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ABSTRACT  36	

  The eastern margin of North America has been affected by a range of fundamental tectonic 37	

processes in the geologic past. Major events include the Paleozoic Appalachian Orogeny, which 38	

culminated in the formation of the supercontinent Pangea, and the breakup of Pangea during the 39	

Mesozoic. The southern New England Appalachians exhibit a particularly rich set of geologic and 40	

tectonic structures reflecting multiple episodes of subduction and terrane accretion, and subsequent 41	

continental breakup. It remains poorly known, however, to what extent structures at depth in the 42	

crust and lithospheric mantle reflect these processes, and how they relate to the geological 43	

architecture at the surface. The Seismic Experiment for Imaging Structure beneath Connecticut 44	

(SEISConn) was a deployment of 15 broadband seismometers in a dense linear array across 45	

northern Connecticut. The array traversed a number of major tectonic boundaries, sampling across 46	

the Laurentian margin in its western portion to the Avalonian terrane at its eastern end, and also 47	

crossed the Hartford Rift Basin in the central portion of the state. The SEISConn stations operated 48	

between 2015 and 2019; data from the experiment are archived at the Incorporated Research 49	

Institutions for Seismology Data Management Center (IRIS DMC) and will be publicly available 50	

beginning in 2021. A suite of imaging techniques are being applied to SEISConn data, with the 51	

goal of providing a detailed view of the crust and mantle lithosphere (including discontinuities, 52	

seismic velocities, and seismic anisotropy) beneath the southern New England Appalachians. 53	

Results from these analyses will inform a host of fundamental scientific questions about the 54	

structural evolution of orogens, the processes involved in continental rifting, and the nature of 55	

crustal and mantle lithospheric deformation during subduction, terrane accretion, and continental 56	

breakup. 57	

 58	
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INTRODUCTION  59	

 Eastern North America is a passive continental margin that has been shaped by multiple 60	

episodes of supercontinent assembly and breakup. The most recent of these cycles encompassed 61	

the Appalachian Orogeny, which culminated in the formation of the Pangea supercontinent, as 62	

well as subsequent rifting that broke apart Pangea and formed the present-day Atlantic Ocean basin. 63	

Appalachian orogenesis involved several distinct phases over a period of several hundred million 64	

years (e.g., Hatcher, 2010). The first phase, the Taconic orogeny, involved the accretion of arc 65	

terranes onto the margin of Laurentia (e.g., Karabinos et al., 1998), while later phases (the 66	

Acadian-Neoacadian and Alleghanian orogenies) involved superterrane accretion and continental 67	

collision (e.g., Hatcher, 2010; Ver Straeten, 2010; Bartholomew and Whitaker, 2010). 68	

Supercontinental breakup was accomplished via a complex set of rifting processes and was 69	

accompanied by voluminous magmatism associated with the Central Atlantic Magmatic Province 70	

(e.g., Schlische et al., 2003). These Mesozoic rifting processes are expressed in a number of 71	

abandoned rift basins along eastern North America; the Hartford Basin is among the most 72	

prominent of these (e.g., Withjack and Schlische, 2005).  73	

 The southern New England Appalachians present a prime opportunity to investigate, within 74	

a compact region, the nature of complex structures that have resulted from a complicated history 75	

of subduction and terrane accretion (Figure 1). The bedrock geology of Connecticut expresses the 76	

juxtaposition of a variety of terranes, of both continental and volcanic arc affinity and from across 77	

the Laurentian and peri-Gondwanan realms. Specifically, proto-North American units are found 78	

in the northwestern portion of Connecticut, including Grenville basement rocks up to ~1.1 Ga old 79	

(Figure 2). A protracted series of subduction-collision events during Appalachian orogenesis 80	

resulted in the accretion of various terranes  onto proto-North America (e.g., Karabinos et al., 1998; 81	
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Aleinikoff et al., 2007), including the Avalonian terrane  in the southeastern corner of Connecticut 82	

(e.g., Wintsch et al., 1992). Later rifting during the Mesozoic modified (and was likely influenced 83	

by) these pre-existing structures and formed the Hartford Rift Basin in the central portion of the 84	

state (Figure 2; e.g., Schlische, 1993).    85	

 The state of Connecticut thus encompasses widely varied bedrock geology, reflecting a 86	

range of subduction, terrane accretion, and rifting processes, within a compact area. For this reason, 87	

it can be efficiently sampled with a relatively modest seismic array. The goal of the SEISConn 88	

project is to carry out imaging of the crust and mantle that will inform a set of scientific questions 89	

related to the formation and preservation of structures in the deep crust and mantle lithosphere. 90	

First, we are interested in how episodes of subduction and terrane accretion during Appalachian 91	

orogenesis affected crustal and mantle lithospheric structure, and whether (and how) present-day 92	

deep structure corresponds to surface geology. Second, we are interested in how structure was 93	

modified by (failed) rifting during the Mesozoic, and how the structure beneath the Hartford Rift 94	

Basin compares to structure across the (ultimately successful) rifted margin of eastern North 95	

America (e.g., Lynner and Porritt, 2017). Third, we wish to understand how the crust and 96	

lithospheric mantle were deformed during subduction, terrane accretion, and rifting, and to what 97	

extent the signature of this past deformation has been preserved over geologic time. 98	

 Motivated by these scientific questions, the SEISConn field experiment was carried out 99	

across northern Connecticut between 2015 and 2019. The experiment was conceptualized and run 100	

by PI Maureen Long (Yale University), while John Aragon (Yale University) served as project 101	

manager/field technician and designed the station layout, described below. The deployment itself 102	

was funded mainly by Yale, with some support for field participants (via the Field Experiences for 103	

Science Teachers program, described below) provided by the U. S. National Science Foundation 104	
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(NSF). The analysis of SEISConn data is being supported by the EarthScope and Geophysics 105	

programs of NSF. We deployed a linear array of 15 broadband seismometers across northern 106	

Connecticut and Rhode Island (Figure 2), with data collection beginning in August 2015 and 107	

ending in August 2019. The instruments recorded data continuously and relied on natural (passive) 108	

earthquake sources, recording both teleseismic and regional events as well as ambient noise that 109	

was useful for imaging. The dense station spacing of the experiment (roughly 10 km) allows for 110	

unaliased imaging of crustal structure on length scales that are relevant for the complex geology 111	

of the area (Figure 1). The SEISConn array traversed a number of geologic terranes, from 112	

Laurentian rocks at its western end to the Avalonian terrane at its eastern end, and crossed through 113	

the Hartford Rift Basin in its central portion. 114	

  115	

INSTRUMENT DEPLOYMENT AND DETAILS   116	

 A map of seismic stations that operated as part of the SEISConn experiment is shown in 117	

Figure 2. The SEISConn array extended from Lakeville, Connecticut in the west to Chepachet, 118	

Rhode Island in the east. The easternmost station location in Rhode Island was chosen to achieve 119	

coverage across the Lake Char/Honey Hill Fault in eastern Connecticut (Figure 2), which marks 120	

the boundary between Avalonia (to the east) and other peri-Gondwanan terranes (to the west). The 121	

station naming convention involved sequential labeling from CS01 at the western end to CS15 at 122	

the eastern end. The array aperture was 150 km, and 15 stations were installed, for a nominal 123	

station spacing of just over 10 km. We deployed Trillium 120 PA broadband seismometers, paired 124	

with Taurus digitizer/dataloggers, manufactured by Nanometrics, Inc. and owned by Yale 125	

University. Data were recorded at 40 Hz sample rate on channels BHE, BHN, and BHZ and were 126	

stored locally on compact flash cards.  127	
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We began deploying instruments in August 2015, and installed 6 stations (CS02, CS03, 128	

CS04, CS05, CS13, and CS14) in the summer and fall of 2015. An additional 6 stations (CS06, 129	

CS07, CS08, CS10, CS12, and CS15) were installed in summer 2016, and the remaining 3 130	

instruments (CS01, CS09, and CS11) were deployed (or, in the case of CS01, repaired) in summer 131	

2017. We demobilized 3 stations (CS04, CS05, and CS12) in fall 2018 due to equipment failures 132	

(and a desire to relocate working equipment to stations that had experienced persistent equipment 133	

problems). The bulk of the array was demobilized in summer 2019. In total, we collected between 134	

18 and 47 months of continuous data at each station. Service visits were carried out at 135	

approximately 4-8 month intervals, depending on weather conditions; during service runs, we 136	

assessed station health, swapped data cards, and fixed any problems. The proximity of the station 137	

locations to our home university proved to be a major advantage during servicing, as it allowed us 138	

to (re)visit stations that were experiencing problems with a minimum of time and logistical 139	

planning.  140	

 Station sites were identified by first conducting an initial survey of nominal locations on 141	

Google Earth. When possible, we contacted local non-profit entities via email to identify willing 142	

station hosts. Many of the nominal station locations were located in residential neighborhoods; for 143	

those sites, we carried out a successful campaign of distributing fliers asking for volunteers who 144	

would be willing to host a station. Two of our stations were located on land owned by Yale 145	

University, one at the Yale-Myers Forest in Eastford, CT and one at the Yale Camp at Great 146	

Mountain Forest in Norfolk, CT. We sited four of our stations on property owned by farms or non-147	

profits such as retreat centers and camps. Most of our stations (9) were hosted by private 148	

landowners and located in the backyards of homes in rural or suburban residential neighborhoods.   149	

 Our seismic station design (Figure 3) included a large (roughly 35 gallon) high density 150	
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polyethylene barrel that was buried in the ground to serve as a vault. We seated each vault in 151	

concrete to achieve coupling with the ground, and poured additional concrete into the barrel to 152	

serve as a pad for the seismometer. Two 36 W solar panels were installed using a mount built of 153	

fence posts and PVC pipes (Figure 3); the GPS clock antenna was mounted next to the solar panels. 154	

A covered wooden housing for electronics was built for each station, using a sawhorse as a starting 155	

point and adding a plywood floor and sides. Cables from the sensor, the GPS antenna, and the 156	

solar panels were run through PVC pipes to the electronics housing, which held the Taurus 157	

datalogger, the solar converter, and one or more 12 V deep cycle marine batteries. We used a mix 158	

of batteries with different specifications and manufacturers on the experiment, with most rated 159	

near 80 amp-hours.  We used up to three batteries (in parallel) for a few stations that received 160	

limited sunlight during the day. A removable plywood side panel was mounted with wood screws 161	

onto the electronics housing; the panel was removed (using a cordless drill) for each service visit 162	

and remounted before departing the station. We found that this station design provided excellent 163	

security and reliability, with minimal risk for water damage or vandalism. Because the electronics 164	

were located off the ground in the wooden housing and not partially buried in a plastic box as in 165	

some of our previous deployments (e.g., Long et al., 2020), we had no problems with flooding or 166	

water damage to the equipment; furthermore, we had no episodes of vandalism.    167	

 168	

DATA QUALITY AND AVAILABILITY 169	

 All data and associated metadata from the SEISConn experiment are held in the archive of 170	

the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC) 171	

and can be accessed with a range of data access tools. The dataset (network code XP; 172	

doi:10.7914/SN/XP_2015) was archived at the DMC beginning in 2016. The data are embargoed 173	
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for a period that extends until two years after the end of the experiment (consistent with NSF data 174	

sharing policies) and will be released to the public in August 2021. Researchers who are interested 175	

in using SEISConn data before the end of the embargo period are encouraged to contact the PI, 176	

who will grant access to data for any analyses that are not already in progress. We note that there 177	

are other broadband seismic instruments deployed in southern New England either before or during 178	

our experiment, and data from these stations are also being incorporated into several of the analyses 179	

we describe below. Other relevant networks include the USArray Transportable Array (network 180	

code TA; doi:10.7914/SN/TA), the Central and Eastern U.S. Network (network code N4; 181	

doi:10.107914/SN/N4), the Lamont Doherty Cooperative Seismographic Network (network code 182	

LD), and the New England Seismic Network (network code NE; doi:10.7914/SN/NE). 183	

The data quality from the SEISConn experiment was generally high, although there were 184	

a few notable problems. In particular, we had persistent issues with power or equipment failures 185	

at several SEISConn stations. Figure 4 shows a matrix of data availability/downtime, highlighting 186	

data gaps of greater than 10,000 s (roughly 3 hours). On average, the experiment had an 83% data 187	

return, with data return at a few individual stations (CS02, CS04, and CS10) as low as 40-50%. 188	

Each of these stations had persistent problems with datalogger failures (CS02 and CS10) or 189	

challenges with the power supply (CS04) due to insufficient sun exposure. The datalogger at 190	

station CS10 was replaced in summer 2018 to ensure that at least one complete and continuous 191	

year of data was collected at this site. Station CS13 experienced a power failure in late 2016 from 192	

a short circuit in a solar panel cable that was replaced in summer 2017. A few stations experienced 193	

generally good data return but had intermittent gaps of 10,000 s or more throughout portions of 194	

the deployment time (CS06, CS09, CS15). Of the 15 stations, nearly half (7) had data returns of 195	

95% or more.   196	
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 We investigated the noise profiles of the SEISConn stations by constructing power spectral 197	

density (PSD) plots using the MUSTANG tool (Casey et al., 2018) provided by the IRIS DMC. 198	

Figure 5 shows a suite of probability density functions (PDFs) of PSDs for representative stations 199	

of the SEISConn seismic experiment, and compares them to high- and low-noise models of 200	

Peterson (1993). We show PDFs of all three components for a station with a representative noise 201	

profile (station CS10, Figure 5a-c). These PDFs exhibit a typical shape, with a peak in the 202	

microseismic noise band, and with the horizontal components being substantially noisier at long 203	

periods than the vertical component, as expected. For station CS10, the mode of the distribution 204	

lies between the high and low noise models at nearly all period ranges; it is close to the high noise 205	

model at long periods on the horizontal components and close to the low noise model at long 206	

periods on the vertical. We compare the vertical component PDFs for several additional stations 207	

in Figure 5d-f; of these, two (CS06 and CS14) have moderate to low noise, while one (CS02) is 208	

representative of a high-noise station, particularly at high frequencies. We found that most of the 209	

SEISConn stations had generally moderate noise levels, with a few exhibiting notably higher noise. 210	

Specifically, two stations (CS02 and CS08) exhibited elevated noise levels at high frequencies; 211	

both stations were located closer to roads or other cultural noise sources than would be ideal. We 212	

also found that a few stations were notably noisier than average at long periods (~10 s and greater), 213	

specifically CS01, CS05, and CS13. Station CS11 exhibited an unusual noise spike at ~100 s 214	

period, for reasons that are not clear. 215	

 Given the generally good data quality and relatively long deployment times (18 to 47 216	

months of available data) for most SEISConn stations, the coverage and completeness of the 217	

dataset is more than sufficient for the analyses that are being applied to the data, which are 218	

discussed further below. Figure 6 shows a record section of SEISConn data for the September 219	
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2017 Mw = 8.2 earthquake near Chiapas, Mexico (e.g., Ye et al., 2017), a large normal fault 220	

earthquake that occurred within the subducting Cocos Plate. The earthquake epicenter was located 221	

approximately 33° from the center of the SEISConn array. Figure 6 shows clear arrivals of both 222	

body wave and surface wave phases across the array. We recorded a large number of high-quality 223	

teleseisms during the time period of the SEISConn deployment, providing ample sources for 224	

analyses that rely on distant events. Figure 7 shows a map of 822 earthquakes of moment 225	

magnitude 5.8 and greater, at epicentral distances of 40° and greater, that occurred within the 226	

timeframe of our experiment (August 2015 – August 2019).       227	

  228	

INITIAL OBSERVATIONS, RESULTS, AND FUTURE DIRECTIONS 229	

 A number of data analysis efforts are underway using data from the SEISConn experiment. 230	

We have presented preliminary results based on P-to-S (Long et al., 2018, 2019) and S-to-P 231	

(Goldhagen et al., 2019) receiver function analysis, SKS splitting measurements (Lopes et al., 232	

2020), and full-wave ambient noise tomography (Yang et al., 2019; Gao et al., in revision). A suite 233	

of additional analyses are either in progress or will soon get underway, including the application 234	

of Generalized Radon Transform (GRT)-based wavefield migration imaging (e.g., Rondenay, 235	

2009; Hopper et al., 2016), body wave travel time analysis (e.g., Menke et al., 2016), finite-236	

frequency SKS splitting tomography for imaging anisotropic structure (e.g., Mondal and Long, 237	

2020), joint inversion of surface wave and scattered body wave data (e.g., Eilon et al., 2018), and 238	

anisotropy-aware receiver function analysis (e.g., Long et al., 2017). Finally, a key component of 239	

our project plan involves the integration of SEISConn imaging results with constraints obtained 240	

from complementary approaches involving petrology, geochemistry, geochronology, and 241	

structural geology investigations (e.g., Long et al., 2019; Severson et al., 2020). Data from the 242	
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SEISConn project will eventually be used to test specific hypotheses relating to southern New 243	

England tectonics that have been formulated based on geologic observations (e.g., Wintsch et al., 244	

2014; Kuiper et al., 2017; Massey et al., 2017). 245	

 Our crustal imaging targets include the depth, strength, and sharpness of the Moho interface, 246	

the existence and character of intracrustal layering, crustal velocity structure, the presence, 247	

characteristics, and geometry of dipping interfaces that may represent relict slab- or suture-related 248	

structures, and the presence and strength of crustal seismic anisotropy. Initial results on crustal 249	

structure from Ps receiver function analysis and ambient noise tomography are shown in Figure 8, 250	

which is modified from Gao et al. (in revision). We find evidence for profound lateral variations 251	

in crustal structure across northern Connecticut; of particular interest is the very sharp step in the 252	

Moho that is evident in the western portion of the array (Figure 8). Specifically, we estimate Moho 253	

depths of ~45 km at the western end of the profile, with an abrupt transition to much thinner crust 254	

(~28 km) over a distance of ~15-20 km (Long et al., 2019). The Moho step appears to coincide 255	

with the edge of Laurentia; this is similar to findings elsewhere in the northeastern U.S. (e.g., C. 256	

Li et al., 2018, 2020), but the tight station spacing of the SEISConn array allows us to place more 257	

precise constraints on the geometry of the transition in crustal thickness. Our shear wave velocity 258	

model for the crust beneath Connecticut (Gao et al., in revision; Figure 8) reveals evidence for a 259	

widespread low-velocity zone in the mid-crust (depths between ~10 and 20 km), which may reflect 260	

radial seismic anisotropy due to deformation associated with rifting and extension during the 261	

Mesozoic. Finally, we also image a prominent high-velocity zone in the lower crust directly 262	

beneath the Hartford Rift Basin (Figure 8), which we interpret as reflecting the presence of dense, 263	

mafic material that was emplaced during Mesozoic rifting and volcanic activity.  264	

 In addition to our crustal imaging targets, we are also working to elucidate the structure 265	
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(isotropic and anisotropic) of the mantle lithosphere and asthenospheric upper mantle beneath the 266	

SEISConn array. Preliminary results from SKS splitting analysis (Lopes et al., 2020) reveal single-267	

station average splitting parameters (fast direction and delay time) that vary only slightly across 268	

the SEISConn array, and are consistent with the generally nearly E-W fast splitting directions that 269	

are observed across much of New England (e.g., Long et al., 2016; Levin et al., 2018). Examination 270	

of SKS splitting parameters at individual stations shows that there is some variability in apparent 271	

splitting with backazimuth, as would be expected in the presence of multiple layers of anisotropy. 272	

Our preferred interpretation is that SKS splitting beneath SEISConn mainly reflects present-day 273	

flow in the upper mantle, driven by the motion of the North American plate over the underlying 274	

asthenosphere, with a modest contribution from lithospheric anisotropy that is frozen in from past 275	

deformation episodes. This view is generally consistent with previous studies in the region (e.g., 276	

Y. Li et al., 2019). Future work on anisotropy-aware receiver function analysis and the application 277	

of SKS splitting tomography should help to elucidate the details of the lithospheric contribution. 278	

Initial results on the discontinuity structure of the mantle lithosphere beneath our study area from 279	

Sp receiver functions (Goldhagen et al., 2019) reveal evidence for generally thin lithosphere 280	

beneath southern New England, with a pronounced lateral transition in lithospheric structure that 281	

coincides with the step in the Moho at the edge of Laurentia.     282	

 283	

EDUCATION AND OUTREACH ACTIVITIES 284	

 In addition to the scientific analyses being carried out, a number of education and outreach 285	

activities have been executed as an integral part of the SEISConn project. The most notable of 286	

these is the Field Experiences for Science Teachers (FEST) program, which is described in detail 287	

by Long (2017). This program brings together Connecticut-based high school science teachers and 288	
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Yale personnel who are working on the SEISConn experiment. Teachers have participated in one-289	

week summer field experiences that include one day of orientation and safety training at Yale and 290	

four days of field work visiting SEISConn stations for installation, servicing, and/or 291	

demobilization activities. As noted by Long (2017), the workflow of broadband seismic 292	

experiments allows for novice field personnel to make a meaningful contribution to data collection 293	

even in the context of a relatively brief field experience. Six one-week FEST sessions have been 294	

run as of Summer 2019, and the program has reached 19 teacher participants to date from across 295	

Connecticut and from districts that include urban, suburban, and rural settings. Most FEST 296	

participants teach at public schools, with a few participants coming from private institutions. 297	

Funding for the FEST program, which included stipends for teacher participants, was provided by 298	

NSF via a CAREER grant to PI Maureen Long and via a subsequent grant from the EarthScope 299	

and Geophysics programs that is also supporting the analysis of SEISConn data. FEST program 300	

participants have made up the bulk of the field personnel for the SEISConn deployment, and have 301	

thus made an integral contribution to the success of the project.  302	

A seventh session of FEST (originally planned for summer 2020, but now deferred to 2021 303	

because of the COVID-19 pandemic) will bring back previous field participants and will focus on 304	

crafting lesson plans and classroom activities, aimed at high school students in earth science or 305	

physics courses, that use SEISConn data to teach about wave propagation and/or the geologic 306	

history of Connecticut. These materials will be distributed through the IRIS Education and Public 307	

Outreach (EPO) InClass portal (see Data and Resources) for instructional resources, and will be 308	

publicized via the Connecticut Science Teachers Association (CSTA; see Data and Resources) 309	

email list. Results from SEISConn have been presented to Connecticut science teachers through 310	

sessions at the annual CSTA conference in 2017 and 2018, which focused on the scientific aspects 311	
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of the project and on best practices in cultivating science-teacher partnerships, respectively.    312	

 In addition to the FEST program, other SEISConn education and outreach activities have 313	

included the participation of undergraduate (and graduate) students in field work and research and 314	

the dissemination of results to the public through media interviews, public talks, and displays. 315	

Approximately a dozen undergraduate students took part in SEISConn field activities, including 316	

students from Yale, Rutgers University, the University of Wisconsin, Williams College, the 317	

University of Münster, and Highline Community College. Several of these students were 318	

participating in undergraduate research internships, including one through the IRIS summer intern 319	

program and one through the Research Experiences for Veteran Undergraduates (REVU) program 320	

at Yale (see Data and Resources). Results from the project have been shared with the general 321	

public through interviews with local media and talks at venues that have included a local Rotary 322	

Club meeting and the Yale-Myers Forest Summer Seminar Series. One of our station hosts, a farm 323	

and maple syrup producer that regularly welcomes school-age children for field trips, included 324	

material on the project and a stop at the seismic station in visitor tours of the property. A planned 325	

series of talks on the SEISConn project, geared towards the general public and to be offered at 326	

local libraries in Connecticut, has been postponed until 2021 but should offer an excellent avenue 327	

for sharing results with Connecticut residents.   328	

 329	

SUMMARY  330	

 The SEISConn experiment, a linear array of 15 broadband seismic stations, was deployed 331	

across northern Connecticut between 2015 and 2019. The major scientific goals of the SEISConn 332	

project include an investigation of how the present-day structure of the crust and mantle beneath 333	

Connecticut has been affected by episodes of subduction and terrane accretion during Appalachian 334	
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orogenesis, with a focus on characterizing the structure near major terrane boundaries. We are also 335	

interested in how lithospheric structure was modified by extension and rifting associated with the 336	

breakup of Pangea during the Mesozoic, and in the detailed structure of the crust and mantle 337	

lithosphere beneath the Hartford Rift Basin. Finally, we are investigating the nature of crustal and 338	

mantle deformation during subduction, terrane accretion, and rifting. Data from the SEISConn 339	

experiment are being used to construct images of the crust and mantle lithosphere that can address 340	

this set of scientific questions. Preliminary results from crustal imaging reveal a step in the Moho 341	

in the western portion of the array, coincident with the boundary of Laurentia, with thin crust 342	

beneath the Hartford Rift Basin. We image a region of high shear velocities in the lower crust 343	

directly beneath the basin, which we interpret as evidence for the presence of dense mafic material 344	

emplaced during volcanism that was contemporaneous with rifting. Preliminary SKS splitting 345	

measurements reveal fast splitting directions that are close to absolute plate motion, indicating that 346	

upper mantle anisotropy is likely controlled mainly by the absolute motion of the North American 347	

plate, perhaps with a moderate contribution from frozen-in anisotropy in the lithosphere. Initial 348	

views of lithospheric discontinuity structure from receiver function analysis reveal complex and 349	

laterally variable structure. Education and outreach activities associated with the SEISConn project 350	

have emphasized field experiences for high school science teachers and communicating results 351	

from the experiment to teachers and to the general public. SEISConn data are archived at the IRIS 352	

DMC and will be publicly available beginning in August 2021. 353	

 354	

DATA AND RESOURCES 355	

 Data from the SEISConn experiment (network code XP; doi:10.7914/SN/XP_2015) are 356	

archived at the IRIS DMC (https://ds.iris.edu/ds/nodes/dmc, last accessed May 2020). The data 357	
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are under embargo until August 2021, consistent with NSF data sharing policies. Researchers who 358	

are interested in using the data prior to this date are encouraged to contact the PI for access, which 359	

will be granted for any analyses not already in progress. The IRIS Education and Public Outreach 360	

InClass portal can be found at https://www.iris.edu/hq/inclass (last accessed May 2020); the 361	

Connecticut Science Teachers Association website can be found at https://www.csta-us.org (last 362	

accessed May 2020); the Research Experiences for Veteran Undergraduates website can be found 363	

at https://www.revuprogram.com (last accessed May 2020). 364	

 365	
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FIGURES AND CAPTIONS 536	

 537	

 538	

 539	

 540	

 541	

 542	

Figure 1. Generalized lithotectonic map of the Appalachian orogen, modified from Murphy et al. 543	

(2010), after Hibbard et al. (2006). Box outlines the region targeted by the SEISConn array, which 544	

affords the opportunity to probe the deep structure associated with a number of distinct terranes 545	

(as well as the Hartford Rift Basin, not shown) with a relatively compact seismic array.   546	

 547	
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 548	

 549	

Figure 2. Map of SEISConn station locations (red triangles). Background grayscale shows 550	

topography (m), as shown by scale bar at right. Thin black lines indicate state boundaries. Major 551	

tectonic boundaries are indicated with thick lines. These include the boundaries of the Hartford 552	

Rift Basin (green) in the central portion of the state, the Lake Char-Honey Hill Fault (orange) in 553	

the eastern part of the state, which marks the western boundary of the Avalonian terrane, and 554	

Cameron’s Line (red) in the western part of the state, which marks the eastern edge of Proto-North 555	

America (including Proterozoic Grenville Basement units and allochthonous units that were 556	

displaced during the Taconic Orogeny). Tectonic boundaries are from the Generalized Bedrock 557	

Geologic Map of Connecticut (Connecticut Geological Survey, 2013). Inset map shows the 558	

geographic region of our study area. 559	

 560	
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 561	

Figure 3. Field photos from the SEISConn seismic deployment. a) Photo of a completed station 562	

(CS11 in Willington, CT, installed in August 2017), showing the wooden electronics enclosure, 563	

the solar panel mount, and the buried vault (covered with dirt and tarp for thermal insulation). b) 564	

Visit to station CS03 (Norfolk, CT) for servicing in October 2017; photo shows removal of the 565	

front panel of the electronics enclosure. c) Configuration of electronics system during installation 566	

of station CS14 (Thompson, CT) in September 2015. d) Preparing to install the sensor at station 567	

CS09 (Ellington, CT) in August 2017.   568	
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 569	

 570	

Figure 4. Matrix of data availability for the SEISConn seismic deployment. Individual stations 571	

are shown on the y axis, while the x axis indicates time. Periods of continuous data availability are 572	

shown with green lines, while gaps of greater than 10,000 s are shown with red lines. Numbers to 573	

the right of the station names on the y axis indicate the percentage of data returned for each station.  574	
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 576	

 577	

Figure 5. Examples of probability density functions (PDFs) of power spectral density plots (PSDs; 578	

power in dB as a function of period in s), generated using the IRIS MUSTANG tool (Casey et al., 579	

2018), showing noise levels at SEISConn seismic stations. Color scale indicates the density. Top 580	

row (a-c) shows noise profiles for a representative station (CS10, located in Tolland, CT) for 581	

channels BHE (a), BHN (b), and BHZ (c). Bottom row (d-f) shows noise profiles for vertical 582	

(BHZ) components for three additional stations for comparisons, including one (CS02, located in 583	

Falls Village, CT) with relatively high levels of cultural noise (visible at high frequencies, in the 584	

1-10Hz (0.1-1 s period) range), one (CS06, located in West Simsbury, CT) with low levels of 585	

cultural noise, and one (CS14, in Thompson, CT) with moderate levels of cultural noise. The high 586	

and low noise models of Peterson (1993) are also indicated.  587	

 588	

 589	

 590	
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 591	

 592	

 593	

 594	

Figure 6. a) Vertical component record section showing recordings at SEISConn stations of the 595	

magnitude 8.2 earthquake near Chiapas, Mexico in September 2017. Records have been bandpass 596	

filtered to retain energy at periods between 1 and 100 s. Body and surface wave phases are visible. 597	

b) Location of the earthquake (orange star) and great circle path (thick blue line) to the center of 598	

the SEISConn array (red triangle). 599	

 600	
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 601	

Figure 7. Map of 822 teleseismic events (orange stars) of magnitude 5.8 and greater at epicentral 602	

distances beyond 40º (black circle) during the time of the deployment (August 2015-August 2019). 603	

The center of the SEISConn array is marked with a red triangle. 604	

 605	

 606	
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 607	

Figure 8. Initial results on crustal structure beneath northern Connecticut from the SEISConn 608	

project, after Gao et al. (in review). a) Shear wave velocity profile along the SEISConn array 609	

derived from full-waveform ambient noise tomography. The dot-connected solid white line shows 610	

the estimated depth to Moho beneath each SEISConn station, from Long et al. (2019). Depths are 611	

estimated from the single-station migrated receiver function traces in b). The dashed line shows 612	

the VS = 4.0 km/s velocity contour, highlighting the high-velocity root, which is particularly 613	

prominent beneath the Hartford Basin. b) Single-station stacked radial component receiver 614	

function traces, migrated to depth. Red pulses correspond to a positive velocity gradient (increase 615	

in velocity with depth) and blue pulses correspond to a negative velocity gradient (decrease in 616	

velocity with depth). Solid black line indicates estimated depths to the Moho across the profile, 617	

with the sharp step in crustal thickness visible in the western portion of the array. Dashed line 618	

indicates the VS = 4.0 km/s velocity contour from the model shown in a). 619	
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