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Abstract

A comparison of compressional properties of silicate solids, glasses, and liquids reveals the following fundamental differ-
ences: (1) Liquids have much smaller bulk moduli than solids and glasses and the bulk moduli of various silicate melts have a
narrow range of values; (2) Liquids do not follow the Birch’s law of corresponding state as opposed to solids and glasses; (3)
The Grüneisen parameter increases with increasing pressure for liquids but decreases for solids; (4) The radial distribution
functions of liquids show that the interatomic distances in liquids do not change upon compression as much as solids do.
The last observation indicates that the compression of silicate melts occurs mostly through the geometrical arrangement of
various units whose sizes do not change much with compression, i.e., the entropic mechanism of compression plays a dom-
inant role over the internal energy contribution. All of the other three observations listed above can be explained by this point
of view. In order to account for the role of the entropic contribution, we propose a new equation of state for multi-component
silicate melts based on the hard sphere mixture model of a liquid. We assign a hard sphere for each cation species that moves
in the liquid freely except for the volume occupied by other spheres. The geometrical arrangement of these spheres gives the
entropic contribution to compression, while the Columbic attraction between all ions provides the internal energy contribu-
tion to compression. We calibrate the equation of state using the experimental data on room-pressure density and room-pres-
sure bulk modulus of liquids. The effective size of a hard sphere for each component in silicate melts is determined. The
temperature and volume dependencies of sphere diameters are also included in the model in order to explain the experimental
data especially the melt density data at high pressures. All compressional properties of a silicate melt can be calculated using
the calibrated sphere diameters. This equation of state provides a unified explanation for most of compressional behaviors of
silicate melts and the experimental observations cited above including the uniformly small bulk moduli of silicate melts as well
as the pressure dependence of Grüneisen parameters. With additional data to better constrain the key parameters, this equa-
tion of state will serve as a first step toward the unified equation of state for silicate melts.
� 2011 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Compressional properties of silicate melts including
density and its pressure (or temperature) derivative, i.e.,
bulk modulus (or thermal expansivity), are crucial to our
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understanding of many geological problems such as the
generation and differentiation of silicate melts in the Earth’s
mantle, and the evolution of a melt layer (e.g., the putative
magma ocean) in a planet. Important issues in this regard
include the density of melts with various chemical composi-
tions under deep Earth conditions (i.e., equation of state
(EOS)) and the variation of some thermodynamic proper-
ties such as the Grüneisen parameter with compression.
In order to understand these issues, a physically sound
model is needed for the compression of molten materials
under deep Earth conditions.
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However, unlike the solid and gaseous states of a mat-
ter for which there are widely accepted idealized models
such as a crystal lattice and an ideal gas, describing the
properties of liquids is challenging because they are nearly
as dense as solids yet there is no long-range order in atom-
ic positions (see textbooks, e.g., Egelstaff, 1994; March and
Tosi, 2002; Barrat and Hansen, 2003; Hansen and
McDonald, 2006). In the past, purely empirical equations
of state were frequently employed for silicate melts. One
such type of EOS is the Taylor expansion of volume in
terms of pressure (e.g., Lange and Carmichael, 1987,
1990; Kress and Carmichael, 1991). The effect of liquid
composition on volume is studied by the ideal mixing
model first developed by Bottinga and Weill (1970). In
the Bottinga–Weill model, the molar volume of a melt is
a linear function of the partial molar volume of each oxide
component (SiO2, for example) in the melt, implying that
the compression of a complex liquid can be modeled as
a sum of the compression of individual solid-like compo-
nent. Similarly, higher order coefficients in the Taylor
expansion are calculated from properties of oxide compo-
nents by assigning bulk modulus for each component
oxide (e.g., Lange and Carmichael, 1987). This type of ap-
proach was employed in the widely used software package
MELTS (Ghiorso and Sack, 1995) for the modeling of
phase equilibria in magmatic systems. Apart from the
obvious limitation that such an approach works only to
a low degree of compression (Lange and Carmichael,
1987), there is a fundamental issue for the basic concept
behind this approach: An implicit assumption is that the
compression of a complex liquid such as a silicate melt
can be viewed as the weighted average of compression of
individual oxide components. As we will show in this pa-
per, existing data on bulk moduli and radial distribution
functions of silicate melts suggest that such a solid-based
model of compression is unlikely valid for the compression
of silicate melts.

A modified version of a curve-fitting approach has
recently been proposed by Ghiorso and his co-worker
(Ghiorso, 2004a,b,c; Ghiorso and Kress, 2004) using the
Padè approximation. In this approach, some complications
such as the influence of mixing of SiO2 species with different
Si–O coordination numbers are included. However, this is
again an entirely empirical approach and the formula used
in their approach has no strong physical basis.

Another group of equations of state borrows directly the
ideas developed for solids. These include the widely used
third-order Birch–Murnaghan EOS (Birch, 1947) and the
Vinet EOS (Vinet et al., 1986). Many studies for silicate liq-
uids at high pressure employ the Birch–Murnaghan EOS
(e.g., Rigden et al., 1989; Agee, 1998; Stixrude and Karki,
2005). Also, it was utilized in pMELTS (Ghiorso et al.,
2002), the revised version of MELTS, for the modeling of
phase equilibria up to 3 GPa. Similarly, Stixrude and Karki
(2005) explained the calculated trend in Grüneisen parame-
ter using the behavior of Grüneisen parameters of the
corresponding solids. The physical basis for the Birch–
Murnaghan EOS is that the thermodynamics of a given
material is completely characterized by the volumetric
strain and that the influence of temperature can be included
through the temperature dependence of parameters such as
bulk modulus. Such an approach is valid when the major
contribution to the free energy is the internal energy. How-
ever, as we will demonstrate in this paper, several observa-
tions strongly suggest that it is not the internal energy that
changes most upon compression of a silicate melt: the fac-
tor that plays the most important role in the compression of
silicate melts is entropy. In these cases, concepts borrowed
from solids may not be applied to liquids.

The modern theories of liquids (see textbooks, e.g.,
Hansen and McDonald, 2006) may provide a more
promising way to obtain the EOS for silicate liquids. These
theories relate the microscopic description of atomic config-
urations and interactions in liquids to thermodynamic
properties with the help of classical statistical mechanics.
The key to this approach is to make adequate approxima-
tions for the interatomic potentials of atoms (and/or ions)
and the correlation functions of atomic configurations.
Among various equations that have been proposed
(Hansen and McDonald, 2006), a simple but widely used
equation is the hard sphere equation of state (Reiss et al.,
1959; Thiele, 1963; Wertheim, 1963), which successfully cal-
culates the entropic contribution through the excluded vol-
ume effect of rigid molecules in liquids. As we will show in
this paper, the hard sphere EOS can naturally explain some
of the most distinct compressional behaviors of silicate liq-
uids. Guillot and Sarda (2006) first applied the hard sphere
EOS to describe the compression of some silicate melts such
as peridotitic and basaltic melts up to 10 GPa, demonstrat-
ing the applicability of the hard sphere EOS to silicate
melts. However, their approach cannot be applied to study
the effect of melt composition since the silicate melt was
treated as a single component system with an average
sphere diameter defined for all melt components. A more
critical problem is that the hard sphere EOS oversimplifies
the interatomic potential between atoms by neglecting the
cohesion energy of liquids, which results in an infinite molar
volume at zero pressure. Therefore the EOS had to be
scaled to a reference data point in Guillot and Sarda
(2006) to obtain the hard sphere diameter. In order to de-
scribe more realistic ionic liquids with Coulombic interac-
tions, many charged hard sphere mixture models (e.g.,
Caccamo and Malescio, 1989; Blum et al., 1992; Rosenfeld,
1993) have been developed using statistical mechanics in the
liquid state physics literature. Despite the sophisticated for-
mulations of these models, which often involve integral
equations, the application of these models are often limited
to simple cases such as binary mixtures with equally sized
and charged ions, i.e., the restricted primitive model (e.g.,
Blum et al., 1992; Fisher and Levin, 1993; Zhou and Stell,
1995; Zhou et al., 1995; Guillot and Guissani, 1996). Since
the purpose of this paper is to develop a simple model for
the equation of state of complex silicate liquids that can
be readily used for geochemical and geophysical modeling,
we choose an alternative approach by modifying the model
of hard sphere mixtures (Lebowitz, 1964; Lebowitz et al.,
1965; Mansoori et al., 1971) using some empirical approx-
imations for the Coulombic potential energy and soft repul-
sion between spheres to account for the experimental data
of silicate liquids.
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In this paper, we will first review the experimental (and
computational) observations on the compressional proper-
ties of silicate liquids, solids, and glasses and discuss the
differences in the compressional behaviors of these states.
We will show that these differences can be explained by
the important contribution of entropy as opposed to inter-
nal energy. We will then propose a new equation of state for
silicate liquids that provides a unified explanation for all the
observations based on the modified hard-sphere model of
liquids, which emphasizes the entropic contribution to
compression.

2. A REVIEW OF OBSERVATIONS ON

COMPRESSIONAL PROPERTIES

2.1. Comparison of density and bulk modulus

If temperature (T ) and volume (V , see Table 1 for the
definition of symbols) are chosen as the independent vari-
ables, then the isothermal EOS of a material can be given
by the volume derivative of the Helmholtz free energy (F )
of the material as,

P ¼ � @F
@V

� �
T

¼ � @U
@V

� �
T

þ T
@S
@V

� �
T

; ð1Þ

which contains both the internal energy contribution and
the entropy contribution. The second-order volume deriva-
tive of free energy (F ) gives the isothermal bulk modulus
Table 1
Definition of symbols used in the text.

Symbol Definition

M Molar mass (molar fo
V Molar volume
n Number of atoms per
Ma ¼ M=n Mean atomic weight
KT ¼ �V ð@P=@V ÞT Isothermal bulk modu
a ¼ ð@V =@T ÞP=V Thermal expansivity
CV ¼ T ð@S=@T ÞV Constant volume spec
CP ¼ T ð@S=@T ÞP Constant pressure spe
c ¼ aKT V =CV Grüneisen parameter
ð@KT =@T ÞV =aKT Intrinsic temperature
K 0T ¼ �ð@ ln KT =@ ln V ÞT Pressure derivative of
dT ¼ �ð@ ln KT =@ ln V ÞP Anderson–Grüneisen
v ¼ �ð@ ln KT =@ ln V ÞMa

Volume derivative of
q ¼ ð@ ln c=@ ln V ÞT Volume dependence o
X i Mole fraction of the i

ri Effective sphere diame
V m Volume occupied by a
f ¼ V m=V Packing fraction
y1, y2 Interactions among di
U ¼ PV =RT Dimensionless compre
l Exponent of the attra
m Exponent of the repul
gi ¼ ð@ ln ri=@ ln T ÞV Temperature depende
ni ¼ 3ð@ ln ri=@ ln V ÞT Volume dependence o
#i ¼ ð@ ln V m0i=@T ÞV Temperature depende
x ¼ ð@n=@T ÞV Temperature depende
f ¼ ð@n=@ ln V ÞT Volume dependence o
s ¼ dn=df Dependence of n on p
h ¼ ð@ ln V m=@T ÞV Temperature depende
cNa2O–Al2O3

Cross composition ter
KT ¼ �V
@P
@V

� �
T

¼ V
@2U

@V 2

� �
T

� TV
@2S

@V 2

� �
T

; ð2Þ

which also has two contributions.
Fig. 1 compares the density and bulk modulus of silicate

liquids and solids with the same compositions at room pres-
sure. We can see that the densities of silicate liquids are only
slightly smaller (by 10–20%) than those of the correspond-
ing solids, whereas the bulk moduli of silicate liquids are
much smaller (a factor of 3–6) than those of their solid
counterparts. Therefore the large difference in bulk moduli
between liquid and solid silicates is not due to the difference
in density. That is, the compression of silicate liquids does
not follow the Birch’s law of corresponding state (e.g.,
Birch, 1961; Anderson and Nafe, 1965; Chung, 1972;
Shankland, 1972) (for more details on Birch’s law see
Appendix A). It should also be noted that the bulk moduli
of silicate liquids have a relatively narrow range
(17–27 GPa for the liquids plotted) in contrast to the corre-
sponding solids (56–134 GPa).

Additional information on compression mechanisms
can be gathered by comparing the bulk modulus as a func-
tion of density (or molar volume) for a given composition
in different states (liquid, glass, and solid). Fig. 2 plots the
bulk moduli of solid, glass and liquid states of CaMgSi2O6

(diopside or Di), CaAl2Si2O8 (anorthite or An), and NaAl-
Si3O8 (albite or Ab) as a function of molar volume per
atom. It is clear that the data of glasses and crystalline
Units
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Fig. 1. Comparison of room-pressure compressional properties for some silicate liquids and solids. (a) Density; (b) bulk modulus.
Experimental data are from the compilation of Bass (1995). Diagonal lines show 1:1 correlation between the axes.
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Fig. 2. Bulk modulus–molar volume relationships for silicate
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lines are predictions of Birch’s law, which are calculated based on
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Ab. The bulk modulus and molar volume data are from Ai and
Lange (2008) for liquid Di and An, Kress et al. (1988) for liquid
Ab, Schilling et al. (2003) for glassy Di and An, and Wang (1989)
for glassy Ab. The bulk modulus of solid Di and its temperature
derivative are from Isaak et al. (2006). The bulk modulus of solid
An and Ab are from Angel (2004) and Tenner et al. (2007),
respectively. The molar volume and thermal expansivity of solid Di
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respectively. Molar volume of solid An and Ab at ambient
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for An and Ab are from Angel (2004) and Tenner et al. (2007),
respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this
article.)
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solids for these silicates fall on the same lines on this plot,
which implies that glasses have the same compression
mechanism as crystals. On the contrary, liquids are signifi-
cantly more compressible than solids and glasses compared
at the same molar volume. This implies that the differences
in bulk modulus between liquids and solids (and glasses)
cannot be attributed to the differences in molar volume
(mean interatomic distance) only: the entropy contribution
to compression must be important for liquids.

2.2. The pressure dependence of Grüneisen parameter

Another important difference in compressional proper-
ties between liquids and solids is the volume (pressure)
dependence of Grüneisen parameter. The Grüneisen
parameter (c) and its volume dependence (q) are defined
as (Anderson, 1995)

c ¼ aKT V
CV

ð3Þ

and

q ¼ @ ln c
@ ln V

� �
T

: ð4Þ

It has been demonstrated by first-principles molecular
dynamics (FPMD) studies (Stixrude and Karki, 2005;
Karki et al., 2006, 2007; de Koker et al., 2008; Stixrude
et al., 2009) that the Grüneisen parameters of liquids
including MgSiO3, Mg2SiO4, SiO2, and MgO increase with
increasing compression (q in Eq. (4) is negative) as opposed
to solids for which the Grüneisen parameters decrease upon
compression (Anderson, 1995). This observation has also
been supported by shock-wave studies on silicate liquids
(Mosenfelder et al., 2009; Asimow and Ahrens, 2010).
Other non-metallic liquids including water and some organ-
ic liquids also have the negative volume dependence (q < 0)
(Boehler and Kennedy, 1977; Brown et al., 1988).
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2.3. Radial distribution functions

The different behaviors of liquids, glasses, and solids
upon compression are also suggested by the studies on
the structural change with increasing pressure. The bond
length in liquids (average distance of the nearest neighbor
atoms) can be obtained by studying the radial distribution
function of liquids (RDF) using X-ray scattering (e.g.,
Funamori et al., 2004; Yamada et al., 2007) or molecular
dynamics (MD) simulations (e.g., Karki et al., 2007).
Fig. 3 shows the change in the Si–O bond distance as a
function of pressure for the MgSiO3 solid (in the orthoen-
statite phase), glass and liquid. It can be seen that the
Si–O bond distance increases with pressure in the MgSiO3

liquid, while it decreases in the MgSiO3 crystal and glass
with similar pressure dependencies. This is consistent with
other observations that the compression mechanisms of liq-
uids are different from solids and glasses and implicates that
much of the compression in silicate liquids occurs through
the geometrical arrangement of liquid building blocks
whose sizes do not change much with compression, i.e.,
the entropic mechanism of compression plays a dominant
role over the internal energy contribution. These differences
in compressional properties between liquids and solids
cannot be fully understood by previous EOS models in
the geological literature, which are based on either the
purely empirical approaches or based on the physical
models developed for solids.

3. FORMULATION OF THE EQUATION OF STATE

3.1. Basic concepts of the hard sphere model for liquids

The interatomic potential may be separated into the
short-range repulsive part and the long-range attractive
part (see textbooks on theories of liquids, e.g., Hansen
and McDonald, 2006). Molecular dynamics simulations
on liquids have shown that the repulsive part of the poten-
tial controls the structure (or geometrical arrangement) of
the liquids (Chandler, 1978). The repulsive potential can
be further simplified as the hard sphere potential, where
the molecules in the liquids are considered as rigid spheres
(with infinite strength) and they can move freely as far as
they do not overlap. The mutual interaction of molecules
is included only by the excluded volume effect (i.e., influ-
ence of finite size of spheres). The pressure in the hard
sphere model is caused entirely by the entropy and the
EOS of a liquid takes a form that resembles that of a gas,
viz.,

P ¼ RT

V
Uðf Þ; ð5Þ

where V is the molar volume of the liquid, R is the gas con-
stant, and Uðf Þ is a function that represents the excluded
volume effect with f being the packing fraction defined as

f � V m

V
; ð6Þ

where V m is the volume occupied by a mole of spheres. For
a monatomic liquid, V m is given by

V m ¼
1

6
pr3N A; ð7Þ

where r is the diameter of hard spheres; N A is the Avoga-
dro’s constant. By taking the volume derivative of Eq.
(5), and using ð@f =@V ÞT ¼ �f =V , one can obtain the bulk
modulus of the hard sphere liquids as

KT ¼
RT

V
Cðf Þ ¼ RT

V

d
df
½f Uðf Þ�: ð8Þ

The key is to formulate Uðf Þ in Eqs. (5) and (8) for var-
ious physical models of liquids.

For the one-component system, the equation of state of
hard sphere liquids can be given as (Reiss et al., 1959;
Thiele, 1963; Wertheim, 1963),

Uðf Þ ¼ 1þ f þ f 2

ð1� f Þ3
; ð9Þ

and hence

Cðf Þ ¼ 1þ 4f þ 4f 2

ð1� f Þ4
: ð10Þ

Eq. (9) successfully explains the results from numerical
simulations on hard sphere liquids (e.g., Henderson, 1964).

Guillot and Sarda (2006) first applied the hard sphere
EOS to the compression of some silicate melts assuming
the melt is a single component system. Although the effect
of composition cannot be studied by the one-component
hard-sphere EOS, the success of Guillot and Sarda (2006)
shows its potential as a starting point for a more precise
EOS for silicate liquids. To illustrate this, here we show that
the hard sphere EOS naturally explains the compressional
properties of silicate liquids reviewed in Section 2.

First, as seen from Eq. (8) the bulk modulus of a hard
sphere liquid depends strongly on the packing fraction of
the liquid, which is a result of the entropy-dominated
compression (through the excluded volume effect). Upon
compression, the bulk modulus increases as the packing
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fraction increases (Fig. 4a). Guillot and Sarda (2006) dis-
covered that for a wide range of melt compositions includ-
ing silica, MORB, peridotite, komatiite, and olivine melts,
the reduced density q� (defined as NAr3=V ) “is remarkably
constant” (q� ¼ 0:803� 0:025). Therefore the packing frac-
tion (Eqs. (6) and (7)) takes a narrow range of �0.42 ± 0.01
at room pressure. This corresponds to a narrow range of
bulk modulus that is consistent with the observation
(Fig. 1b).

Second, the hard sphere model predicts a volume (pres-
sure) dependence of Grüneisen parameter that is consistent
with the observations for non-metallic liquids. To demon-
strate this, we calculate the volume dependence of Grünei-
sen parameter (Eq. (3)) using the volume dependencies of
thermal expansivity, bulk modulus, and heat capacity.
The volume dependence of heat capacity has not been mea-
sured experimentally for silicate liquids, but was estimated
to be relatively small and negligible using thermodynamic
relations (Bottinga, 1985). Results of first-principles molec-
ular dynamic simulations on silicate liquids (e.g., Stixrude
and Karki, 2005; Karki et al., 2006, 2007; de Koker et al.,
2008) showed the change in heat capacity over the pressure
range of 130 GPa is about 10%. From thermodynamic
relations, the volume dependencies of thermal expansivity
and bulk modulus can be defined as non-dimensional
parameters

dT ¼
@ ln a
@ ln V

� �
T

ð11Þ

and

K 0T ¼ �
@ ln KT

@ ln V

� �
T

: ð12Þ

For the simple hard sphere EOS, a can be obtained by
taking the temperature derivative of Eq. (5) as

a ¼ 1

KT

@P
@T

� �
V

¼ 1

T
ð1� f Þð1þ f þ f 2Þ

1þ 4f þ 4f 2
: ð13Þ
Then K 0T and dT can be obtained by taking the volume
derivatives of Eqs. (8) and (13)

K 0T ¼
1þ 9f þ 2f 2

1þ f � 2f 2
ð14Þ

dT ¼
f ð4þ 3f 2 þ 2f 3Þ
ð1� f 3Þð1þ 2f Þ : ð15Þ

Fig. 4b shows the calculated K 0T and dT as functions of f
for the simple hard sphere liquid. The Grüneisen parameter
as a function of volume is therefore given by

c ¼ c0

V 0

V

� ��q

; ð16Þ

with

q ¼ dT � K 0T þ 1: ð17Þ

From thermodynamic relations

K 0T � dT ¼
1

aKT

@KT

@T

� �
V

ð18Þ

is the intrinsic temperature dependence of bulk modulus.
This quantity controls the behavior of c upon compression.
For materials following the Birch’s law, K 0T ¼ dT (Ander-
son, 1989) and q ¼ 1, which is consistent with observations
(e.g., Anderson, 1974; Boehler and Ramakrishnan, 1980;
Stixrude and Lithgow-Bertelloni, 2005). For hard sphere
liquids, from Eqs. (14) and (15), we have

K 0T � dT ¼
ð1þ 2f Þ2

1� f 3
: ð19Þ

Therefore for a packing fraction (f ) larger than 0,
K 0T � dT > 1, and q < 0 for hard sphere liquids, which
means that the Grüneisen parameter increases with increas-
ing pressure.

These predictions agree qualitatively with the observa-
tions summarized in Section 2. However, the hard sphere
model cannot make quantitative predictions to actual
silicate liquids given the complex interatomic interactions
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that differ from the hard sphere potential. In the following,
we will make some modifications to the hard sphere model
in two different but closely related aspects. First, when we
treat actual silicate liquids with complex compositions, we
need to extend this equation of state to a multi-component
system. Second, in the simplest form, the hard sphere EOS
involves only the entropy term. Changes in internal energy
will certainly occur in a realistic liquid. This effect needs to
be included in the actual application of this type of equa-
tion of state to silicate melts under deep Earth conditions.

3.2. Equation of state for hard sphere mixtures

We adopt the equation of state for a hard sphere mix-
ture generalized from Eq. (9) by solving the Percus–Yevick
equation (Lebowitz, 1964; Lebowitz et al., 1965) to account
for the multiple components in silicate liquids such as SiO2

and MgO. It should be noted that similar equations with
higher accuracy have been developed for the hard sphere
mixtures (Mansoori et al., 1971; Hansen-Goos and Roth,
2006), but we use the Percus–Yevick equation as a starting
point for its simplicity. For a liquid composed of neutrally
charged hard spheres of different sizes (i.e., no interaction
between the hard spheres except for the excluded volume ef-
fect), Uðf Þ becomes

Uðf ; y1; y2Þ ¼
1þ ð1� 3y1Þf þ ð1� 3y2Þf 2

ð1� f Þ3
; ð20Þ

where

f ¼ V m

V
¼
Xm

i¼1

fi; ð21Þ

m is the number of components in the liquid and

V m ¼
Xm

i¼1

X iV mi ¼
1

6
pN A

Xm

i¼1

X ir
3
i ð22Þ

fi ¼
V miX i

V
¼ 1

6V
pr3

i X iN A; ð23Þ

where ri and X i are the hard sphere diameter and the mole
fraction of the i-th component. X i is normalized asPm

i¼1X i ¼ 1. y1 and y2 are the parameters representing the
interaction of spheres with different sizes. They are func-
tions of ri and X i, and are independent of molar volume.

y1 ¼
Xm

j>i¼1

Dijðri þ rjÞðrirjÞ�1=2
; ð24Þ

y2 ¼
Xm

j>i¼1

Dij

Xm

k¼1

fk

f

� �
ðrirjÞ1=2

rk
; ð25Þ

with

Dij ¼ ½ðfifjÞ1=2=f �½ðri � rjÞ2=rirj�ðX iX jÞ1=2: ð26Þ

Again, the bulk modulus can be obtained by taking the
volume derivative of the equation of state (Ashcroft and
Langreth, 1967; Tomczyk, 1977; Suski and Tomczyk, 1981)

Cðf ; y1; y2Þ ¼
@

@f
ðf UÞ

¼ 1þ ð4� 6y1Þf þ ð4� 3y1 � 9y2Þf 2

ð1� f Þ4
: ð27Þ
3.3. Attractive force and the internal energy contribution

The hard sphere mixture model developed for neutrally
charged spheres cannot be applied to real liquids directly
because there is no attractive force and the zero-pressure
volume is infinite (see Eqs. (5) and (20)). Since we will use
room-pressure data to place constraints on sphere sizes, it
is necessary to introduce the attractive interaction. The
attraction in silicate liquids comes mainly from the Cou-
lombic interactions between cations (such as Mg2+ and
Si4+) and anions (O2�) in the liquids. The straightforward
approach is to develop a theory for charged hard sphere
mixtures. Despite the vast literature on this subject, avail-
able analytical models are mostly limited to the simplest
case: the restricted primitive model for binary mixtures with
equally sized and charged ions (Blum et al., 1992; Fisher
and Levin, 1993; Zhou and Stell, 1995; Zhou et al., 1995;
Guillot and Guissani, 1996), which is far less complicated
than real silicate liquid.

Since our purpose is to develop a simple equation of
state of silicate liquids that can be readily used for geo-
chemical and geophysical modeling, we choose a more
empirical approach by modifying the hard sphere EOS with
a mean-field adjustment. Longuet-Higgins and Widom
(1964) showed that for simple molecular liquids, the struc-
ture of liquids is mostly determined by the steeply changing
repulsive potential, which can be approximated as the hard
sphere potential, whereas the slowly varying attractive po-
tential can be introduced as a uniform negative background
potential. This mean field approach was later extended to
ionic liquids by Itami and Shimoji (1980) and McBroom
and McQuarrie (1983). Following this approach, we con-
sider a silicate liquid as a mixture of hard spheres corre-
sponding to different melt components such as SiO2 and
MgO, and consider the electrostatic energy as a uniformly
distributed negative background potential, which does not
change the structure of a liquid but will modify the thermo-
dynamic properties of liquids. Then the cohesion energy
can be viewed as a liquid analog of the Madelung energy
of solids. The equation of state is given as

P ¼ RT

V
Uðf ; y1; y2Þ �

A

V l
; ð28Þ

where l is an exponent that depends on the nature of the
attractive force and is 4/3 for the Coulombic attraction
and A is a constant of volume that describes the importance
of the internal energy contribution. A can be evaluated by
setting P ¼ 0 in Eq. (28).

A ¼ RT U0V l�1
0 ; ð29Þ

where U0 ¼ Uðf0; y10; y20Þ and subscript “0” represents
room pressure values. Substituting (29) back into (28),
one gets

P ¼ RT

V
U� U0

V 0

V

� �l�1
" #

: ð30Þ

The isothermal bulk modulus can then be obtained as

KT ¼
RT

V
C� lU0

V 0

V

� �l�1
" #

; ð31Þ
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where U and C are given in Eqs. (20) and (27). At P ¼ 0, the
room-pressure bulk modulus is
KT 0 ¼
RT

V 0

½C0 � lU0�: ð32Þ
4. APPLICATION OF THE EQUATION OF STATE TO

SILICATE LIQUIDS

We consider a 5-component system including SiO2,
Al2O3, FeO, MgO, and CaO (hereafter referred to as the
CMASF system) as an example to demonstrate how the
proposed EOS is applied to real silicate liquids.
Table 2
Sources of room-pressure relaxed sound velocity data.

System Sample

Ai and Lange (2008)

SiO2–Al2O3–CaO RC-14
LC-4
LC-8

SiO2–Al2O3–MgO–CaO LC-9
LC-10
LC-11
LC-12
LC-13
SN-4

SiO2–MgO–CaO SN-13
LC-14
LC-15

Webb and Courtial (1996)

SiO2–Al2O3–CaO Ca53.12
Ca38.27

Secco et al. (1991)

SiO2–Al2O3–MgO–CaO An36Di64

Rivers and Carmichael (1987)

SiO2–MgO–CaO Di
SiO2–Al2O3–CaO An
SiO2–CaO CaSiO3

SiO2–Al2O3–MgO–CaO An50Di50

SiO2–FeO Fe2SiO4

Fs-2
SiO2–Na2O Na2Si2O5

Na2SiO3

SiO2–K2O K2Si2O5

SiO2–MgO MgSiO3

SiO2–Al2O3–MgO–CaO–Na2O Ab50Di50

Ab33An33Di33

SiO2–MgO–Na2O SN-10
SiO2–Al2O3–FeO–MgO–CaO–Na2O Jor-44

Kress et al. (1988)

SiO2–Al2O3–Na2O 8
9
10
15
B
K

SiO2–Na2O A (1–11)
A (12–20)
4.1. Application of the equation of state to room-pressure

data

In this section, we calibrate the proposed EOS using
room-pressure data on density (or molar volume) and bulk
modulus. The proposed EOS (Eq. (30)) has a few parame-
ters including the room-pressure molar volume V 0 and the
volume occupied by a mole of the hard spheres V m. Both V 0

and V m are compositional dependent. V 0 also depends on
temperature. V m is calculated from the hard sphere diame-
ters (ri) (Eq. (22)).

The room-pressure molar volume (V 0) is well described
by the ideal mixing model (e.g., Bottinga and Weill, 1970;
Lange, 1997), viz.,
Number of observations Temperature (K)

6 1837–1880
6 1780–1884
5 1809–1883
5 1790–1893
6 1727–1873
8 1746–1895
6 1736–1893
8 1758–1887
2 1817–1881
6 1736–1893
6 1699–1887

10 1683–1893

36 1623–1823
27 1673–1823

2 1558–1831

6 1698–1758
4 1833
4 1836
8 1573–1673
2 1503–1653
7 1598–1693
8 1556–1693
2 1458–1573
2 1553–1693
4 1913
6 1598–1698
3 1698
2 1663–1723
6 1703–1803

6 1599–1684
7 1594–1695
5 1891
2 1690
5 1891

13 1689–1894
11 1487–1683
7 1556–1693
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V 0 ¼
Xm

i¼1

V 0iX i: ð33Þ

Note that the mole fraction defined in this study is differ-
ent from the common definition used in the ideal mixing
model, since a mole of Al2O3 has two moles of Al3+ cations
and hence will be considered as two moles of spheres. As a
result, the molar volume for AlO1.5, which is half of the
molar volume of Al2O3, must be applied in Eq. (33). The
ideal mixing model is widely used and can give excellent
results on melt densities (within 1% to experimental values).
Therefore the same approach is applied here to calibrate
V 0. The hard sphere diameter (ri) for each melt component
is then calibrated by room-pressure bulk modulus using Eq.
(32). The room-pressure bulk modulus can be obtained by
ultrasonic sound velocity measurements

1

KT 0

¼ V 0

c2
þ T V 0a2

0

CP0

; ð34Þ

where c is the measured sound velocity for silicate liquids.
a0 and CP0 are room-pressure values of the thermal expan-
sivity and heat capacity of silicate liquids, which can be cal-
culated by the ideal-mixing model (e.g., Lange and
Navrotsky, 1992; Lange, 1997).

For the CMASF system, we start from the most recent
data set on sound velocity given by Ai and Lange (2008)
to calibrate our equation of state. In addition to this data
set, results of Webb and Courtial (1996), Secco et al.
(1991), and Rivers and Carmichael (1987) are also included
in the calibration. Only relaxed sound velocity data that do
not depend on the frequency of the measurements are used.
The sources of the experimental data used in the calibration
are summarized in Table 2. Excluding the data for FeO-
bearing liquids, this data set is similar to the one used in
Ai and Lange (2008) to calibrate the ideal-mixing model
of compressibility for CMAS liquid. In total, 170 observa-
tions are included in the data set for 21 different composi-
tions. Room-pressure molar volume and thermal
expansivity are calculated from the ideal-mixing model.
Partial molar quantities except for the FeO component
are from the calibration of Lange (1997). For the FeO com-
ponent, results of Kress and Carmichael (1991) are used.
Room-pressure heat capacity CP0 is calculated from the cal-
ibration of Lange and Navrotsky (1992).

A non-linear least squares regression with five parame-
ters in total for the 5-component system was conducted.
Table 3
Calibrated hard-sphere diameters for melt com-
ponents in the CMASF system using Eq. (32).

Component ri (nm)

SiO2 0.3346 ± 0.0006
Al2O3 0.3001 ± 0.0004
FeO 0.2761 ± 0.0007
MgO 0.2628 ± 0.0012
CaO 0.3099 ± 0.0007

Uncertainties represent one r error estimates. The
adjusted R2 for the regression is 0.848. The root
mean squared error (s) of the fit is 0.589.
Regressed results of ri for each cation are listed in Table
3 along with the one-sigma error (r) estimates for the
parameters. Fig. 5 shows the comparison of the predicted
1650 1750 1850 1950
21

T (K)

Fig. 6. Comparison of the predicted room-pressure bulk modulus
for CaMgSi2O6 (Di) liquid with experimental results. The red
dashed curve is the calculated KT 0 using temperature-independent
sphere diameters in Table 3; the blue solid curve is the calculated
KT 0 using temperature-dependent sphere diameters in Table 4; The
black solid circles are the experimental results of Ai and Lange
(2008). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)



Table 4
Calibrated hard-sphere diameters and their temperature dependen-
cies for melt components in the CMASF system using Eq. (32).

Component ri;T ref (nm) gi ¼ d ln ri=d ln T

SiO2 0.3356 ± 0.0004 �0.08 ± 0.01
Al2O3 0.3012 ± 0.0003 �0.04 ± 0.01
FeO 0.2744 ± 0.0004 �0.01 ± 0.02
MgO 0.2627 ± 0.0007 0.14 ± 0.04
CaO 0.3102 ± 0.0006 �0.02 ± 0.02

Reference temperature (T ref ) is 1673 K. Uncertainties represent
one r error estimates. The adjusted R2 for the regression is 0.981.
The root mean squared error (s) of the fit is 0.073.
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Ai & Lange (2008)

This study

Fig. 7. Comparison of the predicted room-pressure bulk modulus
KT 0 for the CMASF system with experimental measurements. Blue
circles represent the predictions of the proposed EOS and param-
eters in Table 4; red squares represent the predictions of Ai and
Lange (2008). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this
article.)
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KT 0 and experimental measurements for the different melt
compositions represented by different colors. The overall
goodness of the fit is fair with a maximum residual in KT 0

of about 2 GPa (10%). The adjusted R2 is 0.848 and the root
mean squared error (s) of the fit is 0.589. A detailed analysis
of Fig. 5 reveals that with one parameter for each melt com-
ponent, the proposed model can explain the effect of com-
position fairly well. However, the predicted results for
each composition at various temperatures are less satisfac-
tory. For example, Fig. 6 shows that the predicted KT 0 for
the diopside (Di) melt increases with increasing temperature
(dashed line), which is opposite to the temperature depen-
dence of experimental data (solid circles) from Ai and
Lange (2008). This comparison indicates that the model
with constant sphere sizes can explain properties such as
the compositional dependence but must be modified in or-
der to explain the temperature dependence of bulk
modulus.

4.2. Temperature dependence of sphere diameters

We introduce the temperature dependence of hard
sphere diameters by considering the fact that the repulsive
potential between two spheres in the liquids is not precisely
the hard sphere potential, i.e., spheres have finite strength.
As a result, the potential energy is higher but remains finite
when the distance between spheres is smaller. At a higher
temperature, the kinetic energy is higher due to the higher
average velocity of the spheres. The kinetic energy can be
converted to the potential energy of spheres during the
elastic collision of spheres, and as a result the effective
sphere diameters decrease with increasing temperature
(e.g., Stillinger, 1961; Andersen et al., 1971). For the inverse
power law repulsive potential that was widely used for soft
spheres (e.g., Rowlinson, 1964; Ben-Amotz and Stell, 2004),
the effective sphere diameter (r) can be evaluated by equat-
ing the repulsive potential energy to the kinetic energy at
temperature T

e
rs
¼ kBT : ð35Þ

where e is a constant, s is the power of the potential. There-
fore the effective hard-sphere diameter for the i-th compo-
nent is

riðT Þ ¼ ri;T ref

T ref

T

� �1
si

; ð36Þ

where ri;T ref is the hard sphere diameter at the reference
temperature T ref . Therefore we can define the temperature
dependence of ri as

gi �
d ln ri

d ln T
¼ � 1

si
: ð37Þ

Using the same set of experimental data for the CMASF
system in Table 2, we conduct another non-linear least
squares regression to constrain ri;T ref and gi (10 parameters
in total for the 5-component system, which is identical to
the number of parameters used in the ideal-mixing model
when calculating room-pressure bulk modulus). Calibrated
ri;T ref and gi with one-sigma error estimates for each
component are listed in Table 4. The relative uncertainties
in the fitted hard sphere diameters are rather small (�0.1–
0.3%). However, the uncertainties in the temperature
dependence of hard sphere diameter are large because the
temperature range in sound velocity measurements (see Ta-
ble 2) is not very large (less than 250 K, and only 100 K for
many compositions). It should also be noted that gi is posi-
tive for the MgO component, which is inconsistent with our
physical picture of the temperature effect on hard-sphere
diameters. This may be either due to the complex interac-
tion between different melt components (for example, the
Mg–O coordination likely depends on temperature and
melt composition (George and Stebbins, 1998)), or due to
the narrow temperature range of the sound velocity data,
which will be better constrained when experimental data
for a larger temperature range become available.

The predicted bulk moduli for CMAS liquids using the
parameters in Table 4 are compared with experimental
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results in Fig. 7. The overall fit has been significantly
improved from the previous regression (Fig. 5). The
adjusted R2 is 0.981 and the root mean squared error (s)
of the fit is 0.073. We also compare our results with those
of the ideal-mixing model by Ai and Lange (2008) in
Fig. 7 as similar data sets were used for the calibration of
both models. The predictions made by the proposed EOS
are as good as the ideal-mixing model. The solid line in
Fig. 6 shows that the calculated room-pressure bulk modu-
lus for CaMgSi2O6 (Di) liquid as a function of temperature
is consistent with the experimental observations from Ai
and Lange (2008). Thus the proposed equation of state with
temperature-dependent sphere diameters can reproduce the
room-pressure bulk modulus and its temperature depen-
dence well at least for the Di composition (but not limited
to the Di composition as suggested by the improved fitting
in Fig. 7 from Fig. 5).
Table 5
Calibrated hard-sphere diameters and their temperature dependen-
cies for melt components in the CMASFNK system using Eq. (32).

Component ri;T ref (nm) gi ¼ d ln ri=d ln T

SiO2 0.3371 ± 0.0005 �0.06 ± 0.02
Al2O3 0.3031 ± 0.0006 �0.12 ± 0.03
FeO 0.2730 ± 0.0008 �0.04 ± 0.04
MgO 0.2610 ± 0.0013 0.08 ± 0.06
CaO 0.3065 ± 0.0009 0.01 ± 0.03
Na2O 0.3517 ± 0.0010 0.12 ± 0.03
K2O 0.4007 ± 0.0037 0.17 ± 0.15

Reference temperature (T ref ) is 1673 K. Uncertainties represent
one r error estimates. The adjusted R2 for the regression is 0.963.
The root mean squared error (s) of the fit is 0.431.
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4.3. Calibrations for liquids with more components

Using the same approach demonstrated for the CMASF
system, we also calibrate our proposed EOS for liquids with
seven components including CaO, MgO, FeO, Al2O3, SiO2,
Na2O, and K2O (CMASFNK). Again, the room-pressure
molar volume, thermal expansion, and heat capacity are
calculated from the ideal-mixing model as for the CMASF
system. In addition to the sound velocity data for the
CMASF system, experimental data from Kress et al.
(1988) and Rivers and Carmichael (1987) on Na- and K-
bearing melts are included in the calibration (Table 2).
There is only one composition that contains K2O in the
data set. Results on K2SiO3 from Rivers and Carmichael
(1987) are excluded since the sample dissolved a significant
amount of MoO2 (4.7 wt%) in the melt. Some other ultra-
sonic results on the potassium-bearing liquids including
Bockris and Kojonen (1960) and Baidov and Kunin
(1968) are not included in the regression since the measured
sound velocities cannot be confirmed to be relaxed (Lange
and Carmichael, 1990; Kress and Carmichael, 1991). In to-
tal, there are 259 observations of sound velocity data for 37
different liquid compositions.

The calibrated hard sphere diameters and their temper-
ature dependencies for the 7-component system are listed
in Table 5. The uncertainties in the parameters for the
K2O component are quite large compared to other compo-
nents due to the limited number of samples that contain
K2O. Fig. 8a shows the comparison of model predicted
bulk moduli with experimental values. The overall fitting
is good with an adjusted R2 of 0.963 and s of 0.431. For
most compositions without Na2O, the residuals are less
than 1 GPa (better than 5%). However, for the Na-bearing
liquids, the predicted results are less good with a maximum
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Table 6
Calibrated hard-sphere diameters and their temperature dependen-
cies for melt components in the CMASFNK system using Eq. (32)
with the Na2O–Al2O3 interaction term (Eq. (38)).

Component ri;T ref (nm) gi ¼ d ln ri=d ln T

SiO2 0.3370 ± 0.0004 �0.06 ± 0.01
Al2O3 0.3010 ± 0.0004 �0.05 ± 0.02
FeO 0.2732 ± 0.0006 �0.04 ± 0.03
MgO 0.2607 ± 0.0010 0.10 ± 0.04
CaO 0.3084 ± 0.0007 �0.05 ± 0.02
Na2O 0.3466 ± 0.0008 �0.04 ± 0.03
K2O 0.4010 ± 0.0026 0.16 ± 0.11
cNa2O–Al2O3

0.17 ± 0.01a –

Reference temperature (T ref ) is 1673 K. Uncertainties represent
one r error estimates. The adjusted R2 for the regression is 0.981.
The root mean squared error (s) of the fit is 0.221.

a cNa2O–Al2O3
is a non-dimensional parameter.
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residual of 2.3 GPa (�15%). This is possibly due to the
interaction between the Na2O and the Al2O3 components
to maintain local charge balance, which has already been
reported by Kress et al. (1988) and Ghiorso and Kress
(2004) for the ideal mixing model of bulk modulus. In these
models, better fitting results were achieved by introducing
the Na2O–Al2O3 cross-composition term, i.e., a composi-
tion dependent partial molar compressibility for the Na2O
component.

Similarly, cross-composition terms can also be intro-
duced to the proposed EOS by assuming compositional
dependent hard sphere diameters. In the case of
Na2O–Al2O3 interaction, the effective hard sphere diameter
for the Na2O component can be given by including an inter-
action parameter cNa2O–Al2O3

r0Na2O ¼ rNa2Oð1þ X Al2O3
cNa2O�Al2O3

Þ: ð38Þ

It is likely that K2O interacts with Al2O3 too, but a
K2O–Al2O3 interaction term cannot be resolved due to
the scarce data on K2O-bearing melts. Therefore in this
study, only Na2O–Al2O3 interaction term is included. Cal-
ibrated parameters with the Na2O–Al2O3 cross term are
listed in Table 6, and compared with measurements in
Fig. 8b. It can be seen that most parameters except for
the results of the Na2O and Al2O3 components remain sim-
ilar values as the previous regression (Table 5) and the
regression for the CMASF system (Table 4), while the
hard-sphere diameter for the Na2O component increases
with the Al2O3 component. The introduction of the interac-
tion term significantly improves the overall fitting with an
adjusted R2 of 0.981 and s of 0.221.

4.4. Prediction of density at high pressure and the

deformability of spheres

If the assumption that spheres have infinite strength re-
mains valid at high pressure, then we can apply the EOS for
high-pressure properties without introducing additional
parameters. Given the calibrated EOS parameters for the
CMASF system in Table 4 as well as the room pressure
molar volumes calculated from the ideal-mixing model,
we calculate the compressional curves for a few peridotitic
melts (Fig. 9a) and basaltic melts (Fig. 9b) whose densities
were measured by the sink/float experiments (Agee and
Walker, 1993; Suzuki et al., 1998; Suzuki and Ohtani,
2003). It can be seen that the predicted densities of all melt
compositions are somewhat smaller than the experimental
data especially at high pressures. The assumption of con-
stant sphere size at high pressure has to be modified in or-
der to explain the density data at high pressure.

A straightforward modification is to introduce the vol-
ume dependence of the sphere diameters. For the i-th
component,

riðT Þ ¼ ri0ðT Þ
V

V 0

� �ni
3

; ð39Þ

where ni defines the deformability of the i-th sphere and is
assumed to be independent of V and T for simplicity. The
volume of molecules changes upon compression can be de-
fined as a deformability parameter, viz.,

n � @ ln V m

@ ln V

� �
T

¼ 1

V m

Xm

i¼1

X iV mini: ð40Þ

The volume derivatives of all other quantities that de-
pend on V m should also be modified accordingly using
Eq. (40). For example, the volume dependence of packing
fraction changes to

@f

@V
¼ f

V
ðn� 1Þ: ð41Þ

Similarly, the equation of state should be different than
Eq. (28) since it is obtained by taking the volume derivative
of Helmholtz free energy of the liquids. The entropic contri-
bution (excluded volume effect) to the Helmholtz free en-
ergy has the form of (e.g., Hansen and McDonald, 2006)

F ev ¼ RT ln
f

1� f
þ 3

2

ð2f � f 2Þ
ð1� f Þ2

" #
: ð42Þ

Taking the volume derivative of Eq. (42) gives

P ev ¼
RT

V
ð1� nÞU; ð43Þ

which is different from Eq. (5) by a factor of ð1� nÞ due to
the deformability of the spheres. The attractive energy term
(Coulombic term) remains the same as in Eq. (28) since it is
a long-range interaction and does not depend on V m.

In addition to the entropic contribution and the attrac-
tive energy term, the repulsive energy also needs to be con-
sidered to account for the strain energy stored in the
deformed spheres. We assume the repulsive potential takes
the same inverse power-law form for all melt components,
that is, U rep / 1=rs

m / 1=V m�1
m , where m ¼ s=3þ 1. Note that

the repulsive energy is a short-range potential, which con-
trols the local structure of a liquid and hence should be a
function of V m. Based on the results of ionic crystals, s
can be related to K 0T 0 of the material (e.g., Poirier, 2000)
as K 0T 0 ¼ ðsþ 7Þ=3. If K 0T 0 is 4 as in the case of many crys-
tals, then s has a value of about 5. The pressure due to the
repulsive energy can be given by
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Fig. 9. Compression curves calculated from the proposed equation of state assuming spheres are rigid at high pressures. Parameters in Table 4
are used. (a) Peridotitic melts; (b) basaltic melts. Different colors represent different melt compositions. Experimental results (symbols) were
determined by the sink/float technique (see Table 7 for data sources). (For interpretation of the references to color in this figure legend, the
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P rep ¼ �
@U rep

@V
/ ðm� 1Þf n

1

V m
m

: ð44Þ

Combining Eqs. (43), (44), and (28), we obtain the mod-
ified equation of state considering the deformability of
spheres

P ¼ RT

V
ð1� nÞU� A

V l
þ f nB

V m
m

; ð45Þ

where l ¼ 4=3 and m ¼ 8=3; A and B are constants that do
not depend on volume. B can be obtained by letting n ¼ 1
and P ¼ 0. Eq. (45) then reduces to

B ¼ V m�1
m0

V l�1
0

A: ð46Þ

Constant A can be obtained by letting n ¼ 0 and P ¼ 0.
The result for A is the same as in Eq. (29). Substituting Eq.
(29) and (46) back to Eq. (45), the final form of the equa-
tion of state can be derived as
Table 7
Sources of high-pressure density data from sink/float experiments.

Composition Sample Pressure (GPa)

Peridotitic KLB-1 8.2
IT8720 16.3
MA 16
MA 7.4
PHN1611 13.5
PHN1611 20.5
Pyrolite 22.1

Picritic Picrite 14.5
Komatiitic Komatiite 8.9

Komatiite 6
Basaltic MORB 5.85

MORB 14.9
MORB 15.1
P ¼ RT

V
ð1� nÞU� U0

V 0

V

� �l�1

þ nU0

V m0

V m

� �m�1
" #

; ð47Þ

and the bulk modulus can be obtained by taking the volume
derivative of Eq. (47)

KT ¼
RT

V
ð1� nÞ2Cþ ðfþ ð1� nÞnÞU� lU0

V 0

V

� �l�1
"

þ U0ðn� fþ ðm� 1Þn2Þ V m0

V m

� �m�1
#
; ð48Þ

where

f ¼ @n

@ ln V
¼ 1

V m

Xm

i¼1

X iV min
2
i � n2: ð49Þ

The room-pressure bulk modulus is thus given by

KT 0 ¼
RT

V 0

ð1� n0Þ2C0 þ U0ð2n0 þ ðm� 2Þn2
0 � lÞ

h i
: ð50Þ
Temperature (K) Sources

2273 Agee and Walker (1993)
2543 Suzuki et al. (1998)
2603 Suzuki et al. (1998)
2163 Suzuki et al. (1998)
2303 Suzuki and Ohtani (2003)
2633 Suzuki and Ohtani (2003)
2633 Suzuki and Ohtani (2003)
2773 Ohtani and Maeda (2001)
2173 Agee and Walker (1993)
2073 Agee and Walker (1993)
1673 Agee (1998)
2473 Ohtani and Maeda (2001)
2773 Ohtani and Maeda (2001)



Table 8
Calibrated sphere diameters and their temperature dependencies for melt components in the CMASF system assuming the sphere diameters
are also volume dependent.

Component ri;T ref (nm) gi ¼ ð@ ln ri=@ ln T ÞV ni ¼ 3ð@ ln ri=@ ln V ÞT
SiO2 0.365 ± 0.001 �0.02 ± 0.01 0.62 ± 0.04
Al2O3 0.328 ± 0.002 �0.03 ± 0.01 0.66 ± 0.06
FeO 0.257 ± 0.008 0.00 ± 0.02 �0.68 ± 0.28
MgO 0.277 ± 0.002 0.00 ± 0.02 0.22 ± 0.07
CaO 0.335 ± 0.003 �0.14 ± 0.02 0.66 ± 0.08

Reference temperature (T ref ) is 1673 K. Uncertainties represent one r error estimates.
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Fig. 10. Compression curves calculated from the proposed equation of state assuming that spheres are deformable at high pressure. (a)
Peridotitic melts; (b) basaltic melts. Different colors represent different melt compositions. Experimental results (symbols) were determined by
the sink/float technique (see Table 7 for data sources). Solid lines are calculated by assuming component-specific volume dependencies of
sphere diameters (ni), using parameters in Table 8. Dashed lines are calculated by assuming a single n for all components, using parameters in
Table 9. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 9
Calibrated sphere diameters and their temperature dependencies for melt components in the CMASF system assuming the sphere diameters
are also volume dependent.

Component ri;T ref (nm) gi ¼ ð@ ln ri=@ ln T ÞV n ¼ 3ð@ ln r=@ ln V ÞT
SiO2 0.3612 ± 0.0006 �0.03 ± 0.01 0.53 ± 0.01a

Al2O3 0.3242 ± 0.0006 �0.02 ± 0.01
FeO 0.2935 ± 0.0007 �0.02 ± 0.02
MgO 0.2827 ± 0.0007 0.08 ± 0.01
CaO 0.3311 ± 0.0008 �0.12 ± 0.02

Reference temperature (T ref ) is 1673 K. Uncertainties represent one r error estimates.
a n takes the same value for all melt components.
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The deformability of spheres (ni) must be constrained by
high-pressure experimental data. Table 7 summarizes the
density data determined from sink/float experiments. A
regression was conducted using Eqs. (47) and (50) simulta-
neously with data in Tables 2 and 7 by minimizing
½
P

iðP i � P Þ2 þ
P

jðKT 0j � KÞ2�, where P i is the pressure
for the i-th density measurement and KT 0j is the bulk mod-
ulus for the j-th bulk modulus measurement. The regressed
parameters are listed in Table 8. Predicted compression
curves are plotted as solid lines in Fig. 10a for peridotitic
melts and in Fig. 10b for basaltic melts. In contrast to
Fig. 9a and b, the density data at high pressure can be
reproduced very well. The residuals in calculated density
and experimental measurements are less than 1% and about
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0.5% for most compositions, which are similar to the exper-
imental uncertainties. Therefore the introduction of the
deformability of spheres can significantly improve the fit-
ting for high-pressure density data.

Since the regressed values of ni have large uncertainties
due to the limited data at high pressures, we may simplify
the model by using an average n in the regression. Using
the same data sets (Tables 2 and 7), we can obtain the
EOS parameters in Table 9. Predicted compression curves
based on this model are shown as dashed lines in Fig. 10a
and b. It can be seen that the density data can be repro-
duced quite well by using a single n ¼ 0:53 for all compo-
nent, although there exists some difference between the
predicted compression curves.

4.5. Predictions of other compressional properties at high

pressure

In this section we use a Fe-rich peridotitic melt compo-
sition MA (see Suzuki et al. (1998) for the chemical compo-
sition of this melt) as an example to demonstrate how the
proposed equation of state can be applied to calculate
compressional properties at high pressure including bulk
modulus (KT ), thermal expansivity (a), and Grüneisen
parameter (c). Bulk modulus (KT ) can be calculated directly
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Fig. 11. Predicted compressional properties at high pressures for the
expansivity; (c) Grüneisen parameter.
from Eq. (48). Fig. 11a shows the calculated KT as a func-
tion of pressure for the MA melt at 2603 K. The pressure
derivative of bulk modulus (K 0T 0) is estimated to be about
7.0. Thermal expansivity (a) as a function of pressure can
be obtained by taking the temperature derivative of
Eq. (47). The detail derivation of thermal expansivity at
high pressure is presented in Appendix B. Fig. 11b shows
that thermal expansivity for the MA melt decreases
from about 1� 10�4 K�1 at room pressure to about
5:4� 10�5 K�1 at 25 GPa. From Eq. (11), The volume
dependence of thermal expansivity (dT ) can be estimated
to be about 2.1, which is much smaller than the typical val-
ues for solids (about 4).

Given the calculated results for bulk modulus (KT ), and
thermal expansivity (a) at high pressure, Grüneisen param-
eter (c) can be calculated using Eq. (3). Fig. 11c shows that
the predicted Grüneisen parameters for the MA melt de-
creases with compression. The volume dependence of
Grüneisen parameter (q) can be estimated (from its defini-
tion in Eq. (4)) to be about �3.9, which is a negative value
in contrast to q ¼ 1 for materials that follow Birch’s law.
According to Eq. (17), the negative value of q for liquids
comes mainly from the distinct thermal properties of liquids
represented by a small value of dT compared to K 0T , which is
a direct consequence of the entropy contribution as
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peridotitic melt MA at 2603 K. (a) Bulk modulus; (b) thermal
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demonstrated by the simple hard-sphere model. If we com-
pare the predicted volume dependence of Grüneisen param-
eter (q) with previous results on silicate liquids, we find that
the calculated value is somewhat smaller (larger in absolute
value) than the estimates (about �1.6 to �2.0) from numer-
ical simulations and shock-wave experiments on the
Mg2SiO4 and MgSiO3 liquids (Stixrude and Karki, 2005;
Mosenfelder et al., 2009). Two factors may contribute to
this discrepancy: basically the influence of compression
and temperature. (1) The prediction of the Grüneisen
parameter for the MA melt is based on the calibration of
EOS using experimental data up to only 25 GPa, but the
observations are based on shock-wave experiments and
numerical simulations that cover a much larger range of
pressure from room pressure to 130 GPa. The extrapolation
of the EOS to such high pressures will introduce some
uncertainty in the calculated Grüneisen parameter due to
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9 are used; (b) shock data are included in the calculation; (c) the deformab
liquid. Parameters in Table 11 are used. The diagonal line shows 1:1 corr
this figure legend, the reader is referred to the web version of this article
the uncertainties in the calibrated sphere diameters and
their volume dependencies. (2) The calculated volume
dependence of Grüneisen parameter (q) is obtained for an
isothermal compression at 2603 K, but both shock-wave
data and numerical simulation results were obtained at very
high temperatures from 3000 to 6000 K or even higher and
q was assumed to be a constant of temperature in these
studies. That is, the previous estimated q is an average value
over a wide range of high temperatures. We will discuss the
application of our EOS to these very high pressure–
temperature conditions in the next section.

4.6. Application of the EOS to extreme pressures up to

130 GPa

Our previous calibration of the EOS parameters (Tables
8 and 9) is limited to sink/float data up to 25 GPa. The
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validity of this calibration at very high pressures may be
examined by the density data determined by shock-wave
experiments from 5 to 130 GPa (e.g., Rigden et al., 1988,
1989; Miller et al., 1991; Chen et al., 2002; Asimow and
Ahrens, 2010). Fig. 12a compares the calculated density
for Di (diopside) and Di64An36 (diopside–anorthite eutec-
tic) using the proposed EOS and parameters in Table 9 to
the density determined by shock-wave experiments
(Asimow and Ahrens, 2010). The shock temperatures for
the data are calculated based on the P–V–T EOS provided
in Asimow and Ahrens (2010) (Table 10). The difference
between the predicted density and experimental data is less
than 1% at 40 GPa, but increases with pressure and can be
as large as 10% at pressures higher than 80 GPa. Conse-
quently, the previous calibration may not be applicable to
pressures higher than 40 GPa.

Ideally, we can incorporate all shock-wave data into our
data set to extend the pressure range of the EOS. However,
most shock data currently available have poorly estimated
shock temperatures due to two major reasons: (1) The vol-
ume dependence of the Grüneisen parameter (q) is often as-
sumed to be 1 in these calculations, which is not consistent
with the new observations for liquids (e.g., Asimow and
Ahrens, 2010); (2) The specific heat (CV ) is often assumed
to be 3R/mol atm (the Dulong–Petite value for solid mate-
rials), which could be more than 50% less than the real li-
quid values (Richet and Neuville, 1992). The combination
of these two can result in an uncertainty in shock tempera-
ture of more than 1000 K, which is a serious problem for
the EOS calibration given the large thermal expansivity of
silicate melts at high pressure. Therefore we will only in-
clude the shock data for Di and Di64An36 melts from Asi-
mow and Ahrens (2010) to calibrate our EOS since the
Grüneisen parameter and its volume dependence (q) were
Table 10
Estimated shock temperatures for Di and Di64An36 based on the
shock data and EOS provided in Asimow and Ahrens (2010).

Composition Pressure
(GPa)

Density
(g/cm3)

Shock
temperature (K)

Di 8.7 3.14 1861
13.9 3.36 1999
14.1 3.42 2048
21.5 3.47 2093
32.8 3.79 2496
38.2 4 2908
39.3 3.99 2885
84.7 4.67 5562

114.3 4.73 5943

Di64An36 4.5 2.96 1765
6.7 3.14 1836

10 3.27 1902
15.6 3.52 2081
15.8 3.47 2038
24.2 3.85 2473
29.3 3.91 2572
33.8 3.91 2572
41.3 4.17 3139
85.8 4.51 4426

109.9 4.83 6822
127.5 4.9 7647
better determined from their data without just assuming
q ¼ 1. Anorthite (An) melt has also been studied in Asimow
and Ahrens (2010) but will not be included in the calibra-
tion because the data show some very complicated com-
pressional behavior (a possible abrupt structural change
at high pressure), which may require two equations of state
for both pressure ranges below and above the transition
pressure.

Since shock data for only two compositions will be in-
cluded in the calculation, the deformability of spheres (ni)
for each melt component will be difficult to resolve at high
pressure. Consequently, we will use a single deformability
parameter (n) for all components for the calibration. In
addition, the shock temperatures are higher when the pres-
sures are higher, which makes the volume dependence of
sphere diameters hard to be isolated from the temperature
dependence. To avoid this trade-off between the tempera-
ture and volume dependencies, we use the same tempera-
ture dependence of sphere diameters in Table 9 calibrated
by using ultrasonic data and sink/float data. After includ-
ing the shock data for Di and Di64–An36 (Table 10), the
new regression gives a higher deformability (n ¼ 0:63) com-
pared to the previous value of 0.53. Fig. 12b compares the
predicted density with that determined by shock experi-
ments. Although the calculation of the density at pressures
higher than 80 GPa is improved, the calculated melt densi-
ties are too high at relatively low pressures due to the high
deformability of spheres. This means the predicted melts
are too compressible at relatively low pressures but not
compressible enough at high pressures. A likely reason
for this is that the deformability of spheres may not be con-
stant but depend on the packing fraction of the liquid when
the EOS is applied over a wide range of pressures such as
from room pressure to 130 GPa.

A simple way to model this behavior is to define the
deformability of spheres to be a linear function of the pack-
ing fraction as

n � @ ln V m

@ ln V

� �
T

¼ n0 þ sðf � f0Þ; ð51Þ

where n0 is the deformability of spheres at room pressure
and s determines how packing fraction influences n. The
equation of state remains the same as Eqs. (47), (48), and
(50), but it should be noted that f ¼ ð@n=@ ln V ÞT in Eq.
(48) becomes

f ¼ �sf ð1� nÞ: ð52Þ

To solve the EOS, f and V m can be expressed as func-
tions of V . Using Eq. (51), it can be shown that

d ln V
d ln f

¼ 1

ðn0 � 1Þ þ sðf � f0Þ
: ð53Þ

Then V can be integrated out as a function of f . After
some manipulation, one obtains

f ¼ f0
sf0 þ ð1� n0Þ

sf0 þ ð1� n0ÞðV =V 0Þsf0þð1�n0Þ
: ð54Þ

Then the volume of spheres at high pressure can be ob-
tain from

V m ¼ f V : ð55Þ



Table 11
Calibrated sphere diameters and their temperature and volume dependencies for melt components in the CMASF system assuming that the
deformability of spheres depends on packing fraction.

Component ri;T ref (nm) gi ¼ ð@ ln ri=@ ln T ÞV n0 s

SiO2 0.350 ± 0.002 �0.03 ± 0.01a 0.31 ± 0.03b 0.84 ± 0.05b

Al2O3 0.315 ± 0.001 �0.02 ± 0.01a

FeO 0.287 ± 0.001 �0.02 ± 0.02a

MgO 0.279 ± 0.001 0.08 ± 0.01a

CaO 0.325 ± 0.001 �0.12 ± 0.02a

Reference temperature (T ref ) is 1673 K. Uncertainties represent one r error estimates.
a Same values of gi in Table 9 are used.
b All melt components have the same values of n0 and s.
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Again, we use Eqs. (47) and (50) to calibrate all the data
including sound velocity data (Table 2), sink/float density
data (Table 7), and the shock-wave density data (Table
10). The regressed n0 and s are 0.31 and 0.84, respectively
(Table 11). Given that the packing fractions for Di and
Di64–An36 change from about 0.4–0.5 at room pressure to
about 0.65–0.75 at 130 GPa, the deformability of spheres
increases from 0.31 to about 0.5. Fig. 12c shows the com-
parison of the predicted density with experimental data.
The experimental data can be reproduced well and no sys-
tematic deviation is observed in this case. Consequently,
with a packing-fraction dependent deformability, the pro-
posed EOS can be successfully applied to model density
data at extreme pressures up to 130 GPa.

Now we can calculate the Grüneisen parameter at ex-
treme pressures up to 130 GPa Eq. (3). The formulation
to calculate the thermal expansivity (a) is given in Appendix
B. The calculated Grüneisen parameters for the peridotitic
melt MA at high pressures and various temperatures from
2000 to 6000 K are plotted in Fig. 13 and compared with
observations. It can be seen that the volume dependence
of Grüneisen parameter (q) increases with temperature
from about �3 at 2000 K to about �2 at 4000 K and to
about �1 at 6000 K. The predicted q at 4000 K are consis-
tent with the observations that were averaged over 3000–
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Fig. 13. Grüneisen parameters as functions of compression for a
peridotitic melt (MA) at 2000, 4000, and 6000 K. Also shown are
the results for forsterite (Fo) and enstatite (En) from shock-wave
experiments (M09, Mosenfelder et al. (2009)) and numerical
simulations (SK05, Stixrude and Karki (2005)).
6000 K. A likely explanation for the temperature effect on
q is that with increasing temperature the packing fraction
is smaller due to small sphere diameters and as we have
demonstrated in Fig. 4b for the simple hard sphere liquid,
the difference between the pressure derivative of bulk mod-
ulus (K 0T ) and volume dependence of thermal expansivity
(dT ) is smaller at lower packing fraction. That is, q increases
with decreasing packing fraction (the absolute value of q
decreases) and eventually becomes 0 for the ideal gas.

5. DISCUSSION

5.1. Interpretation of the sphere diameters

The hard sphere (deformable sphere actually) picture is
a simplification of the very complex structure of silicate
melts, which varies dramatically depending on the melt
composition and pressure (e.g., McMillan and Wolf,
1994; Stebbins, 1995; Wolf and McMillan, 1995; Mysen
and Richet, 2005, and references therein). This means that
the sphere diameters cannot be measured directly and can-
not provide the complete structural information of melts. It
is however interesting to compare the inferred sphere diam-
eters from our model with the bond lengths in crystalline
solids (Fig. 14). It can be seen that for the components with
6-fold coordination including FeO, MgO, CaO, Na2O, and
K2O, there is a correlation between the calibrated sphere
diameters and bond lengths in the crystals. This correlation
suggests that the short-range order for the 6-fold species is
correctly represented by the proposed model. For the com-
ponents with the 4-fold coordination including SiO2 and
Al2O3, however, they do not follow the high-coordination
trend. The possible explanation is that the geometry of
the effective volume (excluded volume) occupied by species
with 4-fold coordination deviates considerably from a
sphere, essentially due to the strong directional covalent
bonding in these species. Therefore a large empty space is
included if we treat the excluded volumes of these species
as spheres. This implies that if the coordination of these
species (SiO2, Al2O3) changes to 6-fold, the influence of
the directed covalent bonding will become weak and the
sphere volumes of these species will become smaller. Thus
this provides a possible explanation for the high deformabi-
lity of spheres for SiO2 and Al2O3 compared to MgO: the
deformability parameter (ni) is 0.62 for SiO2 and 0.66 for
Al2O3, but only 0.22 for MgO (Table 8). With increasing
pressure, SiO2 and Al2O3 can undergo a gradual
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coordination change from 4-fold to 6-fold, as demonstrated
by both experiments and numerical simulations (e.g., Xue
et al., 1989; Wolf and McMillan, 1995; Lee et al., 2004;
Stixrude and Karki, 2005). During the coordination
change, most of the empty space in the 4-fold species be-
comes available to oxygen atoms and as a result the sphere
diameters become much smaller. The small deformability of
MgO, on the other hand, may be explained by the change in
the Mg–O bond length (soft interatomic potential) or the
small difference between the 6- and 8-fold coordination.

5.2. Limitations of the model and future developments

We recommend the EOS parameters listed in Table 8 be
used to calculate compressional properties of silicate melts
when pressure is lower than 40 GPa. Fifteen parameters
in total are calibrated for the CMASF system based on
room-pressure bulk modulus data and high-pressure den-
sity data up 25 GPa from sink/float experiments. The bulk
modulus data focus mainly on SiO2–Al2O3–MgO–CaO
melts: only two compositions include FeO. The tempera-
ture range in these measurements is within 300 K, which
limits the calibration of the temperature dependence of
sphere diameters. On the other hand, most melts in sink/
float experiments are ultramafic to mafic composition.
Therefore the use of the proposed EOS for very MgO poor
melts at high pressures may produce larger uncertainties. In
addition, there is a trade-off between the sphere diameter
and its temperature and volume dependencies. More den-
sity measurements and maybe sound velocity measurements
at high pressures for wide ranges of temperature and melt
compositions are required to better constrain the EOS
parameters.

For pressures higher than 40 GPa, we recommend the
parameters listed in Table 11 be used. In total 12 parame-
ters are used in this calibration. The packing-fraction
dependence of deformability becomes more important at
extreme pressures. Density data including shock-wave data
and first-principles molecular dynamics calculations at ex-
treme pressure and temperature conditions are critical to
constrain the EOS behavior under such conditions. It is
possible that the functional forms for the temperature and
volume dependencies of sphere diameters may need further
modifications with more data become available. In that
case, the first-principles molecular dynamics calculations,
which are helpful to find the link between microscopic
properties and the model parameters, may provide some in-
sights and guidelines for such modifications.

At the current stage, we have not considered the effect of
oxidation state of the FeO component. Fe2O3 is expected to
have very different properties than FeO (e.g., Kress and
Carmichael, 1991). Volatile components such H2O, and
CO2 are also very important to the density of silicate liquids
(Lange, 1994).

We have made simple empirical approximations for the
cohesion energy and the soft repulsive potential of hard
spheres. This means that the structure of liquids is not
explicitly modeled in the EOS, but represented by the
sphere parameters and their temperature and volume
dependencies. As a result, the sphere diameters cannot be
measured directly and the exact structural information can-
not be derived from the equation of state. For example, the
effect of increasing coordination for the network modifiers
such as SiO2 and Al2O3 with increasing compression may
contribute to the deformability of those spheres as we dis-
cussed in the previous section, but the exact coordination
of these species cannot be calculated. Polymerization is an-
other complication introduced by the network-forming
components like SiO2 and Al2O3, which can be linked to
other network-forming components through bridging
oxygen to form a chain-like or a three-dimensional network
of molecules (for the review of polymerization refer to
Mysen and Richet, 2005, and the references therein). Poly-
merization may reduce the entropy of the liquids and in
turn affect the other properties such as compressibility
and viscosity. If this effect is important, compositional
dependent sphere diameters may be needed to model the
network-forming components. However, since most data
on density and bulk modulus can be explained well by the
proposed EOS, the effect of polymerization on the entropic
contribution to compression (excluded volume of spheres)
is likely small. This on the other hand means that the pro-
posed model cannot be applied to study the liquid structure
and structure-related properties such as transport proper-
ties without introducing more parameters for the structural
information.
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APPENDIX A. BULK MODULUS–MOLAR VOLUME

RELATIONSHIP FOR SOLIDS AND BIRCH’S LAW

Birch’s law is an empirical relationship between elastic
constants (wave velocities) and density proposed by Birch
(1961). Its physical interpretations and implications have
been discussed in detail in many works (e.g., Birch, 1961;
Anderson and Nafe, 1965; Chung, 1972; Shankland,
1972). Here we summarize the main conclusions below.

For solids, the free energy is mainly from the inter-
atomic potential energy. Therefore the bulk modulus of sol-
ids is controlled by the molar volume or mean interatomic
distance. For a given material, the volume derivatives of
bulk modulus at constant temperature or constant pressure
are given by

@ ln KT

@ ln V

� �
T

¼ �K 0T ðA1Þ

and

@ ln KT

@ ln V

� �
P

¼ �dT ; ðA2Þ

where K 0T is the pressure derivative of bulk modulus and dT

is the Anderson–Grüneisen parameter. If we define mean
atomic weight as Ma ¼ M=n, where M is the molar formula
weight and n is the number of atoms in a chemical formula.
Then we can define the volume derivative of bulk modulus
at constant mean atomic weight (regardless if the tempera-
ture or pressure are constant) as

@ ln KT

@ ln V

� �
Ma

¼ �v: ðA3Þ

Anderson and Nafe (1965) showed that v is a constant of
�4 for many crystalline oxides and silicates with the same
mean atomic weight. For a small range of M , Eq. (A3) re-
duces to a linear relationship between the bulk sound veloc-
ity and density as demonstrated by Chung (1972)

vK ¼ aðMÞ þ bq; ðA4Þ

where vK ¼ ðK=qÞ1=2. Eq. (A4) is the original form of
Birch’s law proposed by Birch (1961).

Essentially, Birch’s law says that the volume dependen-
cies of bulk modulus at constant temperature, pressure,
and mean atomic weight are roughly the same, that is

K 0 ¼ d ¼ v ðA5Þ

The similar values of anharmonic parameters K 0, d, and
v are confirmed by many experiments (e.g., Anderson et al.,
1971; Liebermann and Ringwood, 1973).

APPENDIX B. THERMAL EXPANSIVITY AT HIGH

PRESSURE

Thermal expansivity as a function of pressure can be ob-
tained by taking the temperature derivative of Eq. (47)

a ¼ 1

KT

@P
@T

� �
V

: ðA6Þ
where the temperature derivative of Uðf ; y1; y2Þ is needed.
y1 and y2 are small in the composition range of this study
(<0.03) since the sphere diameters are close to each other.
Therefore we can simplify the evaluation of Eq. (A6) by
neglecting the temperature dependencies of y1 and y2 as

@U
@T

� �
V

¼ f
@U
@f

� �
@ ln f
@T

� �
V

¼ ðC� UÞ @ ln V m

@T
; ðA7Þ

and

@U0

@T

� �
V

¼ f0
@U0

@f0

� �
@ ln f 0

@T

� �
V

¼ ðC0 � U0Þ
@ ln V m0

@T
� a0

� �
; ðA8Þ

where

a0 ¼
@ ln V 0

@T
ðA9Þ

is the room-pressure thermal expansivity of a liquid. Using
Eqs. (A7) and (A8), Eq. (A6) can be reduced to

@P
@T

� �
V

¼ P
T
þ RT

V

"
ð1� nÞhðC� UÞ � ððh0 � a0ÞðC0 � U0Þ

þ a0ðl� 1ÞU0Þ
V 0

V

� �l�1

� xUþ ðnðh0 � a0ÞðC0 � U0Þ þ xU0

þ nðm� 1Þðh0 � hÞU0Þ
V m0

V m

� �m�1
#
; ðA10Þ

where h and x are related to the temperature dependence of
the volume of spheres

h � @ ln V m

@T

� �
V

¼ 1

V m

Xm

i¼1

X iV mi#i � a0n; ðA11Þ

h0 �
@ ln V m0

@T

� �
V

¼ 1

V m0

Xm

i¼1

X iV m0i#i; ðA12Þ

and

x � @n
@T

� �
V

¼ 1

V m

Xm

i¼1

X iV mini#i � hn� a0ðfþ n2Þ; ðA13Þ

with

#i ¼
@ ln V m0i

@T

� �
V

¼ 3gi

T
þ a0ni: ðA14Þ

Note that here gi is defined as the temperature depen-
dence of sphere diameters at constant liquid volume. When
temperature changes, the total volume of the liquid also
changes due to the thermal expansion. Since the sphere
diameters are also volume dependent, the second term on
the right hand side of Eq. (A14) thus represents the effect
of thermal expansion.

For the case that the deformability of spheres is a linear
function of the packing fraction (Eq. (51)), Eq. (A10) re-
mains valid, but h and x should be evaluated as



h ¼ 2sf0 þ ð1� n0Þ
sf0 þ ð1� n0Þ

ðh0 � a0Þ �
sf0ðh0 � a0Þ þ ð1� n0ÞðV =V 0Þsf0þð1�n0Þ sf0ðh0 � a0Þ ln V

V 0

� �
� ðsf0 þ ð1� n0ÞÞa0

� �
sf0 þ ð1� n0ÞðV =V 0Þsf0þð1�n0Þ

; ðA15Þ
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and

x ¼ sðf h� f0ðh0 � a0ÞÞ ðA16Þ
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