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SUMMARY

Different mechanisms have been proposed as explanations for seismic anisotropy at the base
of the mantle, including crystallographic preferred orientation of various minerals (bridgman-
ite, post-perovskite and ferropericlase) and shape preferred orientation of elastically distinct
materials such as partial melt. Investigations of the mechanism for D" anisotropy usually yield
ambiguous results, as seismic observations rarely (if ever) uniquely constrain a mechanism
or orientation and usually rely on significant assumptions to infer flow patterns in the deep
mantle. Observations of shear wave splitting and polarities of SdS and PdP reflections off
the D" discontinuity are among our best tools for probing D" anisotropy; however, currently
available data sets cannot constrain one unique scenario among those suggested by the mineral
physics literature. In this work, we determine via a forward modelling approach what combi-
nations of body wave phases (e.g. SKS, SKKS and ScS) are required to uniquely constrain a
mechanism for D" anisotropy. We test nine models based on single-crystal and polycrystalline
elastic tensors provided by mineral physics studies. Our modelling predicts fast shear wave
splitting directions for SKS, SKKS and ScS phases, as well as polarities of P- and S-wave
reflections off the D" interface, for a range of propagation directions, via solution of the
Christoffel equation. We run tests using randomly selected synthetic data sets based on a given
starting model, controlling the total number of measurements, the azimuthal distribution, and
the type of seismic phases. For each synthetic data set, we search over all possible elastic
tensors and orientations to determine which are consistent with the synthetic data. Overall, we
find it difficult to uniquely constrain the mechanism for anisotropy with a typical number of
seismic anisotropy measurements (based on currently available studies) with only one mea-
surement technique (SKS, SKKS, ScS or reflection polarities). However, data sets that include
SKS, SKKS and ScS measurements or a combination of shear wave splitting and reflection
polarity measurements increase the probability of uniquely constraining the starting model
and its orientation. Based on these findings, we identify specific regions (i.e. North America,
northwestern Pacific and Australia) of the lowermost mantle with sufficient ray path coverage
for a combination of measurement techniques.

Key words: Composition and structure of the mantle; Mantle processes; Seismic anisotropy;
Statistical seismology.

likely influences (and/or is influenced by) structures such as large

I INTRODUCTION low shear velocity provinces (LLSVPs). Subducting slabs likely

Mantle convection finds its surface expression in plate tectonics and
represents a crucial dynamic process in the deep Earth. Despite its
importance, the pattern of mantle convection and the forces that
drive mantle flow remain imperfectly understood. This is partic-
ularly true for the deepest mantle: flow at the base of the mantle

penetrate into the lower mantle and hot mantle plumes generate
from or near the LLSVPs, indicating a strong connection between
the surface and deep mantle processes (e.g. Garnero et al. 2016).
Observations of seismic anisotropy have the potential to illumi-
nate mantle flow, due to the relationship between strain due to mantle
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convection and seismic anisotropy via lattice preferred orientation
(LPO) or shape preferred orientation (SPO) mechanisms. The pres-
ence of anisotropy in the D" layer at the base of the mantle has been
known for several decades (e.g. Lay & Helmberger 1983) from the
analysis of body wave phases (as summarized in Nowacki et al.
2011). At this point a relatively small fraction (Fig. 1) of the core
mantle boundary region has been explored for D" anisotropy using
body waves. Fig. 1 shows a map, updated from Nowacki et al. (2011)
illustrating the geographical coverage of previous studies (includ-
ing recent work by Cottaar & Romanowicz 2013; Lynner & Long
2014a; Ford et al. 2015; Long & Lynner 2015; Simmons et al. 2015;
Creasy et al. 2017; Deng et al. 2017; Thomas ef al. 20112011). De-
spite these observations, however, we still do not fully understand
the anisotropy in these regions. Several different models for D’
anisotropy have been proposed, including those that invoke LPO
of bridgmanite (Br), post-perovskite (Ppv), or ferropericlase (Fp)
and those that invoke SPO of partial melt (see Nowacki et al. 2011
for a review). The mechanisms responsible for D" anisotropy, the
dominant slip systems involved, the orientation of the anisotropic
fabric, and the implications for mantle flow geometries thus remain
poorly understood.

A variety of body waves has been used to study anisotropy in the
deepest mantle. Specifically, direct S, ScS and Sdiff have been used
to observe lowermost mantle anisotropy by measuring shear wave
splitting (e.g. Wookey et al. 2005a; Cottaar & Romanowicz 2013;
Ford et al. 2006; Thomas et al. 2007). Combinations of phases,
such as SKS-SKKS (e.g. Wang & Wen 2007; Long 2009) or S-ScS
(e.g. Wookey et al. 2005a; Nowacki et al. 2010), are often useful
to isolate the lowermost mantle contribution to splitting. Thomas
et al. (2011) used an array analysis technique to observe reflected
P and S waves off the D" discontinuity; the azimuthal dependence
of the polarity of D" reflections SdS and PdP contains information
about lowermost mantle anisotropy. While body wave observations
have been extensively used to study anisotropy at the base of the
mantle, such studies suffer from the fundamental limitation of small
azimuthal coverage; most studies are essentially restricted to a single
ray path, which means that the geometry of anisotropy cannot be
tightly constrained.

Several recent studies of deep mantle anisotropy have amelio-
rated this limitation by targeting regions of D" that are sampled by
body waves over multiple azimuths (pink regions in Fig. 1). These
include studies of the lowermost mantle beneath Siberia (Wookey &
Kendall 2008; Thomas et al. 2011), North America (Nowacki et al.
2010), the Afar region of Africa (Ford ef al. 2015) and Australia
and New Zealand (Creasy et al. 2017). In some cases, one can test
whether the observations could clearly distinguish among different
mechanisms for anisotropy. For example, Ford et al. (2015) and
Creasy et al. (2017) carried out forward modelling of ScS, SKS and
SKKS splitting data sets over multiple azimuths to test whether a
unique mechanism for anisotropy and/or a unique orientation of an
assumed mechanism could be identified. In each of these studies
it was found that LPO of Ppv matches the observations, but other
mechanisms (such as LPO of Br or Fp) were also consistent with
the data. None of the studies summarized in Fig. 1 has success-
fully identified a uniquely constrained mechanism or orientation for
anisotropy. Motivated by this, we attempt here to understand what
observations are needed to distinguish the various possible models
for D’ anisotropy.

The goal of this study is to understand what combination of
body wave data sets (SKS, SKKS, ScS and reflection polarities)
are necessary to uniquely constrain the mechanism and geometry
of anisotropy in the lowermost mantle using observations of shear
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wave splitting and D" reflection polarities. Such an understanding
will aid in the design of future observational studies to maximize the
chances of uniquely constraining a mechanism. We are interested
in understanding the characteristics of data sets that are best suited
to constrain the details of D" anisotropy, including the number
of measurements needed, the optimal azimuthal coverage, and the
optimal combinations of body wave phases. We address two specific
questions: (1) What types of data sets (potentially including SKS,
SKKS and/or ScS splitting, and/or reflection polarities) are needed
to uniquely identify the causative mechanism for anisotropy (e.g.
LPO of Ppv, Br, Fp or SPO of partial melt) and (2) if we assume
that the mechanism for anisotropy is known to be LPO of Ppv, what
type of data sets are needed to uniquely constrain the orientation of
the anisotropy?

We carry out forward modelling tests for a suite of synthetic body
wave data. Our approach to forward modelling of synthetic data sets
follows our previous work on observations of shear wave splitting in
D’ (Ford et al. 2015; Creasy et al. 2017) and also incorporates mea-
surements of D" polarities of P- and S-wave reflections (Thomas
et al. 2011). Our approach is to test a variety of candidate elas-
tic tensors that describe various mechanisms for lowermost mantle
anisotropy. For each model, we randomly generate more than 5000
unique synthetic data sets (for SKS, SKKS and ScS shear wave
splitting, plus PdP and SdS polarities) with a certain set of char-
acteristics (e.g. number and type of measurements, as described
below) and a random azimuthal distribution. For each set of random
ray paths, we compute a set of predicted ‘observations’ of shear
wave splitting and/or reflection polarities using a ray theoretical ap-
proach. We then attempt to determine what characteristics of body
wave data sets are optimal for uniquely constraining anisotropy in
the lowermost mantle.

2 METHODS

2.1 Candidate models for D’ anisotropy

We first consider which plausible models for D’ anisotropy should
be tested. The lower mantle is likely composed of pyrolite (e.g. Lee
et al. 2004), a model composition that consists of ~76 mol per
cent of bridgmanite (Br: MgSiO;), ~17 mol per cent of periclase
(Fp: (Mg,Fe)O), and ~7 mol per cent of calcium perovskite (Capv:
CaSiOs;). In the D" layer at the base of the mantle, we expect a phase
change of Brto post-perovskite (Ppv: MgSiOs) (e.g. Murakami ez al.
2004). Based on ab initio calculations and laboratory experiments,
Br, Fp and Ppv all have strong single-crystal anisotropy, with Fp be-
ing the weakest mineral and the most anisotropic (as summarized in
Nowacki et al. 2011), although it is less abundant than Br/Ppv. This
suggests that LPO development in any of the dominant lowermost
mantle minerals may contribute to the observed anisotropy, as long
as deformation is taking place in the dislocation creep regime (e.g.
McNamara et al. 2001). Another possible mechanism is aligned
pockets of an elastically distinct material such as partial melt in
configurations such as disks, tubes or sheets, creating shape pre-
ferred orientation (SPO, e.g. Kendall & Silver 1998, Tables 1 and
2).

We test a suite of models that describe single-crystal elasticity
of lowermost mantle materials derived from ab initio calculations,
following our previous modelling work (Ford et al. 2015; Creasy
et al. 2017). This approach assumes that an aggregate will have
the same anisotropic geometry (although not strength) as a single
crystal. In addition to the single-crystal models, we test one model
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Figure 1. Summary map of previously published studies (which include shear wave splitting measurements and reflection polarity observations) to constrain
D" anisotropy, updated and adapted from Nowacki ef al. (2011). Highlighted areas (pink/grey) indicate regions that have been probed for D" anisotropy with
these methods. Regions in pink indicate studies that used multiple techniques and/or intersecting ray paths, for which at least two observations intersect in the
same region with different propagation azimuths. Two such studies are highlighted on the right. Panel (a) shows the ray paths (black lines) beneath Siberia
studied in the reflection polarity study of Thomas ez al. (2011). CMB bounce points are indicated with diamonds and circles, and the dotted arrow indicates
paleo subduction direction 100 Ma ago of the Kula plate. Background colours indicate P-wave velocity deviations at the base of the mantle from the model
of Karason & Hilst (2001). Panel (b) shows a schematic diagram of shear wave splitting measurements of SKS (green), SKKS (red) and ScS (blue) phases
beneath the Afar region of Africa (Ford ef al. 2015). Background colours show S-wave velocity deviations at a depth of 250 km above core-mantle boundary
from the GyPSuM tomography model (Simmons ez al. 2010). Colour scales indicate the maximum S- or P-wave velocity deviation.

Table 1. Summary of all elastic tensors used in the forward modelling.

Geometry Phase Pressure (GPa) Temperature (K) References

Single crystal tensors

Single crystal Br! 125 2500 Wookey et al. 2005a,b; Wentzcovitch et al. (2006)
126 2800
136 4000
Ppv'2 135 4000 Stackhouse ef al. (2005)
MgO! 135 3000 Karki et al. (1999)
Geometry Phase Notes References
Other Tensors
Experimental LPO MgO! P =0.3GPa; T = 1473K Long et al. (2006)
SPO! 0.003 vol. Oblate shape Walker & Wookey (2012)
fraction melt
0.003 vol. Tubule shape Walker & Wookey (2012)
fraction melt
Calculated LPO? Ppv TX2008-V1 model; dominant slip plane: ~ Tensors based on Stackhouse er al. (2005); Stackhouse &

(010), P = 125-136; T'= 3000—4000 K Brodholt (2007) and Walker et al. (2011)

Columns show the type of tensor (single-crystal, LPO based on experimental data, SPO based on effective medium averaging, or LPO based on global flow and
texture models), the phases and/or constituents, and the reference. For the single-crystal tensors, the pressure and temperature conditions used in the modelling
are also indicated.

IElastic tensors used for tests to uniquely constrain the starting model.

2Elastic tensors used for tests to uniquely constrain the orientation.
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Table 2. Models for the top (isotropic) and bottom (anisotropic) layers of each model described in Fig. 3 for reflection

polarity models.

Top layer Bottom layer
Model (isotropic) (anisotropic) Slip system References
A Ppv Ppv [100](010) Wentzcovitch et al. (2006); Walte et al. (2009)
B Br Ppv [100](010) Wentzcovitch et al. (2006); Walte et al. (2009)
C Br Br [010](100) Stackhouse ef al. (2005); Mainprice et al. (2008)
D Fp Fp [100](001)  Karki et al. (1999)

The dominant slip system assumed in each bottom layer is listed.

(for Fp LPO) based on deformation experiments (Long et al. 2006)
and models that invoke the SPO (shape-preferred orientation) of
partial melt (Table 1), with elastic constants calculated using an im-
plementation of effective medium theory within the MSAT toolbox
(Walker & Wookey 2012).

Finally, our last candidate model approximates a textured Ppv
aggregate and is derived from a 3-D, global mantle flow field cal-
culation in combination with a visco-plastic self-consistent model
LPO development in Ppv (Walker ef al. 2011). We determined a
representative elastic tensor for Ppv texture development in high-
strain simple shear by querying the TX2008.V1.P010 model of
Walker et al. (2011), which combined a lower mantle viscosity
model from Mitrovica & Forte (2004) with a mantle density model
from Simmons et al. (2009). We only considered the case in which
slip on the (010) plane dominates; this is the most likely slip plane
for Ppv based on experiments (Yamazaki ef al. 2006; Walte et al.
2009), modelling (Goryaeva et al. 2017), and observations of D"
anisotropy (Ford et al. 2015; Creasy et al. 2017; Thomas et al.
2011). To obtain a representative average tensor for simple shear,
we identified a 15° by 15° geographical region of the global flow
(beneath the northern Atlantic Ocean) that is dominated by strong
horizontal shear. We then extracted and averaged the 16 elastic
tensors (the model calculated tensors every 5°) from the resulting
TX2008.V1.P010 elasticity predictions in this region.

2.2 Computation of reflection polarities and fast splitting
directions

Given the full suite of candidate models for elasticity in D’ to be
used in our study (Table 1), we implement methods for predicting
various types of body wave observations for these scenarios. We
calculated predicted shear wave splitting fast directions for SKS,
SKKS and ScS phases (Fig. 2) over a range of azimuths (every 5°)
and inclinations for each of these models (Table 1) by solving the
Christoffel equation using the MSAT toolkit of Walker & Wookey
(2012). The three different phases propagate at different inclination
angles: ~55°, 35°, 0° from the horizontal, respectively.

We then calculated the reflection polarities of SdS and PdP and the
corresponding predicted shear wave splitting fast directions (Fig. 3)
over a range of azimuths (every 5°) and inclinations for each of
these models (Tables 1 and 2). Table 2 summarizes the models used
to generate predictions of D" reflection polarities (SdS and PdP),
including the assumed slip system, based on the methodology of
Thomas et al. (2011). These models were constructed by assum-
ing horizontal simple shear at the base of the mantle, where the
dominant slip direction aligns parallel to the CMB, the slip plane
is assumed to be horizontal, and 12 per cent of the aligned sin-
gle crystals are mixed linearly with its isotropic equivalent. This
choice of 12 per cent alignment was based on the previous work of

Thomas et al. (2011), and yields reasonable anisotropic strengths;
since we focus on reflection polarities and not amplitudes, how-
ever, this choice of value is not critical. We assume that the aligned
grains are sub-parallel with the slip direction and the slip plane
is subparallel to the CMB and the remaining grains are randomly
oriented for Models A, B and C (Fig. 3). We tested three models
(Models A [Ppv], C [Br] and D [Fp] in Table 2) in which the D"
discontinuity represents a change in alignment of the mineral grains
from an isotropic (above the discontinuity) to an anisotropic (be-
low the discontinuity) regime. In Model B, the D’ discontinuity is
an isotropic phase transformation from Br to anisotropic Ppv. The
predicted values for reflection polarities for each model are shown
in Fig. 3 and were calculated using Guest & Kendall (1993) from
the velocity perturbation and reflection coefficients at the interface
between an isotropic and anisotropic layer with respect to azimuth
from the dominant slip direction and epicentral distance (Thomas
etal 2011).

Our approach to calculating predicted shear wave splitting param-
eters and reflection polarities for our synthetic models makes several
simplifying assumptions. First, we only directly model shear wave
splitting due to lowermost mantle anisotropy, and ignore any poten-
tial contributions from the upper mantle. Our approach therefore
assumes that any upper mantle contribution (in real data) has been
correctly accounted for; we further assume that the bulk of the lower
mantle is isotropic (Meade et al. 1995). We do not explicitly con-
sider how incorrect upper mantle corrections could bias the resulting
D’ observations, which is beyond the scope of our study. Secondly,
we rely on ray theory and do not consider finite frequency wave
effects in our modelling. Ray theoretical predictions are generally
adequate for homogenous regions of D’ (e.g. Nowacki & Wookey
2016), although they may break down for laterally heterogeneous
anisotropic models (heterogeneities varying over hundreds of km).
Third, in our modelling we approximate the propagation directions
for SKS and SKKS with average inclination angles for these phases,
and for ScS we assume that propagation is horizontal through the D’
layer. This assumption follows previous work (Nowacki ez al. 2010;
Ford et al. 2015; Creasy et al. 2017). In the Earth and at the relevant
epicentral distances, ScS can be inclined from the horizontal up to
~15°, but this assumption has only a modest effect on the predicted
splitting parameters. We assume the three different phases (SKS,
SKKS and ScS) propagate at different inclination angles: ~55°,35°,
0° from the horizontal, respectively. Inclination angles are based on
a straight-line approximation, calculated using TauP (Crotwell et al.
1999) based on the PREM earth model (Dziewonski & Anderson
1981) for distances of 90°—120° for SKS/SKKS and 60°-80° for
ScS with an event at a depth 10 km. We use these average propa-
gation angles for SKS and SKKS in our modelling for simplicity,
although for real data they can vary by 10° to 20° from these average
values.
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Figure 2. Elastic properties of models from Table 1 for D" anisotropy tested in this study, as expressed in the predicted shear wave splitting behaviour. Predicted
shear wave splitting behaviour is shown as a 3-D spherical representation relative to geographic space, with the [100], [010] and [001] axes indicated in order
to view the variation of splitting of SKS, SKKS and ScS with azimuth. The anisotropy 3-D spheres show the directional dependence of seismic anisotropy
(strength [grey colour bar] and fast-axis directions [black bars]). For each model, the [100] and [010] axes are parallel to the CMB and oriented north and
west, respectively. Black bars show predicted splitting over a range inclinations and azimuths, as computed using the MSAT toolkit (Walker & Wookey 2012).
Magenta bars illustrate the predicted fast polarization directions for the given starting models for a particular set of SKS, SKKS and ScS ray paths every 20° (we
actually use steps of 5° in the synthetic modelling, but the plotting is too dense to show) that are evenly distributed. Inclination angles used in the modelling are
based on the average inclination angles for each phase through the D" layer; we assume that ScS propagates nearly horizontally through the lowermost mantle,
as described in the text. From left to right, we show elastic tensor models for single-crystal Ppv (Stackhouse et al. 2005), single-crystal Br (Wentzcovitch ef al.
20006), single-crystal Fp (Karki et al. 1999: labelled as ”Fp (Karki)"), experimentally derived LPO of Fp (Long et al. 2006: Labelled as ‘Fp (Long)’), Oblate
SPO (Walker & Wookey 2012), Tubule SPO (Walker & Wookey 2012) and the averaged, textured Ppv (Walker et al. 2011). Background colours are %S-wave
anisotropy.

2.3 Modelling approach and strategy and/or ScS sometimes in combination with SdS and PdP reflection
polarities. Thirdly, we calculate the predicted fast-axis directions
and/or reflection polarities of SdS and PdP for each ray path, as
described in Section 2.2.

In the fourth step, we model the synthetic data set by applying the
same forward modelling technique that we typically use for real data
(Ford et al. 2015). Specifically, we treat the synthetic observations
as though the actual model used to generate them was not known,
and test all possible models listed in Tables 1 and 2 in all possible
orientations (every 5°) to identify models/orientations that are con-
sistent with the synthetic data set. A candidate model/orientation
is discarded if the predicted and ‘observed’ fast splitting directions
differ by more than 20° or if the predicted reflection polarities are
opposite to those of the ‘observations’. We apply this 20° cut-off
for the splitting observations, based on methods and reasonable es-
timates of errors in previous shear wave splitting studies (see Ford
et al. 2015). While this misfit criterion is appropriate for measure-
ment errors, it does not take into account effects such as inaccurate
upper mantle corrections for actual D’ anisotropy observations or
the possible finite-frequency effects of complex structure. Explicit

Our goal is to conduct a series of stochastic forward modelling sim-
ulations to test whether we can uniquely constrain a given starting
model (an elastic tensor) and its orientation using a data set with a
given set of characteristics (e.g. number and type of measurements,
azimuthal distribution). Our forward modelling framework follows,
who modelled a shear wave splitting data set that samples the low-
ermost mantle beneath the Afar peninsula along the edge of the
African LLSVP. We did not consider delay times in our modelling.
Individual delay time measurements contain larger error bars, which
limit the utility of using the relative traveltimes in a data set as a
discriminant. The complete trade-off between fabric strength and
layer thickness also limits the utility of using absolute traveltimes
as a constraint.

For each of our modelling experiments, we first choose a starting
model and orientation from the possibilities listed in Table 1. As an
example, we first consider a horizontally aligned elastic tensor of
Ppv with [100] and [010] axes parallel to the CMB, which we will
use to illustrate our approach in several of the following figures.
Secondly, we randomly identify a set of ray paths of SKS, SKKS
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Figure 3. Predictions of reflection polarities for PdP and SdS waves for different D" anisotropy models shown as an upper hemispherical projection since
polarities depend on azimuth, not inclination as in Fig. 2. Predictions are made as a function of azimuth and epicentral distance (from 60° to 80°). Azimuth
is relative to the slip direction (indicated by the black arrow), which also corresponds to direction of lowermost mantle flow for a simple horizontal shear
geometry. The first two columns show the reflection coefficients of P-P and SH-SH upon reflection off the D" discontinuity, located 300 km above the core
mantle boundary in the model. Blue and red regions indicate positive and negative polarities, respectively. Models A, C and D illustrate situations where there
is an onset of anisotropy at the D" discontinuity while Model B invokes both a phase change (from Br to Ppv) and the onset of anisotropy. The last column
illustrates the predicted S-wave anisotropy (colour bar) and predicted shear wave splitting fast directions (black bars) for the same models, plotted as a function
of azimuth and inclination from the horizontal. Elastic tensors corresponding to these models are shown in Table 2.

consideration of these effects in D’ anisotropy studies is a subject
of ongoing research. For each candidate model/orientation that was
considered an acceptable fit to the synthetic data, we calculated a
total misfit value for the fast polarization directions only based on
a residual sum of squares approach, following Ford ef al. (2015).
Each fast direction misfit is normalized by the maximum residual
of 90° and summed by using the residual sum of squares, in which
we calculate the square of the difference between the observation
and data prediction.

The fifth and final step in our modelling strategy is to repeat
the entire process a large number (M) of times for random ray path
configurations. All of these steps are illustrated in Fig. 4. In each iter-
ation, we randomly choose a new azimuthal distribution of ray paths
for a new synthetic data set with varying characteristics (such as the
number and type of observations, described in more detail below).
We report our results by considering what percentage of the M iter-
ations could uniquely identify the starting model. Each individual
iteration was designated as ‘uniquely constrained’ if it successfully
identified the correct starting model and could completely rule out
any other candidate model. However, if there was at least one other
anisotropy configuration (any candidate elastic tensor model, in any
orientation) which was found to be consistent with the synthetic

observations, then that iteration was designated ‘not uniquely con-
strained.” Therefore, all our model results are characterized through
a per cent-uniquely constrained value, which identifies what per-
centage of the M simulations could uniquely constrain the starting
model. The actual values of these ‘ per cent-uniquely constrained’
estimates are strongly dependent on our modelling choices, and
the estimates could change with different modelling assumptions.
However, these percentages can be compared across our suite of
numerical simulations, since our assumptions are consistent across
the various tests.

Within this modelling framework, we tested a series of synthetic
data set characteristics described by the following three distinct
variables: the number of measurements (N), ratio of the number
of SK(K)S (that is, SKS plus SKKS) measurements to the total
number of shear wave splitting measurements (we term this ratio
the ‘SKS number”), and the azimuthal distribution of measurements,
as quantified by the angular dispersion (R). Angular dispersion is
defined as:

Cp= ZLI cos(a) , Sp= ZLI sin () , )
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Figure 4. Flow chart of steps in our modelling framework. The first step is to
identify the starting model and its orientation from Tables 1 and 2. Secondly,
randomly choose an azimuthal distribution of ray paths through the starting
model and fix the SKS number. Thirdly, use the ray paths from step 2 and
calculate the fast polarization directions and/or reflection polarities (splitting
parameters) based on the identified starting model and SKS number. Fourth,
use this synthetic data set to use the forward modelling approach to identify
which models and orientations fit the synthetic data set. We apply the misfit
cut-off as described in Methods to eliminate certain models and orientations
in order to see if the synthetic data set can uniquely constrain the starting
model. Lastly, in step 5, we repeat this same process M times (number of
iterations), identifying a new random distribution of ray paths each time.

R=,/C2+82, @)

where g; is a vector of directions and R is angular dispersion, which
varies from 0 (uniform dispersion) to 1 (concentration in one direc-
tion) (Mardia & Jupp 2000). A graphical definition of R is shown
in Supplementary Fig. S1.

We tested different combinations of N and SKS number to gain
insight into how many measurements, and in what combination, are
typically needed to uniquely constrain the anisotropy. For angular
dispersion, we calculated the value of R for each of the M iterations
carried out in each test; then, we queried the large number of simu-
lations to understand how the azimuthal distribution of the synthetic
data affected its ability to constrain anisotropy.

2.4 Distinguishing the mechanism and orientation of
anisotropy

For the first round of tests, we sought to understand how many
shear wave splitting measurements, and in what combination (as
described by the SKS number), are generally needed to uniquely
constrain the mechanism for anisotropy. That is, we tested whether
synthetic data sets could be shown to be consistent only with the
correct starting model (e.g. Ppv, as opposed to other models listed
in Table 1), and with no other candidate mechanism. For this round
of tests, we used the single crystal models in Table 1 as starting

models, each in several different orientations. The LPO model of
Ppv was only used for the second round of tests. We defined the
starting model orientation via the rotation angle about the [100]
axis from the horizontal (note that Fig. 2 only shows an example
with a horizontal [100] and [010] direction). We arbitrarily tested
each single crystal model at three different orientations based on the
rotation angle about the [100] axis from the horizontal: 0°, 45°, and
90°. For the LPO model of Ppv, we only test the original orientation
for the starting model and do not test a rotated version of the elastic
tensor since this model is based on a region in the Walker et al.
(2011) with horizontal shear. In our initial round of tests, we focused
only on cases in which shear wave splitting observations of SKS,
SKKS, and ScS (for varying N, SKS number, and R values) were
used to constrain the models. In later tests, we explored scenarios
in which reflection measurements were combined with shear wave
splitting data in order to estimate the improvement obtained by
combining different data types.

We also carried out a series of tests whose goal was to constrain
the orientation of the elastic tensor for the case in which the mecha-
nism for anisotropy is known (or assumed). For this line of inquiry,
we focused on Ppv as a test case; we did not test other mechanisms
in this part of the study. The choice to focus on Ppv was made for
simplicity and because Ppv is often invoked as the preferred mech-
anisms for anisotropy in D" (Wookey et al. 2005b; Nowacki et al.
2010; Thomas ef al. 2011a; Ford & Long 2015; Ford et al. 2015;
Creasy et al. 2017). We consider both single-crystal Ppv tensors and
elastic tensors derived from texture modelling, as discussed above.
As in our first series of tests, we initially focus on synthetic data
sets that only contain shear wave splitting observations, and then
examine cases that also include reflection measurements.

Lastly, in addition to the two major lines of inquiry we address
in our modelling (what kind of data sets are needed to constrain
the mechanism and orientation) of lowermost mantle anisotropy,
we performed two practical tests using horizontal Ppv as a starting
model. First, we carried out a test of how many iterations (that is,
values of M) are needed for our forward algorithm to converge on
an estimate of the probability of identifying unique models. Second,
we tested the addition of Gaussian noise to the shear wave splitting
predictions, in order to understand how well real, noisy data sets
might perform. The results of these practical tests are described
below. While seismic data can deviate from a Gaussian distribution
(Groos & Ritter 2009), we only consider Gaussian distributed noise
here since in an ideal case, seismic noise is Gaussian distributed
(Bendat & Piersol 2011).

3 RESULTS

3.1 Illustrative examples: Model runs for a ppv starting
model

To illustrate the process and results of our modelling, we discuss
here the results from a test that attempts to constrain the starting
model, as well as one iteration of a test that attempts to constrain the
orientation. In both cases, we use synthetic shear wave splitting data
only. For these examples, as in all of our tests, we follow the five
steps of our method outlined above (Fig. 4): (1) choose a starting
model and orientation, (2) choose the number of observations and
the SKS number to randomly generate a distribution of ray paths,
(3) calculate the predicted fast polarization directions (of SKS,
SKKS, and ScS) and reflection polarities (for SdS and PdP) for
the synthetic data set for the chosen starting model, (4) conduct
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a forward modelling search over all possible orientations for all
possible candidate models to eliminate all models/orientations that
do not fit the ‘observations’ using a misfit cut-off. Then, if all other
models and orientations can be eliminated by applying the misfit
cut-off, this set of synthetic ray paths are able to uniquely constrain
the starting model and designated as ‘uniquely constrained.” The
fifth step would be repeating this process M number of times but
for this illustrative example, M = 1.

Our illustrative example is shown in Fig. 5. For this example, we
chose a starting model of non-rotated Ppv (in this case, the [100] and
[010] crystallographic axes are parallel to the CMB) (Fig. 5a). In all
of our single-crystal elasticity tests, we do not assume a dominant
slip system; rather, we invoke a starting orientation in the geo-
graphic reference frame identified by the angle of the mineralogical
axes. This particular example involves 9 splitting observations, 6 of
which are SK(K)S (that is, an SKS number of 2/3). The randomly
generated azimuthal distribution of these chosen phases is shown
in Fig. 5(b). The predicted fast polarization directions for our cho-
sen model and ray configuration, plotted in a ray-centered reference
frame, are shown in Fig. 5(c). A search over all possible candidate
models and orientations (rotating every 5°) shows that there is no
other model, other than the correct starting model (Ppv), that can
match each of the synthetic fast splitting directions to within 20°
(our pre-defined misfit cut-off). Put another way, for every possi-
ble combination of starting model and orientation (other than the
correct, known starting model), at least one predicted fast splitting
orientation differed from that in the data set by more than the 20°
misfit cut-off. Since this particular configuration of observations
could uniquely identify the starting model and no other models, it
is designated ‘uniquely constrained.’

This particular example illustrates a single iteration (M = 1) of
our testing, but the power of our approach lies in repeating this a
large number of times to understand what percentage of randomly
generated synthetic data sets have the ability to uniquely constrain
the starting model. In order to understand how many iterations are
needed to converge on an estimate of this probability, we conducted
an ‘iteration test’ for our horizontal Ppv starting model, as shown
in Fig. 6. For this test, we used 9 shear wave splitting measurements
(N =9) and an SKS number 0f2/3, as in the example shown in Fig. 5,
and ran a large number of iterations (M = 50,000), each involving
a new, random distribution of propagation azimuths. After each
successive iteration, we calculated the percentage (of M iterations)
for which the synthetic data set was able to uniquely constrain
the starting model, as shown in Fig. 6. For this starting model,
after a large number of iterations, we found that 41 per cent of
all iterations could uniquely constrain the starting model, while
for the other 59 per cent of the ray path configurations, there was
another model/orientation that could simulate the synthetic data.
Our running estimate of how likely a data set with nine splitting
observations (6 SK(K)S, 3 ScS) converges on an average value of
41 per cent after approximately 1000 iterations (Fig. 5). Based on
this iteration test, we have chosen to run each of our numerical
experiments for M = 5000 iterations, balancing computational cost
and the need for our estimates to converge.

Next, to illustrate our process for testing whether synthetic data
can identify a unique starting orientation, we show in Fig. 6 two
examples of searching for the correct starting orientation for the
same horizontal Ppv starting model as in Fig. 4. For this example,
we chose two different ray path configurations, one with N = §
observations (5 SKS + SKKS and 3 ScS; Fig. 7a) and one with
N = 4 (3 SKS + SKKS and 1 ScS; Fig. 7b). We assume that the
mechanism for anisotropy is known to be Ppv and that the elastic
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constants are known, and search over all possible orientations to test
whether there are additional configurations (other than the known
starting orientation) that can reproduce the synthetic observations.

Figs 7(a) and (b) show all possible orientations that satisfy this
suitability criterion for each of our two examples (N = 8 and 4,
respectively), with each orientation colour-coded by its calculated
misfit value (eq. 1). Following Ford et al. (2015), we search for
local minima of misfit within the 3-D rotation space. For our N = 8
case (Fig. 7a), the set of 8 measurements could uniquely identify
the starting orientation, and would be designated as ‘uniquely con-
strained.” However, for our N = 4 case (Fig. 7b), we identified two
other possible orientations (that is, the known correct starting ori-
entation, plus two others). Therefore, for this particular ray path
configuration, the solution is designated ‘not uniquely constrained.’
We note, however, that the orientation with the lowest misfit value
(magenta dot in Fig. 7b) is, in fact, the correct starting orientation.

Finally, we illustrate an example calculation that includes Gaus-
sian noise in the synthetic observations (Fig. 7¢). This test relies on
the same horizontal Ppv starting model, and uses the same ray path
configuration (N = 4) as the test shown in Fig. 7(b). The only differ-
ence is that when the predicted shear wave splitting fast directions
are calculated based on the starting model and ray path distribution,
we add Gaussian noise to the fast splitting direction ‘observations,’
with a maximum error excursion of 20° and a standard deviation of
9°. Fig. 7(c) reveals that the case with Gaussian noise produced the
same two possible sets orientations as fitting the data, but now the
solution with the minimum misfit is not associated with the correct
solution.

3.2 Results: constraining the anisotropy mechanism

Building on the illustrative examples discussed in Section 3.1, we
now explore the results of a large number of simulations with dif-
ferent starting models and ray path configurations. We first address
the question of what kind of data sets are needed to distinguish
among the various models listed in Figs 2 and 3. For this suite of
numerical experiments, we examined a variety of starting models
and orientations, as well as a variety of ray path configurations (as
defined by the number of splitting measurements, the SKS number,
and the angular dispersion of the ray path azimuths). The results
of these experiments are shown in Fig. 8. We first examine those
model runs that only included shear wave splitting data, shown in
the nine panels of Fig. 8(a).

We initially focus on the mechanism and orientation of the start-
ing model (Fig. 8a, left-hand panels), and explore how the proba-
bility of uniquely constraining the mechanism varies as a function
of the number of measurements. For each of the models consid-
ered, the probability of identifying the unique starting model in-
creases with the number of measurements as expected. Typically,
there is a sharp increase in the probability for N values between
six and nine measurements. In all cases, approximately nine mea-
surements are needed in order to have a ~50 per cent chance
of constraining the starting model, while a high number of split-
ting measurements (N =~ 15) is needed for the probability to reach
~90 per cent. For comparison, the data sets of Ford et al. (2015)
and Creasy et al. (2017) contained between four and eight split-
ting measurements. The starting model with the highest success
rate at constraining the mechanism is Br, as opposed to Fp and
Ppv.

The probability of constraining the starting mechanism depends
on the orientation of the starting model; as shown in Fig. 8(a), we
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Figure 5. An illustrative example of how shear wave splitting predictions for an individual iteration in our stochastic modelling scheme are calculated. (a)
Plane view (looking down from above on CMB) of starting model for Ppv (Stackhouse et al. 2005) showing S wave per cent anisotropy (colours), with fast
polarization directions plotted as black bars. (b) Ray path distribution for this example for SKS (red), SKKS (orange), and ScS (blue), plotted as azimuth from
north. (¢) The predicted fast polarization directions based on the starting model in (a) and the ray path distribution in (b). Colours indicate phase type.
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Figure 6. Results of a test of how many iterations are needed for the model results to converge. The x-axis defines the number of iterations (M) (that is, number
of unique ray path configurations with similar characteristics) that were successively carried out. The y-axis indicates what percentage of the iterations run
could be uniquely constrained. This particular test used 9 shear wave splitting measurements and a starting model of horizontal Ppv, and we found that after a
large number of iterations, the starting model could be constrained for 41 per cent of all iterations carried out. In contrast, for the other 59 per cent, a unique
solution of Ppv could not be constrained for that particular synthetic data set. Based on the results of this test, at least 5000 iterations were carried out for each

test described in this study.

tested orientations with a horizontal [100] crystallographic axis,
45° rotated about the [100], and 90° rotated about the [100] axis.
Interestingly, for Ppv it is easier to uniquely constrain the starting
model in the 90° case; in contrast, for Br the chances are highest

for the horizontal case, and for Fp the chances are substantially
higher for the tilted case. The reason for this result for Ppv can be
discerned by examining the predicted splitting patterns in Fig. 2.
For the horizontal case, predicted fast splitting directions for ScS
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Figure 7. An example of how the forward modelling method identifies all possible orientations of the Ppv single crystal elastic tensor that fit a particular
synthetic data set. We show two synthetic data sets of 8 (a) and 4 (b) unique synthetic measurements with 3 SKS, 3 SKKS, 2 ScS measurements and 1 SKS,
2 SKKS and 1 ScS measurements, respectively. The last case (c) shows a test with the same 4 synthetic measurements as in (b) but with Gaussian distributed
random error to the predicted fast directions. These projections show all possible permissible orientations (coloured dots) of the Ppv tensor for the given
synthetic data set plotted as an upper hemispherical projection of the [100], [010] and [001] axes. The white dots mark local minima, where the magenta dots
represent the global minimum. The magenta dots indicate the global minimum misfit, which should be equal to a non-rotated Ppv (that is, horizontal [100] and

[010] axes and vertical [001] axis).

do not vary with azimuth; however, if the Ppv tensor is rotated
by 90° about the [100] axis, there is significant variation in fast
directions with azimuth. With greater variability in the predicted
fast polarization directions (lower angular dispersion), there is a
higher probability of constraining that model for a given number
of ScS observations. A similar principle is at work for Fp: ScS
fast directions do not vary with azimuth for either horizontally or
vertically aligned Fp, but in the tilted case, variability is present.
Generally, the anisotropy scenarios that yield higher chances of
uniquely constraining the starting model have lower mean angular
dispersion values of the predicted fast-axis directions (Fig. S2).
Models that have little variation in fast-axis directions with azimuth,

such as non-rotated Fp, are more difficult to uniquely constrain (Figs
S2¢ and 8a).

We also examined how the balance between SKS + SKKS ver-
sus ScS phases in the synthetic data set affected the ability of the
synthetic ‘observations’ to uniquely constrain the starting model
(Fig. 8a, middle panels). For these experiments, we varied the SKS
number from 0 (all ScS measurements) to 1 (all SKS + SKKS mea-
surements) for a fixed value of N = 9. For very high or low values
of SKS number we find a low probability of uniquely constraining
the starting model with substantially higher probabilities for inter-
mediate SKS numbers. The optimal ratio of SK(K)S phases to total
measurements differs slightly for different starting models, but in
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Figure 8. Results of synthetic tests that aim to uniquely constrain the starting model/mechanism, as discussed in Section 3.2. Three different sets of tensors
were tested, while three different aspects of the ray path configuration were varied. In (a), each row shows plots of the probability of uniquely identifying the
given starting model (Ppv, Br and MgO). Each column represents the variable describing ray path configuration that was allowed to vary, while the other two
were fixed. In the first column, we varied the number of measurements N, but fixed the SKS ratio (0.67) and tested the full range of possible R values. In the
second column, we varied SKS number but fixed the number of measurements (N = 9) and tested the full range of possible R values. In the third column,
we varied the angular dispersion R, but fixed the number of measurements and SKS number (N = 9 and SKS = 0.6). We further tested a range of starting
orientations for each starting model (three for Ppv and Br, two for Fp); the labels (0, 45, 90) refer to the rotation angle (in degrees) about the [100] axis from
the horizontal. In (b), we chose Model A in Fig. 3 as the starting model and tested whether we could uniquely constrain this starting model using a combination
of shear wave splitting and reflection measurements. For this test, the SKS number was fixed (0.67) and we tested the full range of possible angular dispersion
values. The test shown in (b: left image) compares synthetic data sets with only shear wave splitting measurements (black line, SS) to those that include splitting
plus one additional reflection measurement for a P and S reflected phase off the D" over a randomly defined azimuth (grey line, SS + R). The difference in
probability between these two ray path configuration scenarios is shown in right image.
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general an SKS number between 0.5 and 0.8 maximizes the chances
of constraining the anisotropic mechanism. In all cases, a combina-
tion of ScS and SK(K)S shear wave splitting observations, instead
of splitting measurements for just one phase type, will drastically
improve the probability of constraining the starting model.

Additionally, we explored the importance of how the angular
distribution of the synthetic ray paths affected the ability to constrain
the starting model, finding only a weak effect (Fig. 8a, right-hand
panels). As expected, data sets with a wide angular distribution
(R < 0.2) have the largest probability of uniquely constraining the
starting model in all cases. At very large values of angular dispersion
(R > 0.8), for which the ray paths are clustered over a narrow
range of azimuths, the splitting ‘observations’ are sampling similar
parts of the elastic tensor. Because of this, data sets that are tightly
clustered in azimuth cannot capture the symmetry of the tensor
and cannot distinguish among different candidate mechanisms for
anisotropy. For intermediate values of R, the dependence on R is not
strong.

Finally, we explored the value of combining shear wave splitting
and reflection polarity measurements when trying to uniquely con-
strain an anisotropic model. Fig. 8(b) shows the results of adding
a single reflection polarity measurement (that is, a measurement of
PdP and SdS polarities for a single ray path) to a data set of shear
wave splitting measurements. For this test, we considered a smaller
number (four) of potential candidate models (as shown in Fig. 3), so
the probabilities of uniquely constraining the anisotropy mechanism
are generally higher than in our other tests. For this test, we chose a
ray path configuration involving an SKS number of 0.67 and varied
the number of shear wave splitting measurements from 0 to 15. We
used a starting model A in Fig. 3 (anisotropy due to Ppv), and tested
configurations that involved both shear wave splitting measurements
and one additional set of reflection polarity measurements (both PdP
and SdS) at a single azimuth. This test (Fig. 8b) demonstrates that
despite the fact that reflectivity measurements provide only binary
information (positive or negative polarities), the incorporation of a
different data type into the test increases the probability of uniquely
constraining the starting model. In some cases, this increase is sub-
stantial; specifically, for data sets containing between four and eight
shear wave splitting measurements. The addition of reflection po-
larity data can increase the probability of constraining the starting
model by ~10-18 per cent (right panel of Fig. 8b).

3.3 Results: constraining the anisotropy orientation

The tests shown in Fig. 8 illustrate the ability of shear wave splitting
and reflection polarity data to constrain the anisotropic mechanism
if the algorithm is allowed to consider a range of possible mod-
els. We now turn our attention to tests in which we assume that
the mechanism that creates the anisotropy, as well as the elastic
constants associated with that mechanism, are known, but the ori-
entation of the elastic tensor is not known. In general, this is an
easier problem than uniquely constraining the starting model, as the
observations need not distinguish among different candidate elas-
tic tensors, only among different possible orientations. In practical
terms, this type of modelling exercise would be suitable for data sets
that sample a region of the lowermost mantle whose mineralogy and
temperature conditions can be constrained using independent obser-
vations or models (for example, seismic velocities in combination
with mineral physics constraints).

For this set of tests, we first consider single-crystal Ppv in three
different configurations: (1) [100] and [010] axes oriented in the
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horizontal plane, (2) a 90° rotation about the [100] axis and (3)
randomly chosen orientations. For the third configuration, we ran-
domly identified nine different, unique starting orientations. These
randomly generated orientations were used for each of the ~5000
iterations in this scenario. As with the tests discussed in Section
3.2, we tested a variety of ray path configurations with a range
of N (number of measurements), SKS number and examined how
our results varied with the angular dispersion characteristics of the
synthetic ray paths. The results of our single-crystal Ppv tests are
shown in the top row of Fig. 9. The results for our collection of nine
random starting orientations are shown in detail in Fig. S3.

As expected, our tests demonstrate that uniquely constrain-
ing the orientation of the starting model is much easier and re-
quires fewer measurements than uniquely constraining the starting
model/mechanism (Fig. 7). In general, a ~50 per cent probability
of correctly retrieving the anisotropy is achieved with as few as six
to nine splitting measurements (top left panel of Fig. 9a). The ori-
entation of the starting model does affect the likelihood of uniquely
identifying the anisotropy orientation. With our randomly generated
starting orientations, the probability of constraining the starting ori-
entation varies (Fig. S3), but on average randomly oriented starting
models do slightly worse compared to the results shown in Fig. 9.
For nine measurements, the randomly orientated models on aver-
age find the correct orientation in 65 per cent of all simulations,
compared to Fig. 9, where a non-rotated and Ppv rotated by 90°
can constrain on average 75 per cent of the simulations. As with
our previous tests, it is clear that a mixture of SK(K)S and ScS
shear wave splitting measurements provide the highest likelihood
of constraining the starting orientation, although the optimal mix
of ScS and SK(K)S depends on the starting model orientation. Our
tests confirm that data sets that contain only ScS measurements
(that is, SKS number of zero) cannot constrain the azimuth of the
Ppv elastic tensor if its [100] axis is horizontal, due to the lack
of variability in predicted fast polarization direction (Fig. 2). The
dependence of our results on angular dispersion of the propagation
azimuths (right-hand panels of Fig. 9a) are similar to those for the
case in which we attempted to retrieve the starting model; in gen-
eral, a wide distribution of azimuths will increase the probability of
uniquely constraining the orientation of Ppv, while data sets whose
propagation azimuths are tightly clustered are less ideal. The same
is generally true for the random starting models, despite some small
excursions from the overall trend (Fig. S3). These small excursions
or ‘bumps’ in the curves are artifacts, and are related to stochastic
variations in the distribution of the predicted fast splitting directions
for different models.

Next, we considered elasticity models that explicitly take into
account texture development in a polycrystalline aggregate, in ad-
dition to the single-crystal elastic tensors that are the main focus
of our study. While there are many uncertainties in texture models
for Ppv at lowermost mantle conditions, these models may be more
representative of a realistic texture of aligned Ppv mineral grains.
We only considered one case, invoking dominant slip on the (010)
plane. Somewhat surprisingly, we found that for modelled Ppv LPO,
there is a much lower probability of constraining the orientation of
the elastic tensor than for test cases that used a single crystal elastic
tensor (Fig. 8a). We investigated possible reasons for this, and found
that in contrast to the single-crystal models, for the textured Ppv
model it is fairly common for the algorithm to identify what we
term as ‘unstable’ solutions, which are illustrated in Fig. S4. In this
situation, a certain orientation might fit the observations, but adja-
cent orientations (in which the elastic tensor is rotated by 5°) do not.
This is in contrast to the behaviour of single-crystal elastic models
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Figure 9. Results of synthetic tests that aim to uniquely constrain the orientation of a Ppv starting model, as discussed in Section 3.3. In (a), each row shows
plots of the probability of uniquely identifying the given starting model’s orientation using the synthetic data, for three different orientations about the [100]
axis in the starting model, as shown in the legend (with the labels 0 and 90, referring to the angle about the [100] axis) and described in the text. As in
Fig. 7, each column represents the variable that was allowed to vary, while the other two were fixed. The second row illustrates the results of tests that aimed
to uniquely constraining the starting model orientation for textured Ppv models invoking slip on the (010) plane (Walker et al. 2011). For these tests, we
distinguish between scenarios in which we increased the sensitivity (that is, discarded ‘unstable’ solutions, as described in the text). Tests in which unstable
solutions were discarded (grey line) increased the probability of identifying the orientation of anisotropy in comparison to retaining unstable solutions (black
line). In (b), we show results of tests of the effect of adding one additional reflection measurement to the shear wave splitting measurements, using Model A in
Fig. 3 as the starting model. For these tests, the SKS number was fixed (0.67) and we tested the full range of possible angular dispersion values. The test shown
in (b: left image) compares synthetic data sets with only shear wave splitting measurements (black line, SS) to those that include splitting plus one additional
reflection measurement for a P and S reflected phase off the D" over a randomly defined azimuth (grey line, SS + R). The difference in probability between
these two ray path configuration scenarios is shown at right.

(Fig. 2), in which the best-fitting orientations are adjacent to other range of misfit cut-off values, and demonstrates that these unstable
solutions that also fit the data (in other words, the misfit values vary solutions disappear with the application of more conservative misfit
smoothly as a function of rotation angles of the candidate tensors). criteria.

In addition, the presence of unstable solutions is highly dependent We define a ‘stable’ solution as one in which, if the elastic tensor

on our use of the misfit criterion of 20°. Fig. S4 shows results for a is rotated slightly (~5° in any direction), the rotated elastic tensor
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would still yield an acceptable fit to the synthetic data. In contrast,
an ‘unstable’ solution is one that has no adjacent orientations that
yield an acceptable fit to the data. For the case of the textured Ppv
model, the algorithm generally identifies many ‘unstable’ orien-
tations (Fig. 9); again, this is in contrast to the generally ‘stable’
orientations identified for single-crystal Ppv (Fig. 7). In order to
illustrate the effects of these unstable solutions, we applied a sensi-
tivity cut-off to our textured Ppv simulations (Fig. 8a, second row)
to illustrate the effects of removing all unstable solutions. If we con-
sider only stable solutions, the probability of uniquely constraining
the starting orientation increases by 20 per cent on average (Fig. 9a).

In order to identify the starting orientation of the Ppv LPO, we
found that a mixture of SK(K)S and ScS shear wave splitting mea-
surements again provide the highest likelihood of constraining the
orientation (Fig. 8a: bottom, middle panel). There is a clear depen-
dence on angular dispersion (Fig. 9a: bottom, right-hand panel).
Specifically, with low values of R (0-0.1) and middle values of R
(0.5-0.7), there is a higher probability of constraining the orienta-
tion, while there is a decrease in probability between R = 0.1 and
R =0.4.Inall other cases and starting models, we have not observed
this pattern of dependence with R. While there is no explanation for
this pattern, large values of R (0.8—1.0) resulting in low probabilities
of finding the starting orientation is consistent with all other tests.

Returning to our consideration of single-crystal Ppv models, and
as in Section 3.2, we considered the effect of adding a reflection
measurement to shear wave splitting observations to constrain the
orientation of the single-crystal Ppv starting model (Fig. 9b). For
this test, we used a starting model that invokes an isotropic ppv layer
over an anisotropic ppv layer with dominant [100](010) slip (Model
A in Fig. 3). As in the previous test, we find that just adding one
observation of reflection polarity measurements improves the prob-
ability of constraining the starting orientation (Fig. 9b), although
the improvement was somewhat less dramatic. Again as with the
previous tests, the relative improvement is greatest for data sets with
number of measurements N roughly between 5 and 9.

Finally, in a test analogous to the Gaussian noise test discussed
in Section 3.1 and illustrated in Fig. 7(c), we considered a single-
crystal Ppv test in which we tried to retrieve the correct starting ori-
entation using synthetic observations that included random, Gaus-
sian distributed errors on the fast polarization predictions (Fig. 10).
We found that adding Gaussian noise to the fast polarization direc-
tions, normally distributed between —20° and 20° with a mean of 0°
and standard deviation of 9°, does not significantly hinder the prob-
ability of constraining the starting model’s orientation (Fig. 10a).
However, this test allowed us to explore the distinction between
uniquely constraining the starting model’s orientation and identify-
ing a model with a minimum misfit value that corresponds to the
correct starting orientation. For the error-free synthetic data sets,
the minimum misfit value always corresponds to the correct ori-
entation, even for cases in which other orientations are allowed by
the data. For cases where Gaussian error is incorporated into the
synthetic data set, the synthetic data set may result in an incorrect
solution, where the minimum misfit value may be different from
the correct solution. This observation led us to carry out a test
(Fig. 10b) in which rather than attempting to uniquely constrain the
correct starting orientation, we tested whether the best-fitting ori-
entation (that is, the candidate orientation with the minimum misfit
value) actually corresponded to the correct starting orientation. We
further tested whether the best-fitting solution in terms of misfit was
oriented within 10°-20° of the known, correct starting orientation.
Encouragingly, we found that the probability that the minimum mis-
fit solution was within 20° of the correct orientation exceeded 50
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per cent for data sets with a relatively small number of shear wave
splitting measurements (N ~ 4).

4 DISCUSSION

4.1 Implications for the interpretation of real-world data
sets

Understanding the scope of information about lowermost mantle
anisotropy contained in shear wave splitting and reflection polarity
observations is crucial for our ability to relate anisotropy obser-
vations to flow at the base of the mantle. While the mechanisms
of lowermost mantle anisotropy remain imperfectly known, the re-
sults presented in this paper reveal observational strategies that can
maximize the probability of constraining the mechanism and/or
orientation, regardless of the actual anisotropic geometries present.
This work shows that a diversity of shear wave splitting measure-
ments and reflection polarity data is essential, and the modelling
of single phases (e.g. ScS, SKS, SdS) is typically insufficient to
constrain anisotropic geometry.

Specifically, this work demonstrates that because different seis-
mic phases (ScS, SKS, SKKS, PdP and SdS) propagate through
or reflect off the D" region at different angles from the horizon-
tal, a combination of these phases is more useful for constraining
anisotropy than data sets with wide azimuthal coverage. Consider,
for example, a hypothetical case in which nine unique splitting mea-
surements for ScS phases are used to probe an anisotropic struc-
ture consisting of horizontal, single crystal post-perovskite. In this
case, post-perovskite can only be distinguished from other plausi-
ble anisotropic models less than 10 per cent of the time (Figs 8a
and 9a). However, if SK(K)S phases and/or reflection polarities are
incorporated into the analysis, then we can distinguish between the
two possible mechanisms nearly 40 per cent of the time (Fig. 8a). In
all cases of varying starting models and orientations, a combination
of different types of data increases the probability of constraining
the starting model by 10 per cent to 60 per cent. This pattern also
generally holds true for finding the orientation of the Ppv elastic
tensor. A diversity of data increases the likelihood of constraining
the orientation of Ppv anisotropy anywhere from 10 to 50 per cent
for 6 unique measurements. Interestingly, we observed an excep-
tion to this (Fig. 9a) for Ppv oriented at an azimuth of 90°, where
only ScS splitting data (SKS number of 0) had the best chance to
constrain the starting orientation.

Body wave data sets that probe seismic anisotropy in the low-
ermost mantle should combine both multiple data types and wide
azimuthal coverage to maximize the probability that the anisotropic
geometry can be tightly constrained. Fig. 11 illustrates regions in
the mantle in which all of the body wave measurement methods
could potentially be applied simultaneously. This map was gen-
erated by considering the actual distribution of high-magnitude
(M > 6.5) seismicity on Earth, in combination with a database
of long-running broadband seismic stations beneath which the up-
per mantle anisotropy pattern has been shown to be simple enough
to correct for (Lynner & Long 2013, 2014b). While there are many
regions of D’ with limited ray path coverage for the types of data
considered in this study, we find that North America, the Arctic,
northwestern Pacific and Australia are regions that represent ideal
targets to collect a diverse set of observations to further constrain
D’ anisotropy.

Our results inform our view of why previous studies that in-
cluded crossing ray paths (e.g. Ford et al. 2015; Creasy et al. 2017)
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Figure 10. Results of tests that aimed to uniquely identify the orientation of a single-crystal Ppv starting model, with Gaussian distributed random errors
(standard deviation = 9°) incorporated into the synthetic shear wave splitting data set. In (a), we varied the number of shear wave splitting measurements and
calculated the probabilities of correctly retrieving the starting model orientation. In (b), we plot the probability of correctly identifying the starting orientation
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Figure 11. Map of regions of the lowermost mantle in which the various measurement methods (SKS [distance range: 108°-122°], SKKS [108°-122°] and
ScS [60°-80°] shear wave splitting and reflection polarities) used in this study could potentially be applied. We parameterize the D’ layer into a 5° by 5° grid.
We calculated ray paths for different seismic phases using TauP (Crotwell ef al. 1999) assuming a 250-km-thick D’ layer. We used a set of seismic stations with
simple upper mantle anisotropy (Lynner & Long 2013, 2014b) for all events greater than A/,,6.5 that occurred in the time span of deployment for each seismic
station for SKS, SKKS and ScS. For reflection polarities, we considered only dense arrays openly available: TAMNNET, POLENET, GAMSEIS, Yellowknife
Array, KNET, Southern California Network, GRSN Array, F-Net, USArray (using stations in Alaska), USArray (using stations in Texas), USArray (using
stations in Minnesota), USArray (using stations in New York), USArray (using stations in South Carolina) and the Pacific Northwest Seismic Network.

were unable to uniquely constrain a model for D’ anisotropy. Our
study indicates that a relatively large number of shear wave splitting
measurements (approximately 9 or more for most cases in Fig. 8a)
are needed to have at least a 40—60 per cent chance of uniquely
identifying the starting model. The observational data sets of Ford
et al. (2015) and Creasy et al. (2017) included approximately four
to eight shear wave splitting measurements over unique azimuths
in the lowermost mantle (Table 3). The synthetic models presented
in this paper help to provide context for why these studies have

not been able to uniquely constrain a particular mechanism or ori-
entation for anisotropy (e.g. Ford et al. 2015; Creasy et al. 2017).
For example, each of these studies (Table 3) had relatively high
angular dispersion values for their range of predicted fast splitting
directions (greater than 0.4 in all cases). As discussed in Section
3.2, data sets with lower angular dispersion values are generally
more successful at constraining a unique elastic tensor. Therefore,
even though many of the studies listed in Table 3 used diverse data
types with combinations of SKS, SKKS and ScS, they could not
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Table 3. Summary of previous studies that have used crossing ray paths to study D’ anisotropy, as identified in Fig. 1.

Number of
References Region unique azimuths SKS number R
Creasy et al. (2017) New Zealand 8 0.75 0.7866
Creasy et al. (2017) SW Australia 4 0.5 0.4297
Ford et al. (2015) Afar Peninsula 5 0.6 0.8305
Thomas et al. (2011) Siberia + Caribbean 4 Reflection polarities 0.5801
Nowacki et al. (2010) Caribbean 6 0 0.5734

The number of unique azimuths is given; each azimuth typically contains multiple observations (in practice, these
observations are typically averaged for each set of ray paths). SKS number is calculated as defined in the text; for
example, Nowacki et al. (2010) used only ScS phases, therefore the SKS number is 0. Angular dispersion (R) of the ray

path azimuths is also calculated as described in the text.

uniquely constrain an anisotropy mechanism or orientation when
testing the elastic tensors considered in this study. The studies that
used one type of observation (Nowacki et al. 2010; Thomas et al.
2011) did not consider all possible elastic tensors and orientations
that we tested here, so we cannot directly compare them with the
results of our synthetic tests. If the mechanisms for anisotropy and
the associated elastic tensors can be reliably assumed, there is gen-
erally a higher chance of identifying the correct orientation and
inferring the correct mantle flow geometry. With only nine measure-
ments, there is a 40—80 per cent chance of uniquely constraining the
orientation of post-perovskite (Fig. 9a), an improvement from the
chance of uniquely identifying the elastic tensor itself (a 4060 per
cent chance). Consideration of these results in future studies of D’
anisotropy, as well as a more detailed consideration of how errors
and uncertainties propagate in forward models, should enhance our
ability to characterize anisotropy at the base of the mantle. A more
detailed statistical analysis may be required similar to this study to
fully explore the error and model space.

4.2 Practical considerations

Our tests that assumed Gaussian error on the predicted fast splitting
directions (Fig. 10b) demonstrate that it does not significantly affect
the probability of constraining the model, as compared to noise-free
synthetic data. When including Gaussian error, we found that as few
as four shear wave splitting measurements can identify the correct
orientation within 20° more than 50 per cent of the time. Data sets
of this size (roughly four unique measurements in the same region
of D’) can likely be reasonably achieved in many regions of the
lowermost mantle, based on the distribution of available ray paths
(Fig. 11). This finding may help with the interpretation of modelling
results for real splitting data sets, such as those considered by Ford
et al. (2015) and Creasy et al. (2017), for which multiple possible
anisotropic orientations were identified, but particular orientations
had significantly lower misfit values than others.

Our synthetic modelling results also shed light on potential com-
plications in interpretation caused by the different symmetry classes
of'some of the candidate elasticity scenarios that have been proposed
to explain lowermost mantle anisotropy. To effectively differentiate
these scenarios using shear wave splitting data alone, it is crucial
for splitting data sets to probe the symmetry of the mineral such that
no other elastic tensor simulates that pattern for a similar range of
propagation directions. Of the candidate scenarios we tested in this
study, Fp has the highest (cubic) symmetry with only three unique
constants in the elastic tensor. SPO models have the next highest
symmetry, since tubule and oblate SPO models are hexagonal (trans-
versely isotropic) with five unique elastic constants. Ppv and Br are
both orthorhombic, with the same order of symmetry and only nine

unique elastic constants. In more complicated models, such as LPO
calculations of single crystals, the symmetry is much lower than its
single crystal counterpart with 21 unique elastic constants.

4.3 Limitations of our modelling approach

We caution that our synthetic tests must be interpreted in light of the
still-considerable limitations in our understanding of the elasticity
of anisotropic materials at lowermost mantle conditions. We have
focused mainly on single-crystal elastic tensors, derived mainly
from ab initio simulations, as a reasonable starting point in this
study; however, predictions of single-crystal elasticity are likely
imperfect and do not take into account effects such as variation in
composition. Furthermore, single-crystal elasticity is an imperfect
proxy for the likely anisotropic geometry of polycrystalline aggre-
gates, particularly for minerals with high symmetry such as Fp (e.g.
Yamazaki & Karato 2002). The further consideration of elasticity
models that explicitly take into account texture development will
be an important step, although texture models include a number of
poorly known parameters (such as activation energies for different
slip systems) and consensus on the dominant slip systems in differ-
ent lowermost mantle minerals remains elusive (e.g. Nowacki ef al.
2011).

Another limitation of the work proposed here is that it is carried
out in the context of ray theoretical predictions, assuming infinite
frequency, rather than considering the full characteristics of the
waveform at finite frequencies. With improvements on both obser-
vational and modelling techniques that model the full waveform
(e.g. Kawai & Geller 2010; Nowacki & Wookey 2016; Parisi ef al.
2018), the interpretation of seismic anisotropy observations can
very likely be improved. In particular, future work must investigate
how the measurement techniques used influence the interpretation
of finite frequency waveform effects and to what extent ray theoreti-
cal predictions are a useful approximation. Despite these limitations,
we expect that future work that predicts body wave observations in
the presence of lowermost mantle anisotropy in a finite-frequency
framework will likely find similar results: a diversity of seismic
phases and measurement yields the best probability of capturing
the symmetry, orientation and properties of an elastic tensor. While
this study is limited to a specific set of currently available elastic ten-
sors from the mineral physics literature, our overall findings should
be generally applicable and adaptable to future improvements of our
knowledge of lowermost mantle elasticity.

5 SUMMARY

To summarize, the complete characterization and interpretation of
seismic anisotropy at the base of the mantle would have profound
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effects on our understanding of lower mantle dynamics, potentially
yielding insights into the pattern of mantle flow. Many recent studies
have pointed to the difficulty of distinguishing different models of
lowermost mantle anisotropy with body wave observations, given
challenges with data coverage and uncertainties in the mechanism
for anisotropy and the relationships between deformation and the
resulting anisotropy at lower mantle conditions. In this study, we
conducted a series of Monte Carlo simulations to determine what
combination of body wave data sets (shear wave splitting and reflec-
tion polarities) are required to constrain D" anisotropy. We tested
various starting models, orientations, and methods for the detec-
tion and identification of D’ anisotropy. The modelling approach in
this study is applicable to a wide range of elasticity models, and
can be extended as our knowledge of the physical properties of the
lowermost mantle increases. This approach can be used in future
work on D’ anisotropy to further explore how well a data set can
discriminate among possible elastic tensors.

Our results show that a diversity of observational techniques, in-
cluding different types of seismic phases propagating over a range of
ray path directions, are necessary in order to maximize the chances
of constraining anisotropy at the base of the mantle. A combina-
tion of shear wave splitting measurements and observations of PdP
and SdS reflection polarities in the same regions may be particu-
larly powerful. We have further shown that if the mineralogy and/or
mechanism for anisotropy can be constrained from independent
data, then the orientation of the elastic tensor (and thus informa-
tion about patterns of mantle flow) can likely be retrieved from
observational data sets that include a relatively modest number of
measurements.

ACKNOWLEDGEMENTS

This work was supported by a National Science Foundation (NSF)
Graduate Research Fellowship grant DGE-1122492 to N.C. and by
NSF grant EAR-1547499 to M.D.L. Some figures were prepared us-
ing the Generic Mapping Tools (Wessel & Smith 1991). We thank
the Yale Center for Research Computing for guidance and use of
the research computing infrastructure, specifically Kaylea Nelson.
AP received funding from the European Union’s Horizon 2020 re-
search and innovation program under the Marie Sklodowska-Curie
grant agreement No 642029—ITN CREEP. We are grateful to Sanne
Cottaar, Jeroen Ritsema, and editor Ana Ferreira for thoughtful and
constructive comments that helped us to improve the paper.

REFERENCES

Bendat, J.S. & Piersol, A.G., 2011. Random Data: Analysis and Measure-
ment Procedures, John Wiley & Sons.

Cottaar, S. & Romanowicz, B., 2013. Observations of changing anisotropy
across the southern margin of the African LLSVP, Geophys. J. Int., 195(2),
1184-1195.

Creasy, N., Long, M.D. & Ford, H.A., 2017. Deformation in the
lowermost mantle beneath Australia from observations and mod-
els of seismic anisotropy, J. geophys. Res.: Solid Earth, 122,
doi:10.1002/2016JB013901

Crotwell, H.P,, Owens, T.J. & Ritsema, J., 1999. The TauP Toolkit: flex-
ible seismic travel-time and ray-path utilities, Seismol. Res. Lett., 70,
154-160.

Deng, J., Long, M.D,, Creasy, N., Wagner, L., Beck, S., Zandt, G., Tavera, H.
& Minaya, E., 2017. Lowermost mantle anisotropy near the eastern edge
of the Pacific LLSVP: constraints from SKS—-SKKS splitting intensity
measurements, Geophys. J. Int., 210, 774-786.

Dziewonski, A.M. & Anderson, D.L., 1981. Preliminary reference Earth
model. PHys., Earth Planet Inter., 25, 297-356, doi.org?10.1016/0031-
9201(81)90046-7.

Ford, H.A. & Long, M.D., 2015. A regional test of global models for flow,
rheology, and seismic anisotropy at the base of the mantle, Phys. Earth
planet. Inter., 245, 71-75.

Ford, H.A., Long, M.D., He, X. & Lynner, C., 2015. Lowermost mantle flow
at the eastern edge of the African large low shear velocity province, Earth
planet. Sci. Lett., 420, 12-22.

Ford, R., Garnero Edward, J. & McNamara Allen, K., 2006. A strong lateral
shear velocity gradient and anisotropy heterogeneity in the lowermost
mantle beneath the southern Pacific, J. geophys. Res.: Solid Earth, 111,
doi:10.1029/2004JB003574.

Garnero, E.J.,, McNamara, A.K. & Shim, S.-H., 2016. Continent-sized
anomalous zones with low seismic velocity at the base of Earth’s mantle,
Nat. Geosci., 9, 481-489.

Goryaeva, A.M., Carrez, P. & Cordier, P, 2017. Modelling defects and
plasticity in MgSiO3 post-perovskite: Part 3—screw and edge [001]dis-
locations, Phys. Chem. Miner., 44, 521-533.

Groos, J.C. & Ritter, J.R.R., 2009. Time domain classification and quantifi-
cation of seismic noise in an urban environment, Geophys. J. Int., 179,
1213-1231.

Guest, W.S. & Kendall, J.M., 1993. Modelling seismic waveforms in
anisotropic media using maslov asymptotic theory, J. Explor. Geophys.,
29, 78-92.

Karki, B.B., Wentzcovitch, R.M., de Gironcoli, S. & Baroni, S., 1999. First-
Principles determination of elastic anisotropy and wave velocities of MgO
at lower mantle conditions, Science, 286, 1705-1707.

Kawai, K. & Geller, R.J., 2010. The vertical flow in the lowermost mantle
beneath the Pacific from inversion of seismic waveforms for anisotropic
structure, Earth planet. Sci. Lett., 297, 190—198.

Kendall, J.-M. & Silver, P.G., 1998. Investigating causes of D" anistropy, in
The Core-Mantle Boundary Region, pp. 409-412, American Geophysical
Union.

Karason, H. & van der Hilst, R.D., 2001. Tomographic imaging of the
lowermost mantle with differential times of refracted and diffracted core
phases (PKP, PdifY), J. geophys. Res.: Solid Earth, 106, 6569—6587.

Lay, T. & Helmberger, D.V,, 1983. The shear-wave velocity gradient at the
base of the mantle, J. geophys. Res.: Solid Earth, 88, 8160-8170.

Lee, K.K.M., O’Neill, B., Panero, W.R., Shim, S.-H., Benedetti, L.R. &
Jeanloz, R., 2004. Equations of state of the high-pressure phases of a
natural peridotite and implications for the Earth’s lower mantle, EFarth
planet. Sci. Lett., 223,381-393.

Long, M.D., 2009. Complex anisotropy in D” beneath the eastern Pacific
from SKS-SKKS splitting discrepancies, Earth planet. Sci. Lett., 283,
181-189.

Long, M.D., Xiao, X., Jiang, Z., Evans, B. & Karato, S., 2006. Lattice pre-
ferred orientation in deformed polycrystalline (Mg,Fe)O and implications
for seismic anisotropy in D”, Phys. Earth planet. Inter., 156, 75-88.

Long Maureen, D. & Lynner, C., 2015. Seismic anisotropy in the lowermost
mantle near the Perm Anomaly, Geophys. Res. Lett., 42, 7073-7080.

Lynner, C. & Long, M.D., 2013. Sub-slab seismic anisotropy and mantle
flow beneath the Caribbean and Scotia subduction zones: effects of slab
morphology and kinematics, Larth planet. Sci. Lett., 361, 367-378.

Lynner, C. & Long, M.D., 2014a. Lowermost mantle anisotropy and defor-
mation along the boundary of the African LLSVP, Geophys. Res. Lett.,
41, doi:10.1002/2014GL059875.

Lynner, C. & Long, M.D., 2014b. Sub-slab anisotropy beneath the Sumatra
and circum-Pacific subduction zones from source-side shear wave split-
ting observations, Geochem. Geophys. Geosyst., 15,2262-2281.

Mainprice, D., Tommasi, A., Ferre, D., Carrez, P. & Cordier, P, 2008.
Predicted glide systems and crystal preferred orientations of polycrys-
talline silicate Mg-Perovskite at high pressure: implications for the seis-
mic anisotropy in the lower mantle, Earth Planet. Sci. Lett., 271, 135-144,
doi.org/10.1016/j.epsl.2008.03.058.

Mardia, K.V. & Jupp, PE., 2000. Directional Statistics, Wiley.

McNamara, A.K., Karato, S.-I. & van Keken, P.E., 2001. Localization of
dislocation creep in the lower mantle: implications for the origin of seismic
anisotropy, Earth planet. Sci. Lett., 191, 85-99.

6102 YOJB G0 UO Jasn Aleiqr [eoipsiy Aeupypn/Buiysng ‘Asieaun sleA AQ 82.£0€6/99./2/L L Zoesqe-ajoiie/iB/woo dno-olwspese;/:sdy wolj pepeojumod


http://dx.doi.org/10.1785/gssrl.70.2.154
http://dx.doi.org/10.1093/gji/ggx190
http://dx.doi.org/10.1016/j.pepi.2015.05.004
http://dx.doi.org/10.1016/j.epsl.2015.03.029
http://dx.doi.org/10.1038/ngeo2733
http://dx.doi.org/10.1007/s00269-017-0879-0
http://dx.doi.org/10.1111/j.1365-246X.2009.04343.x
http://dx.doi.org/10.1126/science.286.5445.1705
http://dx.doi.org/10.1016/j.epsl.2010.05.037
http://dx.doi.org/10.1029/2000JB900380
http://dx.doi.org/10.1029/JB088iB10p08160
http://dx.doi.org/10.1016/j.epsl.2004.04.033
http://dx.doi.org/10.1016/j.epsl.2009.04.019
http://dx.doi.org/10.1016/j.pepi.2006.02.006
http://dx.doi.org/10.1002/2015GL065506
http://dx.doi.org/10.1016/j.epsl.2012.11.007
http://dx.doi.org/10.1002/2014GC005239
http://dx.doi.org/10.1016/S0012-821X(01)00405-8

Meade, C., Silver, PG. & Kaneshima, S., 1995. Laboratory and seismo-
logical observations of lower mantle isotropy, Geophys. Res. Lett., 22,
1293-1296.

Mitrovica, J.X. & Forte, A.M., 2004. A new inference of mantle viscosity
based upon joint inversion of convection and glacial isostatic adjustment
data, Earth planet. Sci. Lett., 225, 177-189.

Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y., 2004.
Post-perovskite phase transition in MgSiO3, Science, 304, 855-858.

Nowacki, A. & Wookey, J., 2016. The limits of ray theory when measuring
shear wave splitting in the lowermost mantle with ScS waves, Geop/iys.
JInt., 207, 1573-1583.

Nowacki, A., Wookey, J. & Kendall, J.-M., 2010. Deformation of the lower-
most mantle from seismic anisotropy, Nature, 467, 1091-1094.

Nowacki, A., Wookey, J. & Kendall, J.-M., 2011. New advances in using
seismic anisotropy, mineral physics and geodynamics to understand de-
formation in the lowermost mantle, /. Geodyn., 52, 205-228.

Parisi, L., Ferreira, A.M.G. & Ritsema, J., 2018. Apparent splitting of S
waves propagating through an isotropic lowermost mantle, J. geophys.
Res.: Solid Earth, 123, doi:10.1002/2017JB014394.

Simmons, N.A., Forte, A.M., Boschi, L. & Grand, S.P, 2010. GyPSuM: a
joint tomographic model of mantle density and seismic wave speeds, J.
geophys.: Res. Solid Earth, 115, B12310, doi:10.1029/2010JB007631.

Simmons, N.A., Forte, A.M. & Grand, S.P,, 2009. Joint seismic, geody-
namic and mineral physical constraints on three-dimensional mantle het-
erogeneity: implications for the relative importance of thermal versus
compositional heterogeneity, Geophys. J. Int., 177, 1284-1304.

Simmons, N.A., Myers, S.C., Johannesson, G., Matzel, E. & Grand,
S.P, 2015. Evidence for long-lived subduction of an ancient tectonic
plate beneath the southern Indian Ocean, Geophys. Res. Lett., 42,
doi:10.1002/2015GL066237.

Stackhouse, S. & Brodholt, J.P., 2007. The high-temperature elasticity of
MgSiO3 post-perovskite, Post-Perovskite: The Last Mantle Phase Tran-
sition, 99-113, doi.org/10.1029/174GM09.

Stackhouse, S., Brodholt, J.P,, Wookey, J., Kendall, J.-M. & Price, G.D., 2005.
The effect of temperature on the seismic anisotropy of the perovskite and
post-perovskite polymorphs of MgSiOs, Earth planet. Sci. Lett., 230,
1-10.

Thomas, C., Wookey, J., Brodholt, J. & Fieseler, T., 2011. Anisotropy as
cause for polarity reversals of D” reflections, Earth planet. Sci. Leit., 307,
369-376.

Thomas, C., Wookey, J. & Simpson, M., 2007. D" anisotropy beneath South-
east Asia, Geophys. Res. Lett., 34, doi:10.1029/2006GL028965.

Walker, A.M., Forte, A.M., Wookey, J., Nowacki, A. & Kendall, J.-M., 2011.
Elastic anisotropy of D" predicted from global models of mantle flow,
Geochem. Geophys. Geosyst., 12, Q10006, doi:10.1029/2011GC003732.

Walker, A.M. & Wookey, J., 2012. MSAT—a new toolkit for the analysis of
elastic and seismic anisotropy, Comput. Geosci., 49, 81-90.

Walte, N.P,, Heidelbach, F.,, Miyajima, N., Frost, D.J., Rubie, D.C. & Dob-
son, D.P,,2009. Transformation textures in post-perovskite: understanding
mantle flow in the D" layer of the Earth, Geophys. Res. Lett., 36, L04302,
doi:10.1029/2008GL036840.

Wang, Y. & Wen, L., 2007. Geometry and P and S velocity structure of
the “African Anomaly”, J. geophys. Res.: Solid Earth, 112, B05313,
doi:10.1029/2006JB004483.

Wentzcovitch, R.M., Tsuchiya, T. & Tsuchiya, J., 2006. MgSiO3 postper-
ovskite at D” conditions, Proc. Natl. Acad. Sci. USA, 103, 543-546.

Wessel, P. & Smith, W.H., 1991. Free software helps map and display
data. Eos, Transactions American Geophysical Union, 72(41), 441-446,
doi.org/10.1029/90EO00319.

Wookey, J. & Kendall, J.-M., 2008. Constraints on lowermost mantle miner-
alogy and fabric beneath Siberia from seismic anisotropy, Earth planet.
Sci. Lett., 275, 32-42.

Wookey, J., Kendall, J.-M. & Riimpker, G., 2005a. Lowermost mantle
anisotropy beneath the north Pacific from differential S—ScS splitting,
Geophys. J. Int., 161, 829—-838.

Wookey, J., Stackhouse, S., Kendall, J.-M., Brodholt, J. & Price, G.D., 2005b.
Efficacy of the post-perovskite phase as an explanation for lowermost-
mantle seismic properties, Nature, 438, 1004—1007.

Constraining lowermost mantle anisotropy 783

Yamazaki, D. & Karato, S.1I., 2002. Fabric development in (Mg,Fe)O during
large strain, shear deformation: implications for seismic anisotropy in
Earth’s lower mantle, Physics of hte Earth and Planetary Interiors, 131(3-
4),251-267, doi.org/10.1016/S0031-9201(02)00037-7.

Yamazaki, D., Yoshino, T., Ohfuji, H., Ando, J. & Yoneda, A., 2006. Origin
of seismic anisotropy in the D” layer inferred from shear deformation
experiments on post-perovskite phase, Farth planet. Sci. Lett., 252, 372—
378.

SUPPORTING INFORMATION

Supplementary data are available at GJI online.

Figure S1. Schematic diagram showing the definition of angular
dispersion (R), with arrows indicating a direction anywhere from 0°
to 360°. Small values of R indicate a wide distribution of directions,
while larger values indicate a tight configuration.

Figure S2. Angular dispersion—R—plots of all predicted fast axis
directions for SKS (red), SKKS (orange), SKS and SKKS (violet)
and ScS (blue). Eqgs (2) and (3) from the main text were used to
calculate R—; however, since fast axis directions can only vary from
—90° to 90°, the fast axis orientations were adjusted from —90 to 90
to 0 to 360. Angular dispersion is plotted in terms of the clockwise
rotation angle about the [100] axis of (a) post-perovskite (PPV), (b)
bridgmanite (Br), (c) ferropericlase (Fp) and (d) LPO of PPV of the
given models, respectively. Magenta triangles indicate the starting
models’ orientations used in the modelling in the main text as in
Figs 8 and 9.

Figure S3. Results of synthetic tests that aim to uniquely constrain
the orientation of a Ppv starting model, as discussed in Section 3.3
in the main text, by selecting nine random the starting orientations
of the Ppv tensor. Each figure illustrates the probability of uniquely
identifying the given starting model’s orientation using the synthetic
data, for nine different orientations of Ppv. As in Fig. 7, each column
represents the variable that was allowed to vary, while the other two
were fixed. For (a), the SKS number was fixed (0.67). For (b), the
number of measurements was fixed to six. For (c¢), the number of
measurements was fixed to nine measurements and an SKS number
of 0.67. The blue lines in (b) and (c) correlate to the blue line in
(a), where the variation of SKS number and angular dispersion were
only tested for one of the starting model orientations.

Figure S4. Example illustrating the identification of unstable solu-
tions 49 in a test that aimed to identify the starting orientation of
a horizontal textured Ppv LPO. The polar plots show all possible
orientations that fit a given synthetic data set. The colours repre-
sent misfit values. The white circles mark the minimum misfit of
each cluster of possible orientations. The magenta circles show the
correct solution. The orange boxes highlight some of the unstable
solutions. Each row represents a different misfit cut-off. The top
row represents the cut-off used in this study (20°). The second row
uses a cut-off of 15° and the third row 10°. With a lower cut-off,
the unstable solutions are eliminated. The bottom elastic tensors on
the left show and example of one of the resulting unstable solution
from the orange boxes in the first row. The elastic tensor on the
right shows the same tensor but rotated by 5°, which fails the misfit
criterion. The magenta lines represent the measurements used in
this simulation. Colours here represent %S-wave anisotropy.
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