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S U M M A R Y
Measurements of the splitting or birefringence of seismic shear waves constitute a powerful
and popular technique for characterizing azimuthal anisotropy in the upper mantle. The in-
creasing availability of data sets from dense broad-band seismic arrays has driven interest in
the development of techniques for the tomographic inversion of shear wave splitting data and in
comparing splitting measurements with anisotropic upper-mantle models obtained from other
constraints, such as surface wave analysis. Two different theoretical approaches have been
developed for predicting apparent shear wave splitting parameters (fast direction and delay
time) for models that include multiple layers of anisotropy at depth, which is useful for com-
paring azimuthally anisotropic surface wave models with shear wave splitting measurements.
These approaches differ in one key aspect, which is whether or not the shear wave splitting
operator can be treated as commutative. In this paper, we investigate the theoretical source
of this discrepancy, and show that at frequencies relevant to most studies of upper-mantle
anisotropy, the term that results in the non-commutivity of the shear wave splitting operator in
the expressions for multiple-layer splitting must be retained. In contrast, the quantity known
as the splitting intensity, which is closely related to the apparent fast direction and delay time,
does commute at these frequencies. We illustrate these inferences with forward modelling
examples and discuss their implications for the tomographic inversion of shear wave splitting
measurements, the comparison of surface wave models with shear wave splitting observations
and the joint inversion of surface wave and shear wave splitting observations for upper-mantle
anisotropic models.
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1 I N T RO D U C T I O N

The characterization of seismic anisotropy in the Earth’s upper-
mantle yields some of the most direct constraints available on the
geometry of mantle flow. This is due to the causative link be-
tween deformation and anisotropy; when an aggregate of upper-
mantle minerals is subjected to deformation (under certain con-
ditions), it develops a crystallographic preferred orientation that,
in turn, results in macroscopic seismic anisotropy (e.g. Karato
et al. 2008). One of the least ambiguous indicators of anisotropy
in the Earth’s upper mantle is the birefringence or splitting of
shear waves, which has emerged as a popular tool for character-
izing anisotropy and mantle flow (for a recent review, see Long &
Silver 2009). Although shear wave splitting is traditionally thought
of as a single-station measurement, the increasing popularity
of long-running, high-quality arrays of broad-band seismometers
means that splitting measurements can often be treated in the context
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of dense array data (e.g. Long & Silver 2009) and can be interpreted
in increasingly sophisticated ways. This includes the development
and implementation of techniques for the tomographic inversion of
shear wave splitting measurements for complex anisotropic struc-
ture at depth (e.g. Chevrot 2006; Abt & Fischer 2008; Long et al.
2008). There have also been attempts to compare and synthesize
constraints on azimuthal anisotropy obtained from different types of
observations, particularly shear wave splitting and surface wave in-
versions (e.g. Simons et al. 2002; Li et al. 2003). Very recently, joint
inversions of splitting and surface wave observations for anisotropic
structure have been implemented (Marone & Romanowicz 2007;
Yuan & Romanowicz 2010), and there has also been work that con-
siders how to invert jointly different types of data for azimuthal
anisotropy from a finite-frequency point of view (Panning & Nolet
2008).

A complete treatment of shear wave splitting data sets—and a
full description of the geometry of anisotropy at depth—requires
a correct description of the behaviour of shear waves in a ver-
tically stratified anisotropic medium. In the presence of multiple
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layers of anisotropy, a (nearly) vertically propagating shear wave
will be affected by successive layers of anisotropy, and the mea-
sured splitting parameters (fast direction, φ, and delay time, δt)
cannot be simply related to the geometry of any one layer, as they
can in the simplest case of a single, laterally homogeneous layer
of anisotropy with a horizontal axis of symmetry. Several different
studies have sought to understand shear wave splitting behaviour in
a vertically stratified medium (e.g. Silver & Savage 1994; Brech-
ner et al. 1998; Rümpker & Silver 1998; Wolfe & Silver 1998;
Montagner et al. 2000; Saltzer et al. 2000). In particular, Silver &
Savage (1994) and Montagner et al. (2000) each propose a theoret-
ical treatment for predicting shear wave splitting parameters in the
presence of multiple anisotropic layers, and each of these theoreti-
cal frameworks finds common use in the anisotropy literature (e.g.
Liu et al. 1995; Levin et al. 1999; Walker et al. 2001; Simons et al.
2002; Li et al. 2003; Marone and Romanowicz 2007; Wüstefeld
et al. 2009). There is a fundamental discrepancy, however, between
Silver & Savage (1994) and Montagner et al. (2000) on the ques-
tion of whether the splitting operator can be treated as commutative
in the low-frequency limit. In particular, the treatment of Silver &
Savage (1994) implies that the splitting operator does not commute
even at low frequency, while Montagner et al. (2000) assert that
the higher order terms that lead to this non-commutivity can be
discarded in the low-frequency limit.

In this paper we investigate the source of this discrepancy and
show that the splitting operator must be treated as non-commutative
at frequencies relevant to the case of teleseismic shear wave split-
ting due to (weak) upper-mantle anisotropy. (For typical shear wave
splitting studies, characteristic periods of the waves under study are
∼8–12 s, while resolvable upper-mantle shear wave splitting delay
times are typically ∼0.5–2 s.) We illustrate this non-commutivity
with a simple forward modelling exercise, computing synthetic seis-
mograms via a particle motion perturbation method for a two-layer
anisotropy model and comparing them to the predictions made by
expressions derived by Silver & Savage (1994) and elaborated upon
here. Finally, we discuss the implications of the non-commutivity
of the shear wave splitting operator for the tomographic inversion
of splitting measurements (and other types of seismic observa-
tions such as surface wave dispersion) for heterogeneous models
of anisotropic structure at depth.

2 S H E A R WAV E S P L I T T I N G I N
S T R AT I F I E D A N I S O T RO P I C M E D I A :
T H E O RY

To make the comparison between the theoretical treatments of Silver
& Savage (1994) and Montagner et al. (2000), it is most convenient
to use the notation of Silver & Savage (1994) and to consider ini-
tially the case of two anisotropic layers and then generalize to the
multilayer case. We first consider the case of a (nearly) vertically
propagating shear phase with an initial linear polarization; for the
commonly used SKS phases, the initial polarization is in the direc-
tion of the backazimuth, while for direct S phases it is controlled
by the source mechanism. We seek to describe the splitting of an
incident shear wave u(ω) with initial polarization direction p̂ using
the concept of the splitting operator � (e.g. Silver & Chan 1991).
The splitting operator describes the effect of splitting of the inci-
dent shear wave due to an anisotropic layer onto the fast and slow
polarization directions (f̂ and ŝ, respectively) with a time shift of δt.
This splitting operator can be written as

� = eiωδt/2 f̂ f̂ + e−iωδt/2ŝŝ, (1)

and the split shear wave us(ω) can be written as

us(ω) = w(ω)� · p̂, (2)

where w(ω) is the wavelet function. We seek to describe the apparent
splitting parameters φa and δta due to the effect of multiple layers of
anisotropy; we let α1,2 = 2φ1,2, where φ1,2 is the angle between the
initial polarization direction p̂ and the fast direction of each layer,
and θ1,2 = ωδt1,2/2, where δt is the delay time associated with each
layer. For two layers, the expression that describes splitting in terms
of the fast polarization direction and delay time of the individual
layers may be written (Silver & Savage 1994, eq. A6).

�1 · �2 · p̂ = (ap + iCc)p̂ + (ap⊥ + iCs)p̂⊥, (3)

where

ap = cos θ1 cos θ2 − sin θ1 sin θ2 cos(α2 − α1) (4)

ap⊥ = − sin θ1 sin θ2 sin(α2 − α1) (5)

Cc = cos θ1 sin θ2 cos α2 + cos θ2 sin θ1 cos α1 (6)

Cs = cos θ1 sin θ2 cos α2 + cos θ2 sin θ1 sin α1, (7)

and p̂, p̂⊥ are the radial and transverse directions, respectively.
Montagner et al. (2000) established expressions for the apparent
splitting parameters (αa, θa) at long periods (that is, when the delay
time δt is much smaller than the characteristic period of the wave
under study). This was done by evaluating an expression similar to
(3) and retaining terms to first order in ω. At long periods (θi � 1),

ap ≈ 1, (8)

ap⊥ ≈ −θ1θ2 sin(α2 − α1), (9)

Cc ≈ θ2 cos α2 + θ1 cos α1, (10)

Cs ≈ θ2 sin α2 + θ1 sin α1, (11)

and thus, to first order, eq. (3) can be rewritten as

�1 · �2 · p̂ ≈ (1 + iCc)p̂ + iCs p̂⊥. (12)

This expression is equivalent to eq. (19) of Montagner et al. (2000)
and they used this to calculate the apparent splitting parameters

tan αa = Cs/Cc, (13)

tan θa =
√

C2
c + C2

s , (14)

which correspond to eqs (22) and (21) of Montagner et al. (2000),
respectively. (Recall that αa = 2φa and θa = ωδta/2.) In this for-
mulation, the splitting operators for each layer appear to commute,
since neither Cs nor Cc changes upon reversal of the order of the
splitting operators.

The other approach, taken by Silver & Savage (1994) and others
(e.g. Rümpker & Silver 1998; Wolfe & Silver 1998), is to retain all
terms in the displacement expression (3), derive an expression for
the apparent splitting parameters and then evaluate these expres-
sions for the low-frequency case. We demonstrate here that these
two approaches lead to fundamentally different results. For the two-
layer case, the full expressions for the apparent splitting parameters
are (Silver & Savage 1994, eqs 7 and 8)

tan αa = a2
p⊥ + C2

s

apap⊥ + CsCc
, (15)
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tan θa =
√

(apap⊥ + CsCc)2 + (a2
p⊥ + C2

s )2

apCs − ap⊥Cc
. (16)

Taking these expressions in the same low-frequency approximation,
we obtain

tan αa = C2
s

ap⊥ + CsCc
, (17)

tan θa =
√

(ap⊥/Cs + Cc)2 + C2
s . (18)

Note that if the term ap⊥ is set to zero, then eqs (17) and (18) reduce
to (13) and (14), respectively. The case where ap⊥ = 0 corresponds
to the case where the delay time is zero, the period of the wave
under study is infinitely large, or the angle between the layers is
zero. In this case, the formulations of Silver and Savage (1994) and
Montagner et al. (2000) are equivalent.

We can generalize the expressions (4)–(7) for the case of multiple
layers (after Silver & Savage 1994).

ap = S

[
1 −

N−1∑
n=1

N∑
n′=n+1

tan θn tan θn′ cos(αn − αn′ ) + O(tan4 θ )

]
,

(19)

ap⊥ = S

[
N−1∑
n=1

N∑
n′=n+1

tan θn tan θn′ sin(αn − αn′ ) + O(tan4 θ )

]
, (20)

Cc = S

[
N∑

n=1

tan θn cos αn + O(tan3 θ )

]
, (21)

Cs = S

[
N∑

n=1

tan θn sin αn + O(tan3 θ )

]
, (22)

where

S =
N∏

n=1

cos θn ; (23)

here N is the number of layers. (We note that only the terms pro-
portional to tan θ or tan2 θ must be retained.) In the case where the
delay time is much smaller than the characteristic period (θi � 1)
these expressions simplify to

ap ≈ 1, (24)

ap⊥ ≈
N−1∑
n=1

N∑
n′=n+1

θnθn′ sin(αn − αn′ ), (25)

Cc ≈
N−1∑
n=1

θn cos αn, (26)

Cs ≈
N−1∑
n=1

θn sin αn . (27)

The difference in the formulations of Silver & Savage (1994)
and Montagner et al. (2000) thus comes down to whether or not
the term ap⊥ must be retained at frequencies relevant to studies of
upper-mantle anisotropy using shear wave splitting. It is this term,
and this term only, that controls the commutivity of the splitting

operators (as well as the frequency dependence). In the expression
that describes the application of the splitting operators (eq. 3), ap⊥
is second order in ω, which is why it was discarded in the analysis
of Montagner et al. (2000). Yet, it is clear from eqs (17) and (18)
that the term including ap⊥ is of the same order as the other terms
that have been retained, and thus cannot be discarded. Therefore,
a complete treatment of splitting due to multiple anisotropic layers
requires that the splitting operators be treated as non-commutative.
(Recall that for the end-member case of vanishingly small delay
times or infinitely large periods, the term ap⊥ goes to zero. A discus-
sion of shear wave splitting measurement methods, their detection
limits and the frequencies at which the non-commutivity of splitting
operators is relevant can be found in Section 3.)

The implications of this non-commutivity for the interpretation
of shear wave splitting measurements in the presence of vertically
stratified anisotropy are substantial. First, as pointed out by Silver &
Savage (1994), the fact that the splitting operators associated with
multiple anisotropic layers do not commute implies that the back-
azimuthal variation in apparent splitting parameters can be used
not only to diagnose multiple layers of anisotropy, but to determine
their order. This property is commonly exploited in shear wave
splitting studies that infer the presence of two or more layers (e.g.
Savage & Silver 1993; Özalaybey & Savage 1994; Liu et al. 1995;
Levin et al. 1999; Walker et al. 2001; Snyder & Bruneton 2007),
but it is inconsistent with the theoretical framework proposed by
Montagner et al. (2000), which does not predict any backazimuthal
variation in apparent splitting parameters in the presence of multiple
layers of anisotropy. A second implication of the non-commutivity
demonstrated by eqs (17) and (18) is that the expressions derived by
Montagner et al. (2000) for predicting SKS splitting parameters
from anisotropic models derived from surface wave observations
yield incomplete results for the case where the fast direction changes
substantially with depth. Silver & Savage (1994) demonstrated that
the backazimuthal variations in apparent splitting parameters in-
duced by the non-commutivity of the splitting operator are most
dramatic when the delay times associated with each layer are not
dramatically different and the offset in fast directions between lay-
ers is between ∼30◦–60◦; in other cases, the effects are more subtle
and the expressions of Montagner et al. (2000) provide a fairly
accurate approximation of the effects of multiple layers. The non-
commutivity of the splitting operator may explain, in part, why at-
tempts to reconcile anisotropic models obtained from surface waves
with SKS splitting measurements using the Montagner et al. (2000)
expressions (e.g. Simons et al. 2002; Li et al. 2003) have not been
entirely successful. A third implication is that shear wave splitting
measurements and surface wave observations cannot be correctly
integrated in a joint inversion for anisotropic structure using the
Montagner et al. (2000) approximations if there is a substantial
change in the fast axis direction with depth, unless the measurements
are made at very long periods. The accuracy of tomographic mod-
els obtained via such a joint inversion (e.g. Marone & Romanowicz
2007; Yuan & Romanowicz 2010) may be degraded in regions
of the model where the fast directions change substantially with
depth; however, if the fast directions vary with depth by less than
∼30◦, then the violations of the assumptions made would be less se-
vere, and such regions of the anisotropic model would generally be
reliable.

Although the shear wave splitting operator � does not commute,
it is possible to identify a combination of apparent splitting param-
eters (known as the splitting intensity) that does indeed commute
in the low-frequency limit, as pointed out by Chevrot (2000) and
elaborated upon by several workers (e.g. Chevrot 2006; Long et al.
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2008; Sieminski et al. 2008). We write expressions for combina-
tions of the apparent splitting parameters θa and αa that are valid at
any frequency.

tan θa sin αa = a2
p⊥ + C2

s

apCs − a2
p⊥Cc

, (28)

tan θa cos αa = apap⊥ + CsCc

apCs − a2
p⊥Cc

. (29)

In the low-frequency limit, ap⊥ � ap and ap⊥ � Cs , so eqs (28)
and (29) reduce to these approximate expressions.

tan θa sin αa ≈ Cs, (30)

tan θa cos αa ≈ Cc + ap⊥/Cs . (31)

The expression tan θa sin αa , which corresponds to the splitting
intensity defined by Chevrot (2000), does commute in the low-
frequency limit and can be used as an observable for the tomo-
graphic inversion of shear wave splitting measurements (Chevrot
2006; Long et al. 2008; Sieminski et al. 2008; Chevrot & Monteiller
2009) and as the basis for the joint inversion of surface wave and
shear wave splitting observations for anisotropic models (Panning
& Nolet 2008). The closely related quantity tan θa cos αa , which we
denote as the complimentary splitting intensity, does not commute
in the low-frequencyb limit.

3 M E A S U R E M E N T M E T H O D S A N D
F R E Q U E N C Y C O N T E N T : P R A C T I C A L
C O N S I D E R AT I O N S

Eqs (17) and (18) describe the backazimuthal dependence of ap-
parent splitting parameters in the presence of multiple anisotropic
layers, but to assess the relevance of the non-commutivity of shear
wave splitting operators for actual data sets it is important to con-
sider the frequency content of the waves under study as well as
the methods used to obtain measurements of apparent splitting
parameters. Several studies have sought to compare the perfor-
mance of various splitting measurement methods for both syn-
thetic and real data (e.g. Long & van der Hilst 2005a; Wüstefeld &
Bokelmann 2007; Vecsey et al. 2008; Monteiller & Chevrot 2010),
and a detailed overview of measurement methods for long-period
teleseismic data can be found in Long & Silver (2009). Commonly
used methods for measuring apparent splitting parameters (φ, δt)
from a single seismogram include the transverse component min-
imization method of Silver & Chan (1991) and the closely related
eigenvalue method, the rotation-correlation method (also known as
the cross-correlation method) and the cross-convolution method of
Menke & Levin (2003). Each method takes a different approach to-
wards identifying the pair of splitting parameters that best accounts
for the effect of anisotropy on the SKS (or S) waveform. The Silver &
Chan (1991) methods seek to linearize the corrected particle motion
after the effect of splitting has been removed, either by minimizing
the corrected transverse component energy (if the initial polariza-
tion of the wave is known) or by identifying the most nearly sin-
gular time-domain covariance matrix through an eigenvalue-based
measure. The rotation–correlation method seeks to maximize the
correlation between the corrected fast and slow components, accom-
modating the prediction that the split waves should have identical
pulse shapes. The cross-convolution method, in contrast, uses the

match between observed and predicted waveforms for hypothetical
earth models to characterize anisotropic structure at depth, and does
not need to rely on measurements of apparent splitting parameters.
In theory, our equations for the variation of apparent splitting pa-
rameters in eqs (17) and (18) should be applicable for any of the
measurement methods (transverse component minimization, eigen-
value or rotation-correlation) that measure apparent splitting param-
eters. However, several studies have demonstrated that in practice
different measurement methods can yield different results for noisy
data and/or in the presence of complex anisotropic structure (e.g.
Levin et al. 2004; Long & van der Hilst 2005a), particularly when
delay times are small, and the simultaneous application of several
different methods can help to identify unstable measurements (e.g.
Long & Silver 2009).

It is important to note that the single-record measurement meth-
ods, in particular, suffer from significant limitations in detecting
splitting associated with small delay times in the presence of noise.
For most SKS splitting studies, the characteristic periods of the
waves under study is typically ∼8–10 s, although for some arrivals
there is significant energy at shorter or longer periods. For a char-
acteristic period of ∼10 s with noise levels that are typical for SKS
splitting studies, single-record measurement methods will have a
lower delay time detection limit of perhaps ∼0.5 s (Long & Silver
2009, and references therein). For particularly high levels of noise,
detection of weak splitting may be even more difficult; for exam-
ple, Monteiller & Chevrot (2010) demonstrated that at a period of
12 s and low signal-to-noise ratios of 3–6, splitting with a delay time
of 0.65 s could not be reliably detected using the transverse compo-
nent minimization method. In contrast, estimates of splitting param-
eters derived from measurements of the splitting intensity (Chevrot
2000) can reliably characterize relatively smaller delay times
(Monteiller & Chevrot 2010; see also Long & van der Hilst 2005a).
In any case, it is important to keep in mind that the effect of very
small splitting, with delay times extremely small compared to the
characteristic period of the phase under study, on the waveforms of
SKS arrivals (or other shear phases) is subtle, and very weak split-
ting is difficult to reliably characterize in the presence of realistic
levels of noise.

The lower detection limit of frequently used shear wave splitting
measurement methods is salient for understanding the practical im-
portance of the non-commutivity of shear wave splitting operators.
As discussed earlier, this non-commutivity is controlled by the term
ap⊥ appearing in eqs (17) and (18), which does not appear in the
Montagner et al. (2000) formulation (eqs 13 and 14). In the end-
member case of zero delay time or infinitely large periods, or in
the case where the angle between the anisotropic layers is zero, the
term ap⊥ goes to zero and the two formulations are equivalent. The
non-commutivity of shear wave splitting operators is therefore more
important at larger delay times (relative to characteristic period) and
for the case where the angle between the anisotropic layers at depth
is large (∼30◦–60◦). For the typical case of SKS (or teleseismic
S) splitting due to upper-mantle anisotropy, where characteristic
periods are ∼8–10 s and delay times range up to ∼2–2.5 s, non-
commutivity in the presence of multiple anisotropic layers must be
taken into account. For smaller delay times, the non-commutivity
becomes less important, but at delay times less than perhaps ∼0.5 s
(depending on signal-to-noise ratio) the apparent splitting measure-
ments cannot be reliably estimated in any case. At smaller delay
times, the multichannel method is better able to estimate splitting
parameters (Monteiller & Chevrot 2010), but in this case the split-
ting intensity measurement does in fact commute.
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4 S Y N T H E T I C E X A M P L E S U S I N G
F O RWA R D M O D E L L I N G

To illustrate the non-commutivity of the splitting opera-
tor � at relevant frequencies, we carry out a simple for-
ward modelling exercise using noise-free synthetics gener-
ated using codes modified from those contained in the
SynthSplit software package (http://www.geo.brown.edu/People/
Grads/abt/Tools/SynthSplit_download.htm). The method used for
efficiently approximating particle motion for multiply split shear
waves, documented in Abt & Fischer (2008), is based on the par-
ticle motion perturbation method of Fischer et al. (2000) and has
been benchmarked against full waveform synthetics computed us-
ing a pseudo-spectral technique (Abt & Fischer 2008). We tested
two scenarios, each consisting of two simple two-layer anisotropic
models, as shown in Fig. 1. In the first scenario, Model A consists
of an anisotropic layer with fast direction N135◦E associated with
a delay time of 1.0 s that overlies a deeper layer with a fast direc-
tion of N90◦E and a delay time of 1.4 s. This model is similar to
that proposed to explain shear wave splitting patterns observed at
station BKS in Berkeley, CA by Özalaybey & Savage (1995; see
also Savage 1999). In Model B, the order of the layers is reversed.
(The difference in associated delay time is implemented by keeping
the elastic constants associated with orthorhombic anisotropy with
a horizontal axis of symmetry the same and adjusting the thickness
of the layer.) In the second scenario, the fast directions and relative
delay times of the layers are the same as in Scenario 1, but the

absolute delay times are different. Model C is similar to Model A,
but has a delay time of 0.5 s for the upper layer (φ = N135◦E) and
0.7 s for the lower layer (φ = N90◦E). In Model D, the order of the
layers is reversed. Because the synthetic seismograms are computed
for the same period (8 s) for both scenarios, the different absolute
delay times in Scenario 1 versus Scenario 2 allows us to investigate
the accuracy of the Silver & Savage (1994) expressions for different
ratios of delay times to characteristic period.

We carry out synthetic seismogram modelling for a series of
vertically propagating shear waves with a period of 8 s for a va-
riety of initial polarization directions for each model. We measure
the apparent shear wave splitting parameters (φ, δt) using the eigen-
value minimization technique of Silver & Chan (1991) and compare
the measurements from the synthetic seismograms with predictions
of the backazimuthal variation in apparent splitting parameters for
each model in the low-frequency limit evaluated using eqs (17) and
(18). We simulate shear wave splitting for each of the anisotropic
models for a vertically incident shear wave (zero slowness) with
initial polarization parallel to the backazimuth. We model backaz-
imuths from 0◦ to 180◦ in 10◦ increments; the initial waveform is
a sinusoidal pulse with a period of 8 s (similar to a typical charac-
teristic period for SKS phases). Each anisotropic layer is described
using the elastic constants typical for single-crystal olivine, rotated
to reflect the direction of the fast axis in the horizontal plane; the
thickness of the layer is adjusted to produce the desired delay time.

Fig. 2 shows the splitting parameters (φ, δt) measured from each
of the synthetic seismograms as a function of backazimuth for each

Figure 1. Sketch of two-layer models used in the synthetic seismogram calculations. In Scenario 1, Model A consists of an upper anisotropic layer with a fast
direction of N135◦E and a delay time of 1.0 s and a lower layer with a fast direction of N90◦E and a delay time of 1.4 s. In Model B, the order of the layers
is reversed. In Scenario 2, the fast directions and relative delay times of the layers are the same as in Scenario 1, but the absolute delay times are smaller. For
Scenario 2, Model C has a delay time of 0.5 s for the upper layer (φ = N135◦E) and 0.7 s for the lower layer (φ = N90◦E). In Model D, the order of the layers
is reversed.
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1420 P. G. Silver and M. D. Long

Figure 2. Predictions of the backazimuthal variation of apparent splitting parameters using the analytical equations of Silver & Savage (1994) for Models
A and B (Scenario 1) shown in Fig. 1, along with synthetic splitting observations computed for a characteristic period of 8 s. The predicted variation of the
apparent fast direction (a) and delay time (b) for Model A are shown as (solid line) as a function of backazimuth along with synthetic splitting measurements
(circles for fast directions, squares for delay times). The dashed lines indicate the predictions of the Montagner et al. (2000) expressions, which are independent
of the order of the layers. The same predictions for Model B are shown in (c) and (d).

model in Scenario 1 along with the variations predicted by eqs (17)
and (18). The results for Model A are similar to those obtained by
Savage (1999), who carried out reflectivity synthetic seismogram
modelling for the same two-layer model used here. The apparent

splitting parameters predicted by Montagner et al. (2000) expres-
sions, which do not vary with backazimuth and are the same for
Model A and Model B, are also shown. Fig. 3 shows the split-
ting intensity measured from each of the synthetic seismograms
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Figure 2. (Continued.)

for Scenario 1, along with the prediction obtained from summing
the effects of each layer (e.g. Chevrot 2000). Because the split-
ting intensity is commutative, the predictions for Model A and
Model B are the same. Figs 4 and 5 show the predictions and
synthetic seismogram measurements for Scenario 2, with the same
plotting conventions as Figs 2 and 3. This simple forward modelling
exercise demonstrates that switching the order of the layers has a
profound effect on the measured apparent splitting parameters and
that the non-commutivity of the shear wave splitting operators must
indeed be taken into account at frequencies typical of commonly
used SKS phases.

5 I M P L I C AT I O N S F O R A N I S O T RO P Y
T O M O G R A P H Y

There are several implications of the non-commutivity of the split-
ting operator for the tomographic inversion of shear wave splitting
measurements for anisotropic structure, which is receiving more
attention as the availability of data from dense broad-band arrays
increases (e.g. Ryberg et al. 2005; Chevrot 2006; Abt & Fischer
2008; Long et al. 2008; Abt et al. 2009). The first important implica-
tion is that the combination of surface wave and shear wave splitting
observations in tomographic inversions for anisotropic structure
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Figure 3. Predictions of the splitting intensity (solid line) for the two-layer models (A and B) in Scenario 1 (Fig. 1) obtained by summing the predictions
for each layer (Chevrot 2000) along with measurements of the splitting intensity as a function of backazimuth from the synthetic seismograms computed in
the forward modelling exercise for Model A (circles) and Model B (squares). Because the splitting intensity is commutative, the predictions for Model A and
Model B are the same.

must be carried out with extreme care. In particular, the expressions
derived by Montagner et al. (2000) to relate body wave and surface
wave anisotropy are useful approximations in the case where the
measured splitting parameters do not vary significantly with back-
azimuth, which would imply that the fast directions in the model
are relatively homogeneous with depth, but they can be misleading
in cases where these conditions are violated. Because these expres-
sions do not take into account the non-commutivity of the splitting
operator, they do not correctly relate very complex anisotropic struc-
ture at depth to observations of apparent splitting parameters at the
surface. Anisotropic tomographic models that have been obtained
by jointly inverting surface wave and SKS splitting observations
using the Montagner et al. (2000) expressions (e.g. Marone & Ro-
manowicz 2007) should be treated with some caution in regions of
the model where the fast anisotropic direction varies significantly
with depth.

In contrast to the splitting operator �, the so-called splitting in-
tensity tan θa sin αa is commutative and can be treated as such in
a tomographic inversion framework. The utility of measuring the
amount of energy on the transverse component of SKS waves relative
to the radial component was first pointed out by Vinnik et al. (1989)
and was incorporated into the so-called multichannel measurement
method by Chevrot (2000), who advocated measuring the splitting
intensity at a variety of backazimuths and fitting a sin 2β curve
to the measurements to identify the best-fitting splitting parame-
ters (φ, δt). This measurement method has been applied to several
real-world data sets (e.g. Long & van der Hilst 2005b; Lev et al.
2006; Kummerow & Kind 2006), but perhaps the most powerful
application of the splitting intensity measurement lies in its suit-
ability for tomographic imaging of anisotropic structure (Chevrot
2006; Long et al. 2008; Sieminski et al. 2008; Chevrot & Monteiller
2009). Because the splitting intensity measurement is commutative,

it can be treated analogously to a body wave traveltime in isotropic
wave speed tomography; in particular, finite-frequency sensitivity
kernels for splitting intensity observations can be computed in a
manner very similar to those for traveltimes measured by wave-
form cross-correlation (Favier & Chevrot 2003; Favier et al. 2004;
Chevrot 2006; Long et al. 2008). If shear wave splitting intensity
measurements can be collected for a dense network of stations for a
variety of SKS and/or direct teleseismic S ray paths, which include
different incoming polarization angles and incidence angles, then
images of upper-mantle anisotropy can be obtained in a manner
very similar to traditional traveltime tomography. Indeed, even if
only SKS measurements with nearly vertical ray paths are used,
sufficient resolution of upper-mantle structures can be obtained if
finite-frequency theory is applied and the station spacing is suffi-
ciently dense (Chevrot & Monteiller 2009), as the sensitivity kernels
for different observations will overlap at depth.

Splitting intensity measurements are extremely well suited for
the problem of imaging anisotropy, but they do suffer from the key
disadvantage of ‘losing’ homogeneous anisotropic layers at depth
(e.g. Chevrot & Monteiller 2009). Consider the two-layer models
shown in Fig. 1—traditional measurements of apparent splitting
parameters (φa, δta) will exhibit a backazimuthal variation that
is characteristic of two anisotropic layers with a significant (45◦)
offset in fast direction, and the character of that variation can be
used to infer the order of the layers (Figs 2 and 4). In contrast,
measurements of the splitting intensity for such a model are not
distinguishable from a model with a single layer of anisotropy,
and the splitting intensity observations will not be affected if the
order of the layers is switched (Figs 3 and 5). (This situation is
analogous to the information contained in body wave traveltimes
that are used to construct isotropic tomographic models. For the
isotropic case, a laterally homogenous layer of anomalous wave
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Figure 4. Predictions of the backazimuthal variation of apparent splitting parameters using the analytical equations of Silver & Savage (1994) for Models C
and D (Scenario 2) shown in Fig. 1, along with synthetic splitting observations computed for a characteristic period of 8 s. Symbols are as in Fig. 2.

speed at depth would not result in traveltime residuals along a
seismic array, and a tomographic inversion would be insensitive
to such a layer.) In practice, this implies that there is information
contained in the apparent shear wave splitting parameters (φa, δta)
that is lost in the splitting intensity measurement. Put another way,
the fact that the splitting operator � is non-commutative implies
that in the presence of complex anisotropy, the apparent shear wave

splitting parameters do, in fact, contain some information about the
depth distribution of anisotropic structure.

A key question, therefore, is whether there is a way to use the ‘ad-
ditional’ information contained in the apparent splitting parameters
in tomographic inversions for anisotropic structure. One approach
is to construct the tomographic inversion in a way that explicitly
takes into account the non-commutivity of the splitting operator. For
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Figure 4. (Continued.)

example, Abt & Fischer (2008) proposed a ray-theoretical method
for shear wave splitting tomography in which the partial derivatives
that relate changes in anisotropic structure at depth to changes in
apparent splitting parameters observed at the surface are calculated
such that the propagation history of each ray is taken into account;
the partial derivatives depend on the geometry of anisotropy both
in the ‘block’ of the model in question and on the other blocks
that have been previously sampled by the ray. The drawback of this
approach is that the partial derivatives – and therefore the inver-

sion result – are highly dependent on the starting model. However,
since tomographic inversions for anisotropic structure are by their
very nature highly non-linear, the (linearized) sensitivities will de-
pend heavily on the starting model even if the splitting intensity is
used as the observable (Long et al. 2008). For inversions that rely
upon splitting intensity measurements, the additional information
contained in the apparent splitting parameters (φa, δta) may still be
used; one approach would be to validate the tomographic models ob-
tained by splitting intensity tomography by predicting (φa, δta) and
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Figure 5. Predictions of the splitting intensity for the two-layer models (C and D) in Scenario 2 (Fig. 1). Symbols are as in Fig. 3.

comparing them to observations. This may help to identify aspects
of the data that are not well-described by the tomographic model
and may help to identify features (such as a “hidden” homogeneous
layer of anisotropy at depth) that do not affect the splitting intensity
measurements. Another approach would be to compare observations
of the splitting intensity and apparent splitting parameters before
implementing an inversion framework; if the apparent splitting data
suggest a level of complexity that is not immediately apparent from
the visual examination of the splitting intensity patterns, this may
indicate the need for multiple layers of anisotropy to explain the
data. Multiple layers of anisotropy at depth can also be diagnosed
and characterized by detailed examination of the SKS waveforms,
as in the cross-convolution method (Menke & Levin 2003). This
information could be explicitly incorporated in a splitting intensity
tomography inversion through the construction of a realistic back-
ground model (based on apparent splitting measurements φa and
δta for different backazimuths) which serves as a starting point for
the calculation of sensitivity kernels and the inversion of splitting
intensity data (e.g. Long et al. 2008).

Although there are several potential strategies for exploiting the
non-commutivity of shear wave splitting operators to characterize
complex anisotropic structure at depth, it is important to keep in
mind that from a practical point of view, the applicability of these
strategies may be limited by the quality of the measurements them-
selves. Several studies have noted that single-record measurements
such as the Silver & Chan (1991) methods or the rotation-correlation
method tend to be less stable on real, noisy data than splitting inten-
sity measurements (e.g. Chevrot 2000; Long & van der Hilst 2005a;
Long & Silver 2009; Monteiller & Chevrot 2010), particularly in
the presence of complex anisotropic structure (Long & van der
Hilst 2005a). In practice, this means that robust, well-constrained
measurements may be difficult to obtain, particularly for incoming
polarization azimuths where the amount of energy on the uncor-
rected transverse component is small. An additional restriction that
is particularly acute for SKS splitting data is the often limited back-

azimuthal distribution of sources in the distance region appropriate
for SKS analysis, which can hamper a complete characterization of
backazimuthal variations such as those shown in Figs 2 and 4. It is
vital, therefore, to carefully assess the quality of a given shear wave
splitting data set (in terms of noise levels, waveform complexity, size
of errors on individual measurements, and (dis)agreement among
different measurement methods) before implementing strategies for
tomographic inversion.

We note, finally, that the suitability of the splitting intensity mea-
surement for anisotropy imaging also provides a promising avenue
for the joint inversion of surface wave and shear wave splitting mea-
surements. Because the splitting intensity is commutative, it can be
more easily combined with different types of seismological observ-
ables in an inversion framework. For example, Panning & Nolet
(2008) suggested a (strongly reduced) parametrization scheme for
finite-frequency anisotropic surface wave tomography and noted
that such a strategy could accommodate the joint inversion of sur-
face waves and splitting intensity observations. (An earlier reduced
parametrization scheme for imaging seismic anisotropy was sug-
gested by Becker et al. 2006.) This combination of different types
of observations is likely to be particularly powerful, since the sensi-
tivities of body waves and surface waves to anisotropic parameters
are different (e.g. Sieminski et al. 2007) and they should provide
complementary constraints on anisotropic structure at depth. A pri-
ori constraints on vertically stratified anisotropy from surface waves
can also serve as a useful starting point for tomographic inversions
of splitting intensity; multiple-layer surface wave models can be
used as starting models in splitting intensity tomography and this
combination can help to alleviate the problem of ‘losing’ homo-
geneous layers of anisotropy described earlier. Because of the dif-
ferences in the commutative properties of the splitting operator �

and the splitting intensity measurement, we view observations of
splitting intensity as the most promising avenue for the joint inver-
sion of surface wave and body wave observations for anisotropy
models.
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6 C O N C LU S I O N S

In this paper we have investigated the source of the discrepancy
between the theoretical treatments of Silver & Savage (1994) and
Montagner et al. (2000), both of which make predictions of ap-
parent shear wave splitting parameters for anisotropic models with
multiple layers of anisotropy in the low-frequency limit. We find
that the discrepancy over whether or not the shear wave splitting
operator can be treated as commutative arises from a difference in
when the low-frequency approximation is applied, and show that
the term in the apparent splitting parameter expressions that con-
trols the non-commutivity is of the same order as other terms and
must be retained at frequencies relevant for typical shear wave split-
ting studies of upper-mantle anisotropy. The expressions proposed
by Montagner et al. (2000) are a valid approximation for cases
in which the fast axis does not vary dramatically with depth, in
which case large variations in apparent splitting parameters with
backazimuth are not expected. When these conditions are vio-
lated, however, the framework of Montagner et al. (2000) may give
inaccurate estimates of apparent splitting. The finding that the split-
ting operator must be treated as non-commutative at low frequen-
cies has profound implications for studies that seek to reconcile
anisotropic models derived from surface wave observations with
shear wave splitting data, and for studies that attempt a joint to-
mographic inversion of surface wave and splitting observations for
anisotropic models. The non-commutivity of the splitting operator
also implies that the tomographic inversion of shear wave split-
ting measurements must be implemented with care, and the non-
commutivity must be explicitly taken into account when calculating
the partial derivatives for use in a linearized tomography prob-
lem. In contrast to the splitting operator, the quantity known as the
splitting intensity (usually measured by cross-correlating the radial
and transverse components of the shear arrival) does commute and
can be treated in a tomographic framework in a manner similar to
body wave traveltimes in isotropic tomography. Splitting intensity
observations may also be combined with surface wave measure-
ments into joint anisotropic tomography inversions in a relatively
straightforward manner.
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