/6� by 1/6� resolution were obtained from the
Ocean Productivity website; NPP was estimated based on
SeaWiFs ocean color images and the Vertically General-
ized Production Model (VGPM) (Behrenfeld & Falkowski,
1997). For all variables, annual range (as a measure of intra-
annual variability) was calculated as the range in average
monthly conditions for a given 1� by 1� location. In the
final data preparation, we excluded all neritic (i.e. coastal)
zones using a 200-meter depth mask from WOA05 and av-
eraged all high resolution variables to a 2� resolution. We
normalized all oceanographic measures to have zero mean
and unit standard deviation. The normalization was applied
to attach equal importance to each measurement.

Ocean biomes were identified by searching for clusters
in the normalized data described above. Note that by de-
sign, latitude and longitude coordinates are not included
in this data. Ocean regions that are distant from one an-
other can have very similar features, for instance both po-
lar regions are characterized by low temperatures. Simi-
larly, nearby areas in the ocean can have dramatically differ-
ent ecological compositions. The geographical coherence
in our results is a product of the oceanographic measures
alone.

We used two criteria to choose the appropriate number
of clusters: first, that there should be enough clusters to
highlight differences between different methodologies for
data analysis; second, that cluster boundaries should sug-
gest visible changes in open ocean biome classification, as
assessed by an expert oceanographer. The first criterion sets
the lower limit on the number of clusters. In this anal-
ysis, positive and negative aspects of the various method-
ologies were difficult to discern with fewer than 8 clusters.
The second criterion acknowledges that for the purpose of
classifying open ocean biomes, the data analysis should be
performed at a sufficiently coarse resolution to avoid too
much subdivision along coastlines. Coastal ocean biomes
are known to be geographically much smaller than the open
ocean biomes they abut. We began to observe a prolifera-
tion of small coastal biomes in our results when the algo-
rithms were asked to compute more than 10 to 12 clusters.
This range in cluster numbers is approximately equal to the
number of open ocean biomes within an ocean basin as de-
termined by other methods (Longhurst, 1998), further sup-
porting the use of 10 to 12 clusters. Based on these criteria,
we used 11 clusters throughout our analyses as a generally
useful choice for all algorithms.

As our paper came to press, another group published a
largely objective study of surface ocean biomes (Oliver &
Irwin, 2008). Our study and this recent study are comple-
mentary in the aspects of surface ocean classification that

they explore. In the present study we include a wide array
of variables and focus on the effect of dimensionality reduc-
tion on the classification of biomes. In contrast, Oliver and
Irwin focus on the problem of automatically identifying the
number of surface ocean biomes. Furthermore, while the
present study uses k-means clustering exclusively as a final
processing step, Oliver and Irwin combine k-means cluster-
ing, Wards linkage agglomerative clustering, and a post-hoc
separation of clusters based on geographic continuity. It is
notable that in spite of the large differences in variables in-
cluded and study methodology, the major features of our
classifications are similar.

Although oceanographers have identified ocean biomes
in the past, there is no standard global set of ocean biomes
against which to compare our results, and thus there is no
explicit ground truth for evaluating each of our methods.
This is hardly a unique problem, however, as there are many
application domains lacking a well-defined ground truth.
Nevertheless, one may still want to investigate those do-
mains with modern machine learning techniques. In the
case of ocean biome classification, our evaluation criteria
are defined as (i) the correspondence of cluster boundaries
with known currents, faunal breaks, or other biogeochemi-
cal boundaries, and (ii) the biogeographic and environmen-
tal similarity of clustered regions. While these evaluation
criteria lack the succinct appeal of a black-and-white clas-
sification set, they reflect the state of knowledge within the
domain. To apply these criteria to our results, we rely on
the expert analysis of an oceanographer well-versed in the
ocean biome literature.

3 Methods

Ocean biomes were discovered by analyzing the n =
9105 samples of d = 14 normalized measurements de-
scribed in the previous section. We used a number of dif-
ferent methods for exploratory analysis, visualization, and
clustering (Burges, 2005) of the data. These included tra-
ditional methods, such as k-means clustering and princi-
pal component analysis, as well as newer methods such as
Isomap (Tenenbaum et al., 2000) and maximum variance
unfolding (Weinberger et al., 2004). The methods in man-
ifold learning are strongly motivated by the three dimen-
sional nature of the ocean itself (characterized by latitude,
longitude, and depth). For this reason, we anticipated that
the manifold learning algorithms would extract three di-
mensional representations of the data (which would, in turn,
be fed as input to k-means clustering). Manifold learning
techniques are natural in this application because they al-
low us to achieve a manageable (and unbiased) representa-
tion of the ocean without losing much information. We also
experimented with spectral clustering (Ng et al., 2002), but
it performed poorly for reasons that we suggest in section 5.
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In the following sections, we provide a brief survey of the
algorithms used in our study.

3.1 K-means

K-means is one of the simplest and most popular algo-
rithms for unsupervised clustering of multivariate data. The
algorithm assigns each data point ~xi 2 <d to one of k dis-
joint clusters {C↵}k

↵=1, where
S

↵ C↵ = {~xi}n
i=1. Each

cluster C↵ has a corresponding centroid ~µ↵2<d. The cen-
troids and cluster assignments are chosen to minimize the
vector quantization error:

Lk-means =
kX

↵=1

X

i2C↵

k~xi � ~µ↵k2. (1)

Eq. (1) is minimized by a two-step iterative process. First,
each input ~xi is assigned to the cluster with the closest cen-
troid. Second, each centroid ~µ↵ is re-estimated as the mean
of the inputs assigned to it. This process is repeated until
convergence. Although this optimization is not convex, in
practice it often converges to good local minima with high
reliability. We investigated k ranging from 2 to 16. For
k = 2, we initialized the cluster centroids at random; for
k > 2, we initialized the centroids by inheriting those from
a previous run of the algorithm with k� 1 clusters, then
choosing a new centroid from among the data points in the
cluster with the largest variance.

3.2 PCA and MDS

Principal component analysis (PCA) is a simple linear
method for high dimensional data analysis and visualiza-
tion. PCA computes a linear orthogonal projection P 2
<r⇥d that maps the original input space <d into a lower
dimensional subspace <r. For simplicity, assume the data
points are centered. Then the projection P is computed by
minimizing the reconstruction error:

LPCA =
X

i

k~xi �P>P ~xik2 (2)

subject to PP>= I, where I is the r⇥r identity matrix. The
constraint ensures that the rows of P are orthonormal. Al-
though the optimization in eq. (2) is not convex, its global
minimum can be computed by singular value decomposi-
tion. In particular, the rows of P are given by the top
r eigenvectors of the covariance matrix C =

P
i

1
n~xi~x

>
i .

Each eigenvalue of C reveals the variance of the coordinate
obtained from the projection onto its eigenvector. These
coordinates represent the data’s so-called principal compo-
nents.

A closely related method for linear dimensionality re-
duction is metric multidimensional scaling (MDS). This

method produces outputs ~yi 2 <r that best preserve the
inner product structure of the original data. The outputs are
computed by minimizing:

LMDS =
X

ij

(~yi ·~yj � ~xi ·~xj)2 (3)

Despite its different motivation, it can be shown that MDS
yields the same solution as PCA. Though the loss function
explicitly penalizes differences in inner products, MDS is
often used to derive outputs that approximately preserve
pairwise Euclidean distances. In practice, starting from a
pairwise distance matrix, one infers the corresponding in-
ner products which are then fed as input to MDS.

3.3 Isomap

The Isomap algorithm (Tenenbaum et al., 2000) provides
a powerful nonlinear extension of multidimensional scaling.
It was developed to analyze high dimensional data points
sampled from a low dimensional manifold. Whereas MDS
focuses on preserving Euclidean distances, Isomap focuses
on preserving geodesic distances along the manifold.

The algorithm has three basic steps. The first step com-
putes -nearest neighbors of each data point, then uses this
information to create an adjacency graph whose nodes rep-
resent data points and whose (undirected) edges indicate
nearest neighbor relations. The second step estimates the
geodesic pairwise distances �ij along the manifold between
points ~xi and ~

j. This is done by computing shortest paths
through the adjacency graph, with edges weighted by near-
est neighbor distances. Finally, the third step uses these
pairwise distances as input to MDS. From these distances,
MDS outputs low dimensional outputs whose Euclidean
distances k~yi�~yjk are approximately equal to the geodesic
distances �ij found in step two.

To analyze our data set of size n = 9105 we used a
fast approximate implementation of the original Isomap al-
gorithm, known as landmark Isomap (de Silva & Tenen-
baum, 2003). Landmark Isomap scales better to large data
sets because it only computes the shortest paths between the
original data points and some smaller subset of data points
designated as landmarks. In our experiments with landmark
Isomap, we used 500 landmarks and  = 15 nearest neigh-
bors.

The performance guarantees for Isomap depend on an
assumption that the data’s underlying manifold can be iso-
metrically mapped to a convex subset of Euclidean space.
When this assumption does not hold, the algorithm can re-
turn spurious results. Later we will examine this assumption
in the context of open ocean biome classification.
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Figure 2. Normalized eigenvalue spectra from PCA, Isomap, and MVU. Each normalized eigenvalue

reveals the relative amount of variance in the corresponding principal component.

3.4 Maximum variance unfolding

Maximum variance unfolding (MVU) (Weinberger et al.,
2004; Sun et al., 2006) provides yet another nonlinear ex-
tension of multidimensional scaling. Like Isomap, it was
developed to analyze data sampled from a low dimensional
manifold. While Isomap attempts to preserve geodesic dis-
tances, though, MVU focuses on preserving local distances.
Let us define the adjacency matrix ⌘ij 2 {0, 1} with ⌘ij = 1
if ~xi and ~xj are -nearest neighbors and ⌘ij = 0 otherwise.
MVU attempts to compute the maximum variance config-
uration of low dimensional outputs ~yi 2 <r that preserve
the distances between -nearest neighbors. The outputs are
computed by minimizing the loss function:

LMVU =
X

ij

⌘ij(k~yi�~yjk2�k~xi�~xjk2)2�⌫

X

i

k~yik2,

(4)
where the constant ⌫ balances the distance-preserving and
variance-maximizing goals of the optimization. The loss
function in eq. (4) is not convex. However, its optimization
can be reformulated as an instance of semidefinite program-
ming by relaxing the dimensionality of the outputs ~yi. To
analyze our data set of size n = 9105, we implemented a
fast approximation (Weinberger et al., 2007) to the origi-
nal implementation of MVU. This approximation solves a
much smaller semidefinite program to find an approximate
minimum of eq. (4). The loss function is then further mini-
mized by conjugate gradient descent.

4 Results

We applied the methods described in the last section to
derive low dimensional representations of the data. Fig. 2
shows the normalized eigenvalue spectra from these meth-
ods. Note that the top three principal components in PCA
account for less than 80% of the variance in the original
data. On the other extreme, MVU accounts for nearly all of
the variance in three dimensions.

We used the k-means algorithm to derive clusters in the
data and to locate likely borders between ocean biomes. The

k-means algorithm was applied to the raw d = 14 dimen-
sional data, as well as to the three dimensional representa-
tions discovered by Isomap and MVU. Running k-means on
top of these representations is appropriate since we are look-
ing for biomes, which conceptually align well with clusters
in ocean feature space. To assess the quality of the cluster-
ing, k-means cluster assignments were mapped onto global
ocean projections and analyzed by an expert oceanographer.
The quality of the clustering was measured using two crite-
ria: (i) the correspondence of geographic cluster boundaries
with known currents, faunal breaks, or other biogeochemi-
cal boundaries, and (ii) the biogeographic and environmen-
tal similarity of regions clustered together.

In general, all the methods from section 3 produced
reasonable results, exhibiting both geographical continu-
ity and high covariance with major oceanographic and bio-
geographic regions. However, a detailed review of the re-
sults revealed significant differences between the various
methods. In what follows, we use two regional compar-
isons (North Atlantic and Antarctic) to highlight the par-
ticular strengths and weaknesses that emerged from this
review. For the sake of brevity, we discuss geographic
patterns in general terms and in reference to accepted
hydrographic (Tomczak & Godfrey, 2003) and biogeo-
graphic (Longhurst, 1998) features, with limited examples
from species ranges. Also, as shorthand, in the following
sections we use Isomap and MVU to refer to the results
obtained by k-means clustering of the low dimensional rep-
resentations discovered by these algorithms.

4.1 North Atlantic comparison

Within the North Atlantic (top panel of Fig. 3), previ-
ous expert assessments of biome classification appear to
coincide best with the automated results from MVU, fol-
lowed next by those of raw k-means, then Isomap. Gener-
ally speaking, MVU identifies biomes with boundaries and
geographic extents that are concordant with oceanographic
and biogeographic features, with some evidence for latitu-
dinal over-division. Only MVU has cluster boundaries that
lie along a line stretching from northern Canada to northern
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North Atlantic 

comparison

Antarctic

comparison

Raw Isomap MVU

Figure 3. Regional geographic projections of k-means clustering (with k=11) on raw data (d=14) and

processed data from the North Atlantic (top) and Antarctic (bottom).

Norway, delineating the North Atlantic Current (Tomczak
& Godfrey, 2003) and many species range limits. For exam-
ple, copepods like Calanus hyperboreus and Paraeucheata
norvegica range to the north of the current, while cope-
pods like Neocalanus gracilis and Metridia lucens range to
the south (Barnard et al, 2004). On the other hand, only
raw k-means identifies a separate coastal biome along the
northeastern coast of Africa (in orange); this divides a pro-
ductive coastal upwelling region from the less productive
gyre biome (Longhurst, 1998). Isomap suboptimally clus-
ters this coastal region with the Mediterranian and MVU
fails to clearly identify a coastal biome at all. MVU and
raw k-means have reasonable albeit different subdivisions
of the subtropics, a region characterized by low productiv-
ity, a stable pycnocline, and high species richness. MVU
subdivides the subtropical gyre into a northern biome in-
cluding the Gulf Stream Extension and Azores Current (yel-
low), and a southern biome composed of the Sargasso Sea
and a southeastern extension along the Subtropical Conver-
gence (red orange) (Tomczak & Godfrey, 2003). Raw k-
means clusters the subtropical gyre along a longitudinal di-
vide with both biomes (in yellow and green) notably trun-
cated in their southern extent relative to the Subtropical
Convergence (the conventional southern boundary for the
subtropical gyre). MVU’s latitudinal subdivision of this re-
gion is understandable given the different conditions along
the edges of the gyre (e.g., intensified currents and asso-
ciated features) (Longhurst, 1998). However, MVU lati-
tudinally subdivides the tropical Atlantic as well, suggest-
ing a general tendency for latitudinal over-division. Raw
k-means highlights a longitudinal subdivision in the sub-

tropical gyre with scant support from known biogeographic
ranges, although the biome division has previously been
proposed based on east-west differences in Sargassum kelp
abundance, among other factors (Longhurst, 1998). Over-
all in the North Atlantic, MVU best emphasizes the known
importance of the North Atlantic Current as both a hydro-
graphic feature and a biogeographic boundary.

4.2 Antarctic comparison

In the Southern Ocean (bottom panel of Fig. 3), the
best overall characterization of open ocean biomes is pro-
vided by k-means clustering of the raw data. The southern-
most biome (south of the Antarctic Divergence at 65�S)
appears in the raw k-means and MVU clusters only. This
biome classification is consistent with the occurrence of
ice adapted fauna (e.g., Stephos longipes and Euphau-
sia crystallorophias) in this seasonally ice-covered re-
gion (Longhurst, 1998). In the waters stretching from the
Antarctic Divergence to the Subtropical Front (approxi-
mately 65�- 45�S), raw k-means and MVU identify one
and two biomes, respectively; both are supported by biogeo-
graphic ranges. This broad region spans the marginal ice to
ice-free zones and crosses several fronts (Tomczak & God-
frey, 2003); some abundant species span this entire region
(e.g., Salpa thompsoni, Calanus propinquus, Calanoides
acutus) (Longhurst, 1998), while others characterize waters
south or north of the Polar Front (e.g., Euphausia superba
and Euphausia frigida respectively) (Brinton, 1962). The
next major hydrographic and biogeographic region is the
Subtropical Convergence Zone (north of 65�) (Longhurst,
1998), which is characterized by transitional species like
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Figure 4. Color-coded geographic projections

of the leading three coordinates from MVU

and their combination. To improve the overall

visualization, each channel displays the same

range of color. The green and blue channels

would have much less range if weighted by

their actual proportion of the variance.

the krill Thysanoessa gregaria and Nematoscelis mega-
lops (Brinton, 1962). The Subtropical Convergence ap-
pears in raw k-means and Isomap (green and orange respec-
tively), but is over-split in MVU (green and yellow bands).
Unlike the extra subdivision in the waters stretching from
the Antarctic Divergence to the Subtropical Front, the addi-
tional MVU division in the Subtropical Convergence is not
supported by species ranges or by hydrographic features.
Therefore, given the concordance with known faunal and
physical features in the Southern Ocean, raw k-means is
preferred in this region over both MVU and Isomap.

5 Discussion

In this paper, we have applied leading methods in high
dimensional data analysis to the visualization and cluster-
ing of oceanographic data. We conclude by highlighting
the general lessons that emerged from this particular appli-
cation.

Exploratory analysis and visualization are greatly facil-
itated by the ability to discover faithful two or three di-
mensional representations of multivariate data. As shown
in Fig. 2, on the d = 14 dimensional data set in this pa-
per, both PCA and Isomap fail to discover such represen-
tations. PCA fails presumably because it focuses only on
linear structure, and our data does not lie principally in
a two or three dimensional subspace. We speculate that
Isomap’s failure stems from its underlying assumption that
the data can be isometrically mapped to a convex subset
of Euclidean space. Oceanic regions are bounded by cur-
rents, across which sharp discontinuities in environmental
conditions occur. This characteristic of the ocean may lead
to gaps in the continuity of the environmental data (i.e.,
“holes”) and thus violate the convexity assumptions behind
the Isomap algorithm, leading to spurious results.

Where PCA and Isomap fail in our application, however,
MVU essentially succeeds. Fig. 4 maps the three dimen-
sional representation discovered by MVU onto the globe.
The figure enables the three coordinates of MVU to be in-
terpreted (by an expert) in terms of actual environmental
variables. In particular, the first MVU coordinate has a clear
latitudinal gradient which is highly correlated to the mean
annual temperature, PAR, and dissolved oxygen. Likewise,
the second and third MVU coordinates each show a weak
correlation to five other environmental variables (annual
variability in NPP, PAR, temperature, and water column
density difference as well as mean annual NPP) that are
poorly captured by the first MVU coordinate. Finally, the
composite image of these coordinates in the bottom panel
of the figure provides a highly graphic and interpretable vi-
sualization of the entire data set.

Our results in clustering also present an opportunity to
compare traditional versus more recently proposed meth-
ods in high dimensional data analysis. For the purpose of
open ocean biome classification, the k-means algorithm on
the raw data provides a surprisingly successful clustering.
However, raw k-means appears to be somewhat insensitive
to fine gradients in conditions, as evidenced by the coarse
clusters identified in the subpolar North Atlantic. In the sub-
tropical to polar North Atlantic, the results from MVU pro-
duce clusterings most consistent with known oceanographic
biomes. Unfortunately, this attention to detail by MVU also
leads to an emphasis of latitudinal variations in the Antarc-
tic, unlike the results from raw k-means. These distinctions
are certainly present in the data, but they might not be useful
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if they are too fine for organisms to exploit or if the ecolog-
ical importance of an environmental change is not linearly
related to the magnitude of the change itself.

Based on the results from all of our methods, we rec-
ommend MVU for oceanographic analyses within specific
subregions (e.g., North Atlantic, North Pacific) or for those
seeking to measure fine spatial or temporal gradients. For
analyses that are concerned more with general trends or take
place on larger scales, however, simple k-means may be the
most appropriate method. In addition to the above methods,
we tried several other methods not reported here. Spectral
clustering (Ng et al., 2002) produced results that lacked geo-
graphical continuity, perhaps because, like kernel PCA with
a Gaussian kernel, it projects distant points into orthogonal
vectors, making it ill-equipped to discover low dimensional
manifolds (Weinberger et al., 2004). We investigated sev-
eral other techniques (e.g., locally linear embedding and
additional variants of MVU (Song et al., 2008)) but they
were too similar to our main methods to warrant separate
discussion.

In conclusion, perhaps the most important lesson of our
work is that modern methods in machine learning provide
new avenues for exploratory analysis of scientific data. In
general, we have found that an interdisciplinary approach
is needed to combine the statistical expertise of machine
learning researchers with the domain knowledge of natural
scientists. This paper provides one example of such a fruit-
ful collaboration.
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