
1. Introduction
Seismic anisotropy offers the unique opportunity to constrain subsurface deformation and the mechanism 
behind it. For example, shear-waves that encounter anisotropy due to lattice-preferred orientation (LPO) of 
mineral assemblages experience polarization differences along their respective fast and slow propagation 
directions (Hess, 1964; Nicolas & Christensen, 1987; Savage, 1999; Silver & Chan, 1991). This type of aniso-
tropy is most likely related to dislocation glide (Karato, 2008; Karato et al., 2008; Wenk, 1985). In terms of 
SKS and SKKS core-phases, the measured shear-wave splitting (SWS) parameters of fast orientation ϕ and 
delay time Δt (difference between fast and slow arrival times), are affected by upper mantle deformation 
along the raypath receiver side (e.g., Silver & Chan, 1991). The most common mineral in the upper mantle 
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there. Since A- and E-type lead to similar fast orientations, distinguishing them is not trivial. Yet, the 
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strong splitting and a moderately hydrated upper mantle beneath the study area.
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is olivine (e.g., McDonough & Rudnick,  1998), a mineral with orthor-
hombic symmetry (Babuska & Cara, 1991b; Mainprice, 2015) that plays a 
primary role in controlling seismic anisotropy (e.g., Bernard et al., 2021; 
Karato et al., 2008). The details of LPO formation are defined by upper 
mantle conditions (Karato et  al.,  2008), and depending on the olivine 
fabric type, the observed SWS pattern may be substantially different. As 
a consequence, SWS measurements may hold the potential to constrain 
olivine fabric types and therefore to infer the conditions of deformation 
(for example, temperature, stress, and water content).

Karato (1995) suggested that olivine LPO could be influenced by the pres-
ence of water, and subsequent work (Jung et  al.,  2006, and references 
therein) have elucidated the related causes. Following Jung et al. (2006), 
the individual manifestation of a given dominant slip system defines 
the LPO with respect to an applied deformation (based on van Houtte 
& Wagner, 1985). The dominant slip systems, in turn, are affected by the 
prevalent conditions under which the material is deformed. For olivine, 
a comparably minor percentage of water already affects the slip system 
manifestation (based on Mackwell et al., 1985). Jung et al. (2006) found 
that the presence of water in the olivine crystal structure facilitates [001] 
axis deformation. This study follows previous findings from Karato (1989) 
and Jung and Karato (2001a), who discovered increased grain boundary 
migration due to water, which might cause a changing LPO (based on 
Karato, 1987). In addition to water content, temperature conditions and 
deviatoric stress are crucial factors in determining the olivine slip system 
(Karato et al., 2008, and references therein).

Overall, according to their dominant slip system, five different olivine types (Figure 1) can be distinguished: 
[100](010) (A-type), [001](010) (B-type), [001](100) (C-type), [100](0 kl) (D-type) and [100](001) (E-type). 
B- and D-type olivine fabrics mainly occur at high stresses, while A-, C-, and E-type occur at lower stresses 
and are more likely to be prevalent in the asthenospheric upper mantle (e.g., Karato et al., 2008). Following 
the fabric diagram by Katayama et al. (2004), the transitions between A-, E-, and C-type fabrics are inde-
pendent of stress, their respective presence thus constrains the possible amount of water. Jung et al. (2006) 
described these cases as follows. A-type occurs in dry environments at lower stress levels. This fabric is 
characterized by fast [100] axes that are aligned (sub)parallel to the shear direction (direction of maximum 
elongation), within the shear plane. Moreover, the slow symmetry axis [010] follows minimum elongation, 
perpendicular to the shear plane. In contrast, C-type occurs in a hydrated environment, resulting in the 
intermediate [001] axis aligning with the shear direction, while the fast axis [100] points in the direction 
of minimum elongation. E-type fabric develops in the presence of a moderate amount of water, between 
the conditions needed for A-type and C-type. Similar to the A-type, [100] aligns with the shear direction in 
E-type, but [001] is oriented perpendicular to the shear plane. Karato et al. (2008) related fabric variations 
to changing ambient conditions of deformation between lithosphere and asthenosphere. If the amount of 
water increases with depth (assuming high temperatures and low stress), A-type will be replaced by E- and 
subsequently C-type fabrics. In the case in which partial melting occurs, water will tend to partition into 
the melt, and the solid mantle will be drier and more likely to be dominated by A-type fabric (Karato, 1986; 
Karato et al., 2008). The deformation conditions in different geodynamic settings therefore play a crucial 
role in controlling the olivine fabric. Karato et al. (2008) (see also Jung & Karato, 2001b; Karato, 1995, 2004) 
argued that changing olivine fabrics influence observed anisotropy patterns across subduction zones. Sim-
ilarly, they showed that a hydrated and hot plume environment may initiate an LPO transition, caused by 
partial melting between ∼100–150 km depth (Hirschmann, 2006; Karato et al., 2008). Consequently, asthe-
nospheric areas that have been influenced by a rising plume may reveal a decreased amount of water and 
be dominated by A-type fabric.

The diversity of olivine fabric types in the upper mantle, and their relationships to deformation condi-
tions suggested by laboratory experiments, imply that SWS observations may contain information about 

Figure 1. Scheme of the fabric diagram by Katayama et al. (2004) on the 
expected conditions (stress/water; T = 1,470–1,570 K) for olivine fabric 
types (see also Karato et al., 2008).
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upper mantle parameters such as temperature, stress, and water content. However, it has proven difficult 
to distinguish among different olivine fabric types from actual SWS observations so far. Specifically, the 
known depth resolution problem (Savage,  1999; Silver & Chan,  1991), due to nearly vertical arrivals of 
core-phases such as SKS, is a challenge. Löberich and Bokelmann (2020a) recently showed that because 
the incidence angles of SKS waves are not perfectly vertical, the azimuthal variations of SWS parameters 
contain information about the details of olivine fabric and can be used to infer deformation geometry. In 
their study they used the large SWS data set of Liu et al. (2014) to determine an asthenospheric origin of 
observed SWS beneath Western and Central United States, constraining a mainly subhorizontally oriented 
flow plane of deformation, related to a high-temperature mechanism (Nicolas & Christensen, 1987). Since 
this approach enables distinguishing among plausible orientations of olivine fabric (in this example, A-type 
was assumed), differentiation between various olivine types might be possible as well if the deformation 
geometry is known or can reasonably be assumed.

Due to the assumptions required for our analysis (see further discussion in Section 3), we must select an 
area of interest that shows indications of a dominant single-layer case of seismic anisotropy that likely cor-
responds to horizontal simple shear in the asthenosphere (unlike Löberich & Bokelmann, 2020a, who con-
sidered lithospheric and asthenospheric deformation geometries). We assume that the related simple SWS 
pattern is due only to olivine fabric. To a lesser degree, upper mantle anisotropy could be also affected by 
orthopyroxene, clinopyroxene, and garnet (Babuska & Cara, 1991a; Karato, 2008; Mainprice, 2015; Nicolas 
& Christensen, 1987), but olivine is generally considered to dominate upper mantle anisotropy (e.g., Ber-
nard et al., 2021). While in Löberich and Bokelmann (2020a) a large study area was investigated assuming a 
constant olivine fabric, a test site of regional scale seems more appropriate when considering laterally vary-
ing olivine types. As demonstrated in Löberich and Bokelmann (2020b) for the Central European Alps, our 
approach might be also applicable on this scale. However, the reduced number of observations and poorer 
backazimuthal coverage could make it more difficult to elucidate the actual variation in a small area, unless 
a region with favorable data coverage is carefully chosen.

In this study, we will investigate the backazimuthal distribution of SWS measurements to determine the 
dominant olivine fabric beneath the High Lava Plains (HLP), Northwestern Basin and Range (B&R) and 
Western Yellowstone Snake River Plain (YSRP) (according to e.g., Ford et al., 2013, and references there-
in). Based on the comparison of actual and expected variations, we aim to distinguish between A-, C-, and 
E-type olivine to infer the likely water content in the upper mantle in this back-arc section. Together with 
information on the large-scale flow geometry (e.g., Druken et al., 2011; Zhou et al., 2018) and comparisons 
with distributions of low-velocity anomalies (Wagner et al., 2013), melts (Debayle et al., 2020), and azimuth-
al surface wave anisotropy (Wagner et al., 2013), we discuss our constraints on olivine fabric types in the 
geodynamic framework of the Cascadia subduction zone (CSZ) back-arc setting.

2. Pacific Northwest US
2.1. Choosing the Study Area

During the initial investigation of the Liu et  al.  (2014) data set, documented in Löberich and Bokel-
mann (2020a), the area spanned by HLP, Northwestern B&R, and Western YSRP raised our interest due 
to the high station density, the continuous pattern of ϕ, and the occurrence of unusually high Δt values 
(Liu et al., 2014; Long, 2016; Long et al., 2012; Wagner & Long, 2013, and references therein). Since the 
lithosphere is very thin in this region of the CSZ back-arc, we do not expect distinct lithosphere and asthe-
nosphere layers of anisotropy. Indeed, previous detailed SWS studies of the HLP region (Long et al., 2009; 
Wagner & Long, 2013) showed that there is little or no variability in apparent splitting parameters with bac-
kazimuth, arguing for a single layer. This assumption is supported by the observed low standard deviations 
σϕ, associated with a simple scenario of upper mantle anisotropy, unveiled by the Complex Anisotropy In-
dex (Liu et al., 2014). Hence, multiple anisotropic layers, which could lead to a 90° periodicity with azimuth 
in SWS parameters (e.g., Qorbani et al., 2015), or a dipping symmetry axis, which would introduce a 360° 
periodicity, are unlikely to be present in the CSZ back-arc. It must be mentioned that Yuan and Romanow-
icz (2010) argued for multiple layers of anisotropy beneath the Pacific Northwest (PNW) based on the joint 
inversion of surface waves and SKS splitting. However, most other models do not include multiple layers; 
for example, a significant change in anisotropy orientation with depth was not identified in a recent study of 
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Mondal and Long (2020) in the HLP. In their model, based on SKS splitting intensity tomography, ϕ shows 
only very weak variability with depth down to 400 km. In order to define the bounds of our study area in 
the CSZ back-arc, we relied on the surface wave phase velocity measurements of Wagner and Long (2013), 
who identified a particularly consistent orientation of anisotropy in upper mantle depths at a period of 66 s. 
The spatial distribution of this mainly E-W oriented pattern of azimuthal anisotropy defines the extension 
of our study area.

2.2. Tectonic Setting and Seismic Structures

Figure 2 shows the plate tectonic setting in the Pacific Northwest and outlines the study area in the back-
arc of the CSZ. This convergent plate boundary is formed by the oceanic Explorer, Juan de Fuca, and Gor-
da plates on one side, and the continental North American plate on the other. While the denser oceanic 
lithosphere moves northeastwards and is subducted, the lighter continental lithosphere overrides it, mov-
ing southwestwards (Eakin et  al.,  2010; Gripp & Gordon,  2002). Numerous studies have considered its 
slab geometry up to ∼400–500 km depth, consistently showing a slab dipping ∼50–60° eastwards (Eakin 
et al., 2010; Hayes et al., 2018; Obrebski et al., 2010; Xue & Allen, 2007).

The subduction zone has evolved through time to its current tectonic setting, with Farallon slab (FS) sub-
ducting beneath North America beginning 150 Ma ago (Long, 2016; Severinghaus & Atwater, 1990). In the 
course of this process, the Siletzia terrane was accumulated to the continental lithosphere (55 Ma), initiating 
the Gorda-Juan de Fuca subduction further west (Grunder et al., 2017). The Gorda-Juan de Fuca slab (G-Jd-
FS) likely steepened and started rolling back ∼18 Ma ago (Long et al., 2012; Schellart et al., 2010), associated 
with migration of the trench. Long et al. (2012) indicates that this transition led to significant upwelling in 
the back-arc mantle; according to Grunder et al. (2017), it was accompanied by the clockwise rotating fore-
arc and faulting processes in the B&R. Further, Long et al. (2012) suggested that this upwelling may have 
produced the mantle melting and volcanism of the Columbia River flood basalts, while other models invoke 
the Yellowstone plume impinging on the lithosphere as the cause of the flood basalt eruptions (Darold & 
Humphreys, 2013; Grunder et al., 2017; Obrebski et al., 2010; R. B. Smith et al., 2009; Xue & Allen, 2007). 
Druken et al. (2011) and Long et al. (2012) suggested that ongoing slab rollback controls the present-day 
E-W flow field (see also Zandt & Humphreys, 2008), including a toroidal flow contribution and sustained 
upwelling. Over the past 10.5 Ma, this flow geometry may have led to the accumulation of melts in the 
uppermost mantle due to decompression melting. The orientation of the time-progressive volcanic track in 
the HLP toward the west may map the transient position of melt accumulation (Grunder et al., 2017; Long 
et al., 2012). Long (2016) later discussed the possibility that the G-JdFS is fragmented at depth, allowing for 
horizontal mantle flow through a slab window, rather than the toroidal flow field induced by slab rollback. 
Further, Long (2016) argued that regardless of the possible presence of the Yellowstone plume in the upper 
mantle, the present-day flow field beneath our study area is simple, is dominated by E-W flow, and is con-
trolled by the motions of the slab in rollback subduction, with or without a slab gap.

The remnants of the PNW's complex tectonic history are visible in the modern upper mantle structures 
imaged in tomographic models (e.g., Obrebski et al., 2010; Gao & Shen, 2014; Wagner & Long, 2013; Wagner 
et al., 2010). To get an overview on the geometry and distribution of potentially influencing structures below 
the study area, we extract shear-wave velocity perturbations (dV/V ≤ −3% or dV/V ≥ 2%) of the HLP2010 
model by Wagner et al. (2010). The corresponding positive and negative anomalies extend between ∼3.2–
214.5 km and ∼2.5–144.5 km depth, respectively. Figure 2 shows their lateral extent at the bottom of each 
structure, based on the contours of maximum depth reached in the upper mantle. Large-scale velocity 
anomalies of different polarity beneath the PNW become apparent. In agreement with the model of Long 
et al. (2012), and the likelihood of accumulated decompressional melts (see also Gao & Shen, 2014), the 
study area is affected by a low-velocity body of broad lateral extent. Following the Yellowstone and HLP vol-
canic tracks, this structure further expands along the YSRP toward the Yellowstone Caldera in the northeast 
and reaches the Cascade Arc (CA) and Newberry Caldera in the west. The anomaly itself generally concen-
trates in depths of ∼90 km, but also indicates variation across the upper mantle. This low-velocity structure 
tends to broaden at shallower depths above the G-JdFS and extends deeper in the Northwestern B&R, the 
HLP-YSRP border region, and north of the Yellowstone Caldera. The appearance of high-velocity bodies, 
namely the Idaho curtain (IC) (according to Stanciu & Humphreys, 2020), the G-JdFS and the Wyoming 
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craton (WYC), limit further extension of the low-velocity body to the north, west and southeast. As indicat-
ed before, whether the G-JdFS is continuous in the upper mantle (e.g., Wagner et al., 2010), or contains a 
slab gap (e.g., Obrebski et al., 2010), has been controversial in the past (Long, 2016, and references therein). 
However, in both cases an E–W oriented flow will be present beneath our study area, either due to a toroidal 
flow induced by rollback subduction, or a return flow through a slab gap.

Figure 2. Tectonic setting (based on Long, 2016; Xue & Allen, 2007) for the study area (dashed, white polygon) in the 
Pacific Northwest, and depth distribution of tomographic anomalies. Position of plate boundaries (solid, burgundy 
lines; BT, Blanco Transform; MT, Mendocino Transform; ST, Sovanco Transform; GR, Gorda Ridge; JdFR, Juan de 
Fuca Ridge) are taken from Bird (2003); the Gorda-Juan de Fuca slab (G-JdFS) depth distribution (colored contours) 
is determined based on Hayes et al. (2018) between 25 and 400 km. Shear-wave velocity perturbations dV/V are 
adapted from the HLP2010 model of Wagner et al. (2010). They show depth contours in the upper mantle in which the 
threshold (low-velocity: −3%, high-velocity: 2%) is still reached or surpassed (IC, Idaho curtain; WYC, Wyoming craton; 
B&R, Basin and Range; HLP, High Lava Plains; YSRP, Yellowstone Snake River Plain). The locations of volcanoes 
(orange symbols) on land (e.g. along CA: Cascade Arc) are taken from the Smithsonian Institution GVP (2002); 
Yellowstone Caldera (yellow volcano) and Newberry Caldera (magenta volcano) are highlighted.
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3. Method
3.1. Azimuthal Variations for Non-Vertical SKS Incidence

The SWS procedure that explicitly considers non-vertical incidence (θ ≤ 30°) has been introduced and tested 
in Löberich and Bokelmann (2020a) and Löberich and Bokelmann (2020b). This analysis follows a Tay-
lor-series expansion of Davis (2003), based on the Christoffel equation, to model the angular variation of 
the fast orientation ϕ and delay time Δt expected for SKS and SKKS core-phases. In the following we sum-
marize the main equations, assuming observed anisotropy can be approximated by a horizontally aligned 
single-layer, containing minerals of orthorhombic crystal symmetry. Regarding ϕ, the approach considers 
small oscillations δϕ in addition to ϕ0 (determined for vertical incidence), where

𝜙𝜙 = 𝜙𝜙0 + 𝛿𝛿𝜙𝜙 (1)

and

𝛿𝛿𝛿𝛿 = 𝑑𝑑1 sin(2𝑧𝑧)𝜃𝜃2. (2)

The additional δϕ term leads to angular dependencies, in which the azimuth z introduces a 180°-periodicity, 
while the incidence θ affects amplitudes. The latter are further influenced by d1. This oscillation parameter

𝑑𝑑1 = −𝑓𝑓1∕𝑓𝑓4, (3)

where

�1 = �1212 − �2233 − �1133 − 2�1313 + �1122 − �2323 + �3333 and

�4 = −2�1313 + 2�2323,

 (4)

contains medium-related information obtained from the stiffness tensor C, and determines the polarity of 
the phase. Adapting the procedure or Δt leads to

Δ𝑡𝑡 = Δ𝑡𝑡0 + 𝑒𝑒1𝜃𝜃2 + 𝛿𝛿Δ𝑡𝑡 (5)

and

𝛿𝛿Δ𝑡𝑡 = 𝑒𝑒2 cos(2𝑧𝑧)𝜃𝜃2. (6)

Here

𝑒𝑒1 =
𝐷𝐷
2

√

𝜌𝜌
𝑐𝑐3
(𝐹𝐹1 − 𝑆𝑆1) , and 𝑒𝑒2 =

𝐷𝐷
2

√

𝜌𝜌
𝑐𝑐3
(𝐹𝐹2 − 𝑆𝑆2) (7)

where ρ and D denote density and path length respectively,

�1 = −5
2
�1313 − �1133 +

1
2
�1111 +

1
2
�3333 +

1
2
�1212,

�2 = −3
2
�1313 − �1133 +

1
2
�1111 +

1
2
�3333 −

1
2
�1212,

�1 = −5
2
�2323 − �2233 +

1
2
�2222 +

1
2
�3333 +

1
2
�1212,

�2 =
3
2
�2323 + �2233 −

1
2
�2222 −

1
2
�3333 +

1
2
�1212,

and �̄ =
√

�1313�2323.

 (8)
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Based on these equations, a change of the shear-plane of deformation, and thus the orientation of the 
symmetry axes, can be detected (Löberich & Bokelmann, 2020a). For the case of a horizontal a-axis (e.g., 
Nicolas & Christensen, 1987), we can distinguish between either a vertically oriented b- or c-axis (assuming 
single-crystal A-type olivine, with elastic constants based on San Carlos olivine after Abramson et al., 1997), 
because these two cases lead to opposite d1 polarity and thus a phase shift in δϕ. Distinguishing between 
vertically oriented b- versus c-axis allowed Löberich and Bokelmann (2020a) to differentiate between an 
asthenospheric versus a lithospheric origin for anisotropy (Silver,  1996, and references therein). Resolv-
ing this difference requires a good backazimuthal coverage of the SWS data set, and (a) a large number 
of automatically determined measurements (Löberich & Bokelmann, 2020a), or (b) a moderate number 
of manually determined observations of higher quality (Löberich & Bokelmann, 2020b). Following these 
experiences, distinguishing between the various olivine fabrics could be possible as well, if we can assume 
that the anisotropy is due to horizontal simple shear in the asthenospheric upper mantle (an appropriate 
assumption for our study area).

3.2. Elastic Tensor Calculations

To compute and compare the expected variations of SWS parameters, the stiffness tensors for olivine sam-
ples of different fabric types (multi-crystal olivine) under reasonable conditions have to be well known. 
Here we take advantage of the study by Jung et al.  (2006), which considers San Carlos olivine with dif-
ferent hydration levels under deformation pressures between P = 0.5–2.1 GPa and temperatures between 
T = 1,470−1,570 K. Since we aim to constrain the water content in the asthenospheric upper mantle, we 
focus only on A-, E-, and C-type olivine and do not consider B- or D-type as likely. Jung et al. (2006) sub-
jected samples to simple shear and measured LPO by electron backscattered diffraction (see references 
therein). To estimate an effective stiffness tensor, the statistical distribution of the orientations of individual 
grains in the sample has to be combined with a single-crystal stiffness tensor that describes the elasticity of 
the individual grain. In Jung et al. (2006), stiffness tensors were determined for 5 GPa and 1,573 K, taking 
advantage of pressure gradients estimated by Abramson et al. (1997). According to Mainprice et al. (2000), 
we determine (Equation 9) the corresponding density ρ of olivine for P = 5 GPa and T = 1,573 K following 
Watt (1988), where

𝜌𝜌(𝑃𝑃 𝑃 𝑃𝑃 ) ≈ 𝜌𝜌𝐴𝐴
[

(1 +𝐾𝐾 ′∕𝐾𝐾 ⋅ 𝑑𝑑𝑃𝑃 )1∕𝐾𝐾
′
(1 − �̄�𝛼 ⋅ 𝑑𝑑𝑃𝑃 )

]

. (9)

For this approximation, the density ρA  =  3,449  kg/m3 of San Carlos olivine (Abramson et  al.,  1997) at 
P = 3.7 GPa serves as a reference. We assume a change in pressure of dP = 1.3 GPa and an increase in 
the Bulk modulus from K(P = 3.7 GPa) = 146.3–152.8 GPa at 𝐴𝐴 𝐴𝐴 = 5.2GPa (𝐾𝐾 ′ = 𝑑𝑑𝐾𝐾∕𝑑𝑑𝐴𝐴 = 4.33) . To fur-
ther consider the effect of enhanced temperatures (dT  =  1,273  K), we include the average thermal ex-
pansivity 𝐴𝐴 𝐴𝐴𝐴(𝑇𝑇 = [300K, 1500K]) ∼ 35.5 ⋅ 10−6 K−1 after Isaak (1992), based on Suzuki (1975), estimated for 
ρI = 3,353 kg/m3. Assuming 𝐴𝐴 𝐴𝐴𝐴(𝜌𝜌𝐴𝐴) ≈ 𝐴𝐴𝐴(𝜌𝜌𝐼𝐼 ) leads to ρ ∼ 3,322 kg/m3.

Based on the stiffness tensors and the approximated density, Figure 3 represents the related distributions 
of P-wave velocity VP (left) and S-wave anisotropy dVS (including ϕ; right) in hemispheric projection. Ac-
cording to Jung et al.  (2006), each type is defined by a different shear plane, (010), (100), and (001) for 
A- (top), C- (center), and E-type (bottom), in which the dominant slip direction is [100] for A- and E-type 
and [001] in the case of C-type. Beside the obvious differences among types due to variations in the axes 
orientations, effects of non-orthorhombic olivine stiffness tensor components became apparent (see Appen-
dix A, Figure A1). These may be due in part to the relatively small shear-strains achieved in the laboratory 
experiments (∼150% strain), which may be insufficient to fully rotate the crystal axes. Furthermore, Jung 
et al. (2006) suggested that the experimentally produced LPOs may have experienced distortion related to 
non-ideal deformation geometries, with the actual slip deviating from the applied shear direction. In order 
to eliminate the non-orthorhombic components from the experimentally derived elastic tensors, we used 
the decomposition proposed by Browaeys and Chevrot  (2004) as implemented in the MATLAB Seismic 
Anisotropy Toolkit (MSAT) by A. M. Walker and Wookey (2012). We also took advantage of further MSAT 
functions (Wookey & Walker, 2015c) to adjust the misalignment of the experimentally derived LPOs, such 
that the symmetry axes in Figure 3 now align with the shear geometry directions X1, X2 and X3, leading to 
reduced complexity in each of the visualized tensors. The changes in the VP anisotropy percentages due to 



Geochemistry, Geophysics, Geosystems

LÖBERICH ET AL.

10.1029/2021GC010091

8 of 25

these adjustments are insignificant (max. 0.4% for A-type). Enhanced VP values along X1, for A- and E-type, 
and X3, in the case of C-type, are associated with the alignment of olivine's a-axis. Minima along X2, for C- 
and E-type, and X3, considering A-type, indicate the b-axis orientation. In terms of dVS, the corrections only 
slightly reduce peak values. Core phases (arrivals inside gray, dashed circles, with nearly vertical propaga-
tion directions) experience strongest dVS anisotropy, expected to elicit most dominant SWS, when traversing 

Figure 3. Variation of P-wave velocity VP and S-wave anisotropy dVS (including fast orientation ϕ). Gray, dashed circles mark the incidence θ ∼ 11.88°, used 
in Figure 4, for A- (top), C- (center), and E-type (bottom) olivine under upper mantle conditions (5 GPa, 1,573 K). These are based on the decomposed stiffness 
tensors (without monoclinic and triclinic components) of Jung et al. (2006). X1 (N–S) and X2 (E–W) axes define the shear plane in which the shear direction is 
parallel to X1. The obtained tensors of orthorhombic symmetry are rotated to X1, X2, and X3.
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E-type fabric (Karato et al., 2008). As according to Jung et al. (2006), ϕ aligns with the flow direction in all 
three cases, a similar behavior along X1 and around X3 appears for horizontal shearing.

3.3. Backazimuthal Variation of SWS Parameters

To predict the variations of SWS parameters for SKS phases, our model assumes a horizontal layer of either 
A-, C-, or E-type olivine with a N-S aligned fast orientation. In expectation of increased delay times men-
tioned before, the presence of a comparably thick layer is expected. As an initial guess, our starting model 
considers 160 km (30–190 km depth) of anisotropic fabric to be able to match the observed Δt values ap-
propriately. Later in the paper, we will also consider other values for layer thickness (Sections 5.1 and 5.2). 
Moreover, our comparison between different fabric types requires the assumption of a fixed incidence an-
gle θ. Initially, an incidence angle of ∼11.88° (SKS ray parameter 4.919 s/° determined in TauP [Crotwell 
et al., 1999] using IASP91 [Kennett & Engdahl, 1991]) has been calculated (following Igel, 2006) for the 
lower boundary. This nominal incidence angle value is approximate, given the actual distance variability 
of observed SKS/SKKS phases. We emphasize, however, that the actual range of θ for SK(K)S phases is rel-
atively small (10–15° according to Davis, 2003), so this approximation is generally valid (see also Löberich 
& Bokelmann, 2020a, Appendix E). A smaller incidence angle than that used here would lead to smaller 
variations in δϕ and thus limit the expression of different fabric types in the observations (see Equation 2).

The modeling partly takes advantage of a MSAT example (Wookey & Walker,  2015a), enabling a direct 
comparison (Figure 4) of our findings (Taylor-series expansion) with the numerically determined variations 

Figure 4. Backazimuthal behavior of shear-wave splitting parameter variations δϕ (top) and δΔt (bottom) based on the 
Taylor-series expansion (solid lines) of Davis (2003) and the numerical solution (dashed lines) after Mainprice (1990), 
for a 160 km thick layer (depth: 30−190 km; incidence: θ ∼ 11.88°) of A- (blue), C- (green), and E-type (red) olivine (see 
Figure 3), respectively.
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after Mainprice (1990). Both approaches reveal similar tendencies for the respective stiffness tensor setting, 
but indicate differences between SWS variations per olivine type. In terms of δϕ, the C-type variation is 
shifted against A- and E-type and shows the strongest amplitude. This behavior relates to the differences in 
polarity and magnitude of the oscillation parameter (d1A ∼ −1.55; d1C ∼ 3.92; d1E ∼ −0.54). Consequently, 
E-type shows the smallest amplitude. Similarly to d1, δΔt is affected by e2, leading to a comparable varia-
tion for A- and C-type (e2A ∼ 3.11; e2C ∼ 2.59), and a reversed polarity with smaller amplitudes for E-type 
(e2E ∼ −0.27). However, the average Δt of the different types varies significantly. As determined after Main-
price (1990), the A- and C-type stiffness tensors result in mean (and maximum) values of ∼1.42 s (∼1.51 s) 
and ∼0.35 s (∼0.43 s), while an E-type setting can explain Δt values up to ∼1.73 s (∼1.75 s).

4. Data Analysis and Results
4.1. Shear-Wave Splitting Data Set

To assess the backazimuthal behavior of actual observations with regards to the olivine fabrics, we test the 
predictions of our A-, C-, and E-type models against SWS measurements in the chosen region of the CSZ 
back-arc. While a number of studies have been published that examine SWS within or close to our study 
area (e.g., Long et al., 2009; Schutt et al., 1998; K. T. Walker et al., 2004; Xue & Allen, 2006), for this initial 
analysis we rely on the SWS-DB-MST data set of Liu et al. (2014), which provides a uniformly processed 
data set throughout the entire study region. The full database (Western and Central US) comprises 𝐴𝐴 𝐴 16000 
SWS measurements (14,698 SKS/SKKS) at 1,774 broadband stations (IRIS/USGS Global Seismographic 
Network, US National Seismic Network, USArray Transportable Array, PASSCAL, GEOSCOPE); used pre-
viously in Löberich and Bokelmann (2020a) to establish the extended SWS procedure.

Considering the general behavior of SWS in the central/southern Pacific Northwest (Figure 5 top), the spa-
tial distribution of measurements reveals a consistent pattern and only small dependence on backazimuth. 
This pattern has been analyzed in detail by Long (2016) and references therein. With respect to the upper 
mantle beneath the CSZ back-arc, the expected dominant E-W shear direction for a horizontal simple shear 
deformation (regardless of the drivers of the mantle flow field debated in Long, 2016), yields nearly E-W 
fast orientations and large delay times (Liu et al., 2014; Long et al., 2009; Wagner & Long, 2013). We select a 
subset of 1,087 SKS/SKKS measurements within our study area (white polygon in Figure 5 top). Following 
the respective histograms (Figure 5 bottom), fast orientations and delay times reveal unimodal distribu-
tions. Indeed, most SWS measurements align in E-W orientation and tend to higher Δt values of ∼1.68 s 
(variation in Δt is larger than the variation in ϕ). As the expectation of relatively simple anisotropy patterns 
hold beneath our study region, we can investigate the subtle variations in ϕ that potentially could reflect the 
olivine fabric type (Figure 4).

4.2. Comparison Between Observations and Predictions

Figure 6 shows the application of the non-vertical incidence SWS approach, following Löberich and Bokel-
mann (2020a). As the expected difference between A-, C-, and E-type will appear most clearly at respective 
minima and maxima in the δϕ distribution (see Figure 4), variations in the fast orientation hold the highest 
potential to constrain the olivine fabric type. We therefore focus our analysis on the angular behavior of ϕ; 
related changes in Δt are shown for completeness in Appendix B. In order to apply our approach, a wide 
backazimuthal distribution of individual SWS measurements is required. However, seismicity is not homo-
geneously distributed on Earth, and in the SKS/SKKS distance range, SWS is unlikely to be observed for 
all possible orientations at a single station. Further, SWS does not occur for null orientations (that is, bac-
kazimuths parallel or perpendicular to the fast orientation at which no splitting is expected; see top row in 
Figure 6, magenta lines). To improve the azimuthal coverage and stabilize the procedure, all stations within 
our study region are considered jointly, allowing us to combine a large number of splitting measurements 
into a single analysis. This reveals that southwestern to northwestern backazimuths appear more frequently 
in our study area. However, even the SWS measurements of neighboring stations could vary around differ-
ent means � (Δt ). In order to still combine measurements in a straightforward way, we reduce this bias and 
consider δϕ (between −90 and 90°) across all stations (second row; δΔt accordingly in Figure B1). In this 
context, only stations with 𝐴𝐴 ≥ 5 measurements are investigated to ensure a more stably determined mean 
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value. Since the respective � per station affects the expected angular variation, the backazimuth of each 
measurement is corrected for 𝐴𝐴 �̄�𝜙 as well. This leads to an accumulation of measurements particularly around 
∼135° and ∼225°, which are the dominant intervals in the data set.

Even if the quality of the individual measurements is high (A or B according to Liu et al., 2014), outliers 
could still bias our investigation. In the following we thus consider only measurements within thresholds, 
defined by the 0.05 and 0.95 quantile (second row, magenta lines) of both, δϕ and δΔt distribution. Depend-
ing on expected minima and maxima positions of δϕ, our analysis focuses on the more stable variation of 

Figure 5. (top) Individual SKS and SKKS shear-wave splitting measurements (lines) at seismic stations (triangles, 
white: USArray Transportable Array; gray: PASSCAL; green: US National Seismic Network) shown on southern 
and central Pacific Northwest topography (based on Ferranti & Hormann, 2014). Lines are aligned with the fast 
orientation ϕ, scaled with delay time Δt and colored by the backazimuth (Baz) of the related earthquake. The study 
area, Yellowstone and Newberry Caldera are highlighted as in Figure 2. (bottom) Statistical distribution of measured 
shear-wave splitting parameters ϕ (left) and Δt (right) in the study area indicate unimodal distributions around E-W and 
∼1.68 s.
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mean and median, obtained per interval around 45°, 135°, 225°, and 315°. 
To avoid biases in the vicinity of null orientations, we limit the interval 
width. However, the reduced amount of measurements in comparison 
to Löberich and Bokelmann (2020a) requires less restrictive, wider inter-
vals of ±27° (second row, gray shaded). The resulting means and medians 
(third row) indicate similar variations for δϕ, yet means for 135° and 225° 
are significantly better constrained as in the 45° and 315° intervals due to 
the enhanced data coverage (bottom row, error bars). Our final compar-
ison between the observed δϕ behavior (Figure 6 bottom row) and that 
predicted by the various models shown in Figure 4 reveals that C-type 
olivine cannot explain the observed variation, while A- and E-type oli-
vine models are consistent with the data. Even though a differentiation 
between A- and E-type based on amplitudes is difficult, the better con-
strained means indicate a tendency to smaller variations, more consistent 
with the E-type case for our model configuration and assumed incidence 
angle.

5. Discussion
5.1. Constraints on Olivine Fabric Type and Layer Thickness 
Beneath Cascadia's Back-Arc

We have demonstrated that even though the effect of non-vertical inci-
dence of SKS and SKKS core phases on splitting parameters is relatively 
small, it provides an interesting possibility to infer the olivine fabric, as-
suming a uniform upper mantle. Although this is a crucial restriction, 
this PNW region might be the “ideal” test region. Considering the lack of 
backazimuthal variations in apparent splitting parameters (e.g., Wagner 
& Long, 2013) and the very stable behavior of ϕ with depth from tomo-
graphic inversions of splitting measurements (Mondal & Long,  2020), 
there is good evidence that the anisotropy can be approximated with a 
single layer, with no depth variability in fast axis orientation. Therefore, 
we assume that the SWS observations used in our modeling reflect ani-
sotropy in a single layer in the upper mantle, with strain/flow in a nearly 
E–W direction.

The tendency in δϕ, particularly in the well constrained 135° and 225° 
intervals with small 2σ-errors, renders the presence of a 180° periodicity 
indeed likely. Taking advantage of the expected phase shift in δϕ when 
comparing C-type with A- and E-type enables a differentiation between 
fabrics and potentially constrains the amount of water in geodynamical-
ly active regions (e.g., Karato et al., 2008), subject to some caveats (dis-
cussed further below). With respect to the CSZ back-arc, Mondal and 

Long (2020) have previously argued that hydrated upper mantle conditions should be expected above the 
slab. However, it remained unclear whether the deformation conditions would facilitate an A-type olivine 
fabric, for example, proposed by Ohuchi and Irifune (2013), or C-type, following Masuti et al. (2019). Our 
investigation of the backazimuthal distribution of SWS parameters, based on the large and comprehensive 
data set of Liu et al. (2014), has shown that C-type olivine cannot explain the observed variations in δϕ, while 
A-type, and particularly E-type, can. The analysis of an additional data set from Wagner and Long (2013), a 
subset of particularly well-constrained stations of the High Lava Plains seismic experiment (see e.g., Long 
et al., 2009), confirms that a differentiation between A- and E-type on one side, and C-type on the other, is 
possible in the chosen study area (see Supporting Information S1). Furthermore, our inference on olivine 
fabric is in agreement with previous indications from the Josephine Peridotite by Skemer et al. (2013). Their 
investigation of individual Josephine shear zones revealed a change from A- to E-type, accompanied by a 

Figure 6. Backazimuthal distribution of fast orientations ϕ in the study 
area. (top row) Individual shear-wave splitting measurements from all 
SKS and SKKS phases (solid, magenta lines: Null directions). (second row) 
Variations δϕ from station averages against backazimuths with respect 
to the average fast orientation per station � . Intervals of interest (±27°) 
are highlighted (gray shaded); thresholds for δϕ (solid, magenta lines) are 
determined from the distributions. (third row) Means (diamonds) and 
medians (pluses) of measurements inside thresholds (on δϕ and δΔt see 
Figure B1) per interval. (bottom row) Derived means (error bars: 2σ-error) 
and medians compared with expected variations from the Taylor-series 
expansion (solid lines) in Figure 4 for A-type (blue), C-type (green) and 
E-type (red) olivine.
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change in water content (350–490 ppm H/Si). These findings confirmed previously discovered fabrics by 
Warren et al. (2008) and Skemer et al. (2010).

Unfortunately, δΔt does not yield tight constraints that can distinguish between the plausible A-type and 
E-type fabrics. As E-type predicts the highest Δt values in our model (∼1.75 s for a 160 km thick layer), it 
seems to be the more likely scenario. However, the trade-off between the thickness and strength of the an-
isotropic layer prevents specific constraints on both properties. Since the modeled strength of LPOs results 
from the stiffness tensors estimated by Jung et al. (2006), it is likely representative for upper mantle circum-
stances; however, changes in the actual amount of strain, which might cause increased strength of aniso-
tropy and larger Δt observations, cannot be ruled out completely. While it is possible that shape-preferred 
orientation of partial melt in the shallowest upper mantle may affect the measurements too, this effect is 
likely to be small (Mondal & Long, 2020; Wagner & Long, 2013). We can further assess the likely thickness 
of the anisotropic layer from tomographic images. For instance, the contours of the relatively strong ≤−3% 
anomaly in VS follow a low-velocity body with a maximum thickness of ∼80–90 km beneath our study area. 
Yet, the low-velocity anomaly could further extend to the Moho (see Long, 2016, and references therein) 
and anomalies of smaller magnitude in the HLP2010 model might also contribute to the observed delay 
times. However, due to the reduced resolution of surface waves for depth 𝐴𝐴 𝐴 150 km , the bottom of the 
low-velocity geometry is certainly better constrained by teleseismic body waves. Such studies (e.g., Hawley 
& Allen, 2019; Schmandt & Lin, 2014; Stanciu & Humphreys, 2020) indeed observed this structure up to 
∼200–300 km. Assuming a constant strength of anisotropy, higher Δt values would be directly related to in-
creased layer thickness of the considered dominant single-layer case. Δt measurements around ∼2.48 s (see 
histogram in Figure 5) could be predicted by a 230 km thick E-type layer (between 30 and 260 km). In this 
case (θ ∼ 12.27°), a mean (and maximum) Δt of ∼2.48 s (∼2.51 s) could be expected, while the same model 
in A-type configuration leads to ∼2.05 s (∼2.20 s). To obtain similar values for an A-type fabric, a 270 km 
thick layer (between 30 and 300 km) is required. Such a scenario (θ ∼ 12.54°) generates Δt ∼ 2.42 s (∼2.59 s). 
However, following the model of Karato (2008), A-type is more likely to occur at shallower asthenospheric 
regions, where lower water contents are expected, while E-type becomes more likely with increasing depth.

5.2. Comparison With Tomography and the Depth Distribution of Anisotropy

If the asthenosphere of the CSZ back-arc is indeed dominated by E-type olivine fabric, then observed fast 
orientations can be associated with the flow direction, since [100] aligns toward shear direction (Jung 
et al., 2006; Karato et al., 2008). A comparison of the spatial distribution of SKS splitting measurements at 
upper mantle piercing points with shear-wave velocity deviations dV/V, for example, resolved by Wagner 
et al. (2013) based on Rayleigh wave phase observations, provides further insights on the flow geometry 
(Figure 7 top). The spatial behavior of ϕ in the back-arc correlates with the distribution of a strong low 
dV/V anomaly, connecting the YSRP with the Northwestern B&R, the HLP, and the CA (see also Figure 2); 
likely indicating an asthenospheric origin. The dominant clockwise rotation of ϕ toward ESE-WNW in the 
southern and central part of the study area, which further continues to the southeast, strikingly aligns with 
the nearly semi-circular shape of the so-called Nevada swirl to the south (Eakin et al., 2010). Toward the 
northeast, the SWS measurements rather align with the spatial distribution of low-velocities beneath the 
YSRP. Zhu et al. (2020) have distinguished the decisive flow geometries beneath Pacific Northwest in detail. 
Their findings agree with a fast slab rollback assumption from Zandt and Humphreys (2008), causing toroi-
dal flow. These flows (below 300 km depths in Zhu et al., 2020) encompass the Gorda slab on one side, while 
crossing a slab gap further north. In addition, horizontal pressure gradients near the slab gap potentially 
enable return flows. Beside the flow geometry, the presence of partial melts may affect the dV/V observa-
tions. Following Debayle et al. (2020), depths up to 200 km can in principle be affected by decompression-
al melting (0.3%–0.7%) below back-arc basins or in the vicinity of hotspots. Indeed, Gao and Shen (2014) 
have interpreted the anomalies beneath Oregon and Nevada as decompressional melts, consistent with the 
geodynamic model of Long et al. (2012). Regarding Pacific Northwest, Debayle et al. (2020) have further 
discovered partial melt indications in 300 km depth underneath hotspots. Based on their findings, we deter-
mine a depth distribution for our study area (Figure 7 bottom, right). Average melt accumulation reaches a 
maximum of ∼0.6% at 100 km depth, and another local maximum of ∼0.25% at 300 km depth. Considering 
the occurrence of melts in greater depth and the flow geometry in the lowermost upper mantle, deeper 
sources of anisotropy might be possible.
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Since SWS observations integrate the effect of anisotropy along the raypath on the receiver side (e.g., Silver 
& Chan, 1991), a comparison with a single depth-slice of a tomographic model in the upper mantle can 
only outline possible relationships. Yet, the distribution of azimuthal anisotropy with depth from surface 
waves can further elucidate the lateral variation or consistence of the flow field, helping to provide context 
for our inferences. Figure 7 (bottom, left) shows the comparison between spatially interpolated SKS split-
ting measurements (from 80 km piercing points) and fast orientations ψG from surface waves (T = 66 s) at 
related reference points in the model of Wagner et al. (2013). Generally, the obtained SWS pattern remains 
oriented E–W near the center of the region and keeps the clockwise rotation at the edges of the study area. 
The correlation between both indicators supports the assumption of consistent azimuthal anisotropy due 
to a single-layer case. However, the predicted delay times Δtp66s (calculated in Text S2 of Supporting Infor-
mation S1 based on Montagner & Nataf, 1986; Montagner et al., 2000; Silver & Chan, 1988; M. L. Smith 

Figure 7. (top) Overlay of individual SKS splitting measurements (green lines) and the distribution of shear-wave 
velocity variation dV/V at 80 km depth (based on Wagner et al., 2013). Lines are aligned with the orientation of fast 
wave propagation ϕ, scaled with the delay times Δt and projected to the appropriate piercing points. The dashed, black 
polygone outlines the study area; volcanos are highlighted as in Figure 2. (bottom, left) Comparison of azimuthal 
anisotropy (gray lines), determined from phase velocities (T = 66 s) by Wagner et al. (2013), with the projected SKS 
splitting measurements interpolated at reference points. Surface wave anisotropies are aligned with the orientation of 
fast wave propagation ψG and scaled with predicted delay times Δtp66s. (bottom, right) Average melt-depth distribution 
(orange/red line) including thresholds (orange shade) beneath the study area (based on Debayle et al., 2020).
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& Dahlen, 1973; Vinnik et al., 1989; Weeraratne et al., 2007) for the initially assumed 160 km thick layer 
tend to be smaller (∼0.55–1.33 s) than the interpolated SWS Δt (∼0.93–1.88 s). The magnitude of azimuthal 
anisotropy as constrained by surface waves cannot explain the large Δt; this dilemma was also discussed 
by Wagner and Long (2013). A recent application of finite-frequency SKS splitting intensity tomography 
by Mondal and Long (2020) proposed a potential solution to the problem. Their model of the CSZ back-arc 
includes strong anisotropy (up to ∼6%–8%) in the deep upper mantle (200–400 km depth). Surface waves at 
the period ranges used by Wagner and Long (2013) would not resolve these depths sufficiently, as the sensi-
tivity distribution of the larger periods required would be too broad. A significant contribution to splitting 
delay times from the deep upper mantle, as suggested by Mondal and Long (2020), on top of the one from 
a relatively thick layer of E-type olivine fabric in the shallower upper mantle (30–190 km), could explain 
why the spatial variation of interpolated Δt and amplitudes of vertically integrated travel times tt between 30 
and 190 km (see Text S2 in Supporting Information S1) do not show a consistent correlation. Beside upper 
mantle anisotropy, deeper regions might further contribute to observed Δt values (e.g., Savage, 1999). Indi-
cations for transition zone anisotropy (>400 km ) beneath our area of interest, for example, were revealed 
just recently by Zhu et al. (2020) and Zhang et al. (2021).

5.3. Water Content of the Asthenosphere

Our finding that the asthenospheric upper mantle beneath the CSZ back-arc is likely dominated by E-type 
olivine fabric has some important implications. As discussed before, constraints from laboratory experi-
ments suggest the presence of E-type fabric indicates moderately hydrated conditions. Specifically, depend-
ing on stress, water contents of ∼100–400 ppm H/Si (∼360 MPa), ∼175–750 ppm H/Si (∼190 MPa), ∼250–
1,100 ppm H/Si (∼20 MPa) are expected following Karato et al. (2008), based on Katayama et al. (2004), 
for temperatures 1,470–1,570  K. We caution, however, that there is some uncertainty as to whether the 
relationships between deformation conditions and olivine fabric type suggested by laboratory experiments 
hold for the real Earth. For example, Bernard et al.  (2019) studied a suite of xenoliths derived from the 
mantle lithosphere and found that the olivine fabric type did not correlate with measured water contents in 
a straightforward way. However, the samples studied by Bernard et al. (2019) were derived from (likely het-
erogeneous) lithospheric mantle, not the (presumably simpler) asthenospheric upper mantle, and there is 
some uncertainty as to whether original water contents were preserved in the samples. In any case, howev-
er, there are some caveats as to whether olivine fabric type can be interpreted as a straightforward reflection 
of asthenospheric water content.

If we do take our inference of E-type olivine fabric and a moderately hydrated asthenosphere at face value, 
then an important question arises: what is the source for the water in the CSZ back-arc? While cold slabs 
are often assumed to supply water to the deeper mantle (e.g., van Keken et al., 2011), this does not seem 
to be the controlling factor in the CSZ back-arc given the general reduction of slab seismicity (Canales 
et al., 2017; Obrebski et al., 2010). Although oceanic crust and mantle lithosphere certainly brought water 
into the subduction system, the young G-JdF slab (6–8 Myr), characterized by comparatively high tempera-
tures; is assumed to be rather dry (Canales et al., 2017; Currie et al., 2004; Long, 2016; Obrebski et al., 2010; 
Severinghaus & Atwater, 1990; van Keken et al., 2011), yet petrological findings by Walowski et al. (2015) 
leave room for discussion on the actual degree of dehydration. Canales et al. (2017) assumes a lower than 
usually expected amount of water regarding both the lower crust and also mantle portion of the subducting 
slab. Moreover, upper crustal fluids are already reduced by half at 25 km depth. This behavior generally 
agrees with the study by van Keken et al. (2011), which expected a rapid dehydration too. The latter inves-
tigation assumed that mantle serpentinization will be the last supplier of water at 115 km depth. Even if 
the slab supplies some modest amount of water beneath the CSZ, it might not directly influence the upper 
mantle below our study area, given that the slab at this position is located within the transition zone (Fig-
ure 2). We propose that material influx from the subslab mantle (Figure 8), which is likely dominated by 
subslab entrainment (Eakin et al., 2019) and anticipated to be relatively hydrated, toward the mantle above 
the slab in the back-arc might explain the moderately high water contents. A combination of poloidal and 
toroidal flow in the CSZ system, suggested by several authors (e.g., Long, 2016; Zandt & Humphreys, 2008; 
Zhou et al., 2018; Zhu et al., 2020), may play a role in transporting and distributing subslab mantle into the 
back-arc.
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The water content and dominant olivine fabric that would actually be expected in the ambient oceanic 
asthenosphere is controversial. Based on previous petrological findings from mid-ocean ridge basalts, Jung 
et al. (2006) concluded their source areas might comprise ∼500–1,000 ppm H/Si; more precise Hirth and 
Kohlstedt (1996) suggested values of 810 ± 490 ppm H/Si. Following the inference in Jung et al. (2006), C- 
or E-type would be expected based on these values. Recently, Eakin et al. (2019) suggested that A- or E-type 
fabric likely dominates in the region directly beneath Cascadia's slab, where subslab mantle is being en-
trained. If the subslab mantle is indeed relatively water-rich and transported to the back-arc by the ambient 
mantle flow field, E-type fabrics beneath our study area are a likely consequence. If this scenario is correct, 
then the degree of dehydration of asthenosphere due to melting (Karato et al., 2008) in Cascadia's back-arc 
(Debayle et al., 2020; Gao & Shen, 2014; Long et al., 2012) seems to be relatively small and/or restricted to 
the shallowest parts of the upper mantle. Hence, we infer that melting has not been extensive enough to 
reduce the water content of the bulk of the asthenospheric upper mantle sufficiently to favor A-type, rather 
than E-type, fabric.

5.4. Outlook on Future Regions of Application

We can put our findings on olivine fabric beneath the CSZ back-arc into an overall context based on pre-
vious indications from other subduction zones, following petrographic examinations of mantle-derived 

Figure 8. Schematic overview on the interaction between slab geometry and flow system in the Cascadia subduction zone (based on Long et al., 2012; Obrebski 
et al., 2010; Zhu et al., 2020), and the expected olivine fabric type in the back-arc. A toroidal flow, encompassing the Gorda slab, and a return flow through a 
possible slab gap transport subslab ambient asthenosphere from the fore-arc/arc to the back-arc. Due to upwelling and the E-W flow system, the oceanic mantle 
material is distributed beneath the study area (white polygon), and defines the occurring olivine fabric in the low-velocity region (highlighted burgundy). Yet, 
the presence of either A-, C-, or E-type (right box; hemispheres from Figure 3 rotated in flow direction) could explain the overall observed E-W fast orientation 
ϕ equally good. However, the comparison between the expected and observed (mean/median) backazimuthal variation in δϕ (top box; see Figure 6) shows that 
E-type, and thus a moderately hydrated asthenosphere, is most probable.
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rocks, SWS measurements and modeling expectations. According to laboratory findings, arguments have 
been made in the past that olivine fabric transitions between different portions of subduction systems 
should be expected. Jung et al. (2006) predicted that B-, C-, and E-type occur in convergent margin set-
tings, depending on the respective temperature and hydration conditions (see also Karato, 2004; Kneller 
et al., 2005). There is some potential for our approach to be applied systematically in different regions of 
a subduction system (fore-arc, arc, and back-arc) in order to directly detect these transitions in the future. 
The advent of new data sets from dense broadband arrays, such as the USArray Transportable Array in 
Alaska and AlpArray in the Alps, will help to facilitate these efforts. However, this may require explicit 
consideration of dipping structures, which can be achieved by extending the Taylor-series expansion ac-
cording to Davis (2003).

Since our method allows us to detect olivine fabric types in situ in the upper mantle, it can provide crucial 
complementary constraints in other subduction zone settings. In particular, a fruitful area for future work 
is the investigation of detailed SWS patterns in regions such as the Alps and the western Pacific subduction 
zones where there is previous evidence on olivine fabric transitions from the study of natural peridotite 
rocks. In the context of Alpine subduction, Jung (2017) compiled such studies, which indeed find evidence 
for various fabrics. While Frese et al. (2003) discovered C-Type from hydrated samples below Cima di Gag-
none, Jung (2009) revealed E-type as well as B-type close to Val Malenco. Considering the Izu-Ogasawara 
trench, Harigane et al. (2013) revealed indications for the presence of E-type and concluded that slab-in-
duced hydration led to transition of previously occurred A- or D-type fabric. Mehl et al. (2003) documented 
E-type in rocks from the exhumed Talkeetna arc. Due to expected hydration, and since they observed [100] 
axes oriented in the flow direction, they argued that E-type is prevalent at asthenospheric depths. Although 
this fabric type has appeared most frequently in the work of Mehl et al. (2003), D- and A-type were detected 
too.

The few published studies that attempted to infer olivine fabric types by combining SWS measurements 
and geodynamic modeling, might also point to interesting new study areas for our method. In this context, 
Lynner et al. (2017) compared source-side SWS measurements with mantle flow simulations for subduc-
tion systems (based on Paczkowski, Montési, et al., 2014; Paczkowski, Thissen, et al., 2014) and inferred 
that C-type might be dominant in the subslab mantle beneath Central America while for Tonga, E-type 
explained the measurements significantly better. Terada et  al.  (2013) linked source-side SWS measure-
ments below South Kyushu to C-type fabric. They further argued that the spatial agreement with detected 
slow propagation velocities and an increased VP/VS ratio (based on Matsubara & Obara, 2011; Matsubara 
et al., 2008) suggest an acutely hydrated mantle environment.

Our procedure may also be applied to investigate the origin of SWS and the prevalence of different 
olivine fabric types in various tectonic settings. The inflow of oceanic asthenosphere from the subslab 
mantle underneath our study area seems to be an important factor in controlling the fabric type beneath 
the CSZ back-arc. However, fairly little is known about the type actually occurring in the normal oceanic 
asthenosphere. Future investigations might take advantage of records from Ocean Bottom Seismometer 
(OBS) deployments to overcome this obstacle. According to Tommasi et al.  (1996), anisotropy can be 
attributed to a single-layer behavior beneath ocean basins if a stationary absolute plate motion can be 
assumed; in this case, asthenospheric as well as lithospheric fabrics would align and be parallel. Long 
and Silver  (2009) summarized that the suboceanic asthenosphere is most likely A-type fabric, follow-
ing persuasive anisotropy predictions from different models (based on Becker, 2008; Behn et al., 2004; 
Conrad et al.,  2007). However, Song and Kawakatsu  (2013) concluded that the prevalent fabric has a 
girdle distribution known as AG-type (based on Christensen & Crosson, 1968; Mainprice, 2015; Tom-
masi et al., 2000). The application of our method in ocean basin environments may help to distinguish 
among different fabric types in the suboceanic asthenosphere. Promising potential datasets include the 
Cascadia offshore broadband OBS experiment (Bodmer et al., 2015; Martin-Short et al., 2015), the East 
Pacific Rise region (Harmon et al., 2004; Wolfe & Solomon, 1998), the NoMelt experiment region be-
neath the Pacific (Lin et al., 2016), and the Eastern North American Margin broadband OBS experiment 
(Lynner & Bodmer, 2017; Lynner et al., 2019). Previous work provides first tendencies on dominant oli-
vine fabrics in some of these regions; for example, for the east coast of North America, Lynner and Bod-
mer (2017) deduced that ϕ maps a margin-parallel mantle flow, assuming an A-, C-, or E-type occurrence 
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offshore (based on Karato et al., 2008). With respect to the lithosphere below the Pacific basin, Russell 
et al. (2019) argued for A- or E-type olivine fabric following surface wave data and mineral physics-based 
modeling. Our method may be able to add crucial constraints to reduce the uncertainties in these regions 
in future studies.

6. Conclusion
We have adapted the non-vertical incidence shear-wave splitting approach of Löberich and Bokel-
mann (2020a) to constrain the olivine fabric in the upper mantle based on differences in phase and ampli-
tude of the backazimuthal variation of the fast orientation ϕ for A-, C-, and E-type olivine, controlled by 
the oscillation parameter d1. This methodology has enabled an investigation of the olivine fabric type in the 
asthenosphere beneath the southern Cascadia subduction zone back-arc. A comparison between expected 
and observed δϕ variations in our study region has revealed that C-type olivine (d1C ∼ 3.92) cannot be the 
dominant origin of azimuthal upper mantle anisotropy beneath our study region. A-type (d1A ∼  −1.55) 
and E-type olivine (d1E ∼ −0.53) both match the observations and represent plausible scenarios. While it is 
challenging to clearly distinguish between A- and E-type, the agreement with smaller δϕ amplitudes and 
the potential to explain the large delay times observed suggests that E-type is probably the dominant fabric. 
While a 160 km thick layer (depths between 30–190 km) of E-type fabric can explain delay times Δt of up 
to ∼1.75 s, the larger Δt ∼ 2.48 s would require a 230 km thick layer. This inference is consistent with pre-
vious work that suggested a contribution from deep upper mantle anisotropy to SWS observations beneath 
Cascadia's back-arc, which would clarify why predicted delay times Δtp from surface wave anisotropy are 
generally too small to match SWS measurements. Furthermore, it provides a reason why interpolated Δt 
and vertically integrated travel times tt, determined for an anisotropic layer between 30 and 190 km, do not 
agree particularly well. The inferred presence of E-type olivine fabric implies a moderately hydrated upper 
mantle in which the observed ϕ pattern, which is spatially correlated with low-velocity anomalies (possibly 
affected by the occurrence of partial melts), likely reflects the prevailing mantle flow. We argue that the 
most likely mechanism to sustain moderate hydration in the Cascadia subduction zone back-arc is through 
the material inflow of hydrated oceanic subslab mantle, since the subducting Gorda-Juan de Fuca slab itself 
is relatively young, warm, and likely dry. Following previous findings, this transport is probably accom-
plished through a combination of toroidal flow around the slab edge and/or flow through a slab window, 
driven by slab rollback. The inferred moderately hydrated back-arc upper mantle also suggests that the bulk 
of the asthenospheric volume has not been subjected to partial melting; rather, partial melting may have 
been confined to relatively small volumes of mantle in its shallowest portion, directly beneath the Moho.

Appendix A: Stiffness Tensor Misalignment
Figure A1 shows hemispheres of the P-wave velocity VP (left) and the S-wave anisotropy dVS (including ϕ; 
right) of the full stiffness tensors of Jung et al. (2006) for A- (top), C- (center), and E-type olivine (bottom). 
These tensors do not only consist of non-zero orthorhombic elements and their subsets, but also contain 
monoclinic and triclinic components. Hence, symmetry axes are not perfectly aligned with X1, X2, and X3, 
which affects the parameter distributions.

To adjust misalignment, we carried out decompositions using MS_decomp by Wookey and Walker (2015b), 
based on Browaeys and Chevrot (2004), subtracted monoclinic and triclinic elements, and orientated re-
maining components toward X1, X2, and X3. Resulting alterations are shown subsequently (Figure A2).
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Figure A1. Variation of P-wave velocity VP and S-wave anisotropy dVS (including fast orientation ϕ). Magenta, dashed circles mark the incidence θ ∼ 11.88°, 
used in Figure 4, for A-type (top), C-type (center), and E-type olivine (bottom) under upper mantle conditions (5 GPa, 1,573 K). These are based on the full 
stiffness tensors of Jung et al. (2006). X1 (N–S) and X2 (E–W) axes define the shear plane in which the shear direction is parallel to X1.
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Appendix B: Variation of Delay Times Δt With Backazimuth
As indicated in the main text, Figure B1 shows the angular behavior of delay times Δt (top). In accordance 
with the processing steps for δϕ, we determine δΔt along Baz-𝐴𝐴 �̄�𝜙 (second row) and introduce thresholds (ma-
genta lines) based on the related distribution (0.05 and 0.95 quantile) to remove outliers. Due to potential 
biases in the vicinity of Null orientations, more stable means and medians can be determined per interval 

Figure A2. Percentage change from full to orthorhombic olivine stiffness tensor for A-type (left), C-type (center), and 
E-type (right) of Jung et al. (2006).

Figure B1. Backazimuthal distribution of delay times Δt in the study area. (top) Individual shear-wave splitting 
measurements from all SKS and SKKS phases. (second row) Variation δΔt from station averages in relation to 
backazimuths with respect to the average fast orientation per station 𝐴𝐴 �̄�𝜙 . Intervals of interest (±27°) are highlighted (gray 
shaded); thresholds for δΔt (solid, magenta lines) are determined from the distributions. (third row) Means (diamonds) 
and medians (pluses) of measurements inside thresholds (on δΔt and δϕ see Figure 6) per interval. (bottom) Derived 
means (error bars: 2σ-error) and medians compared with expected variations from the Taylor-series expansion (solid 
lines) in Figure 4 for A-type (blue), C-type (green), and E-type (red) olivine.
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(±27°; gray shaded), in which similar variations for δΔt are indicated (third row). As predicted, δΔt tends 
to be ∼0 s at the backazimuths of interest (except 45°) and cannot provide further indications on the fabric 
(bottom). Since the increased amount of measurements around 135° and 225° occurs with a larger varia-
tion, the 2σ-errors remain comparable among the different intervals.

Data Availability Statement
All data sources and software products, used in this study, are referenced in detail in the Acknowledgments.
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