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S U M M A R Y
The main focus of this paper is the development of a theoretical framework for the tomographic
inversion of (broad-band) shear wave splitting measurements in terms of anisotropic structure
in the upper mantle. We show that the partial differential equations (PDEs) that govern wave
equation shear wave splitting tomography are, upon linearization with the Born approximation,
similar in structure to the equations that describe wave equation transmission and reflection
tomography. For full broad-band analysis these PDEs can be evaluated numerically, but we show
here the leading order asymptotic (i.e. ‘ray born’) behaviour of the associated finite-frequency
sensitivity kernels. For simplicity we assume that the anisotropic model is invariant in one
horizontal direction. This 2.5-D geometry is well suited for studying upper-mantle anisotropy
associated with subduction of lithospheric plates if the trench-slab system is approximately
2-D. With the so-called splitting intensity as the metric for data fit, and under the assumption of
weak anisotropy, we derive expressions for the sensitivity kernels. We focus on two anisotropic
parameters that describe tilted transverse isotropy: the dip θ 0 of the symmetry axis with respect
to the horizontal plane and the anellipticity parameter εA, which represents the strength of the
anisotropy. We illustrate the finite-frequency effects both for homogeneous and heterogeneous
(anisotropic) background models. The sensitivity kernels in heterogeneous media are calculated
for initial models obtained from numerical modelling of flow and finite strain beneath the
Ryukyu arc. Kernels calculated in heterogeneous media differ substantially from those in a
homogeneous background. This demonstrates the importance of iterative model (and kernel)
assessment for reaching the full (resolution) potential of finite frequency tomography.
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1 I N T RO D U C T I O N

Since the pioneering work by Hess (1964), measurements of seismic anisotropy in the upper mantle have provided information on the geometry

of deformation associated with tectonic and geodynamic processes. Seismic anisotropy in the upper mantle is generally understood to arise

when an aggregate of mantle rock, composed of intrinsically anisotropic crystals (for instance, olivine) is subjected to strain and develops a

lattice preferred orientation, or LPO (e.g. Christensen 1984; Zhang & Karato 1995). Vice versa, measurement of anisotropy provides insight

into the geometry of deformation and flow in Earth’s interior. An unambiguous indicator of anisotropy, the splitting—or birefringence—of

shear waves (Kosarev et al. 1979; Ando et al. 1983; Fukao 1984) provides unique insight into the structure and deformation of the upper

mantle (e.g. Silver 1996; Savage 1999) and, for instance, into mantle flow patterns associated with the subduction of oceanic lithosphere (e.g.

Park & Levin 2002).

Shear wave splitting has provided strong evidence for anisotropy in subduction zones (e.g. Fouch & Fischer 1996; Fischer et al. 1998;

Smith et al. 2001; Anderson et al. 2004; Pozgay et al. 2007). However, many of the measurements used lack depth resolution because the

pertinent waves propagate nearly vertically through the upper mantle. The prevailing stress and temperature conditions and the presence of

water (and perhaps other volatiles) can have a profound effect on anisotropic fabric (Jung & Karato 2001; Mizukami et al. 2004; Skemer et al.
2006). For instance, in B-type olivine fabric the fast axis is oriented ∼90◦ from the prevailing flow direction (Jung & Karato 2001; Karato

2003; Kneller et al. 2005; Lassak et al. 2006). Moreover, the commonly used assumption of infinite strain (and, thus, the neglect of strain
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history) may not always be adequate (Kaminski & Ribe 2002). Consequently, interpretations of splitting measurements are non-unique and

not often uncontroversial (e.g. Park & Levin 2002; Wiens & Smith 2003).

Insight into the 2-D or 3-D distribution of strain in the mantle wedge can be obtained by comparing predictions from geodynamic models

with splitting observations (e.g. Hall et al. 2000; Long et al. 2007). However, the inability to explore the full parameter space can easily

introduce bias. Alternatively, (tomographic) inversion of shear wave splitting data sets, which is becoming feasible thanks to the increasing

availability of data from dense, long-running seismic arrays, can elucidate aspects of mantle deformation in complicated tectonic regions such

as subduction zones.

In exploration seismology, splitting data from vertical seismic profiling (e.g. Esmersoy 1990; MacBeth 1991) or shear wave polarization

and traveltimes (Zheng 2004; Yang et al. 2005) have been used to invert for anisotropic parameters. Šı́lený & Plomerová (1996) inferred

anisotropy of continental lithosphere from inversion of shear wave splitting parameters and P-wave traveltime residuals, and Ryberg et al.
(2005) inverted shear wave splitting measurements for single SKS arrivals across a dense receiver array using a coarse block model and

a parameter space search method. Tomographic inversion for anisotropic parameters faces several challenges, however. First, one needs

seismograph networks (or geophone arrays) that allow dense sampling of the three-component wavefield and with favourable locations with

respect to seismic sources in order to obtain sampling from a sufficiently large range of backazimuths and incidence angles. Second, the

problem of inverting for laterally varying general anisotropy (defined by 21 independent elastic parameters) is ill posed (e.g. De Hoop et al.
1999; Foss et al. 2005).

In our shear wave splitting tomography we address data coverage and non-uniqueness as follows. First, we use a permanent, dense

broad-band seismic array (the Japanese F-net array; see Long & Van der Hilst 2005a) to construct a large database of high-quality shear wave

splitting measurements with good ray coverage in the upper mantle. Second, we reduce the complexity of the problem by assuming that the

anisotropic structure is invariant in the direction of the strike of the trench. This strategy is adequate for studies of anisotropy in nearly 2-D

systems, such as the Ryukyu subduction zone. Indeed, Long and Van der Hilst (2006) concluded that trench-perpendicular corner flow along

the Ryukyu arc is consistent with their splitting observations. In this 2.5-D geometry we collapse the stations and ray paths to and constrain

anisotropy in a 2-D plane of symmetry. Third, we use results from geodynamic flow modelling (Long et al. 2007) to regularize the inversion

problem. Specifically, we use a 2-D anisotropic reference model that is consistent with the splitting observations as a starting point for the

computation of sensitivity kernels. Such kernels will be used for tomographic inversion of the measurements by Long & Van der Hilst (2005a),

with the objective of constraining upper-mantle anisotropy and upper-mantle flow beneath Ryukyu and southwestern Japan (Long et al. in

preparation).

Here, we develop the theory up to the calculation of wave equation sensitivity kernels for (2.5-D) shear wave splitting tomography and a

table of symbols used in the derivations below is given in Appendix A. We use the so-called ‘splitting intensity’ (Chevrot 2000, 2006) as the

data misfit criterion. Linearization (through the Born approximation) then leads to a system of partial differential equations (PDEs) associated

with full-wave propagation, the solution of which generates the sensitivity kernel. The structure of this system follows an adjoint state method,

and resembles the structure appearing in wave equation transmission and reflection tomography (De Hoop & Van der Hilst 2005a; Tromp

et al. 2005; De Hoop et al. 2006). The PDEs can be solved numerically to obtain full-wave kernels in 3-D, but here we analyse the leading

order (asymptotic) behaviour using anisotropic ray perturbation theory (e.g. Farra 1989, 2001; Jech & Pšenčı́k 1989) in 2.5-D.

In this paper, we introduce full-wave equation-based splitting intensity kernels. The asymptotic expansion of these kernels has many

similarities with the analysis of Favier & Chevrot (2003), Chevrot et al. (2004) and Chevrot (2006), but there are also important differences.

First, in our asymptotic approach we choose a parametrization scheme that is explicitly designed to study anisotropy in subduction zones

and which builds on results from modelling (Long et al. 2007). Secondly, we reduce the geometry to 2.5-D by assuming invariance in one

direction (along strike) and wave propagation in or near a great circle plane of symmetry. Finally, recognizing that full resolution and accurate

imaging can only be achieved when kernels are adapted to the heterogeneity under study (De Hoop & Van der Hilst 2005a; De Hoop et al.
2006), and in view of the concept of using flow models to regularize the tomographic inversions, we focus on computing sensitivity kernels

for heterogeneous, anisotropic background media. We show that kernels in a heterogeneous anisotropic background can appear very different

from kernels calculated in a homogeneous medium, which suggests that the latter may lead to a false sense of image improvement. In Appendix

B, we compare our asymptotic formulation with kernels developed by Favier & Chevrot (2003) and show that for a homogeneous, isotropic

reference medium they are equivalent.

2 T H E C RO S S - C O R R E L AT I O N S P L I T T I N G I N T E N S I T Y C R I T E R I O N

Shear wave splitting is most often measured using grid search methods that seek to ‘remove’ or compensate for the effect of split-

ting from a single measurement of an incoming shear wave. Methods that seek to remove the energy on the transverse component of

the seismogram (e.g. Silver & Chan 1988, 1991) or to maximize the similarity in the pulse shapes of the fast and slow arrivals (e.g.

Bowman & Ando 1987; Levin et al. 1999) are commonly used. Chevrot (2000) introduced a quantity known as the ‘splitting intensity’ that

is sensitive to the ‘relative’ energy on the transverse component of the seismogram. For the simple case of a single layer of anisotropy, the

splitting intensity varies with incoming polarization angle θ with a sin(2β) dependence, where β is the angle between θ and the fast direction

φ. The fast direction φ and split time δt of the layer are retrieved from the amplitude and phase of the sinusoid (see Appendix B). For the case

of more complicated anisotropy, which can potentially be resolved by tomography, the splitting intensity will have a more complicated pattern
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but remains a convenient observable with which to work. Indeed, for the tomographic problem the splitting intensity has several advantages

over ‘apparent’ or ‘effective’ measurements of (φ, δt) in complicated media. First, splitting intensity is a more robust measurement (Chevrot

2000; Long & Van der Hilst 2005b). Second, near-zero splitting is more easily measured and distinguished from so-called ‘null measurements’

(which may include genuine zero splitting as well as failed measurement attempts). Third, splitting intensity is commutative, in contrast to the

so-called splitting operator Γ−1 (Silver & Savage 1994), which means that it can be treated very much like, for example, a traveltime delay

in wave speed tomography.

For the purpose of defining the cross-correlation splitting intensity criterion, we first define the geometry of the polarizations of the

incoming shear wave (see Fig. 1). We define the radial component direction to coincide with the initial polarization direction of the shear

wave, before it is affected by upper-mantle anisotropy, and assume that the shear wave is initially (linearly) SV polarized. The transverse

component direction is orthogonal to the radial direction in the horizontal plane. The radial and transverse component geometry is intrinsically

controlled by the source and receiver geometry [for SK(K)S] and, for direct teleseismic S arrivals, by the geometry of the earthquake source;

this coordinate system is independent of the geometry of the anisotropic medium and follows that of (Chevrot 2000, 2006).

Sensitivity kernels for finite frequency tomography depend on the way the data are characterized and analysed (e.g. De Hoop &

Van der Hilst 2005a). A popular choice is the cross-correlation criterion (e.g. Luo and Schuster 1991; Dahlen et al. 2000). The splitting

detection criterion used here, the splitting intensity measurement, is derived from the cross-correlation criterion, but instead of comparing

for each event, at any given station, modelled data with observed data, we compare the radial (superscript R) component (essentially the

projection onto an effective qSV polarization) with the transverse (superscript T ) component (essentially the projection onto an effective qSH

polarization) of the observed trace u. The similarity between the splitting intensity and the traveltime delay obtained by cross-correlation

was also discussed by Chevrot (2006). In this context, we consider ∂ t C(uR, uT )(t), where C stands for time-domain cross-correlation, that is,

C(u R, uT )(t) = ∫
u(t + t ′)Ru(t ′)T dt ′.

As in most other studies of teleseismic shear wave splitting due to upper-mantle anisotropy (e.g. Silver & Chan 1988, 1991; Savage 1999),

we assume that the split time |δt | is smaller than approximately half the dominant period, say T 0, in the data. This leads to the introduction of

the (normalized) splitting intensity measure (Chevrot 2000)

S(xs, xr ) = −N−1
s,r ∂t C[u(xr , .; xs)R, u(xr , .; xs)T ](0) (1)

for a given source–receiver pair (xs , xr ), in which the normalization factor,

Ns,r =
∫ ∣∣∂t u(xr , t ; xs)R

∣∣2
dt, (2)

represents the radial component energy. The splitting intensity measure vanishes in the absence of anisotropy.1

3 A D J O I N T S TAT E : P D E F O R M U L AT I O N

We linearize the tomographic problem (locally) using the Born approximation. For this purpose we consider an unperturbed field u0 (in a

smooth, isotropic background medium) and a perturbed field δu (accounting for the presence of anisotropy) and model the multicomponent

data as u = u0 + δu. Correspondingly, the medium parameters are represented by a sum of a smooth background (cijkl) and, in the mantle

volume under study, a smooth perturbation (δcijkl). This formulation is valid if the anisotropy is weak (Thomsen 1986) and if all anisotropy

can be described by a perturbation δcijkl of the elasticity tensor. The field u0 is assumed to be (initially) SV polarized; we denote the associated

polarization vector by Rh0. The SH polarization vector is denoted by T h0 (with T h0 ⊥ Rh0).

The aim is to find a sensitivity kernel K that relates a model perturbation δc = δcijkl at x to the splitting intensity data, S, observed at xr,

for sources at xs:

S(xs, xr ) =
∫

K(xs, xr ; x)δc(x) dx =
∫

Ki jkl (x
s, xr ; x)δci jkl (x)dx. (3)

With our tomography we aim to constrain spatial variations in anisotropic elastic parameters in a localized upper-mantle region beneath

the seismograph stations, and we assume background properties (that is, isotropy) everywhere else. Since the (teleseismic) sources are far

away from the anisotropic target region, the radial and transverse components of the observed field u can be assumed to be (asymptotically)

close to the radial component of (unperturbed) u0 and the transverse component of (perturbed) δu, respectively. That is, u0(xr , t ; xs)T =
T h0,i (xr )u0,i (xr , t ; xs) = 0 (asymptotically). Then, with δu(xr , t ; xs)T = T h0,i (xr )δui(xr , t ; xs), we get

∂t C(u R, uT )(t) � ∂t C
[
u R

0 , (δu)T
]
(t). (4)

Through the Born approximation for δu, the perturbation to the transverse component (δu)T can be obtained by a linear operator acting

on the model perturbation δc = δcijkl. Thus, there exists a linear operator H such that:

Hδc = −∂t C
(
u R

0 , (δu)T
)
(0). (5)

1Because of the normalization with N s,r the splitting intensity criterion does not quite reproduce the leading-order expansion of ∂ t C(uR, uT ) (δt) = 0 about

zero time lag (corresponding with isotropy).
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Figure 1. (a) Geometry of the problem setup. The coordinates are chosen so that the anisotropic model is invariant in one horizontal direction (x2). The medium

is considered to be anisotropic above the 410 km discontinuity and isotropic everywhere else. We denote the polarization direction of the initially polarized

shear wave (that is, before the influence of anisotropy) as the ‘radial’ direction. We consider the incoming shear wave to be SV polarized; therefore, the radial

component of the seismogram records the q-SV energy. The (horizontal) direction orthogonal to ‘radial’ is the ‘transverse’ component. The quasi-SH energy

observed on the transverse component (δuT ) arises solely from the anisotropic perturbation δc. (b) Schematic diagram of the sensitivity kernel computation.

The sensitivity is computed with respect to the starting model at each scattering point x.
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We now define a linear (forward) modelling operator F = Ñ−1
s,r H , with Ñ s,r = ∫ |∂t u R

0 |2dt , that operates on δc to give S:

S = Fδc. (6)

The kernel of linear operator F is the sensitivity kernel K, introduced above in (3). Then, with F∗ the adjoint of F, the image of the

elasticity tensor update is given by

I = F∗S. (7)

NB. The misfit functional ε that expresses the misfit between the forward model and the splitting intensity observations can be defined as

ε = 1
2

∫∫ |S − Fδc|2 dxsdxr . Various optimization strategies can be employed to minimize this functional, but many have the evaluation of

(7) in common.

Using the elastic wave equation, and an adjoint state formulation, the image I can be obtained through integration of the cross-correlations

over all sources:

Ii jkl (x) =
∫ ∫

∂x j w
∗
i (x, −t ; xs)∂xl u0,k(x, t ; xs) dt dxs, (8)

which follows from the solutions of the following inhomogeneous PDEs[
ρ(x)∂2

t δik − ∂x j ci jkl (x)∂xl

]
u0,k(x, t ; xs) = f s

i (x, t)[
ρ(x)∂2

t δik − ∂x j ci jkl (x)∂xl

]
w∗

k (x, t ; xs) =
∫

Ñ−1
s,r S(xs, xr )T h

0,i
(xr )∂t u0(xr , −t ; xs)Rδ(xr − x)dxr ,

(9)

subjected to zero initial conditions, and with the equivalent body forces f s(x, t) given by

f s
j (x, t) = −Mi j (x

s)∂iδ(x − xs)H (t − t s), with t s = 0 (10)

(assuming the far field approximation). Here, Mij represents the moment tensor and H the Heaviside function. In (9), −t reveals a time

reversal.2 The sensitivity kernel is obtained in a manner similar to (8), with the source (right-hand side) of adjoint eq. (9) replaced by

Ñ−1
s,r

Th0,i (xr )∂t u0(xr , −t ; xs)Rδ(xr − x) and omitting the integration over xs. A structure similar to (9) also appears in the PDEs for wave

equation transmission and reflection tomography (De Hoop & Van der Hilst 2005a; De Hoop et al. 2006), suggesting the existence of a

common PDE framework for wave equation tomography.

So far, we have derived the form of the PDEs that govern splitting intensity tomography and from which an image Iijkl of the elastic

perturbations (i.e. the anisotropic structure beneath the stations) can be obtained. In the next sections, we derive expressions for the leading-order

form of the sensitivity kernel K, defined in eq. (3).

4 P E RT U R B AT I O N I N 2 . 5 - D A N D H I G H - F R E Q U E N C Y A S Y M P T O T I C S

The full-wave sensitivity kernels can be obtained by solving the PDEs in (9) numerically. To explore the leading order effects, however, we

develop here an asymptotic representation. Furthermore, even though there is no formal obstruction to extend the analysis to full 3-D, we

assume here that the anisotropic model is invariant in one horizontal direction, say x2, and that we can describe the anisotropy in a 2-D plane

of symmetry (x1, x3) (see Fig. 2). The station coordinate is then simply the distance from the trench measured in the x1 direction.

Such a 2.5-D approximation, the treatment of which is more subtle than the 3-D case, is appropriate for the analysis of the tectonic problem

under study (a subduction zone whose geometry is well described in 2-D). It reduces the complexity of a severely ill-determined problem

and enables the regularization of the tomographic inversion using the results of our 2-D flow simulations (Long et al. 2007). Furthermore,

collapsing the station geometry (and associated path coverage) onto a 2-D plane dramatically improves the resolution of our tomographic

images.

In this section, we derive expressions for the pertinent Green’s functions (Section 4.1), their projections onto the 2-D symmetry plane

(Section 4.2), the perturbed wavefields (Section 4.3), the medium perturbations (Section 4.4) and—finally—the sensitivity kernels that map

these medium perturbations to the splitting intensities (Section 4.5).

4.1 The unperturbed field, Green’s functions

The geometrical ray approximation (GRA) to the Green’s functions is a causal, short period approximate solution to the elastic wave equation

(e.g. Aki & Richards 2002, eq. 2.36), in the frequency domain given by

ρ(x)ω2Gin + ∂x j [ci jkl (x)∂xl Gkn] = −δinδ(x − xs), i, j, k, l, n = 1, 2, 3, . . . , (11)

where ω is angular frequency and x = (x 1, x 2, x 3) the position vector. Again, the mass density ρ(x) and stiffness tensor cijkl(x) are smooth

functions of x. The right-hand side of eq. (11) represents a point source at xs (through the delta function δ) in the canonical directions n

2This time reversal appears naturally in the adjoint state formulation. However, the occurrence of both S and u0 in the right-hand side of (9) illustrates the

fundamental difference with reversed time imaging.
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Figure 2. An illustration of the 2.5-D model geometry. As an example, we show the station locations (Long & Van der Hilst 2005, 2006) and starting model for

southwestern Japan. Colours represent the strain field from the starting anisotropic model from Long et al. (2007). The model is invariant in the x2 direction.

The 2-D station geometry (circles) is then collapsed onto a 1-D line above the starting model.

(through the Kronecker delta, δ in). The Green’s function is a sum over the different wave types,3 where each term is of the form

Gip(x, ω; xs) = A(x, xs)hs
i (x)h p(xs) exp[iωT (x, xs)], (12)

with T (x, xs)the traveltime along the ray segment connecting x with xs, and with hs
i and hp the components of the (normalized) polarization

vectors at the endpoints of the ray. The superscript s indicates explicitly that this polarization vector is associated with the ray originating at

the source xs. With the body force given by (10), subject to replacing ∂ t H (t) by W s(t), the incident wave is then (asymptotically) represented

by

u0,i (x
r , ω; xs) = −W s(ω)ps

r (xs)Mr p(xs)Gip(xr , ω; xs). (13)

In (12), A(x, xs) is the amplitude, which can be written as (Červený 2001)

A(x, xs) = exp
[ − i π

2
κ(x, xs)sgnω

]
4π [ρ(x)vs(x)ρ(xs)v(xs)]1/2 |det Q2(x, xs)|1/2

, (14)

where vs (x)and v(xs) are the phase velocities at x and xs, respectively (evaluated in the direction of the slowness vectors associated with the

ray connecting these points) and |detQ2(x, xs)|1/2 the relative geometrical spreading given by

[Q2]−1
i j (x, xs) = −∂2T (x, xs)

∂qs
i ∂q j

, i, j= 1, 2, (15)

with qj and qs
i local phase-related coordinates in the plane normal to the slowness vectors at xs and x, respectively. The KMAH index κ(x,xs)

counts the caustics between xs and x; the amplitude A can become complex in the presence of such caustics.

4.2 Projection to the 2-D plane of symmetry

In the 2.5-D approximation the above, general, expressions need to be modified to describe propagation in and out of the 2-D symmetry plane.

Here, we choose the second wave front coordinate to coincide with the out-of-plane direction, that is, q2 = x2, whereas q1 is in the (x1, x3)

plane. Then, ∂T (x,xs )

∂qs
1

and ∂T (x,xs )

∂q1
are even functions in x2, and their derivatives with respect to x2 vanish: ∂2T (x,xs )

∂qs
1∂x2

= ∂2T (x,xs )

∂xs
2∂q1

= 0. For this

3Unless specifically stated (e.g. in Section 4.3), we do not indicate the mode of propagation in (12) and treat the modes of propagation separately.
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choice of coordinates, the geometrical spreading matrix (15) becomes diagonal:

Q2(x, xs) =

⎡⎢⎢⎢⎢⎣
1

∂2T (x,xs )

∂qs
1∂q1

0

0
1

∂p2

∂x2

⎤⎥⎥⎥⎥⎦ =
⎡⎣ Q||

2 (x, xs) 0

0 Q⊥
2 (x, xs)

⎤⎦ , (16)

with Q||
2 (x, xs) and Q⊥

2 (x, xs) the in- and out-of-plane relative geometrical spreading factors, respectively. Thus the geometrical spreading

factors into an in- and an out-of-plane component, that is, |detQ2(x, xs)| = |Q||
2 (x, xs)Q⊥

2 (x, xs)|1/2. The in-plane amplitude can then be

expressed as

A||(x, xs) = exp
[ − i π

2
κ(x, xs)sgnω

]
4π [ρ(x)vs(x)ρ(xs)v(xs)]1/2|Q||

2 (x, xs)|1/2
. (17)

4.3 The perturbed field and the (high-frequency) Born approximation

We derive the 2.5-D Born modelling formula using a stationary phase argument and integrating over x2, the out-of-plane coordinate (Foss

et al. 2005). From now on, the position vector x = (x 1, x 3). The stationary phase argument involves the condition

∂x2
[T (xs, x) + T (x, xr )] = ps

2 + pr
2 = 0, (18)

where ps
2 and pr

2 are components of the slowness vectors ps and pr associated with the source and the receiver rays. For our inversion problem

(see also Section 5.1) we consider in-plane scattering only, so that ps
2 = pr

2 = 0. In accordance with our earlier notation, we have hs = h0;

likewise, we write T = T0, ps = p0, A|| = A||
0 and Q⊥

2 = Q⊥
2;0, with the understanding that, in the following analysis, the subscript 0 will

always be identified with (q)SV propagation. The (q)SV polarization is extracted through contracting u0,i (xr , ω, xs) with Rh0,i (xr ), as before,

and substituting Rh0,p(xs) for hp(xs) in (12).

For the description of the perturbed wavefield in the (anisotropic) region under study we need to consider mode conversions from (q)SV

(that is, the background field u0) to (q)SH. With umn denoting the m-component of the perturbed wavefield due to a body force in direction n
and with α and β indicating the propagation modes, that is, α = (q)SV and β = (q)SV, (q)SH, we use the results derived in the sections above

to obtain4 :

uβα
mn(xr , t ; xs) ≈

√
i

2π

∫ ∫
R

βhr
m(xr )ω3/2ρ(x)

A||
α(xs, x)A||

β (x, xr )

L⊥
βα(xr , x, xs)

wT
βα(xr , x, xs)δc(x)exp

[
iωTβα(xr , x, xs) − t

]
αhs

n(xs)dωdx. (19)

Using (13) gives for the m-component of the perturbed wavefield

δuβα
m (xr , t ; xs) ≈ −

√
i

2π

∫ ∫
R

βhr
m(xr )ω3/2ρ(x)

A||
α(xs, x)A||

β (x, xr )

L⊥
βα(xr , x, xs)

wT
βα(xr , x, xs)δc(x)exp

[
iωTβα(xr , x, xs) − t)

]
α

× ps
r (xs)Mrn(xs)αhs

n(xs)W s(ω) dωdx. (20)

Here, the refracted traveltime is given by

Tβα(xr , x, xs) = Tα(xs, x) + Tβ (x, xr ), (21)

the refracted out-of-plane geometrical spreading by

L⊥
βα(xr , x, xs) = ∣∣Q⊥

α;2(xs, x) + Q⊥
β;2(x, xr )

∣∣1/2
, (22)

and the associated radiation patterns (e.g. Ben-Menahem et al. 1991) by wβα(xr , x, xs). We can now write the expression for the transverse

component of the perturbed wavefield as a function of the medium perturbations δc. In our application,

δu(xr , t ; xs)T ≈ −Th0,m(xr )
∑

β=(q)SV,(q)SH

√
i

2π

∫ ∫
R

βhr
m(xr )ω3/2ρ(x)

A||
α(xs, x)A||

β (x, xr )

L⊥
βα(xr , x, xs)

wT
βα(xr , x, xs)δc(x)

· exp
[
iω

(
Tβα(xr , x, xs

) − t)
]
α ps

r (xs)Mrn(xs)αhs
n(xs)W s(ω)dω dx, α = (q)SV. (23)

Note than in (23) we sum over the (q)SV and (q)SH components of the perturbed wavefield. In the 2.5-D approximation, with αps
2 =

βpr
2 = 0, the polarizations of qP and qSV waves satisfy h2 = 0 whereas the polarization of qSH is given by (0, 1, 0).

4The refracted traveltime given can be multivalued in the presence of caustics. In that case, we must replace (19) by the sum over the different traveltime

branches. This is assumed implicitly in the text.
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4.4 Medium perturbations and radiation patterns

With invariance in the x2 direction and (x 1, x 3)the symmetry plane, the stiffness tensor can be written in the form:

{
ci jkl

} → ci j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1111 c1122 c1133 0 2c1113 0

c1122 c2222 c2233 0 2c2213 0

c1133 c2233 c3333 0 2c3313 0

0 0 0 4c2323 0 4c2312

2c1113 2c2213 2c3313 0 4c1313 0

0 0 0 4c2312 0 4c1212

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (24)

This representation allows for transversely isotropic (TI) media that is tilted in the (x 1, x 3)-plane, as well as TI media with symmetry

axes aligned with the x 2-axis. In this coordinate system, the stiffness tensor has 13 independent elements; with higher symmetry, such as

isotropy, this number reduces accordingly. The medium perturbations are collected in the (13-element) model vector (see also Chapman &

Pratt 1992):

δc(x) =
{

δci jkl (x)

ρ(x)

}
. (25)

Following Burridge et al. (1998), the corresponding radiation patterns are

wβα(xr , x, xs) = {
αhs

i (x)αps
j (x)βhr

k(x)βpr
l (x)

}
, (26)

where the indices follow those of the stiffness matrix in the ordering defined by the matrix or inner product wT
βα (xr , x, xs)δc (x) in (19). For

our 2.5-D problem, the out-of-plane slownesses are zero (αps
2 = βpr

2 = 0) and the contributions to (26) vanish for j , l = 2 in cijkl. This reduces

the number of independent elastic parameters from 13 to 7.

4.5 The sensitivity kernel

We now return to the expression we have obtained for the perturbed wavefield (eq. 19) and the relationship between the perturbed elastic

constants and the splitting intensity observed at the surface (eq. 5). In Section 3, we obtained a forward modelling operator F (that is, the

normalization of operator H) that, according to (6), acts on δc to produce the splitting intensity observations S. From this relationship we can

derive an expression for the sensitivity kernel using a series of simplifications based on the geometries of the rays in our splitting data set and

on the 2.5-D geometry of our problem. Substituting the wavefield expression (19) into (4) yields

Hδc(xs, xr ) = −
∫

u0(xr , ω; xs)R iω[δu(xr , ω; xs)]T dω

=
∫ { ∑

β=(q)SV,(q)SH

−
√

i

2π

∫
R

T h0,m(x
r
)βhr

m(xr )iω5/2ρ(x)
A||

α(xs, x)A||
β (x, xr )

L⊥
βα(xr , x, xs)

A||
0 (xr , xs)∣∣Q⊥

0;2(xr , xs)
∣∣1/2

× Mr p(xs)p0,r (xs)h0,p(xs)Mr ′p′(xs)αps
r ′(x

s)αhs
p′(x

s)

× exp
[
iω(Tβα(xr , x, xs) − T0(xr , xs))

] |W s(ω)|2 dωwT
βα(xr , x, xs)

}
δc(x)dx.

(27)

In the 2.5-D approximation, the energy normalization factor, defined below eq. (5), becomes

Ñ s,r �

∣∣∣A||
0 (xr , xs)

∣∣∣2

∣∣Q⊥
0;2(xr , xs)

∣∣2
[Mr p(xs)h0;p(xs)p0;r (xs)]2

∫
ω2 |W s(ω)|2 dω. (28)

With the expression between braces in (27), and the expression for the normalization factor in (28), we have the components to generate the

form of the sensitivity kernels in (3). We proceed by using some physical insights.

Since the source is far away from the mantle region where we aim to constrain δc we can make several simplifications. First, because the

difference in propagation direction of the perturbed and unperturbed rays (far from the source, see Fig. 1) is small we can write

αps
r (xs) � p0,r (xs)αhs

p(xs) � h0,p(xs). (29)

Furthermore, since the distance from the source position to x in the target region is much larger than the distance from x to the receiver,

the expressions for the geometrical spreading factors obtained in Section 4.2 can be simplified:

1∣∣Q||
α;2(xs, x)

∣∣1/2
Q||

β;2(x, xr )
∣∣1/2

� 1∣∣Q||
β;2(xr , x)

∣∣1/2

1∣∣Q||
0;2(xr , xs)

∣∣1/2
, (30)

and

1∣∣Q⊥
α;2(xs, x) + Q⊥

β;2(x, xr )
∣∣1/2

� 1∣∣Q⊥
α;2(xs, x)

∣∣1/2
� 1∣∣Q⊥

0;2(xr , xs)
∣∣1/2

. (31)
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As a consequence,

A||
α(xs, x)A||

β (x, xr )

L⊥
βα(xr , x, xs)

� A||
β (xr , x)

[ρ(xr )αvs(xr )]1/2

[ρ(x)αvs(x)]1/2

A||
0 (xr , xs)∣∣Q⊥

0;2(xr , xs)
∣∣1/2

. (32)

With these approximations, the sensitivity kernel K, which relates linearly the medium perturbations δc to splitting intensities, can be

obtained from (27) and (28):

K(xs, xr ; x) � [∫
ω2 |W s(ω)|2 dω

]−1 ∑
β=(q)SV,(q)SH

T h0,m(xr )βhr
m(xr )

× (−)

√
i

2π

∫
iω5/2ρ(x)

[ρ(xr )αvs(xr )]1/2

[ρ(x)αvs(x)]1/2
A||

β (xr , x)

× exp
[
iω(Tβα(xr , x, xs) − T0(xr , xs)

] |W s(ω)|2 dωwT
βα(xr , x, xs), α = (q)SV. (33)

In Appendix B, we compare this form of the sensitivity kernel to the 2-D kernel formulation in Favier & Chevrot (2003). In Section 5, we

describe the anisotropy in the 2-D plane by means of two parameters (dip and strength); to obtain the associated kernels we express each term

in the perturbed elastic tensor δc in terms of these two parameters (see also Appendix C). In Section 5, we also discuss some computational

aspects and give examples of kernels for several different types of background medium. The implementation of such kernels in tomography

is briefly discussed in Section 6.

5 C O M P U TAT I O N A N D E X A M P L E S O F S E N S I T I V I T Y K E R N E L S

F O R 2 - D S U B D U C T I O N M O D E L S

We illustrate the general concepts and theory described above with several examples of splitting intensity kernels in the context of our study

of upper-mantle anisotropy beneath southwestern Japan with splitting intensity functions from SKS, SKKS and teleseismic S data (Long &

Van der Hilst 2005a, 2006). For illustration purposes, we consider three stations of the Japanese F-net array (www.fnet.bosai.go.jp).

5 . 1 S H E A R W A V E S P L I T T I N G D A T A C O N S I S T E N T W I T H 2 . 5 - D A P P R O X I M A T I O N

From a structure point of view, the invariance along the strike of simple subduction zones justifies the use of a 2-D plane of symmetry. Do

the data also satisfy the conditions justifying the 2.5-D approximation? After all, we use the 2.5-D Born approximation to derive in-plane

scattering coefficients (see Section 4.2) and departures of the ray path from the symmetry plane will cause these coefficients to be inaccurate.

For our data set we expect the error to be small, because the waves from which splitting functions are used propagate in or near the chosen

2-D plane.

Incidence angles of SKS and SKKS waves are small, and irrespective of backazimuth the propagation direction is within ∼10◦ (SKS) or

15–20◦ (SKKS) of the 2-D symmetry plane beneath the study area. Teleseismic S waves have a larger horizontal slowness and will have a

substantial out-of-plane component if they arrive from backazimuths that do not coincide with the strike of the symmetry plane. Fortunately,

most of the direct teleseismic S waves considered by Long & Van der Hilst (2005a) originate in the southwestern Pacific and arrive parallel to

the 2-D plane used. Direct S from backazimuths not along the symmetry plane will not be used in the tomographic inversions with the 2.5-D

approach presented here.

5 . 2 A N I S O T R O P I C B A C K G R O U N D M O D E L S F O R T H E K E R N E L C A L C U L A T I O N

For the calculation of the Green’s functions and, thus, the sensitivity kernels in the previous section we use 2-D heterogeneous, anisotropic

background models5 based on calculations of upper-mantle flow (Long et al. 2007). The details of those calculations are not important for the

illustration of the kernels associated with the type of anisotropic medium thus produced, but we summarize here the most relevant aspects.

The objective of Long et al. (2007) was to produce 2-D anisotropic models that are consistent with the observed splitting data and that

provide a suitable starting point for tomographic inversion. Constructing and selecting such models involves several steps. First, for a range

of different rheologies and with (or without) localized occurrence of so-called B-type fabric (where the fast axis of anisotropy is oriented 90◦

from the plane of the flow model, that is, in the x2–x3 plane), numerical (finite element) modelling is used to constrain flow patterns in the

mantle wedge above a kinematically defined subducting plate. Second, after obtaining steady-state, streamlines are traced through the velocity

field and the evolution of finite strain along them is calculated with the approach of McKenzie (1979). Third, the orientation of the finite strain

5There is a distinction between the isotropic background medium referred to in Section 3 (which results in the ‘unperturbed’ field u0) and the reference model

used in the kernel computations in this section. In the sense that the ‘background medium’ represents the unperturbed wavefield—that is, without the effect

of anisotropy—we do use an isotropic background medium to derive our sensitivity kernels. Additionally, we do the ray tracing described in this section in

an isotropic background model (ak135). However, the reference model used to calculate the perturbation in elastic parameters—that is, the derivatives in eq.

(35)—is anisotropic.
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Figure 3. (a) Distribution of finite strain ellipses in the mantle wedge for Model A from Long et al. (2007), the background model used for heterogeneous

kernel computations. The vertical and horizontal coordinates are given in kilometres. The black box outlines the area of the flow model that is considered

in the kernel computation. (b) Distribution of the dip parameter θ 0 in the starting model for the region corresponding to the black box in (a). (c) Magnitude

of the maximum finite strain (stretch ratio) in the starting model. The colour scale saturates at a stretch ratio of 5. (d) Distribution of A- and B-type olivine

fabric in the starting model. The B-type fabric regime is shown in red. We note that for illustration purposes, we have exaggerated the size of the B-type region

somewhat—a region this large is not required to fit the splitting data (Long et al. 2007). (e–g) Interpolated version of the coarse grid starting model shown in

panels (b–d). We use the finer grid version of the background model in the kernel computation.

ellipse is used as a proxy for the geometry of anisotropy (that is, the orientation of the fast axis). Fourth, anisotropy in the 2-D plane is defined

by elastic constants similar to those for tilted transverse isotropy (TTI): θ 0 measures the dip of the ellipse with respect to horizontal and εA

represents the strength of anisotropy (see Section 5.3). Finally, from the anisotropic models synthetic splitting data are calculated with ray

perturbation theory for a TTI medium (Chevrot & Van der Hilst 2003) and tested against the observations. Long et al. (2007) thus found that

B-type olivine fabric (up to ∼100–125 km from the trench) is needed to match the observed trench-parallel fast directions near the trench

(Long & Van der Hilst 2006).

In later sections we illustrate kernel properties using two types of background: a single, homogenous layer of anisotropy and a hetero-

geneous (subduction zone) model. As an example of the latter, Fig. 3 depicts the distributions of finite strain, dip (θ 0), anellipticity (εA) and

B-type fabric for one of the mantle wedge models produced by Long et al. (2007). For illustration purposes, we exaggerate the size of the

B-type region.

5.3 Parametrization of anisotropy in the 2-D symmetry plane

Anisotropy in the upper mantle is generally interpreted in terms of lattice preferred orientation of olivine; olivine is orthorhombic but

experimental and petrographic studies have shown that deformed polycrystalline olivine aggregates generally have nearly hexagonal (TI)

symmetry (Zhang & Karato 1995; Ismail & Mainprice 1998). Subsequent studies (e.g. Browaeys & Chevrot 2004; Becker et al. 2006) have

demonstrated that the strength of upper-mantle anisotropy can be generally well represented by a single parameter. Based on these mineral

physics considerations, and based on our experience with 2-D modelling of subduction zones and our success in matching the broad features of

the F-net data set with corner flow type models (Long et al. 2007), we represent anisotropy in our models with three parameters, representing

the direction (azimuth and dip) and the strength of anisotropy.

The azimuth describes the orientation of the long axis of the strain ellipse in the horizontal plane. With the 2.5-D approximation it cannot

be resolved and is taken from the starting models. The dip parameter θ 0 denotes the angle between the strain ellipse and the horizontal plane.

The anellipticity parameter εA measures the strength of anisotropy and can be written as a combination of elements of the elastic tensor:

εA ≡ (c11 − c55)(c33 − c55) − (c13 + c55)2

(c11 − c55)(c33 − c55)
. (34)
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The anellipticity is a convenient parameter to work with, under the assumption that anisotropy in the upper mantle can be represented

by three parameters, one of which describes the strength of anisotropy. For transverse isotropic media εA is always greater than zero (e.g.

Schoenberg & De Hoop 2000); we assume that it increases linearly with strain until saturation occurs near γ ≈ 2 − 3 (e.g. Zhang & Karato

1995). This increase in εA with strain, to a maximum value, mimics the saturation of the LPO texture. [For the model used in Section 5.5

we have a maximum value εAMAX
= 0.15, which corresponds to the transversely isotropic mantle (TIM) model of Chevrot & van der Hilst

(2003).] Although our simplified parametrization may not completely capture the complexity of 3-D variations of anisotropy in the upper

mantle, it makes use of reasonable prior assumptions about LPO development that can simplify the inversion framework. Of course, other

parametrizations (e.g. Becker et al. 2006) are possible and easy to implement since we have not, until now, made any assumptions about the

parametrization scheme.

With the azimuth fixed, the inversion scheme solves, for each model block, only two independent anisotropic parameters: θ 0 and εA. To

derive sensitivity kernels for θ 0 and εA—instead of medium perturbation δc, as in (33)—we must express each term in the perturbed elastic

tensor δc in terms of these parameters. The definition, rotation, and perturbation of the stiffness tensor are given in Appendix C. The total

perturbation in the stiffness tensor component can be written as (Appendix C, eq. C14):

δc = δcεA + δcθ = ∂c

∂εA
δεA + ∂c

∂θ0

δθ0. (35)

Because εA increases linearly with increasing strength of anisotropy, the derivatives with respect to it are computed over a range of values,

from isotropy to transverse isotropy.

The fact that azimuth is fixed also implies that if B-type fabric occurs we, in fact, compute two separate kernels: one for fast polarization

axes in the x1–x3 plane (azimuth = 90◦) and, in mantle regions with B-type fabric, one for fast axes in the x2–x3 plane (azimuth = 0◦).

5.4 Ray geometry and frequency spectrum

Using (33) and (35) we compute the contribution to the sensitivity kernel K for θ 0 and εA at each scattering point x in the study region. A

schematic diagram of the kernel calculation is shown in Fig. 1(b). For each x we calculate the slowness vectors p and the unit polarization

vectors h for two segments of the broken ray: xs → x and x → xr; the vectors pr, ps, hr and hs form the radiation pattern vector w according

to (26). The in-plane geometrical spreading is calculated between x and xr (30, 31). The isotropic background shear velocities v(x) and

associated mass densities ρ(x) are based on ak135 (Kennett et al. 1995; Montagner & Kennett 1995). The traveltime difference between the

unperturbed and perturbed rays, that is, T(xr, x, xs) – T 0(xr, xs), is calculated with respect to ak135; slowness vectors, traveltime differences,

and amplitudes A||(xr,x) are calculated by 2-D ray tracing.

The frequency spectrum of the incident shear wave is

|W s(ω)|2 = ω2τ 2

4π
e−ω2τ2

/
8π2

, (36)

where τ is the characteristic period of the wave. Following the approach of Favier & Chevrot (2003), we approximate the spectrum as the

second derivative of a Gaussian; this is reasonable for SKS-type phases where the records have been deconvolved from the radial component

waveform (Chevrot 2000; Long & Van der Hilst 2005a). We use a characteristic period of τ = 8 s for direct S phases, τ = 10 s for SK(K)S
phases. The integrals over frequency in eq. (33) are computed using the trapezoidal rule over the same frequency range (0.02–0.125 Hz) as

used by Long & Van der Hilst (2005a).

Finally, at each scattering point x we compute the partial derivatives of δc with respect to the anisotropic parameters θ 0 and εA in order

to obtain sensitivity kernels K(θ 0) and K(εA) (Section 5.3; Appendix C).

5.5 Kernel examples; the importance of the background medium

In Figs 4–6 we show examples of sensitivity kernels K(θ 0) and K(εA) calculated for shear arrivals in our splitting data set. In Fig. 4 we show

a series of kernels for a homogenous background (with θ 0 zero everywhere), calculated on a fine grid (∼4 km spacing), for four different ray

paths: a direct S arrival at station FUK, an SKS arrival at station YTY and two direct S arrivals from opposite backazimuths at station TKA.

The kernels display familiar oscillatory behaviour (e.g. Hung et al. 2000; Chevrot et al. 2004; De Hoop & Van der Hilst 2005a). These results

are similar to the 2-D sensitivity kernels in Favier & Chevrot (2003), except that we allow for non-vertical incidence.

Figs 5 and 6 displays kernel for the same ray paths, but now they are calculated with respect to the heterogeneous, anisotropic models

depicted in Figs 3(b)–(d). In Fig. 5, we show one kernel example for the same arrival shown in Fig. 4(a), for a heterogeneous background model

similar to that shown in Fig. 3, but without the B-type region in the mantle wedge. In Fig. 6, we show kernels for the same four ray paths shown

in Fig. 4, for our preferred model which includes a B-type region. For this computation, we perturb the anisotropic parameters at each point in

the starting model and compute (numerically) the derivatives in eq.(35). The local values of the partial derivatives ∂c
∂εA

and ∂c
∂θ0

, and, therefore,

the local sensitivity to the anisotropic parameters, depend strongly on the starting model. Consequently, the use of a heterogeneous background
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Figure 4. (a–d) Examples of sensitivity kernels for parameters εA (top) and θ 0 (bottom) for four shear arrivals in the splitting data set. (a) An SKS phase

(backazimuth = 47◦) recorded at station YTY. (b) A direct S phase from an event in Tonga (backazimuth = 128◦, incoming polarization direction = 91◦)

recorded at station TKA. (c) A direct S phase from an event in the Hindu Kush region (backazimuth = 293◦, incoming polarization direction = 312◦) recorded at

station TKA. (d) A direct S phase from an event in Tonga (backazimuth = 128◦, incoming polarization direction 120◦) recorded at station FUK. All sensitivities

are given in s m–2 and are calculated with respect to a homogenous anisotropic model with a horizontal symmetry axis.

medium leaves a strong ‘imprint’ on the kernels; locally the sensitivity can even be opposite of that for a homogeneous background. Indeed,

the differences between the kernels shown in Figs 4–6 demonstrate the profound effect of the (heterogeneous) background model (see also

De Hoop & Van der Hilst 2005a, b, 2006). This is true for models both without (Fig. 5) and with (Fig. 6) the B-type region that is included in

the preferred model of Long et al. (2007).

The superposition of sensitivity kernels for multiple arrivals in the southwestern Japan data set begins to reveal the localization of signal

from distinct anisotropic regions (Fig. 7). We stress, again, that the spatial resolution implied in the localization shown in Fig. 7 will only

be meaningful, and the inversion result accurate, if the kernels are properly (that is, iteratively) calculated in a reference model that has the

same type of heterogeneity as in the medium under investigation. Indeed, the use of finite frequency kernels computed in a homogeneous

background may well give a false perception of improved resolution. Calculating such kernels for all the data enables the construction of the

normal equations to carry out the tomographic inversion.

Fig. 6 demonstrates the localization properties of such kernels due to the presence of a mantle wedge region with B-type fabric. However,

the sharp transitions in the kernel between the B-type fabric region in the wedge corner and normal fabric elsewhere also suggest that the

incorrect assessment of the location and spatial extent of such a wedge can result in significant imaging artefacts. One strategy for dealing with

this ambiguity involves trying starting models with different-sized and -shaped B-type regions and assessing the differences in the resulting

tomographic images. However, another, perhaps more promising strategy would be to incorporate the boundary of the B-type region as free
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Figure 5. An example of a sensitivity kernel computed in a heterogeneous, anisotropic background model. The kernel is computed for the same event as in

Fig. 4(a). For a starting model, we use the model shown in Fig. 3, but without the region of B-type fabric. All sensitivities are given in s m–2. For the kernel

computation, the starting model, calculated on the coarse grid (21.25 × 21.25 km) used in the flow modelling framework (see Long et al. 2007), is interpolated

(cubic interpolation) to a finer grid spacing (∼4 km).

parameters in the inversion. This involves the use of a ‘shape optimization’ formulation, which can also be used in the imaging of, for instance,

the (unknown) flanks of salt bodies.

6 D I S C U S S I O N

We have presented the theory needed to compute sensitivity kernels for wave equation shear wave splitting intensity tomography of upper-

mantle anisotropy in backarc mantle wedges. The details of the tomographic inversion of data from southwestern Japan will be presented

elsewhere (Long et al. in preparation).

Tomographic inversions of splitting data are highly non-linear. Chevrot (2006) proposes the use of an iterative Gauss–Newton algo-

rithm to address this challenge. We deal with the non-linearity by computing kernels in heterogeneous, anisotropic reference models that

already come close to matching the observed splitting and by iterating between updates to the tomographic model and updates to the flow

modelling parameters. In this scheme, the constraints from the solution of equations that govern viscous flow in the mantle wedge inform

our choice of starting model for the inversion and, vice versa, the inversion constraints on anisotropic structure are used to update the flow

models.

The work presented here builds on previous work in wave equation tomography for transmitted (De Hoop & Van der Hilst 2005a) and

reflected (De Hoop et al. 2006) phases, as well as on previous work on finite-frequency sensitivity kernels for shear wave splitting (Favier

& Chevrot 2003; Chevrot et al. 2004; Chevrot 2006). We make several new contributions. First, we derive the full PDE formulation that

governs wave equation splitting tomography and show that the PDEs are similar in structure to those governing wave equation transmission and

reflection tomography. This paves the way for the joint tomographic inversion of types of data with different sensitivities to Earth structure while

incorporating full-wave dynamics. Second, we adapt the tomographic framework and associated kernels for splitting intensity measurements

to a specific tectonic setting (a 2-D subduction zone); this serves the important purpose of reducing the complexity of an ill-determined

problem. Third, we allow heterogeneous background models for the kernel calculations.

Most literature on finite-frequency tomography deals with quasi-homogeneous background models, leading to geometrically simple

kernels. In realistic heterogeneity, kernels can be more complicated and need not be ‘self-similar’ (in the sense that kernels at different

frequencies are not merely scaled versions of one another—see also De Hoop et al. 2006). The use of background models with realistic

heterogeneity is critical to our goal of identifying models of anisotropy beneath southwestern Japan that satisfy constraints from both shear

wave splitting and geodynamic modelling.

The approach presented here also complements tomographic studies of anisotropy in the mantle wedge by Abt and Fischer (personal

communication). They propose a method for shear wave splitting tomography based on the Silver & Chan (1991) measurement method applied

to high-frequency local S phases from slab earthquakes. The application of their method is limited to regions with abundant deep seismicity

and does not take into account finite frequency effects (which are likely to be small for their local S data set). However, their method has the

advantage that the target region is—by design—confined to the mantle wedge region, whereas our ability to localize mantle wedge anisotropy

depends more critically on station and source geometry.
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Figure 6. (a–d) Sensitivity kernel examples for the same four event-station pairs as in Fig. 4, but here the sensitivities are computed with respect to the

heterogenous, anisotropic background model shown in Fig. 3. All sensitivities are given in s m–2. Black lines outline the region of the mantle wedge that is

dominated by B-type olivine fabric in the background model. For the kernel computation, the starting model, calculated on the coarse grid (21.25 × 21.25 km)

used in the flow modelling framework (see Long et al. 2007), is interpolated (cubic interpolation) to a finer grid spacing (∼4 km).

Favier et al. (2004) evaluated so-called near-field contributions to finite-frequency splitting intensity kernels and showed that at shallow

depths, ignoring the near-field contributions can introduce errors in the kernel computations. Clearly, in our asymptotic expansions the near-

field contributions are ignored, but we expect the errors thus induced to be quite small for our data set. Most of the data of Long & Van

der Hilst (2005a) are associated with direct teleseismic S phases with periods of ∼8 s. Favier et al. demonstrated that for such periods the

near-field effects are confined to shallow depths (<25 km). Since we do not attempt to model anisotropy shallower than 50 km, we do not

expect near-field effects to be important here. Also for SK(K)S phases, with characteristic periods of ∼10 s, we expect that near-field effects

are small.

7 S U M M A RY

In this paper we have described a theoretical framework for the computation of finite-frequency sensitivity kernels for wave equation shear

wave splitting intensity tomography. The theoretical development for splitting intensity tomography mirrors that of De Hoop & Van der

Hilst (2005) and De Hoop et al. (2006) for transmission and reflection tomography, respectively. We use the Born approximation for a 2.5-D

anisotropic medium to derive sensitivity kernels for the dip of the symmetry axis and the strength of anisotropy in the upper mantle. We have

computed example kernels for several event-station pairs represented in our teleseismic shear wave splitting data set for southwestern Japan.

We compute kernels for direct teleseismic S and SK(K)S arrivals both with respect to a homogenous background model with a single layer

of horizontal anisotropy and with respect to a heterogeneous, anisotropic background model obtained from a numerical modelling study of

deformation beneath the Ryukyu arc (Long et al. 2007). Consistent with De Hoop et al. (2006), we find a profound influence of the starting
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Figure 7. Sensitivity kernels for two direct S arrivals in the splitting data set at different F-net stations are shown, illustrating the localization of the anisotropic

signal. (a–b). Sensitivity kernels for two direct S arrivals at stations FUK and TKA calculated for a homogenous background model. (c–d). Kernels for the

same two arrivals calculated in a heterogenous background. Black lines outline the region of the mantle wedge that is dominated by B-type olivine fabric in the

background model.

model on the form of the sensitivity kernels. Indeed, the suite of kernel computations shown here underscores the importance of using realistic

reference models in kernel computations for finite-frequency tomographic inversions. In a companion paper to the present study (Long et al.
in preparation) we describe the application of the wave equation splitting intensity tomography method to the Long & Van der Hilst (2005a)

data set and establish a framework for integrating constraints from tomography and from numerical models of flow and deformation in the

upper mantle beneath southwestern Japan. In this concept, flow modelling is used to regularize the tomographic inversion: in regions with

good resolution the result from tomography is used to constrain the flow model; in turn, the flow model is used to interpolate between (or

extrapolate across) regions where anisotropic structure is poorly resolved by the seismic data.
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A P P E N D I X A : TA B L E O F S Y M B O L S

Symbol Found near Meaning

S (1) Splitting intensity

xs (xr ) (1) Source (receiver) position

Ns,r (1) Normalized radial component energy

C (1) Cross-correlation in time

u (1) Displacement field
R (1) Superscript denoting radial component
T (1) Superscript denoting transverse component

t (1) Time

u0 (3) Unperturbed field

δu (3) Perturbed field

(δ)ci jkl (3) (Perturbed) elasticity tensor
Rh0,

T h0 (3) Radial, transverse initial polarization vector

K (3) Sensitivity kernel

H (5) Linear integral operator acting on δc
F (6) Forward modelling operator

ε (7) Misfit functional

F∗ (7) Adjoint of F
I (7) Image of elasticity tensor update

ρ(x) (9) Mass density

f s (x) (9) Equivalent body force

w∗ (9) Adjoint field

W s (t) (10) Source function

ω (11) Angular frequency

G (11) Green’s function

T (11) Traveltime along ray segment

h (11) Unit polarization vector

A (12) Amplitude

M (13) Moment tensor

vs , v (14) Phase velocities evaluated in slowness direction

κ(x, xs ) (14) KMAH index (counts caustics between x and xs )

|det Q2(x, xs )|1/2 (14) Relative geometrical spreading

q (16) Local phase-related coordinates

Q||(⊥)
2 (16) In-plane (out-of-plane) geometrical spreading factor

A|| (17) In-plane amplitude

ps(r ) (18) Slowness vector associated w/ source (receiver) ray

β (19) Subscript indicating (q)SV,SH modes

α (19) Subscript indicating (q)SV mode

L⊥
βα (19) Refracted out-of-plane geometrical spreading

w (19) Radiation pattern matrix

θ0 (35) Dip parameter

εA (35) Anellipticity parameter

A P P E N D I X B : B E H AV I O U R O F T H E S P L I T T I N G I N T E N S I T Y A N D K E R N E L S

In the notation of Chevrot (2000, 2006) and Chevrot et al. (2004), the splitting intensity S, obtained by projecting the transverse component

waveform onto the radial component derivative, is written as

S = −2

∫ ∞
−∞ −iωuT (ω)u0∗

R (ω)dω∫ ∞
−∞ ω2|u0∗

R (ω)|2dω
, (B1)

which is equivalent to our expression (1). The splitting function refers to the dependence of the splitting intensity on the incoming polarization

azimuth; the splitting vector then refers to the sample of the splitting function obtained at different incoming polarization azimuths for a given

(limited) data set at a single seismic station.
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Under certain assumptions, the average splitting parameters of the medium can be retrieved from the splitting vector. For example, if the

anisotropy beneath the station is contained in a single, homogenous anisotropic layer with a horizontal axis of symmetry, then the splitting

function for shear phases with vertical incidence takes the form (Chevrot 2000)

S = δt sin[2(φ − φ0)], (B2)

where φ is the azimuth of the fast symmetry axis, φ0 the incoming polarization azimuth of the wave, and δt the delay time accumulated

between the fast and slow components. A detailed comparison of the splitting intensity measure with other methods of measuring shear wave

splitting parameters can be found in the appendix to Chevrot et al. (2004); an evaluation of the performance of different splitting measurement

methods for broad-band Japanese stations is discussed in Long & Van der Hilst (2005b).

Favier & Chevrot (2003) have developed expressions that describe 2-D and 3-D Fréchet kernels for the splitting intensity in a homogenous

anisotropic medium with a horizontal axis of symmetry. They parametrize the medium using two anisotropic perturbation parameters γ c and

γ s, which are related to the anisotropic parameter γ of Thomsen (1986) and Mensch & Rasolofosaon (1997). The expressions they derive for

the sensitivity kernels are in fact equivalent to framework derived above and expressed in eq. (33), although we make different assumptions

about the geometry of the anisotropic medium, we restrict ourselves to the 2.5-D case, and we parametrize the anisotropic medium differently.

Our expression for the sensitivity kernel in eq. (33) is a generalization of the treatment in Favier & Chevrot (2003) with the following

differences in notation. They express the splitting intensity perturbation δS in the following form:

δS(r0; r) = −γ
1

4πβ2

2ω0

r
F(θ, ϕ, α, ϕ0)

2
∫ ∞

−∞ ω3 |u R(ω)|2 sin
[

ω(r+z0−z)

β

]
dω∫ ∞

−∞ ω2 |u R(ω)|2 dω
. (B3)

We, following from eq. (33), express the splitting intensity due to an elastic perturbation δc in the form

δS(xs, xr ) =
∫

K(xs, x, xr ) �
[∫

ω2 |W s(ω)|2 dω

]−1 ∑
β=(q)SV,(q)SH

T h0,m(xr )βhr
m(xr )

× (−)

√
i

2π

∫
iω5/2ρ(x)

[ρ(xr )αvs(xr )]1/2

[ρ(x)αvs(x)]1/2
A||

β (xr , x)

× |W s(ω)|2 exp
[
iω(Tβα(xr , x, xs) − T0(xr , xs)

]
dωwT

βα(xr , x, xs)δc(x)dx.

(B4)

The differences in notation are as follows: we denote the source and scatterer position, respectively, with xs and x; their convention utilizes r0

and r. Our expression for the radiation patterns, wT
βα (xr , x, xs), is equivalent to their function F(θ ,φ,α,φ0) normalized by β2, the square of the

isotropic shear wave speed. Their work assumes that the perturbation in anisotropy is completely described by a perturbation in c44: therefore,

our δc is equivalent to their γ = −δc44

c44
, multiplied by β2ρ (because β =

√
c44

ρ
). We write the geometrical spreading as ρ(x)A||

β (xr , x); due

to the homogenous model and resulting ray path geometry used in Favier & Chevrot (2003), their expression for the geometrical spreading

simplifies to 1/4πβr . The ratio of densities and isotropic velocities [ρ(xr )αvs(xr )]1/2/[ρ(x)αvs(x)]1/2 that appears in our kernel expressions

simplifies to 1 in the case of a homogeneous layer, as assumed in Favier & Chevrot (2003). Finally, we write the traveltime difference between

the perturbed and unperturbed rays as T βα(xr , x, xs) − T 0(xr , xs), while for their geometry this expression can be written simply as r+z0−z
β

.

The only substantial difference between our expression (33) and their expression (33) is the extra ω3/2 factor in the frequency integral that

appears in our 2.5-D case. The differences between 2-D and 3-D kernels are discussed in the appendix to Favier & Chevrot (2003); they

also note the ω5/2 frequency dependence in the integral. In their approach, this ω5/2 term means that the integral can no longer be evaluated

analytically and numerical integration is needed; in our computational approach, we have assumed a narrow frequency band and have taken

the frequency terms outside the integral.

A P P E N D I X C : D E F I N I T I O N, RO TAT I O N, A N D P E RT U R B AT I O N O F S T I F F N E S S

T E N S O R

Here we discuss the definition of the stiffness tensor for TI medium, its rotation in the (x1−x3) or (x2−x3) plane, and its perturbation to

calculate the derivatives used in the kernel computation. In the background anisotropic model, we consider cases between isotropic mantle

(see e.g. Browaeys & Chevrot 2004) (2 independent elastic parameters—this case corresponds to finite strains of γ = 0 in our flow models)

and the transversely isotropic mantle (TIM) model of Chevrot & Van der Hilst (2003) (5 parameters—this case corresponds to γ = 3); the

intermediate solutions (e.g. orthorhombic symmetry) can involve more parameters, but we recall that with the 2.5-D approximation we can
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constrain, at most, 7 parameters. The elastic tensor for a transversely isotropic medium can be written in the form (e.g. Thomsen 1986):

C=ci j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c11 − 2c66 c13 0 0 0

c11 − 2c66 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c55 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (C1)

Here we follow the convention of contracting the fourth-rank elasticity tensor cijkl into a 6 × 6 matrix (Voigt notation). Following Zhu &

Dorman (2000) and Okaya & McEvilly (2003), we rotate this tensor in the (x1−x3) or (x2−x3) plane, depending on the strike of the symmetry

axis. For α = 0 (that is, in the B-type fabric regime), the rotation matrix is given by

R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2 θ0 0 sin2 θ0 0 2 sin θ0 cos θ0 0

0 1 0 0 0 0

sin2 θ0 0 cos2 θ0 0 −2 cos θ0 sin θ0 0

0 0 0 cos θ0 0 − sin θ0

− cos θ0 sin θ0 0 cos θ0 sin θ0 0 cos2 θ0 − sin2 θ0 0

0 0 0 sin θ0 0 cos θ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(C2)

and the rotated elastic constant matrix is given by RCRT . After rotation, the 7 independent elastic constants that we can constrain with the

2.5-D geometry (Section 4.3) can be collected into vector c′:

c′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c′
11

c′
13

c′
33

c′
44

c′
15

c′
35

c′
55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (C3)

The radiation pattern matrix then also reduces to seven independent entries (see eq. 27).

We obtain the following expressions for the rotated elastic parameters:

c′11 = (2c13 + 4c55) sin2 θ0 cos2 θ0 + c11 cos4 θ0 + c33 sin4 θ0. (C4)

c′13 = (c11 + c33 − 4c55) sin2 θ0 cos2 θ0 + c13 cos4 θ0 + c13 sin4 θ0. (C5)

c′33 = (2c13 + 4c55) sin2 θ0 cos2 θ0 + c11 sin4 θ0 + c33 cos4 θ0. (C6)

c′35 = (c33 − c13) cos3 θ0 sin θ + (c13 − c11) sin3 θ0 cos θ0 − 2c55 cos3 θ0 sin3 θ0. (C7)

c′44 = c55 cos2 θ0 + c66 sin2 θ0. (C8)

c′15 = (c13 − c11) cos3 θ0 sin θ0 − (c13 + c33) sin3 θ0 cos θ0 + 2c55 cos3 θ0 sin3 θ0, (C9)

c′55 = (c11 + c33 − 2c55) cos2 θ0 sin2 θ0 + c55 cos4 θ0 + c55 sin4 θ0. (C10)

Finally, in these equations we can substitute for the elastic constants c11, c13, c33, and c55 expressions in terms of the anellipticity εA,

according to eq. (35). For the case where α = 90◦ (fast axis is perpendicular to the trench), the process is similar but the rotation matrix R1 is

replaced by

R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

cos2 θ0 0 sin2 θ0 0 2 cos θ0 sin θ0 0

sin2 θ0 0 cos2 θ0 0 −2 cos θ0 sin θ0 0

cos θ0 sin θ0 0 − sin θ0 cos θ0 0 sin2 θ0 cos2 θ0 0

0 0 0 cos θ0 0 − sin θ0

0 0 0 − sin θ0 0 − cos θ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (C11)
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Now we have expressed the rotated stiffness matrix as a function of the chosen anisotropic parameters θ 0 and εA. We linearize the

relationships to obtain derivatives of the stiffness tensor components with respect to θ 0 and εA. We write the partial derivatives as

δcεA = ∂c

∂εA

δεA (C12)

δcθ = ∂c

∂θ0

δθ0, (C13)

where c represents a non-zero component of the stiffness tensor. The total perturbation in the stiffness tensor component can then be written

as

δc = δcεA + δcθ = ∂c

∂εA

δεA + ∂c

∂θ0

δθ0. (C14)
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