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Abstract Supercontinents coalesce over subduction zone complexes and their subsequent dispersal
is usually attributed to heating and upwelling of continent-insulated mantle. This dispersal mechanism,
however, requires considerable mantle internal heating. Alternatively, the supercontinent configuration
may be mechanically unstable and disperse regardless of heating mode. In particular, increased drag on
plates or subducting slabs (e.g., by accumulating continents) causes them to slow down and trenches to
rollback. Once subcontinental slabs are slightly separated, resistance to their descent increases, inducing
further trench migration. Slabs thus undergo a rollback instability, which disperses supercontinents. A
simple theoretical model illustrates this instability and shows that there are two equilibrium states, one
unstable supercontinent state where slabs are conjoined and one stable state where slabs are widely
separated. Slab rollback from the unstable to stable states occurs at typical slow tectonic speeds and over a
period commensurate with the age of ocean basins and the Wilson cycle.

1. Introduction

The Wilson Cycle is one of the basic tenets of plate tectonic evolution and describes the process of super-
continent agglomeration and dispersal [Wilson, 1966]. The driving mechanism for this cycle is traditionally
attributed to the accumulation of continental crust over mantle downwellings (or complexes of subduct-
ing slabs) and the subsequent heating of the subcontinental mantle because of supercontinent insulation,
which eventually drives an upwelling that disperses the supercontinent [Anderson, 1982; Gurnis, 1988; see
also Yoshida, 2010, 2012, 2013; Yoshida and Santosh, 2011; Lenardic et al., 2011; Rolf and Tackley, 2011; Rolf et
al., 2012, 2014]. This scenario, however, relies on active internal heating of the mantle by radiogenic sources
[e.g., Gurnis, 1988; Lenardic et al., 2011; c.f., Yoshida, 2013; Rolf et al., 2014]. If the mantle energy source is pri-
marily from primordial heat, i.e., its Urey number is very low [Korenaga, 2008; Jaupart et al., 2007], then the
heating of the subcontinental mantle could be too weak to induce dispersal [e.g., Heron and Lowman, 2011].

We propose an alternative hypothesis for supercontinental dispersal that is independent of mantle heating
mode. In particular, a major convergence zone drawn together by a large complex of downwellings is poten-
tially unstable for purely mechanical reasons. First, divergent stress associated with thick continental crust
opposes lithospheric convergence and slows plate motion, which causes the downwelling slabs to recede
from each other, since the plates cool and become heavier closer to their spreading centers. As subcontinen-
tal slabs become more separated, the mantle between them induces greater viscous resistance, slows the
slabs, and plates further, hence causing further rollback. The plates and slabs, therefore, undergo a rollback
instability, which disperses the supercontinent. In this paper we illustrate the physics of this supercontinent
rollback instability with a simple theoretical model and show that the predicted speed and time scale for
dispersal are commensurate with the Wilson cycle.

2. Theory

Conditions for slab rollback have been studied extensively by Stegman et al. [2006, 2010] [see also Schellart
et al., 2007, 2008; Clark et al., 2008], and while rollback form and evolution depends on plate strength, trench
width, coupling to the overriding plate, and induced 3-D (especially toroidal) flow [Kincaid and Griffiths,
2003; Funiciello et al., 2006; Piromallo et al., 2006; Stegman et al., 2010; Gerya and Meilick, 2011], a fundamen-
tal cause for rollback is excess negative buoyancy of the subducting plate [Stegman et al., 2010]. Here we
develop a simple analytical boundary layer model to illustrate the supercontinent rollback instability. In par-
ticular, we show how slab and plate velocity are affected by the supercontinent configuration, which in turn
alters the plate’s negative buoyancy, convective stability, and, ultimately, its length.
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Figure 1. Sketch of model configuration and geometry. See text
for discussion.

We consider a simple configuration of
two mirror-image sinking slabs (Figure 1),
with symmetry points below the ridge
at x = 0 and at the mutual convergence
point x = D, where we assume the total
cell width equals the mantle thickness
D. The length of the plate to the slab is
L, the slab width is 𝛿, and once the slabs
separate, the gap between them has
half-width 𝜆. Although L and 𝜆 are time
dependent, we require L + 𝛿 + 𝜆 = D.

2.1. Plate Length and Trench Position
In our idealized model, subduction
occurs where the top thermal boundary
layer or plate goes convectively unstable.
(The lithosphere is not considered inor-
dinately strong since we assume some
preweakening or self-weakening and/or

damage mechanism [Bercovici and Ricard, 2012, 2014] has made it pliable enough to subduct [e.g., Gurnis
et al., 2004; Nikolaeva et al., 2010]). The subducting slab thickness 𝛿 is given by equating the local Rayleigh
number of the boundary layer to the critical Rayleigh number for the onset of convection [Howard, 1966;
Solomatov, 1995]:

𝜌g𝛼ΔT𝛿3

𝜇0𝜅
= c (1)

where 𝜌 is mantle density, g gravity, 𝛼 thermal expansivity, ΔT the lithospheric temperature drop, 𝜇0 the
upper mantle viscosity (which first resists the instability), 𝜅 thermal diffusivity, and c ≈ 660 is the critical
Rayleigh number for a free-slip surface [Chandrasekhar, 1961]. Although 𝛿 is a system constant, it is related
to plate age by 𝛿 = 2

√
𝜅L∕w [e.g., Solomatov, 1995] and thus the plate length is

L = 𝛿2

4𝜅
w (2)

where w is the slab’s descent velocity, which is assumed the same as the plate velocity. Although subduction
on Earth is more complex than implied here, and indeed there is a wide distribution of subduction ages [e.g.,
Becker et al., 2009], the relation (2) captures the basic process whereby if the slab and plate slow down, the
plate becomes heavier and the trench retreats.

2.2. Ambient Mantle Flow and Resistance
If the model slabs become separated by a gap, the flow of the mantle inside the gap and behind the slabs
provide viscous resistance to slab descent. Widening of the gap increases viscous resistance; hence, the
plates slow down and cause the gap to widen further.

We consider the resistance to vertical descent of just one of the model slabs, since the other slab is its mirror
image. We treat the vertical flow as Poiseuille flow wherein the slab’s velocity −w imposes a no-slip bound-
ary condition on either of the slab’s vertical surfaces (on the plate and gap sides at x = L and x = L + 𝛿),
while the symmetry points (below the ridge at x = 0 or mutual convergence point x = D) involve reflecting
boundary conditions. On either side of the slab the vertical velocity is given generically by

vz = −w − 1
2𝜇

dp
dz

(b − x)(b + x − 2a) (3)

where 𝜇 is the mean viscosity of the whole mantle, which is dominated by the lower mantle’s value, dp/dz
is a nonhydrostatic pressure gradient driving mantle return flow induced by the downward slab flux, and
a and b are the positions of the reflecting and no-slip surfaces, respectively (i.e., dvz∕dx = 0 at x = a and
vz = −w at x = b). For the mantle below the plate, a = 0 and b = L, and for the mantle in the gap between
slabs, a = D and b = D − 𝜆 = L + 𝛿. We assume that the pressure gradient is the same on both sides of the
slab, i.e., due to build up of slab material at depth; moreover, this pressure gradient is determined by mass
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conservation wherein there is no net vertical mass flux across any horizontal surface in the cell. Integrating
the vertical velocity from x = 0 to D, including that of the slab and both regions of mantle on either side of
it, yields

− 1
2𝜇

dp
dz

= 3
2

D
𝜆3 + L3

w (4)

2.3. Continental Accumulation and Resistance
We consider the accumulation of a finite 2-D volume of buoyant unsubductable continental “fluid” of thick-
ness h, density 𝜌c, and viscosity 𝜇c, wherein the continental mass collapses if the underlying convergence
ceases. The equation for a viscous 2-D gravity current of thickness h with a free-slip surface and a no-slip
base moving at a horizontal velocity v(x) is

𝜕h
𝜕t

+ v
𝜕h
𝜕x

=
𝜌′g
3𝜇c

𝜕

𝜕x

(
h3 𝜕h

𝜕x

)
− h

dv
dx

(5)

[Huppert, 1982] where 𝜌′ = (𝜌 − 𝜌c)𝜌c∕𝜌 is the isostatically reduced crustal density [Didden and Maxworthy,
1982]. We assume the continental gravity current has an approximately self-similar shape near the down-
welling slab and is given by h(x, t) = H(t)f (𝜁 ), where 𝜁 = (x − L − 𝛿∕2)∕R (i.e., to the left of the slab 𝜁 < 0),
H is the characteristic height, f is a dimensionless shape function, and R is the half-length of the current’s
base (Figure 1). The current’s volume is conserved; thus, the half-volume (per unit length into the plane)
V = H(t)R(t) ∫ 0

−1 f (𝜁 )d𝜁 is a constant; we can define ∫ 0
−1 f d𝜁 = 1 such that H(t) = V∕R(t). As we will later

consider perturbations to a steady state, we assume the shape f (𝜁 ) approximates that of the steady critical
wedge in which the advection term on the left balances the gravity collapse (i.e., nonlinear diffusion) term
on the right of (5); in this case, and satisfying the volume integral constraint on f , we find f (𝜁 ) ≈ 4

3
(1 + 𝜁 )1∕3

for 𝜁 < 0. Substituting h = V
R

f (𝜁 ) into (5), evaluating it near the center of the gravity current (𝜁 ≈ 0) where
we assume dh∕dx = 0 and dv∕dx ≈ −w∕𝛿, we obtain

dR
dt

=
c𝜌′gV3

𝜇c

1
R4

− w
𝛿

R (6)

where c = 27∕36 ≈ 0.18. The stress of the continental gravity current acting against the top of the plate is
𝜏c = −𝜌′gh dh

dx
and the force (per unit length into the plane) acting against the plate is

Fc =

L+𝛿∕2

∫
L+𝛿∕2−R

𝜏cdx = −
8𝜌′gV2

9R2
(7)

2.4. Mechanical Work Balance
The evolution of plate length is inferred from the balance of mechanical work on the slab; i.e., the release of
gravitational potential energy of the slab is balanced by viscous work done by the mantle on either side of
the slab and by the drag of the continental pile against the plate. In equilibrium, the steady subduction rate
w allows for this energy balance. But if the trench recedes at a rate −dL∕dt, then the slab swings down and
drops a distance |dL| in time dt and releases additional gravitational energy. The total energy balance is

𝜌g𝛼 1
2
ΔT𝛿

(
w − dL

dt

)
= 𝜇w

[
dvz

dx

]L+𝛿

L

+ 2𝛾𝜇
(1

L
+ 1

𝜆

)(dL
dt

)2

− 1
D

L+𝛿∕2

∫
L+𝛿∕2−R

𝜏cvxdx

= 3𝜇
D(D − 𝛿)
𝜆3 + L3

w2 + 2𝛾𝜇
D − 𝛿

L𝜆

(dL
dt

)2

+
8𝜌′gV2

9D
w
R2

(8)

where ΔT∕2 is the slab’s mean thermal anomaly, and we assume the plate velocity vx is constant up to the
trench and equal to the slab velocity w. The fraction 𝛾 accounts for how much of the mantle is involved with
rollback dissipation; e.g., if portions of the slab are anchored in the lower mantle (e.g., due to higher lower
mantle viscosity), then they participate less in rollback, in which case 𝛾 is small.
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Table 1. Material and Model Properties

Quantity Symbol Value

Density, mantle 𝜌 3300 kg/m3

Density, continent 𝜌c 2700 kg/m3

Gravitational acceleration g 10 m/s2

Thermal expansivity 𝛼 3 × 10−5 K−1

Thermal diffusivity 𝜅 10−6 m2∕s
Lithosphere temperature drop ΔT 1400 K
Viscosity, upper mantle 𝜇0 1021 Pa s
viscosity, mean mantle 𝜇 30𝜇0
Viscosity, continent 𝜇c 𝜇0
Mantle depth D 3000 km
Continent 2-D volume V 40 km ⋅ D∕3

2.5. Dimensionless Governing
Equations
We nondimensionalize length by
𝛿 and time by 𝛿2∕(4𝜅), such that
w = (4𝜅∕𝛿)u, L = 𝛿2w∕(4𝜅) = 𝛿u, and
R = 𝛿r, in which case the governing
equations (8) and (6) become

du
dt

= u

(
1 − 

r2
− 3𝜂u

u3 + (𝜂 − u)3

)
− 2𝛾

u(𝜂 − u)

(du
dt

)2

(9a)

dr
dt

= 5

r4
− ur (9b)

where

𝜂 = D
𝛿
,  = 8𝜂𝜇

c𝜇0
,

 = 16𝜌′V2

9𝜌𝛼ΔT𝛿3D
,

and 5 =
c𝜌′gV3

4𝜅𝜇c𝛿
3

(10)

and we have assumed for simplicity
that 𝜂 ≫ 1 in developing (9). The
dimensionless parameters represent
the aspect ratio between convec-
tion cell size and slab thickness 𝜂,
the mantle drag on the slab , the
continental drag on the plate  , and
the collapse rate of the continent .
Using c ≈ 660 and typical model
properties (see Table 1), then 𝜂 ≈ 40,
while ,  , and  are all O(10).

a

b

Figure 2. (a) Solutions u0 to the steady state condition (11) and (b) the
maximum growth rate smax of perturbations to these solutions versus
the parameter  for select values of 𝜈 = ∕2, with  = 10 and 𝜂 = 40.
The upper (green) branch is the long-plate solution, which is unstable
(smax > 0), and the lower (blue) branch is the shorter plate solution,
which is stable (smax < 0).

3. Analysis
3.1. Equilibrium States
Apart from the null solution, the steady
state solution u0 to (9) satisfies(

1 − 𝜈u2∕5
0

)
(3u2

0 −3𝜂u0 + 𝜂2)−3u0 = 0
(11)

where 𝜈 = ∕2, which, given the typi-
cal sizes of  and , is a small number. If
we assume 𝜈 ≪ 1, then the two steady
solutions are simply

u0 = 1
2
(𝜂 + ) ± 1

2

√
(𝜂 + )2 − 4

3
𝜂2

(12)

Viable solutions are limited by the condi-
tions that u0 ≤ 𝜂 and that u0 is real; these
imply that 2∕

√
3−1 ≤ ∕𝜂 ≤ 1∕3, which,

by (10), corresponds to a plausible vis-
cosity ratio range of 13 ≤ 𝜇∕𝜇0 ≤ 28. For
the upper limit ∕𝜂 = 1∕3, solutions are
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a

b

Figure 3. Samples of rollback velocity du/dt as a function of plate
length u from solutions to (9). Cases are shown for values of 
that yield the equilibrium solutions u0 ≈ (2 ± 1)𝜂∕3, (a) one for
𝜈 = ∕2 = 0 and no continental drag and (b) one for 𝜈 = 0.1
and finite continental drag. The curves shown are for 𝛾 when the
viscous dissipation of rollback is negligible (i.e., 𝛾 = 0, black curve)
and for the maximum allowable value of 𝛾 (i.e., maximum rollback
dissipation) that still allows real solutions for du/dt from (15) (blue
curve). For the cases with 𝜈 = 0 the relations are exact. For the cases
with 𝜈 > 0, the solid curves are solutions to (9) assuming dr/dt = 0
such that r = u−1∕5; the square colored symbols are from the
full numerical integration of (9), which verifies that dr∕dt ≈ 0 is a
reasonable assumption.

u0 = (2 ± 1)𝜂∕3; i.e., either the plate is at
the full possible length or has rolled back
to 1/3 its full length. (For the lower limit,
there is only one solution u0 = 𝜂∕

√
3). The

associated velocities w = 4𝜅u∕𝛿 are, for
∕𝜂 = 1∕3, 6 and 2 cm/yr, for the long- and
short-plate solutions, respectively.

Although 𝜈 = ∕2 is small, it influences
the steady state solutions, which are found
numerically (see Figure 2a). While the range
of solutions for u0 do not change, they occur
for smaller values of . For 𝜈 ≈ 0.1, the
range of allowable  is 0.1 ≤ ∕𝜂 ≤ 0.19,
which corresponds to the viscosity ratio
range 8 ≤ 𝜇∕𝜇0 ≤ 16. Thus, the continen-
tal pile exerts enough resistance that steady
solutions only exist if the lower mantle
viscosity is reduced.

Although the two equilibrium solutions for
u0 have significantly different lengths and
velocities, the associated widths of the con-
tinental pile r0 = u−1∕5

0 have little variation.
The ratio of the continental widths for the
shortest- and longest-plate states (given by
u0 = (2 ± 1)𝜂∕3) is simply 31∕5 ≈ 1.25. Thus,
the continental pile lengthens by 25% from
one equilibrium state to the other.

3.2. Stability
The rollback instability is inferred from the
stability of the equilibrium solutions (u0, r0)
from section 3.1. Substituting infinites-
imal perturbations to these solutions
(u, r) = (u0, r0) + 𝜖(u1(t), r1(t)), where 𝜖 ≪ 1,
into (9), we obtain to (𝜖1):

du1

dt
=
(

1 − 
2

u2∕5
0

) 3u2
0 − 𝜂2

3u0(u0 − 𝜂) + 𝜂2
u1

+
2u8∕5

0

3
r1 (13a)

dr1

dt
= − 

u1∕5
0

u1 − 5u0r1 (13b)

Using (u1, r1) ∼ est in (13), we infer a quadratic relation for the growth rate s and thus two growth rates for
each of the two steady solutions u0. For the case of 𝜈 = ∕2 ≪ 1, only the evolution equation for u1 is
needed and

s =
3u2

0 − 𝜂2

3u0(u0 − 𝜂) + 𝜂2
(14)

In the case of  = 𝜂∕3 and u0 = (2 ± 1)𝜂∕3, the growth rates are s = ±2; i.e., the equilibrium long-plate
solution u0 = 𝜂 is unstable while the short-plate solution u0 = 𝜂∕3 is stable. The maximum growth rate
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Figure 4. Total time for rollback trb from (16) between the two equi-
librium states (i.e,. the long, unstable plate and the short, stable
plate) versus the rollback dissipation parameter 𝛾 and for cases with
(𝜈 > 0 black line) and without (𝜈 = 0, blue line) continental drag; 𝛾
is normalized by the corresponding 𝛾max from Figure 3. The param-
eter  is chosen to allow the equilibrium states u0 ≈ (2 ± 1)𝜂∕3.
Since (16) is singular at the equilibrium states, the integration lim-
its are evaluated at (2 ± 1)𝜂∕3 ⋅ (1 ∓ 𝜖), where for the cases shown
𝜖 = 10−2.

smax for general  and 𝜈 = ∕2 (Figure 2b)
reveals that the long-plate state is always
unstable, while the short-plate one is stable.
Thus, the supercontinent slab configura-
tion is unstable, and the slabs retreat to a
stable state with shorter plates. The pro-
cess of rolling back, and the associated in-fill
of mass between the two retreating slabs,
would then disperse the continent between
the slabs.

3.3. Rollback Velocity
The nonlinear evolution equations (9) can
be used to infer the rollback velocity du/dt
as the trench retreats from the long- to
short-plate states. For the simple case with
𝜈 = ∕2 ≪ 1 the governing equations are
decoupled and du/dt is only a function of u.
For the general case of 𝜈 > 0, we assume
that dr∕dt ≈ 0; i.e., since both terms on
the right side of (9b) are very large, they
are likely much bigger than their difference
dr/dt. In this case, using r ≈ u−1∕5 in (9a),
we obtain a closed and integrable relation
for the rollback velocity:

du
dt

=  (u) = u(𝜂 − u)
4𝛾

⎛⎜⎜⎝−1 +

√
1 + 8𝛾

𝜂 − u

(
1 − 𝜈u2∕5 − 3𝜂u

u3 + (𝜂 − u)3

)⎞⎟⎟⎠ (15)

(Figure 3). (We also verify the assumption that dr/dt ≈ 0 for cases with 𝜈 > 0 by comparing (15) to full
numerical solutions of (9); see Figure 3b.) The rollback velocity is negative as the system evolves from the
long- to short-plate equilibria. (In principle, trench advance could occur if the initial plate is longer than in
the unstable equilibrium state, but in that case there is no stable state to which it can evolve.) In all cases, the
maximum absolute rollback velocity |du∕dt| is comparable to but generally less than the peak plate velocity
u (which agrees with Schellart et al. [2007]) and occurs roughly at the midpoint between the two equilibrium
lengths of u (recall that u represents both dimensionless plate speed and length). At these velocities, the
rollback instability can disperse continental crust at a tectonically feasible rate.

3.4. Rollback Time
The integration of (15) between the long-plate and short-plate equilibrium states gives the net rollback time

trb = ∫
u0s

u0l

du
 (u)

(16)

where the u0j
are the long- (j = l) and short-plate (j = s) equilibrium solutions. The rollback time appears

most sensitive to the continental drag factor 𝜈 = ∕2 (Figure 4). Using c ≈ 660 and properties from
Table 1, the dimensional rollback time is typically 200–400 Myrs, which is commensurate with the age of
ocean basins and the period of the Wilson cycle.

4. Summary and Conclusion

Trench migration plays an important role in mantle flow patterns, back-arc deformation and volcanism, and
arc/slab morphology in subduction systems [Lallemand et al., 2008; Clark et al., 2008; Long and Silver, 2009;
Stegman et al., 2010; Long et al., 2012; Crameri and Tackley, 2014]; we suggest that it may also play a crucial
role in the supercontinent cycle. In particular, our simple theory illustrates how a “supercontinent” config-
uration of subduction zones is naturally unstable to slab rollback and trench retreat and evolves to a stable
state of dispersed slabs and continents. This mechanism provides an alternative to continental dispersal via
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mantle thermal insulation and induced upwelling [e.g., Gurnis, 1988; Lenardic et al., 2011; Yoshida, 2013],
which is problematic if the mantle Urey number is small [Korenaga, 2008; Jaupart et al., 2007]. In contrast,
our proposed rollback instability is purely mechanical and independent of heating mode. Moreover, the slab
rollback velocity implied by the model is comparable to typical tectonic plate velocities; hence the rollback
time (to go from the unstable supercontinent state to the stable dispersed-continent state) is comparable
to the age of ocean basins and the Wilson cycle period. The model is idealized in that it is 2-D, neglects pos-
sible effects of complex rheology and strength in the lithosphere (leading to self-weakening and/or strong
continental lithosphere), and does not account for the agglomeration cycle, which we assume is inevitably
driven by convergence over convective downwellings (although whether by “extroversion or “introversion”
remains debated [e.g., Murphy et al., 2009]). Nevertheless, our simple model provides feasible predictions for
supercontinent dispersal and a framework for further, more sophisticated investigations.
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