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S U M M A R Y
Here we develop a theoretical and practical framework for the tomographic inversion of shear
wave splitting intensity measurements for anisotropic structure in the upper mantle using a
model space search approach. Treating the anisotropic scatterers as a first order perturbation to
the background isotropic state, we implement the Born approximation to compute the integral
sensitivity kernels in a finite frequency framework. We implement a parametrization of the
anisotropy based on insights from olivine elasticity and fabric development that involves three
parameters (corresponding to the azimuth and dip of the anisotropic symmetry axis, plus
a strength parameter). Previous work on finite-frequency shear wave splitting tomography
has implemented a linearization technique to invert splitting intensity data for the spatial
distribution of anisotropic scatterers. The inverse problem, however, is strongly non-linear
in terms of several of the involved parameters (those that describe the orientation of the
symmetry axis), and their variation is not of first order. Therefore, in the case of a realistic
upper mantle where anisotropic structure varies in a complicated manner, a linearization
technique may not be adequate. To ameliorate these problems, we implement a model space
search approach (specifically, a Markov chain Monte Carlo with Gibbs sampling algorithm) to
the tomographic inversion of splitting intensity data. This approach allows for the visualization
of posterior probability distributions for anisotropic parameters in the inversion. We perform
a suite of synthetic resolution tests to demonstrate the reliability of our method, using a station
distribution from an actual deployment of a dense seismic network. These resolution tests
show that anisotropic structure may be resolved up to a length scale of roughly 50 km with
teleseismic SKS waves for station spacing of 10–15 km.
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1 I N T RO D U C T I O N

Relating shear wave splitting observations to anisotropic structure
in the Earth’s interior is a classical problem in seismology (e.g.
Vinnik et al. 1984; Savage & Silver 1993; Silver 1996; Savage
1999). Shear wave splitting arises when shear waves travel through
an anisotropic medium, and refers to the phase lead of the quasi-
shear wave component polarized in the fast direction with respect to
the component polarized in the slow direction. Observations of shear
wave splitting (or other wave phenomena that reflect anisotropy) are
important in understanding various geodynamic phenomena, such
as overall patterns of mantle convection (e.g. Conrad & Behn 2010;
Long & Becker 2010), subduction dynamics (e.g. Long & Silver
2008, 2009a; Faccenda & Capitanio 2012; Long & Wirth 2013),
oceanic spreading centres and continental rift systems (e.g. Wolfe &
Solomon 1998; Kendall et al. 2005; Bodmer et al. 2015), continental
deformation (e.g. Hongsresawat et al. 2015; Long et al. 2016) and

flow at the base of the mantle (e.g. Cottaar & Romanowicz 2013;
Ford & Long 2015; Creasy et al. 2017).

A commonly used method to infer upper mantle anisotropy—and
therefore upper mantle flow patterns—is to measure shear wave
splitting parameters (fast direction, φ, and delay time, dt), typi-
cally for phases such as SKS that have been refracted through the
outer core (e.g. Long & Silver 2009b). However, the interpreta-
tion of SKS splitting measurements is not straightforward, because
they represent an integration of anisotropic structure along the ray
path. Large delay times, for example, may yield several interpreta-
tions in terms of strength of anisotropy (a thin highly anisotropic
layer versus a thick layer with weak anisotropy). Similarly, in the
presence of multiple anisotropic layers, the apparent fast direction
reflects a complicated (and non-commutative, e.g. Savage & Sil-
ver 1993; Silver & Long 2011) combination of layer parameters,
and isolating the depth of different anisotropic regions is a major
challenge.
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To lessen the ambiguity of shear wave splitting interpretation, a
tomographic approach that allows for the localization of anisotropy
is desirable. However, tomographic inversion for anisotropic struc-
ture is a daunting task, since 21 parameters are needed to describe
the most general form of anisotropy, and such a large parameter
space does not allow for a tightly constrained tomographic inversion
given limited data. Furthermore, the inverse problem for anisotropy
is highly non-linear, as the sensitivities of splitting observations to
anisotropy depend on the starting model used to compute them (e.g.
Abt & Fischer 2008). Finally, shear wave splitting tomography is
further complicated by the measurements themselves, which are
challenging for noisy data (e.g. Monteiller & Chevrot 2010), result-
ing in much smaller data sets than traditional traveltime tomography.
The measurement problem can be somewhat ameliorated by making
measurements of the splitting intensity (e.g. Chevrot 2000) rather
than the traditionally estimated splitting parameters (φ, dt), as this
quantity can be more robustly estimated from noisy data (e.g. Long
& van der Hilst 2005; Monteiller & Chevrot 2010) and has the
advantage of being commutative along the ray path (e.g. Chevrot
2006, 2000; Silver & Long 2011).

Substantial effort has been devoted to developing theoretical
frameworks and practical strategies for inverting shear wave split-
ting data for anisotropic structure, much of it in the context of
finite-frequency sensitivity kernels that relate model perturbations
to splitting observations (e.g. Favier & Chevrot 2003; Favier et al.
2004; Chevrot 2006; Long et al. 2008; Sieminski et al. 2008).
However, there have only been a few published examples of the ap-
plication of splitting tomography to actual data sets to study mantle
anisotropy. Abt & Fischer (2008) applied a ray theoretical frame-
work to invert for anisotropic structure in a subduction zone setting,
taking advantage of seismicity within the subducting slab to pro-
vide ray coverage for local S phases; this approach was also applied
by Calixto et al. (2014). Monteiller & Chevrot (2011) used data
from dense seismic networks in southern California to apply finite-
frequency SKS splitting tomography, producing a model of lateral
and depth variations of anisotropy parameters. Lin et al. (2014a) ap-
plied a full-wave approach to the computation of sensitivities and a
multiscale parametrization to the inversion of a similar data set from
southern California, based on insights from full-wave modelling of
SKS phases (Lin et al. 2014b).

While these tomographic approaches have enabled substantial
progress in understanding the 3-D distribution of seismic anisotropy
in well-sampled regions, they all share a significant limitation in
that the inversion strategy is based on a linearization around a back-
ground model, which may result in bias in the model estimation.
Sensitivity kernels for anisotropic structure depend strongly on the
background model used to calculate them, and are substantially
different for heterogeneous anisotropic starting models than for the
homogeneous ones that are often used to calculate them (Long et al.
2008). Because of this limitation, the implementation of a model
space search approach to shear wave splitting is desirable; such
an approach, while computationally intensive, avoids the explicit
linearization of a highly non-linear inverse problem, and yields
constraints on the ranges of model parameters allowed by the ob-
servations (Wookey 2012).

Building on previous work on finite frequency shear wave
splitting intensity tomography (Chevrot 2006; Long et al. 2008;
Sieminski et al. 2008), here we develop a framework for tomo-
graphic inversion of SKS splitting intensity measurements from
dense seismic networks, with a new parametrization of anisotropy
and a model space search approach. We reparametrize the full elas-
ticity tensor based on insights from olivine elasticity and fabric

development, reducing the number of parameters to three (a mea-
sure of anisotropy strength, plus the dip and azimuth of the fast
symmetry axis). We compute Born-approximation finite frequency
sensitivity kernels relating model perturbations to splitting inten-
sity, allowing us to sample the first few Fresnel zones of sensitivity
instead of assuming sensitivity along an infinite frequency ray. This
finite frequency approach allows us to obtain overlapping sensi-
tivity kernels for observations at adjacent stations, even for nearly
vertically propagating SKS waves. We implement a Markov chain
Monte Carlo (McMC) technique to sample model space and obtain a
most likely model for anisotropic structure, and sample the resulting
probability distributions for various anisotropic parameters.

The structure of the paper is as follows. We begin with a de-
velopment of the theoretical formulation necessary for the finite-
frequency anisotropy tomography problem in a 3-D, Cartesian ge-
ometry, building on previous work by Chevrot (2006) and Long
et al. (2008). We discuss a simplified parametrization for anisotropy
based on elasticity and fabric development in olivine. We then test
our forward formulation against various analytical solutions for the
behaviour of splitting intensity observations for simple anisotropic
models. Next, we develop and implement an McMC approach to
probing parameter space, and perform inversion tests with syn-
thetic data sets to evaluate computational cost and infer the re-
solving power of our algorithm for synthetic models with multiple
anisotropic layers. Finally, we discuss the prospects for implemen-
tation of our tomography strategy to actual SKS splitting data sets.

2 T H E O R E T I C A L F O R M U L AT I O N O F
S E N S I T I V I T Y K E R N E L S

Equation of motion for the infinitesimal displacement along with the
constitutive relation for linear elasticity lead to the wave equation

ρ
∂2u

∂t2
= ∇ · (C : ∇u), (1)

where u, C and ρ are the displacement, elasticity tensor and
density, respectively. Given the initial displacement and velocity
(i.e. the Cauchy data), eq. (1) has a unique time evolution [in
C2(I ⊂ R; W 1,2(V ⊂ R3)], which may be computed using Green’s
function (e.g. Graff 2012). Computation of the Green’s function
(G) involves the solution of the following inhomogeneous partial
differential equations (Aki & Richards 2002)

ρ∂2
t G = ∇ · [C : ∇G] + Iδ(r − rs)δ(t − ts), (2)

where I, rs and ts are the identity operator, seismic source location
and source time, respectively.

To focus on anisotropic tomography, we express the wave related
entities as first order perturbations from the background isotropic
reference state:

u = u0 + εδu, (3)

� = �0 + εσ, (4)

C = CI so + εδC, (5)

where [u0, �0, CI so], [δu, σ, δC] and ε represent the isotropic ref-
erence state, the perturbed state and the perturbation parameter,
respectively. Subtracting the isotropic reference state and neglect-
ing the advection term from the total derivative and higher order
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terms [o(ε2)] leads to

ρ
∂2δu

∂t2
= ∇ · (CI so : ∇δu) + ∇ · (δC : ∇u0) (6)

which resembles the equation of the motion of the unperturbed state,
with ∇ · (δC : ∇u0) being the source term (forcing term). Therefore,
we may now invoke the same Green’s function in order to compute
the perturbed displacement field. However, before doing so, we
transform the entities to the frequency domain for convenience in
computation

g(t) = 1

2π

∫ ∞

−∞

(∫ ∞

−∞
g(t ′)e−ιωt ′ dt ′

)
eιωt dω, (7)

where ω is the angular frequency. Here, we assume that g ∈ L1(R),
that is

∫ ∞
−∞ |g(t)|dt < ∞ with R being the real line in order to guar-

antee the existence of Fourier transform of Dirac’s delta function
(absolutely integrable, but not square integrable). Under such trans-
formation, elliptic equations defining the perturbed state may be
written as

− ρω2δu = ∇ · (CI so : ∇δu) + ∇ · (δC : ∇u0), (8)

and existence of its solutions is well established (Agmon 1962). The
eigenfrequency spectrum is unique and may be computed as follows.
Taking dot product of both sides of eq. (8) by δu ∈ W 1,2(V ) −
{0} and integrating over the spatial domain and assuming that the
perturbation vanishes on the boundary of the manifold (if it has a
boundary), we obtain the following expression for ω:

ω2 =
∫

V (∇δu : CI so : ∇δu + ∇δu : δC : ∇u0) dV∫
V ρ|δu|2dV

, (9)

which guarantees the existence of the solution of eq. (8) given that
the numerator is positive (which is true in the small data situation
i.e., the perturbation to the elasticity tensor is small). We may write
the solution in the frequency domain in terms of the Green’s function
as follows:

δu(ω) =
∫



G · (∇ · (δC : ∇u0))dV, (10)

which may further be simplified

δu =
∫



∇ · (G · (δC : ∇u0))dV −
∫



(δC : ∇u0) : ∇GdV, (11)

=
∫

∂

(G · (δC : ∇u0)) · ndS −
∫



(δC : ∇u0) : ∇GdV,

= −
∫



(δC : ∇u0) : ∇GdV, (12)

where we have assumed that the perturbation vanishes on the bound-
ary. Now we move on to use the expressions of the useful entities
to obtain the observables of seismic anisotropy.

In a general, 3-D elastic continuum, three body waves exist: one
primary wave (P) and two shear waves (S). In an isotropic medium,
SO(3) symmetry of the elasticity tensor forces the eigenspectrum
of the wave operator (eq. 8) to be degenerate. In other words, both
the shear waves (SV and SH) travel with the same speed. However,
in the presence of anisotropic scatterer, SO(3) symmetry is broken
and therefore, the degeneracy is lost; two shear waves have different
speeds. Thus, a phase delay between two such shear wave phases
provides an observational constraint on the anisotropic properties
of the medium.

In this study, we consider the SKS phase. The SKS phase is
generated from a P to S conversion at the core–mantle boundary and
therefore, it is supposed to be radially polarized (that is, polarization

in the source–receiver plane) in an isotropic medium. The presence
of anisotropy in the mantle, however, can transfer energy from the
radial part to the transverse part of the wave displacement field
via scattering leading to a non-zero amplitude of the transverse
component. Thus, we may use this scattered transverse amplitude
as a measure to describe shear wave splitting. Following Chevrot
(2000), shear wave splitting intensity (S) is defined as

S(r, rs) = 2
Re

∫
ιωδuT (r, rs ; ω)u∗R

0 (r, rs ; ω)dω∫
ω2|u R

0 (r, rs ; ω)|2dω
, (13)

where δuT and u R
0 are the transverse and radial components of

the displacement, respectively. Using this particular measure of
anisotropic characteristic of the SKS wave form, we construct an
integral map between the anisotropic perturbation to the elasticity
tensor and the physical observable such as the one we have just de-
fined. Now we move on to compute the integral kernels relating the
derived observable (splitting intensity) and the unknown anisotropic
scatterers.

Let us denote the unit vectors in the radial and transverse direc-
tions by r̂ and t̂, respectively. Here r̂ is the particle displacement
direction (not to be confused with the radial direction in spherical
polar co-ordinate system) associated with the SKS waves polarized
in the radial plane (source-station plane). Then the transverse com-
ponent of the scattered wave field is δu · t̂, which may be written in
the following form using eq. (12)

δuT = δu · t̂ = −
(∫



(δC : ∇u0) : ∇GdV

)
· t̂, (14)

= −
∫



((δC : ∇u0) : ∇G) · t̂dV, (15)

= −
∫



t̂ · (∇u0 ⊗ ∇G) :: δCdV . (16)

We may neglect the perturbation to the radial component, as such
perturbation has only second order effect on the splitting intensity.
This could be seen immediately from eq. (13) if one were to consider
the perturbation to the radial component, that is u R = u R

0 + δu R :
the contribution of such perturbation takes the form δuTδu∗R, which
is clearly second order and thus may be neglected. Under such
assumption, the radial component is written as

u R
0 = u0 · r̂. (17)

Now that we have obtained each component required to compute the
splitting intensity, we may substitute eqs (16) and (17) into eq. (13)

S(r, rs ) = −2
Re

∫
ιω

(∫


t̂ · (∇u0 ⊗ ∇G) :: δCdV
)

(u0 · r̂)∗dω∫
ω2|(u0 · r̂)|2dω

, (18)

= −2

∫


Re
(∫

ιω(u0 · r̂)∗ t̂ · (∇u0 ⊗ ∇G)dω
)

:: δCdV∫
ω2|(u0 · r̂)|2dω

, (19)

=
∫



K :: δCdV, (20)

where the sensitivity kernel K, which relates perturbations in δc to
splitting observation S, is given as follows:

K = −2
Re

(∫
ιω(u0 · r̂)∗ t̂ · (∇u0 ⊗ ∇G)dω

)
∫

ω2|(u0 · r̂)|2dω
. (21)

Here, ‘⊗’ represents tensor product operation on vector bundles
(tensors are treated as sections of vector bundles). In deriving the
previous equation, we have considered the fact that in purely elastic
medium, the elasticity tensor is independent of frequency.

In order to calculate the sensitivity kernels, we need the Green’s
function. For a homogeneous, isotropic wave speed model, the

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/217/1/238/5289868 by Yale U

niversity user on 01 February 2019



Finite frequency SKS splitting tomography 241

Green’s functions can be solved analytically (Aki & Richards 2002).
However, for a velocity structure that varies with depth, a semi-
analytical technique such as a propagator matrix method works well
(e.g. Gilbert & Backus 1966; Franssens 1983; Schmidt & Tango
1986). In our case, we experimented with two different methods
for approximating the Green’s function in the kernel computation.
First, we used analytical solutions for the Green’s function for a
single-layer model, using average isotropic P and S wave speeds
for the upper mantle [cp = 7.9 km s−1 and cs = 4.4 km s−1 (Cam-
marano et al. 2003)]. Second, we implemented the semi-analytical
propagator matrix technique for a depth-dependent vertical veloc-
ity profile (ak135) (Kennett et al. 1995). In the propagator matrix
technique, the fields are expanded in the Fourier series in the hor-
izontal direction (no horizontal variation of seismic wave speed),
and the frequency domain wave equation is converted to a set of
ordinary differential equations in z. Further details can be found in
Aki & Richards (2002). In our kernel computations presented in the
paper, we used the propagator matrix technique applied to the depth
dependent velocity model ak135; because it is a semi-analytical
technique, is very efficient and allows for exploration of the model
space with reasonable number of iterations. We point out, however,
that because the variations in isotropic wave speed within the up-
per mantle are not dramatic, the differences between our propagator
matrix computations for the Green’s functions in a depth-dependent
velocity model and the analytical Green’s function for a homoge-
neous, single-layer model are slight. We compared kernels using
the two different methods of computing the Green’s function, and
found that they were nearly identical.

3 PA R A M E T R I Z AT I O N

Once we have derived the expression for the sensitivity kernels
(eq. 24), in theory we may invert eq. (23) to obtain the full
anisotropic perturbation of the elastic medium given the splitting
intensity (S). However, such an inversion would involve solving for
each independent elastic constant in a fourth-rank tensor (21 in the
most general case), which represents an impractically large number
of unknown parameters given the limitations of observational data
sets. If the symmetry of anisotropy is known or assumed, then the
number of independent parameters is reduced (for example, for an
olivine crystal with orthorhombic symmetry, the number of inde-
pendent elastic constants is 9; in practice, this is still too large a
number for an anisotropic tomography problem).

In previous work, Chevrot (2006) suggested a vectorial tomog-
raphy which employs a linear inversion technique in order to esti-
mate three Thomsen’s anisotropy parameters (ε, δ and γ ). These
three dimensionless parameters are defined as follows for hexag-
onal anisotropy (for the case in which anisotropy is weak, that
is||δc||L p << ||Ciso||L p , for some p ≥ 1, Mensch & Rasolofosaon
1997)

ε = c11 − c33

2ρα2
, (22)

δ = c13 − c33 + 2c44

ρα2
, (23)

γ = c66 − c44

2ρβ2
, (24)

where ρ, α and β are the density, isotropic P, and isotropic S wave
speed, respectively. Together with the orientation of the symmetry

axis in space (dip angle from the horizontal, θ , and azimuth from
north, φ), in this formulation there are a total of five parameters to
invert, and additional simplifications are needed to reduce this num-
ber. Because typical shear wave splitting data sets cannot recover
all five parameters simultaneously without producing a bias towards
some parameters, such additional simplifications are necessary for
our problem.

Our approach is to reparametrize the strength of anisotropy using
insights from mineral physics, specifically experimental and ob-
servational constraints on the development of crystallographic pre-
ferred orientation (CPO) in olivine aggregates. Seismic anisotropy
of the upper mantle is thought to be mainly controlled by this mecha-
nism (Karato et al. 2008); furthermore, olivine aggregates that have
been deformed to high strains develop CPO such that the elasticity
of textured aggregates has a geometry (though not a strength) that
is generally similar to the elasticity of single-crystal olivine (e.g.
Karato et al. 2008). We therefore assume that olivine aggregates
in the upper mantle will exhibit behaviour characteristic of a linear
mixture of two endmembers: an isotropic equivalent, in which the
individual grains are randomly oriented, and a perfectly aligned ag-
gregate, in which all grains exhibit the same (preferred) orientation
and the elasticity is equivalent to a single crystal of olivine. In this
scheme, the strength of anisotropy can be described with a single
parameter that varies from 0 (random alignment) to 1 (complete
alignment). We further assume that the elasticity of the aligned
olivine endmember can be well described by a hexagonal approxi-
mation to the actual (orthorhombic) symmetry, an assumption that
is justified by the elastic characteristics of single-crystal olivine,
along with experimental results on deformation of polycrystalline
olivine aggregates (e.g. Karato et al. 2008).

Our goal is to obtain a hexagonal equivalent of the orthorhombic
olivine tensor. There are several ways of doing so; one way is to use
the projection method described in Browaeys & Chevrot (2004).
An alternative (but conceptually equivalent) method to obtain the
hexagonal part of the orthorhombic tensor is to rotate about the
[100] (fast) olivine axis and average the elements of the elasticity
tensor describing the intermediate and slow velocities, as described
below. We have tested both schemes and they yield virtually iden-
tical results; results shown in this paper were obtained using the
latter approach. We carry out hexagonal averaging of the elasticity
tensor from the lower (orthorhombic) symmetry class by taking the
angular average of each of the three sets (c11, c22), (c44, c55) and
(c13, c23). This averaging scheme utilizes the fact that elements of
each set do not differ substantially from each other (that is, the or-
thorhombic symmetry is weak on the plane perpendicular to the c
axis). The spherical harmonic averaging is done using

C11hexagonal

=
∑∞

l=0

∫ 2π

0 (C11orthorhombic(�) + C22orthorhombic(�))Pl (cos �)d�

2
∑∞

l=0

∫ 2π

0 Pl (cos �)d�
,

(25)

where Pl’s are the ordinary Legendre polynomials and � is angle
of rotation about c axis. Similarly, other sets [(C44, C55) and (C13,
C23)] may also be averaged to obtain the hexagonal equivalence. Fol-
lowing homogeneous stress approximation (Reuss average; Reuss
1929), the elastic constants of the mixture Cij may be expressed as

Ci j = χCi jsingle + (1 − χ )Ci j I sotropic, (26)

where χ is the fraction of pure hexagonal crystal present in the mix-
ture. This formulation uses the technique of Browaeys & Chevrot
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(2004) in order to extract the isotropic part of the elasticity ten-
sor from the full olivine anisotropic tensor. Using this particular
approximation, we may compute the three Thomsen’s parameters
based on eqs (22)–(24) and note their evolution as a function of χ

(Fig. 1). When the mixture consists of completely aligned crystals
(χ = 1), the Thomsen’s parameters are that of (hexagonally aver-
aged) olivine, and for the purely isotropic crystal (χ = 0), they are
identically zero.

We checked whether the Thomsen parameters that we computed
for the hexagonally averaged crystal are close to those presented
in Becker et al. (2006). This comparison is imperfect, however,
because Becker et al. (2006) used an aggregate of olivine and en-
statite, rather than the pure olivine aggregate that we use in our work.
The values for the Thomsen parameters in our work are therefore
not identical, but they are similar. Thomsen’s parameters (ε, δ, γ )
vary linearly with χ , as shown in Fig. 1(a). Figs 1(b)–(d) show the
correlation between the Thomsen parameters. We also considered
the correlations among different Thomsen parameters, both for our
result and the one presented in Becker et al. (2006), and again the re-
lationships were generally similar. Because in our approach we used
a linear mixture between the isotropic and (hexagonal) anisotropic
crystals, a linear correlation between the anisotropy parameters is
expected, and this is indeed what is observed.

Using eqs (20), (21), (22)–(24) and (26) we may obtain the fol-
lowing simplified equation relating the splitting intensity and the
‘strength’ of anisotropy

S(r) =
∫



Kχ (r, θ, φ; rs)χ (rs)d3rs, (27)

where Kχ is the corresponding sensitivity kernel, which is itself a
non-linear function of the orientation parameters (θ , φ). One impor-
tant thing is to note is that the eq. (27) is only valid under the assump-
tions made previously; for the case of relatively weak anisotropy due
to CPO of olivine in the upper mantle, this equation yields a good
approximation for the relationship between anisotropic model per-
turbations and the splitting intensity S. Under these conditions, we
can represent the anisotropic geometry and strength with three pa-
rameters (θ , φ, χ ), instead of the 21 independent parameters needed
for the most general case of anisotropy.

4 E X A M P L E S A N D P RO P E RT I E S O F
S E N S I T I V I T Y K E R N E L S

The strong dependence of the sensitivity kernel on the background
model is an important issue in shear wave splitting tomography (e.g.
Long et al. 2008), and this dependence makes the linearization of the
inverse problem difficult, as discussed in Section 5. In this section,
we explore the behaviour of sensitivity kernels and provide some
simple examples of their strong dependence on the background
model. The kernel behaviour is illustrated via figures that show the
variation of the sensitivity in the model space as functions of the
background model properties (azimuth and dip of the symmetry
axes of the anisotropic medium). In addition to representing linear
maps between the model space and the splitting intensity observable,
sensitivity kernels provide insights into the first-order behaviour of
the wavefield in the anisotropic medium.

We choose the power spectrum of the incoming SKS wave to be
similar to that of Long et al. (2008), that is

|uR
0 (ω)|2 = ω2τ 2

4π
e

− ω2τ2

8π2 , (28)

where τ is the characteristic period of the wave, which is taken to
be 10 s for SKS phase. The integral over the frequency in eq. (21)
is performed over the frequency range of 0.02−0.125 Hz which is
the same as used by Long et al. (2008) and typical for SKS splitting
studies (e.g. Long & Silver 2009b). We approximate the spectrum as
the second derivative of a Gaussian; this is reasonable for SKS-type
phases where the records have been deconvolved from the radial
component waveform (Chevrot 2000; Long & van der Hilst 2005).
With this choice of unperturbed wave spectrum, we compute the
sensitivity kernels with different background anisotropic model.
The kernels are computed on a fine grid [(5 km)3 box] for two
different cases: (i) variation of the dip of the symmetry axis and
(ii) variation of the azimuth of the symmetry axis. The incoming
polarization direction is kept constant in both of these cases. The
width of the maximum sensitivity zone is calculated as ≈√

λL ,
where λ and L are the characteristic wavelength and the propagation
distance, respectively. In our case, with the characteristic period of
10 s and approximate propagation distance of 400 km, we find the
width of the maximum sensitivity zone to be ≈300 km. However,
the nature of the sensitivity varies with each cases discussed below.

We compute a series of sensitivity kernels for different values
of the azimuth of the symmetry axis (φ) while the dip (θ = 0◦)
and the incoming polarization direction (α = 0◦) are kept fixed.
The anisotropic perturbation is homogeneous in nature. The spatial
distribution of the sensitivity is not substantially modified with the
variation of azimuth (φ) of horizontal symmetry axis. Figs 2(B)
and (C) show near symmetric sensitivity kernels corresponding to
φ = 30◦ and φ = 60◦, respectively. However, the end member
cases of φ = 0◦ (polarization is parallel to the symmetry axis) and
φ = 90◦ (polarization is perpendicular to the symmetry axis) are
quite interesting. While the latter corresponds to a trivial sensitivity
kernel (Fig. 2D) leading to a zero splitting as expected, the former
still has a non-trivial but perfectly antisymmetric nature (Fig. 2A),
leading to a zero splitting intensity while integrated.

Fig. 3 shows the variation of the sensitivity kernel with differ-
ent values of the dip of the symmetry axis while the incoming
polarization direction (α = 0◦) and the azimuth of the symmetry
(φ = 45◦) are fixed. The presence of the inclined symmetry axis
causes an uneven spatial distribution of the sensitivity, as expected
(Figs 3B and C). The striking property of the sensitivity kernel is
the non-triviality even when the propagation direction is parallel
to the symmetry axis (Fig. 3D). Such a physical scenario should
lead to a zero splitting intensity and the perfect antisymmetry of
the sensitivity kernel (Fig. 3D) confirms this well known result (e.g.
Silver 1996; Chevrot 2000; Long & Silver 2009b). This non-trivial
antisymmetry of the sensitivity kernel is a remarkable property
and it may help us to understand the underlying physics in more
details.

The kernel examples shown in Figs 2 and 3, which show the
sensitivity for a range of angles between the fast direction and
the incoming polarization direction, illustrate some interesting and
subtle features for the case in which the initial polarization (equiv-
alent to the backazimuth for SKS waves) is aligned either parallel
or perpendicular to the fast axis of the medium. For the case in
which the wave propagation direction (i.e. the wave vector k) is
parallel to the symmetry axis, we would observe a zero splitting
intensity (e.g. Silver 1996; Chevrot 2000; Long & Silver 2009b).
Zero splitting intensity may also be obtained in different scenarios,
such as symmetry axis being parallel or perpendicular to the po-
larization direction. Therefore, each of these three cases predicts
the same observation (zero splitting intensity). However, the sen-
sitivity kernels in Fig. 2 illustrate that interactions of waves with
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Figure 1. (a) Variation of the three dimensionless Thomsen parameters (ε, δ, γ ) with the strength parameter χ , (b) Correlation between ε and δ, (c) Correlation
between ε and γ , (d) Correlation between δ and γ . Our parametrization scheme uses χ instead of the Thomsen parameters to define the strength of upper
mantle anisotropy, taking advantage of the linear relationships between χ and ε, δ and γ .
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Figure 2. Sensitivity kernel examples: 2-D slice along the plane of propagation. Plots show behaviour of the sensitivity kernels at different values of the
azimuth of the symmetry axis (φ) while the dip of the symmetry axis (� = 0◦), and the incoming polarization direction (α = 0◦) remain fixed. (a) symmetry
axis is parallel to the polarization direction (φ = 0◦): the kernel is perfectly antisymmetric leading to a zero splitting intensity for a homogeneous anisotropic
model, (b) φ = 30◦:, (c) φ = 60◦: symmetric kernel and (d) symmetry axis is perpendicular to the polarization direction (φ = 90◦): trivially zero sensitivity
kernel yielding zero splitting intensity for arbitrary spatial distribution of anisotropic strength. Unit of the sensitivity is m−3s.

the anisotropic perturbations corresponding to these three different
cases are different. In case of a trivial sensitivity kernel (Fig. 2D),
the constructive and destructive interferences cancel each other in
either side of the vertical ray path. However, in the case of a per-
fectly antisymmetric kernel (Figs 3D and 2A), the opposite wave
phases accumulate in both sides of the raypath with opposite po-
larity and thus, the sensitivity is non-vanishing. Therefore, in such
special case, the finite frequency approach would be able to sense
the anisotropic perturbation even if the observable is zero (corre-
sponds to a non-trivial solution to the system of linear equations

described by eq. 27). Such different interactions lead to ambiguous
interpretations while ordinary ray theory is employed, because of
the integration of the structure along the ray path. However, using a
tomographic approach, we may be able to delineate the three distinct
cases.

We may explain the importance of the non-trivial sensitivity ker-
nel yielding zero sensitivity in tomography by invoking a simple
concept of linear maps. We provide here a simplified description of
the concept, and interested readers may consult Bourbaki (1966) for
more involved concepts of linear maps and quotient spaces. We may

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/217/1/238/5289868 by Yale U

niversity user on 01 February 2019



244 P. Mondal and M. D. Long

-200 0 200
Lateral distance [km]

0

100

200

300

400

D
ep

th
 [

km
]

-4

-2

0

2

4

10-15

-200 0 200
Lateral distance [km]

100

200

300

400

D
ep

th
 [

km
]

-4

-2

0

2

4

10-15

-200 0 200
Lateral distance [km]

100

200

300

400

D
ep

th
 [

km
]

-4

-2

0

2

4

10-15

-200 0 200
Lateral distance [km]

0

100

200

300

400
D

ep
th

 [
km

]
-4

-2

0

2

4

10-15

(a) (b)

(c) (d)

Figure 3. Sensitivity kernel examples: 2-D slice along the plane of propagation. Plots show behaviour of the sensitivity kernels at different values of the dip
of the symmetry axis (�), while the azimuth of the symmetry axis (φ = 45◦) and the polarization of the incoming wave (α = 0◦) are kept fixed. (a) 2-D slice
through a 3-D sensitivity kernel for a model with a horizontal symmetry axis (� = 0◦): almost fully symmetric kernel and thus sensitivity is evenly distributed,
(b) tilted symmetry axis (� = 30◦), (c) � = 60◦, and (d) vertical symmetry axis (� = 90◦): perfectly antisymmetric sensitivity kernel yielding zero splitting
intensity for homogeneous anisotropic model. Unit of the sensitivity is m−3s.

write the eq. (27) as a linear map between the model space X (con-
taining all possible anisotropic perturbations) and space of observ-
able Y (all possible splitting intensity in this case), that is � : X → Y,
where � is the linear operator

∫
VdVKX. In case of a trivial sensitivity

kernel �(x) = 0, ∀x ∈ X , that is both sides of the eq. (27) are identi-
cally zero and thus, one cannot estimate the model parameters at all.
However, zero splitting intensity may also be obtained by integrating
the perfectly antisymmetric kernels with a heterogeneous strength
of anisotropy (in other words, if the strength of the anisotropy is
distributed in such a way that the integration of eq. (27) yields zero).
Mathematically, in this case, we get a non-trivial anisotropic pertur-
bation which consists the kernel of linear operator � (kernel of a
map is given as follows: � : X → Y, the kernel of � is the subset
of X for which Y vanishes i.e. kernel(�)={x ∈ X|�(x) = 0}). In
the splitting measurements, the null data (zero splitting intensity)
are neglected. However, we do not know a priori the orientation of
the symmetry axis (we wish to know this), and ray theory does not
distinguish between these different situations in which the splitting
intensities turn out to be zero. Thus, in ray theory, we eventually
neglect a part of the model space or just resolve the quotient space
X/ker(�). In our method, whenever sensitivity kernel is non-trivial,
kernel of sensitivity kernel is estimated uniquely. Thus, the method
overcomes the disadvantage of neglecting a portion of model
space.

In order to benchmark our framework for computing sensitivity
kernels, we compare our predictions for splitting intensity observa-
tions with known (ray theoretical) solutions for simple model cases,
such as that of a single anisotropic layer with a horizontal symme-
try axis. When the symmetry axis is horizontal, simple analytical
solutions exist (Chevrot 2000) and we compare our solution with

such limiting cases. Specifically, for the case of a single horizontal
layer of anisotropy, the splitting intensity is predicted to vary as:

S = δt sin[2(α − φ)], (29)

where δt, α and φ are the delay time, incoming polarization back-
azimuth, and azimuth of the symmetry axis, respectively. We com-
pute sensitivity kernels for a series of initial polarization directions
for a simple, single layer model and predict splitting intensities by
integrating over the model volume. Figs 4(A) and (B) show these
modeled splitting intensities, along with predictions from eq. (29),
demonstrating that our kernels capture the expected behaviour for
the simplest models well. Specifically, we predict sinusoidal be-
haviour of the splitting intensity with backazimuth, as predicted by
Chevrot (2000). We also compute predicted splitting intensities for
homogeneous models with a non-horizontal horizontal symmetry
axis to demonstrate the effect of a tilted symmetry axis (Figs 4C
and D). These figures show that the splitting intensity maximum
corresponds to a dip of 45◦, consistent with the results of Chevrot
& Van Der Hilst (2003).

5 I N V E R S I O N S T R AT E G Y: M O D E L
S PA C E S E A RC H A P P ROA C H

We have discussed in the previous section the non-linear relation
between the splitting intensity and the anisotropy parameters (θ , φ)
through the sensitivity kernel examples. Thus, any attempt in lin-
earizing such parameters would severely bias the model estimation.
The application of a non-linear search which does not rely on the
starting model becomes desirable. Therefore, our inversion strategy
invokes a model space search technique based on a Markov chain
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Figure 4. Behaviour of sensitivity kernels against analytical solutions. We compute splitting intensity by integrating the sensitivity kernels (27) for a series of
event backazimuths for a model with single layer of horizontal anisotropy. Kernel predictions (dots) are plotted against the predicted splitting intensity from
analytical solutions (line) with a horizontal symmetry axis (29) as a function of (a) incoming polarization back-azimuth (α) of the wave at different azimuth of
the symmetry axis (φ). The variation of splitting intensity as a function of dip of the symmetry at (b) different azimuths of the symmetry axis. In (b), maximum
splitting is obtained at θ ≈ 45◦ consistent with the result of Chevrot & Van Der Hilst (2003). The starting model used for these computations has Thomsen
parameters of ε = 0.03, δ = 0.04 and γ = 0.01 (corresponding to χ = 0.1, Fig. 1) and with a layer thickness of 400 km.

Monte Carlo sampling algorithm. It is an efficient model space
search technique based on Bayes’ theorem and Markov process.
Bayes’ theorem describes how to update the probabilities of hy-
potheses given the evidence, and follows simply from the axioms
of conditional probability. Let us assume that we have a data vector
d which is given or observed, and several models can reproduce
this data within different error limits. Therefore, we may construct
a conditional probability: given the data d, what is the probabil-
ity that a particular model m would satisfy it? The probability of
the assumed model m satisfying the given data d is the conditional
probability P(m/d). Clearly, if this conditional probability is high
enough, we may assert that the model fit is reasonably good. Now,
from Bayes’ theorem, we may write the following identity

P(m/d) = P(d/m)P(m)∑
m P(d/m)P(m)

, (30)

where P(d/m) is the probability of achieving the given data with the
chosen model parameter m, and P(m) is probability of the model
parameter m to exist. The denominator describes the total condi-
tional probability of observing this particular data. Clearly, if we
choose the model parameters from the physically plausible set, then
P(m) is identically 1, and 0 if it is chosen from outside of the set.
Bayes’ theorem is applied in conjunction with the Markov process,
which states that in a sequence of N events, the outcome of ith
event depends only on the outcome of (i − 1)th event. Follow-
ing these two basic notions, several sampling algorithms have been
developed, including the Metropolis-Hastings algorithm, the Gibbs
sampling algorithm, and several adaptive algorithms. We implement
the Gibbs sampling technique (Liu 2008), which allows us to sam-
ple the models with higher probability efficiently. Such technique
does not involve the concept of a starting model, as the model space
is sampled randomly following a particular probability distribution.
The details of the Gibbs algorithm are not presented here, as it
has been extensively applied in computational physics (e.g. Foulkes
et al. 2001; de Saavedra & Kalos 2003), computational chemistry
(e.g. Hammond et al. 1994), and geophysics (e.g. Mosegaard &

Sambridge 2002; Korenaga & Karato 2008; Wirth et al. 2016). The
misfit is chosen to be the ordinary Euclidean distance between the
observed data and synthetic data produced by the chosen model sets
weighted with the squared data error vector:

E2 =
N∑

i=1

[di − fi (m)]2

2σ 2
i

, (31)

where σ i is the data error vector. The Bayesian likelihood function
P(d/m) is just the Gaussian distribution (adopted in accordance with
the central limit theorem):

P(d/m) = exp(−E2). (32)

In our approach, we avoid the Metropolisn–Hastings algorithm, as
the convergence of such algorithm is extremely sensitive to the step
size of the random jump. Gibbs sampling, on the other hand, has an
advantage of sampling all misfit wells (or, correspondingly, prob-
ability hills, e.g. Korenaga & Karato 2008). However, in problems
such as tomographic inversions, it is extremely difficult to resolve
small scale features as the number of parameters increases. In such
cases, inversion becomes computationally expensive (for example,
three parameters defined at each spatial point leads to a total of 300
parameters with a grid size of 50 km × 50 km × 50 in a 500 km
× 500 km × 50 km domain) and thus the Markov chain requires
larger number of iteration to converge. The power of our approach,
and the number of parameters that can reasonably be resolved, thus
depend on the available computational resources. We will discuss
the advantages and limitations of model space search technique in
the following sections using the results of resolution tests.

6 S Y N T H E T I C T E S T S

In this section, we provide several examples of synthetic tests to
show how well our method can handle different anisotropic scenar-
ios. We start with the simplest model (a single homogeneous layer of
anisotropy) and increase the complexity thereby increasing size of
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the parameter space. This sequential increase in complexity in our
resolution tests helps us to illustrate the possible length scales and
size of the parameter space which can be resolved with confidence.
In this study we restrict ourselves to a grid based parametrization
(discrete). There are other possible parametrizations as well. One
such possibility would be representing the anisotropic strength by
linear combination of basis functions in proper function space (e.g.
L2 orthonormal basis) and solving for the coefficients. Such alter-
native parametrization will be explored in future work. A summary
of the specifications for each resolution test presented in this paper
can be found in Table 1.

6.1 Single layer case

A single layer model is our simplest scenario, but it is important in
order to understand the underlying complexity of the data-model pa-
rameter relation. We need to estimate three parameters: the strength
of anisotropy (χ ), the dip (θ ) and the azimuth (φ) of the symmetry
axis. We choose a physical domain with size ≈800 km × 800 km
(in the horizontal dimensions) ×400 km (in the vertical dimension,
Fig. 5 A), designed to be typical of a regional anisotropy inver-
sion. We generate a set of 25 randomly distributed station locations
(Fig. 5), and compute a synthetic data set of splitting intensities
using an azimuthally random distribution of 20 sources and a start-
ing model with parameters [χ = 0.1, θ = 45◦(0.7854 rad), φ =
30◦(0.5236 rad)]. We use this set of synthetic splitting intensities
(see example in Fig. 5D) as the input for our inverse model [i.e. to
invert eq. 27 for (χ , θ , φ)]. Using this input model, we ran a model
space search for a total of 8000 iterations (length of the Markov
chain); this number of iterations was chosen after a series of tests
to investigate how many iterations were needed for the algorithm
to converge. For this single-layer test in which all three parame-
ters were allowed to vary, the sensitivity kernels were recomputed
at each step for each candidate starting model; the inversion thus
comes at a non-trivial computational cost, despite the small number
of parameters. This particular initial test ran for 6 hours on a laptop
computer with 8 cores.

The results of our initial single-layer recovery test are shown in
Fig. 6, which shows the misfit function for a fixed χ (projection
of the 3-D error hyper-surface onto χ = constant plane is used
in order to represent graphically) and the points sampled by the
MCMC algorithm. The shape of the ‘valley’ of misfit indicates
that multiple choices of θ (dip of the symmetry axis) explain the
data equally well. The posterior distribution also shows that the
maximally sampled points may not correspond to the actual dip (θ )
(Fig. 6C). However, the anisotropy strength (χ ) and the azimuth of
the symmetry axis (φ) are extremely well resolved (Figs 6B and C)
for the single-layer case.

Despite the fact that splitting intensity depends on the strength of
anisotropy (χ ) in a linear fashion (eq. 27), the non-zero covariance
among parameters makes a non-linear search crucial, even for a
hypothetical inversion cases in which χ is the only parameter of in-
terest. These parameter covariances are demonstrated in Fig. 7(B),
which shows a power law relation θ ≈ 0.1χ−1.8 between χ and θ

when χ is small (within a few standard deviations from the origi-
nal value of 0.1).This demonstrates that the presence of a dipping
symmetry axis impedes the convergence of the model space search
algorithm, as well as presenting a source of non-uniqueness in the
inversion. We emphasize that our inability to constrain the dip of the
symmetry axis in our synthetic test is not unique to our study and is
not a consequence of our model space search approach; rather, it is

due to our use of nearly vertically propagating SKS waves. On the
other hand, the resolved azimuth (φ) is insensitive to (that is, does
not trade off with) the strength (χ ) and the dip of the symmetry axis
(θ ) (Figs 7C and D). This implies that SKS splitting observations
can distinguish variability in φ from variability in other parame-
ters, and furthermore suggests that strong constraints on φ can be
achieved very fast through the McMC technique. In many geo-
physical studies of anisotropy, a horizontal symmetry axis is either
suggested by the data or (more commonly) assumed. Therefore, we
suggest a strategy that assumes a horizontal symmetry axis the most
appropriate configuration for many problems; if this is assumed, our
approach can effectively provide a robust estimation of the strength
of the anisotropy and the fast axis direction for simple models.

The test shown in Fig. 6, like most of the test cases we present in
our paper, was carried out with noise-free synthetic data. In order
to investigate the effect of random noise on our inversion scheme,
we carried out a second version of the single-layer test with the
same parameters describing the input model, but with Gaussian-
distributed noise (standard deviation of 0.1) applied to the synthetic
splitting intensity observations. For noisy data, it is necessary to run
the McMC algorithm for a larger number of iterations to achieve
convergence; for the example shown in Fig. 8, we ran the algorithm
for 12 000 iterations (12 000 versus 8000 for Fig. 6). Even with a
larger number of iterations, this test demonstrates that the McMC
algorithm demonstrates output with a greater uncertainty than that
of noise-free data, as expected. For this test, we found that the most
likely model for the strength parameter χ is somewhat different
(0.129), from the input strength (0.1), with larger uncertainty than
for the corresponding noise-free case. This test demonstrates that
even for modest amounts of noise, the convergence of the McMC
algorithm will be slower, which can represent a practical limitation
for real data.

6.2 Fully heterogeneous case with 3-D structure

Next we perform a series of synthetic inversion tests with in-
creasing model complexity, including lateral heterogeneities in the
anisotropic strength parameter χ . For the first set of these tests, we
focus on input models that allow for lateral variations in χ , but not
in φ; in all of our subsequent tests, the dip parameter is fixed at zero,
such that the symmetry axis is horizontal. Initially, we choose an
input model with four distinct blocks within the model domain (2 ×
2 × 1) with alternating strength χ (i.e. two subsequent blocks have
different strength). Each block of this input model is of size ≈ 350
× 350 × 400 km3. Using this initial model, we compute a series of
splitting intensities with the station-source distribution same as that
used in our one-layer test (Section 6.1). For this series of tests, we
parametrize the model space with a grid size of ≈ 200 × 200 ×
400 km3, that is 16 blocks model (4 × 4 × 1).

Fig. 9(A) shows the retrieved anisotropic strength and the poste-
rior distribution corresponding to the best and worst resolved grid
for this checkerboard test (with 4 input blocks). Our result suggests
that the distribution of stations greatly affects the resolution. In this
particular test, the average station spacing of ≈100 km yields a fairly
good resolution for the chosen grid size, but there is variability: grid
blocks that happen to have good station sampling are well resolved
(see ‘best resolved’ histogram in Fig. 9A), while grid blocks with
few stations that happen to be located along the edges of the block
are poorly resolved. This is demonstrated by a similar test that has
the same input model but a different (and much denser) station dis-
tribution. In addition to our tests with a random spatial distribution
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Table 1. A summary of the specifications for each resolution tests presented in this paper.

Test Type of Station Parameters Grid size Type/size of Figure
number variability configuration varied input anomalies number

1 one layer random χ , θ , φ ≈8002 × 400 km3 single layer 6
2 2D (lateral) random χ ≈2002 × 400 km3 ≈400 km checkerboard 9(A)
3 2D (lateral) HLP χ ≈1002 × 400 km3 ≈400 km checkerboard 10(A)
4 2D (lateral) HLP χ , φ ≈2002 × 400 km3 ≈400 km checkerboard 12(A)
5 2D (lateral) HLP χ ≈502 × 400 km3 ≈100 km spike 14(A)
6 2D (vertical) HLP χ ≈502 × 400 km3 ≈50 km checkerboard 14(B)
7 Fully 3D random χ ≈2002 × 200 km3 ≈4002 × 200 km3 checkerboard 9(B),(C),(D)
8 Fully 3D HLP χ ≈2002 × 100 km3 ≈4002 × 200 km3 checkerboard 10(B),(C),(D)
9 Fully 3D HLP χ , φ ≈2002 × 100 km3 ≈4002 × 200 km3 checkerboard 12(B)
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Figure 5. (a) The station distribution is shown on the horizontal plane (blue dots); the average station spacing is roughly 100 km. (b) The station distribution of
the dense high lava plain seismic network. (c) Azimuthal distribution of the randomly chosen 20 seismic events. (d) Synthetic splitting intensity as a function
of azimuth of the events for a particular station.

of 25 stations, we also carried out resolution tests using the actual
station locations of the dense High Lava Plains seismic network
(Long et al. 2009; Wagner & Long 2013), which operated Oregon,
Nevada and Idaho (USA) between 2006 and 2009. Specifically, we
used the identical station configuration as Long et al. (2009), which
incorporated HLP stations as well as surrounding USArray Trans-
portable Array stations and the nearby Wallowa Mountains array.
The station distribution for this synthetic experiment (Fig. 5B) is
irregular, with station spacing as fine as 10–15 km along the dense
HLP lines (oriented WNW–ENE and N–S) but as coarse as 70 km
in the portions of the model domain that are sampled mainly by
TA stations. We carried out a test with the same input model as
that shown in Fig. 9(A), but with a finer grid parametrization (8
× 8 × 1). The results of this test are shown in Fig. 10(A), which
presents the input–output pattern along with the station distribution
and the posterior distribution corresponding to the best and worst

resolved grid. As with the random station distribution, this test
makes it clear that regions of the model with poor station sampling
yield highly uncertain parameter estimates, while model blocks with
good station sampling are well resolved (compare best-resolved and
worst-resolved posterior distributions in Fig. 10A).

The tests shown in Figs 9(A) and 10(A) only involved variability
in the strength parameter in the input model; however, it is desirable
to carry out inversions for χ and φ simultaneously. In Fig. 12(A),
we show the results of such a synthetic test, in which we vary both
χ and φ, keeping θ = 0, with a 4 × 4 × 1 block model; the total
number of parameters is thus 16 × 2 = 32. The station distribution
is again taken to be the that of the HLP experiment and surrounding
stations, following Long et al. (2009). The input–output model is
presented in Fig. 12(A). As in other laterally heterogeneous cases
(Figs 9 A and A), grid blocks with a dense station distribution
(number of station ≥4) are resolved fairly well, while grid blocks
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Figure 6. Single layer inversion result. The input model consists of a single layer of anisotropy with χ = 0.1, θ = 0.52 rad (30◦) and φ = 0.78 rad (45◦). (a)
2-D section of the normalized squared misfit (colours) and the points (red dots) sampled by the MCMC inversion algorithm. The yellow dot corresponds to the
location of the true input model. (b) The posterior distribution of the strength parameter χ with a mean (χ̄) of 0.1075 and standard deviation (σ ) of 0.0277.
(c) The posterior distribution of the dip of the symmetry axis (θ ) with a mean of 0.4419 (25.4◦) and standard deviation of 0.1658 (9.5◦). (d) The posterior
distribution of the azimuth of the symmetry axis (φ) with a mean of 0.7933 (45.4527◦) and standard deviation (σ ) of 0.1152 (6.6◦).
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Figure 7. Estimation of trade-offs among parameters. (a) McMC sampled dip (θ ) is plotted against the MCMC sampled strength (χ ), clearly showing a
correlation and thus a parameter trade-off. (b) The nearly horizontal trend between the MCMC sampled azimuth (φ) and the MCMC sampled strength (χ )
depicts that the former is insensitive to the later and (c) similar trend is observed between MCMC sampled azimuth (φ) and the MCMC sampled dip (φ).

devoid of stations do not produce any constrained result. This is
shown in detail in Fig. 13, which presents the posterior distribution
of the symmetry axis azimuth (φ) for four different grid blocks in
the inversion, some of which are well constrained and others of
which are poorly constrained.

Our last depth-independent recovery test consists of a spike test,
in which two distinct highly anisotropic anomalies of dimension
150 km × 200 km inserted in the model space, and we explore how
well the algorithm can recover them. For this test, θ and φ are kept
constant, with θ = 0 and φ = 45◦), and only χ is varied in the input
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Figure 8. Single layer inversion result with Gaussian-distributed (standard deviation of 0.1) noisy input data. The input model consists of a single layer of
anisotropy with χ = 0.1, θ = 30◦ and φ = 45◦. (a) Synthetic splitting intensity as a function of azimuth of the events for a particular station (blue dots with
error bar) and the splitting intensity computed using the most likely model obtained from McMC algorithm (red dots). (b) The posterior distribution of the
strength parameter χ with a mean (χ̄) of 0.1291 and standard deviation (σ ) of 0.1086. (c) The posterior distribution of the azimuth of the symmetry axis (φ)
with a mean of 46◦ and standard deviation (σ ) of 9◦. (d) The posterior bimodal distribution for the dip of the symmetry axis (θ ).

model. The HLP station configuration is used. Fig. 14(A) presents
the input-output model with a 8 × 8 × 1 model grid parametrization
(note that we plot the most likely model result given by the McMC
algorithm after smoothing). Because both ‘spike’ anomalies were
inserted in the model in regions with dense station spacing, the al-
gorithm correctly identifies the input model parameters. This test
shows that a dense seismic network can easily resolve single-layered
structures with lateral dimension of 150 km, and the finer grid res-
olution suggests that structures on the length scale of ≈50 km can
be resolved.

6.3 Totally heterogeneous case

In this section, we present synthetic tests with input models that
include vertical heterogeneity in addition to the lateral heterogene-
ity. These fully heterogeneous cases illustrate a key advantage of
moving to a tomographic approach in SKS splitting studies. In tradi-
tional shear wave splitting studies, which measure and interpret the
fast splitting direction and splitting delay time (φ, dt), there is little
or no depth resolution, as splitting is a path-integrated measure-
ment and SKS phases propagate nearly vertically. In our approach,
however, the finite width of the sensitivity kernels enables us to
obtain depth constraints, even with nearly vertical SKS phases, as
long as the station configuration is dense enough to yield over-
lapping sensitivity kernels. For these tests with depth-dependent
starting models, we implement a series of two-layer input models,

involving the same number of horizontal blocks as in previous tests.
First, we implement a test with a total number of 32 blocks (i.e.
4 × 4 × 2) with the randomly generated station distribution; we
vary the strength parameter (χ ) while keeping θ (0) and φ (45◦)
fixed. Figs 9(B) and (C) presents the results of this test in map view
(showing the horizontal resolution) at two different depths (z = 100
and 300 km), while Fig. 9(D) presents the input–output model of a
vertical section, illustrating the vertical resolution. We find that the
horizontal resolution deteriorates with increasing depth (compare
Figs 9B and C); this is a consequence of the decaying strength of
sensitivity kernel with depth (≈ 1

ra for some a > 0), as shown in
Figs 2 and 3.

We repeated this multiple-layer model test a four-layer input
model; in this test the total number of model parameters is 64 (4 ×
4 × 4). For this increased amount of model complexity, we use the
dense HLP station distribution. The results of this test are shown
in Figs 10(B) and (C), which show the horizontal resolution at two
different depths, and in Fig. 10(D), which presents the resolution of
the vertical section. This test demonstrates that for a dense station
configuration, finite-frequency SKS splitting tomography is capa-
ble of resolving depth-dependent anisotropic structure throughout
the upper mantle, and the vertical resolution length scale is roughly
100 km (the thickness of the layers in the four-layer input model).
This increased vertical resolution is a crucial advantage to SKS
splitting tomography, as opposed to traditional SKS splitting anal-
ysis.
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Figure 9. Results of checkerboard resolution tests with several different input model configurations for a random station configuration. The station locations
are shown by white dots. In each of these tests, the strength parameter (χ ) is varied while keeping θ = 0 and φ = 45◦. (a) Horizontal slice of input–output
model and the posterior distributions of the 4 × 4 × 1 checkerboard test in a model domain of ≈700 × 700 × 400 km3, (b) horizontal slice of Input–output
model at z = 100 km and the posterior distributions of the 4 × 4 × 2 checkerboard test in a model domain of ≈700 × 700 × 400 km3, (c) horizontal slice of
Input–output model at z = 300 km and the posterior distributions of the 4 × 4 × 2 checkerboard test in a model domain of ≈700 × 700 × 400 km3 and (d)
vertical slice of the input output model at y = 100 km and the posterior distributions of the 4 × 4 × 2 checkerboard test in a model domain of ≈700 × 700 ×
400 km3. The best and worst resolutions correspond to the grids for which the inversion algorithm yields outcomes closest to the input model.

In our final depth-dependent case, we consider two cases in-
volving a 2-D inversion for depth-dependent anisotropic structure
along the WNW–ENE dense line of stations of the HLP experiment
(station spacing along this line is roughly 10 km on average). Be-
cause of the reduction in dimensions (of physical domain) from
three to two, we choose a finer input model for this test (16 × 16).
The number of parameters is therefore 16 × 16 = 256, with input
anomalies with length scale of 50 km both laterally and with depth.
Our pattern of input anomalies involves a checkerboard pattern in
χ , with the other parameters fixed (θ = 0 and φ = 45◦). Fig. 14(B)
shows the input and output models, demonstrating the potential for
a dense line of stations such as that included in the HLP experi-
ment to resolve depth-dependent anisotropic structure in the upper
mantle. We also performed a similar test with simultaneous varia-
tion of χ and φ at θ = 0 (i.e. horizontal axis of symmetry) in the
input model. However, due to the increased number of unknown
parameters, we used a coarser grid in our model space parametriza-
tion (total number of blocks 4 × 4; total number of parameters
16 × 2). Fig. 12(B) shows the input–output pattern of φ for this
2-D, depth dependent inversion. Taken together, our two synthetic
2-D inversions for depth-dependent structure show that structure is
generally well-resolved to a depth of approximately 100–150 km.
This may be explained by the properties of the sensitivity kernels;
specifically, the strength of the kernel decays with the depth and
the maximum power of the kernels is confined within the first 100–
150 km depth range. As a consequence, we expect that the resolution
is best within the region where kernel holds its maximum power.

However, the observations contain at least some information about
anisotropic structure down to the base of the mantle.

6.4 A note on model agreement and number of parameters

The results of our synthetic tests, shown in Figs 9–14, show the
input and output models as well as selected views of the poste-
rior distribution for some parameters, helping us to understand the
quality of the resolution for different cases. A direct comparison
of input–output models and posterior distributions among different
synthetic tests is difficult, however, because the inverse problem is
configured differently across different tests. A different view of the
inversion scheme’s success comes from a comparison between the
(synthetic) splitting intensity observations computed using the input
model, and the set of predicted splitting intensities generated from
the output of the inversion (that is, from the most likely model).
Fig. 11 shows the actual synthetic splitting intensity (using input
model) and the predicted splitting intensity (using output model
of inversion) for a suite of resolution tests of increasing complex-
ity. This demonstrates a reasonable correspondence between the
predicted and actual values of the model outputs for the aforemen-
tioned calculations, showing that our inversion scheme is capable of
identifying models that are consistent with the synthetic ‘observa-
tions’, even for fairly complex cases. However, the deviation from
the one to one correspondence depicts the extent of failure to fit
the model exactly. Fig. 11 shows that the deviation from one-to-one
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Figure 10. Results of the checkerboard tests with several different input model configurations for the HLP station geometry. The station locations are shown
by white dots. In all of these tests, the strength parameter (χ ) is varied while keeping θ = 0 and φ = 45◦. (a) Horizontal slice of Input–output model and the
posterior distributions of the 8 × 8 × 1 checkerboard test in a model domain of ≈700 × 700 × 400 km3, (b) horizontal slice of Input–output model at z =
50 km and the posterior distributions of the 4 × 4 × 4 checkerboard test in a model domain of ≈700 × 700 × 400 km3, (c) horizontal slice of Input–output
model at z = 250 km and the posterior distributions of the 4 × 4 × 4 checkerboard test in a model domain of ≈700 × 700 × 400 km3 and (d) vertical slice of
the input output model at y = 100 km and the posterior distributions of the 4 × 4 × 4 checkerboard test in a model domain of ≈700 × 700 × 400 km3. The
best and worst resolutions correspond to the grids for which the inversion algorithm yields outcomes closest to the input model.

correspondence increases with increasing number of unknown pa-
rameters in the inversion. This highlights a limitation of the model
space search approach in the case of large number of parameters or
a highly complex model.

7 D I S C U S S I O N

The theoretical and practical framework for the forward and in-
verse problem associated with anisotropy tomography with SKS
observations developed here highlights both the promise and the
challenge of SKS splitting tomography. In our implementation, the
size of the parameter space (in general 21 parameters for a ho-
mogeneous, general anisotropic model) is reduced to three based
on the results from mineral physics regarding the elasticity and
fabric development in olivine, the dominant mineral in the upper
mantle. This parametrization scheme addresses one of the major
challenges in shear wave splitting tomography, namely the unreal-
istically large number of parameters needed to describe anisotropy.
Our implementation of finite-frequency theory enables us to address
another of the major challenges, namely how to achieve the overlap-
ping sensitivity for nearly vertically propagating SKS waves (see
also Chevrot 2006). In our implementation, we achieve satisfac-
tory depth resolution shallower than roughly 100–150 km depth,
which lessens the ambiguity of traditional shear wave splitting
interpretation.

Our implementation also addresses a third great challenge of
anisotropy tomography, namely that the non-linear relation between

the observed splitting intensity and the anisotropy parameters (χ ,
θ , φ) of the underlying medium results in a bias in the model
estimation while implementing an inversion strategy based on a
linearization around a background model. Sensitivity kernels for
anisotropic structure depend strongly on the background model used
to calculate them, and are substantially different for heterogeneous
anisotropic starting models than for the homogeneous ones that are
often used to calculate them (Long et al. 2008). Our technique based
on a model space search accounts for this non-linear nature of the
sensitivity kernels, and is able to resolve two parameters (namely
the strength of anisotropy, χ , and the azimuth of the symmetry axis,
φ) with generally high confidence. In contrast, the uncertainty in
estimating the dip parameter (θ ) is much higher, due to the use
of only (nearly) vertically propagating SKS waves. This challenge
may be ameliorated by using teleseismic direct S waves (Long &
van der Hilst 2005) in conjunction with SKS/SKKS phases; in this
case, however, contamination from anisotropy near the earthquake
source is a concern (e.g. Foley & Long 2011).

The synthetic tests presented in this paper demonstrate that the
quality of the resolution is greatly affected by the station configura-
tion. This limitation is a general aspect of the seismic tomography
inverse problem; however, given the complexity associated with
anisotropic tomography, including the large dimensionality of the
parameter space and the non-linearity issue, the station geometry is
particularly crucial. Specifically, the presence of overlapping sen-
sitivity kernels in the tomography problem is essential to provide
confidence on the estimated model parameters. Our sensitivity tests
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Figure 11. Actual (synthetic) and predicted observations for selected sensitivity tests. Correspondence between the predicted (using the most likely model
from the output of MCMC algorithm) and the actual (using the chosen input model) splitting intensities for (a) single layer model; number of parameters being
3, (b) model with 4 × 4 × 1 blocks in a model domain of ≈700 × 700 × 400 km3; number of parameters being 4 × 4 = 16, (c) model with 4 × 4 × 2 blocks
in a model domain of ≈700 × 700 × 400 km3; number of parameters being 4 × 4 × 2 = 32 and (d)model with 4 × 4 × 4 blocks in a model domain of ≈700
× 700 × 400 km3; number of parameters being 4 × 4 × 4 = 64. The solid line represents the exact one-one correspondence between the actual and predicted
splitting intensities, that is exact model fit. An increase in the number of model parameters (A through D) increases the deviation of the predicted data from
the one-one correspondence.

(a)

Azimuth 

of the 

symmetry 

axis

(b)

Azimuth 

of the 

symmetry 

axis

Parameters Input Output

(I) (II)

(I)
(II )

Figure 12. Results of checkerboard recovery tests for input models that vary the fast axis orientation. (a) (I) Spatial distribution of the azimuth of the symmetry
axis used as input while only lateral variation is considered in an one layer model of 700 × 700 × 400 km3. High: 80◦ or 1.35 rad , Low: 45◦ or 0.78 rad, (a)(II)
recovered spatial distribution of the azimuth with a 4 × 4 × 1 checkerboard test. Unit of the angle is given in radian here. The red circles denote the station
locations. (b)(I) Spatial distribution of the azimuth of the symmetry axis used as input while only vertical variation is considered in a 2-D section below densely
distributed stations. High: 80◦ or 1.35 rad, Low: 45◦ or 0.78 rad, (b)(II) recovered spatial distribution of the azimuth. Unit of the angle is given in radian here.
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Figure 13. Posterior distributions of the recovered azimuth (φ) of the symmetry axis. This corresponds to 4 × 4 × 1 checkerboard test in a model domain
of 700 × 700 × 400 km3 and χ and φ are varied simultaneously; total number of parameters being 4 × 4 × 2 = 32 with θ = 0. Red dots denote the station
locations. This test demonstrates that the input is well resolved where station coverage is good, and poorly resolved where it is sparse.

demonstrate that with a dense station configuration, such as that ob-
tained by the High Lava Plains (HLP) experiment (average station
spacing 10–15 km in its densest portions), anisotropic structure in
the upper mantle may be resolved at a length scale of roughly 50 km
with teleseismic SKS waves in a 2-D inversion (Fig. 14 B).

Our analysis also underscores the importance of a deep under-
standing of links between seismic anisotropy and mantle geody-
namic processes. The orientation of the symmetry axis is closely
related to the flow velocity field, but the relationship depends on the
type of olivine fabric (i.e. A, B, C, D and E) as well as the strain
geometry. For example, under the application of simple shear, the
[100] axis of A type olivine is parallel to the shear direction (Zhang
& Karato 1995; Karato et al. 2008); however, the details of fabric
development are different for other fabric types. Therefore, the in-
terpretation of the seismic anisotropy to infer mantle geodynamic
processes critically hinges not only on the results from experimen-
tal mineral physics but also on the ability to resolve the details of
seismic anisotropy at depth with a tomographic approach.

The results of the resolution tests for depth-dependent models
presented in this study highlight the potential for constraining the
depth distribution of anisotropy in the upper mantle, a particularly
exciting avenue for future application of SKS splitting intensity to-
mography to actual data. We illustrate this potential by discussing
results from the HLP SKS splitting data set, which was presented
in Long et al. (2009) and Wagner & Long (2013). These authors
documented striking variability in SKS splitting delay times along
the HLP dense line (see fig. 6 of Wagner & Long 2013), with an
increase in measured delay times from 1.5 to 2.5 s across a lateral
distance of 200 km. This lateral variability in delay times was in-
terpreted to represent small-scale lateral variability in the thickness
of the anisotropic layer, the strength of olivine LPO in the upper

mantle, or the presence of partial melt (in a shape preferred orienta-
tion, or SPO) in the shallowest upper mantle. Each of these possible
scenarios would have important implications for the structure and
dynamics of the HLP region, and for the origin of anomalous, young
volcanism in the Cascades backarc (Long et al. 2009). However, be-
cause SKS splitting observations themselves do not constrain the
depth distribution of the anisotropy, Long et al. (2009) were un-
able to distinguish among the three different possible models for
the lateral variations in delay times. The resolution test shown in
Fig. 12(B), which was constructed using the station distribution
of the HLP experiment, points to a resolution of this outstanding
problem, as it demonstrates that finite-frequency SKS splitting to-
mography applied to the HLP data set can resolve depth-dependent
anisotropic structure in the upper mantle beneath this region.

8 S U M M A RY A N D O U T L O O K

Here we have developed and presented a theoretical and practi-
cal framework for the application of finite-frequency SKS splitting
tomography with a sharply reduced number of parameters. Our ap-
proach relies on a McMC with Gibbs sampling algorithm to explore
parameter space. Our strategies for parametrizing the problem, cal-
culating sensitivity kernels and searching parameter space allow
us to ameliorate some of the well-known challenges inherent in
the inversion of shear wave splitting observations for anisotropic
structure. These challenges include the large number of parameters
needed to describe anisotropy, the difficulty of obtaining overlap-
ping sensitivity zones (crossing rays, for the ray theoretical case) for
nearly vertically propagating SKS phases, and the highly nonlinear
nature of the inversion, in which the sensitivity kernels strongly
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Figure 14. Results of the sensitivity tests using the HLP station configuration, with two different input model configurations. In both of these tests, the strength
parameter (χ ) is varied while keeping θ = 0, and φ = 45◦. (a) Horizontal slice of input-output model of the two block spike test in a physical domain of ≈800
× 800 × 400 km3. The inversion is performed on 8 × 8 horizontal grids and output is smoothed. The station locations are denoted by yellow dots. (b) 2-D
input–output model of the 8 × 8 checkerboard test in a physical domain of ≈700 × 400 km2 along the dense linear array of the HLP experiment. This test
demonstrates the promise of 2-D splitting intensity tomography for dense linear arrays (station spacing of 10–15 km in this example). X and Y denote N–S and
E–W distance, respectively. Z denotes depth.

depend on the starting model. We have benchmarked our sensitiv-
ity kernel computations against well-known analytical solutions for
simple models, demonstrating that our parametrization and kernel
computations are valid. We carried out a suite of synthetic tests for
input models of varying complexity to establish the effectiveness
of our approach, to explore tradeoffs among different parameters,
and investigate the length scale of structure that can reasonably be
resolved by our approach. We find that SKS phases are not well
suited to constraining the dip of the symmetry axis, consistent with
previous work, but that the strength and azimuth of the anisotropy
can be reliably constrained for a series of increasingly complex in-
put models. A test of resolution for a 2-D inversion along a dense
linear array of stations (using the station configuration from the HLP
experiment in the Pacific Northwest USA) shows that structure in
the upper mantle (depths up to 150 km) can be reliably retrieved at
length scales of 50 km.

The synthetic experiments and proof of concept presented in
this paper pave the way for future applications of our method to
actual SKS splitting data sets, which have only been used in to-
mographic inversions in a few previous studies that have focused
on Southern California (Monteiller & Chevrot 2010; Lin et al.
2014). Based on our results, the implementation of 2-D inver-
sions along dense linear arrays is particularly likely to be suc-
cessful, given their relatively modest computational requirements.
Given the substantial increase in availability of data from dense
broad-band seismic deployments since the mid-2000s, when the
early papers developing the theory underpinning finite-frequency

SKS splitting tomography were published (e.g. Favier & Chevrot
2003; Chevrot 2006; Long et al. 2008; Sieminski et al. 2008),
the time is right for substantial progress on the application of
SKS splitting tomography to real data. We are currently imple-
menting our approach to data from the HLP SKS splitting data
set (Long et al. 2009; Wagner & Long 2013), and other recently
deployed experiments that include dense linear arrays represent ob-
vious candidates for future work (e.g. the PULSE and CAUGHT
experiments in South America; Eakin et al. 2015; Long et al.
2016). Broad-band seismic experiments with dense station spacing
within North America that were enabled by the recently completed
EarthScope USArray data gathering effort also represent prime tar-
gets for future application of our technique. Examples include the
SPREE (Ola et al. 2016), OIINK (Yang et al. 2017), and NELE
(Nyamwandha & Powell 2016) experiments in the mid-continent,
as well as the SESAME (Hopper et al. 2017), MAGIC (Aragon et al.
2017) and QM-III (Chen et al. 2018) experiments in eastern North
America.
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