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S U M M A R Y
Teleseismic receiver functions contain information regarding Earth structure beneath a seismic
station. P-to-SV converted phases are often used to characterize crustal and upper-mantle
discontinuities and isotropic velocity structures. More recently, P-to-SH converted energy
has been used to interrogate the orientation of anisotropy at depth, as well as the geometry
of dipping interfaces. Many studies use a trial-and-error forward modeling approach for the
interpretation of receiver functions, generating synthetic receiver functions from a user-defined
input model of Earth structure and amending this model until it matches major features in the
actual data. While often successful, such an approach makes it impossible to explore model
space in a systematic and robust manner, which is especially important given that solutions
are likely non-unique. Here, we present a Markov chain Monte Carlo algorithm with Gibbs
sampling for the interpretation of anisotropic receiver functions. Synthetic examples are used
to test the viability of the algorithm, suggesting that it works well for models with a reasonable
number of free parameters (<∼20). Additionally, the synthetic tests illustrate that certain
parameters are well constrained by receiver function data, while others are subject to severe
trade-offs—an important implication for studies that attempt to interpret Earth structure based
on receiver function data. Finally, we apply our algorithm to receiver function data from station
WCI in the central United States. We find evidence for a change in anisotropic structure at mid-
lithospheric depths, consistent with previous work that used a grid search approach to model
receiver function data at this station. Forward modeling of receiver functions using model
space search algorithms, such as the one presented here, provide a meaningful framework for
interrogating Earth structure from receiver function data.
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1 I N T RO D U C T I O N

Receiver functions are a popular tool for characterizing impedance
contrasts beneath a seismic station. The P-to-S receiver function
method relies on the notion that the coda after a teleseismic P-wave
arrival represents a convolution of the incident P wave with Earth
structure. Deconvolving the vertical component (i.e. incident P-
wave energy) from the horizontal component wave train (i.e. P-to-S
converted energy, referred to as a Ps phase) yields a time-series, or
‘receiver function’, containing information about sharp gradients in
Earth structure beneath the receiver (e.g. Langston 1979).

∗Now at: Department of Earth and Space Sciences, University of
Washington, Seattle, WA, USA.

Receiver functions have the potential to constrain Earth struc-
ture through analysis of Ps phase arrival times, amplitudes and
polarities. The arrival time of P-to-SV phases (i.e. polarized in the
source–receiver plane), relative to the incident P-wave arrival, re-
flects both the depth to the discontinuity and the isotropic velocity
profile. Additionally, the P-to-SV phase amplitude is related to the
strength and sharpness of the impedance contrast. If Earth struc-
ture beneath the receiver includes an inclined interface or a sharp
gradient in seismic anisotropy, there will be an additional compo-
nent of P-to-SH converted energy, with backazimuthal variations
in P-to-SH phase polarity and amplitude yielding constraints on
the geometry of the dipping structure or anisotropy (e.g. Levin
& Park 1997). A dipping interface or tilted anisotropic symmetry
axis will result in a two-lobed pattern of P-to-SH converted en-
ergy as a function of backazimuth (i.e. two polarity reversals within
the full backazimuthal range), while anisotropy with a horizontal
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McMC for anisotropic receiver functions 11

symmetry axis (assuming hexagonal symmetry) will result in a four-
lobed pattern (i.e. a sin(2θ ) amplitude pattern; e.g. Park & Levin
2016). The amplitude of P-to-SH converted energy can be used
to infer the magnitude of anisotropy and/or the dip of a plunging
symmetry axis.

Receiver functions contain a wealth of information regarding
Earth structure beneath a receiver; however, reliable interpretation
of this information is difficult. Receiver function data are subject to
noise, scattering effects due to small-scale heterogeneities and near-
surface reverberations that may obscure direct P-to-S conversions.
There are also numerous trade-offs that interfere with interpreting
receiver function data. For example, trade-offs exist between layer
thickness and (isotropic) P- and S-wave velocities: increasing layer
thickness has the same effect on Ps delay time as decreasing VS

or increasing VP. Similarly, the amplitude of transverse component
P-to-SH conversions will vary either with changes in the strength
of anisotropy or by tilting the anisotropic symmetry axis out of the
horizontal plane (e.g. Levin & Park 1997). Additionally, the value
of the shape parameter, or ellipticity of the anisotropy, can also
influence P-to-SH amplitude.

We present work to develop and implement a model space sam-
pling algorithm for forward modeling of anisotropic receiver func-
tions. We first review previous work on the interpretation of trans-
verse component receiver functions, and then discuss the application
of a non-Bayesian Markov chain Monte Carlo (McMC) approach to
this problem. We present a series of synthetic tests to demonstrate
the utility of our approach and illustrate trade-offs among different
parameters, and present an application of the method to real data.
Finally, we discuss the strengths and limitations of an McMC ap-
proach for forward modeling of receiver functions, as well as future
directions that may further enhance the utility of such an algorithm.

2 I N F E R R I N G C O N S T R A I N T S
O N E A RT H S T RU C T U R E F RO M
R E C E I V E R F U N C T I O N S

The abundance of information contained in receiver functions
makes it nearly impossible to infer complex, anisotropic Earth struc-
ture through simple visual inspection. Forward modeling of receiver
functions, in which a user-defined input model that contains a large
number of parameters (i.e. VP, VS, density, layer thickness, strike,
dip, the strength of anisotropy, azimuth and tilt of the anisotropic
symmetry axes, for each layer in the model) is used to generate a
set of synthetic receiver functions for comparison with actual data,
is a common strategy for interpretation. Such an approach allows
for more detailed constraints on Earth structure beneath a seismic
station than is possible with visual inspection alone.

Many previous studies that have attempted to constrain complex
anisotropic structure based on receiver function analysis have relied
on forward modeling with a trial-and-error approach (e.g. Park et
al. 2004; Nikulin et al. 2009; Wirth & Long 2012; McCormack
et al. 2013). This usually consists of comparing synthetic receiver
functions to receiver functions generated by actual data, in order to
determine how well a given model matches the observations. While
the trial-and-error approach has had some successes, it makes it
impossible to explore model space in a systematic manner. Addi-
tionally, such an approach yields no meaningful constraints on the
uniqueness of the solution, or how sensitive the model is to changes
in certain parameters. Some workers have attempted to place more
quantitative constraints on model parameters using a grid search ap-
proach (e.g. Wirth & Long 2014), but at a high computational cost.

Alternate approaches to detailed forward modeling have also been
used (e.g. Shiomi & Park 2008; Schulte-Pelkum & Mahan 2014;
Ford et al. 2016); these studies have attempted to extract first-order
information about the characteristics of dipping or anisotropic in-
terfaces at depth without carrying out detailed forward modeling or
synthetic seismogram computation.

Monte Carlo (MC) methods are a class of algorithms that make
use of repeated random sampling to generate a numerical result, and
have been applied to a wide array of geophysical inverse problems
as a way of mapping out acceptable models in parameter space (e.g.
Mosegaard & Sambridge 2002; Sambridge & Mosegaard 2002). A
subdivision of MC methods that allows for a more efficient sampling
of parameter space is McMC algorithms. McMC methods sample
a multidimensional parameter space in a series of small steps (the
‘Markov chain’), which approximates the probability distribution of
the model space. Highly sampled regions of model space are more
likely to contain models that are a good fit (based on a chosen misfit
function) to Earth structure.

In an effort to obtain more robust information regarding
anisotropic Earth structure, other studies have employed MC al-
gorithms to more efficiently assess parameter constraints and trade-
offs. (For a detailed overview of receiver function inversion, mostly
limited to isotropic studies, we refer the reader to Bodin et al. 2012.)
The McMC approaches can generally be divided into two categories.
The first, model space sampling, explores parameter space based on
a chosen misfit function that reflects a fit of the predictions to data.
This results in an ensemble of models, which can be visually eval-
uated to determine areas of parameter space with low misfit values
and discern trade-offs among parameters. Alternatively, Bayesian
probabilistic sampling uses statistical techniques to sample from an
explicitly defined posterior probability distribution, where posterior
α likelihood × prior. While Bayesian sampling allows for quanti-
tative estimates of parameter constraints (e.g. Sambridge 1999b;
Piana Agostinetti & Malinverno 2010; Bodin et al. 2012; Bodin
et al. 2016), it is more burdensome in requiring an accurately and
explicitly defined likelihood and prior probability density function.

In this study, we employ the simple (non-Bayesian) model space
sampling approach, in which any desired misfit and likelihood func-
tion can be chosen. This methodology yields a distribution of model
solutions that are biased towards (assumingly better) models with
lower misfit values. While not providing truly quantitative con-
straints like Bayesian sampling, this approach still provides valu-
able information regarding trade-offs and the relative constraints of
model parameters. This type of approach has been attempted pre-
viously with a range of algorithms (and often limited to isotropic
structure), with varying degrees of success—including genetic algo-
rithms (e.g. Shibutani et al. 1996; Levin & Park 1997; Chang et al.
2004), simulated annealing (e.g. Vinnik et al. 2004) and neighbour-
hood algorithms (e.g. Sambridge 1999a; Frederiksen et al. 2003;
Sherrington et al. 2004; Porter et al. 2011).

We develop an McMC approach for the forward modeling of
anisotropic receiver functions as an alternative strategy to those em-
ployed in previous studies. This allows for an efficient, systematic
assessment of parameter space (i.e. identification of models with low
misfit values) and visual assessment of parameter trade-offs, a valu-
able improvement over trial-and-error or grid search approaches.
We then apply the McMC method to three sets of synthetic receiver
functions based on idealized models of Earth structure and actual
receiver function data from station WCI in the Granite-Rhyolite
province of the eastern North American craton. Finally, we discuss
the utility of our approach and future directions that may further
enhance the viability of such an algorithm.
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12 E.A. Wirth, M.D. Long and J.C. Moriarty

Figure 1. Flow chart of the Markov chain Monte Carlo algorithm with Gibbs sampling used in this study. Blue-shaded boxes correspond to the ‘random
scan’ step in which 1-D conditional, biased probability distributions are created. Purple-shaded boxes represent the ‘Gibbs sampling’ steps that determine the
progression of the Markov chain.

3 M E T H O D O L O G Y A N D
I M P L E M E N TAT I O N

When utilizing an McMC approach, some algorithm is necessary to
move the Markov chain randomly, but efficiently, through parameter
space. Perhaps the most well-known strategy is the Metropolis–
Hastings algorithm (Metropolis et al. 1953; Hastings 1970). In
the Metropolis–Hastings algorithm, a randomly initialized model
is chosen and its corresponding likelihood is calculated, L(m). The
likelihood of a model, L(m), is equal to the probability of the data
assuming that model. The initial model is then perturbed, and the
likelihood is calculated for the new perturbed model, L(m′). If L(m′)
> L(m), the perturbed model is a better fit, and is accepted as the
next model in the chain. However, if L(m′) < L(m), we select a
random number (s) from the interval [0,1]. If s < L(m′)/L(m), the
perturbed model (m′) is accepted. Conversely, if s > L(m′)/L(m),
m′ is rejected and the process continues. This rejection criterion
ensures that there is always the possibility to accept a model that is
a ‘worse fit,’ ensuring that the McMC algorithm can escape local
minima.

The size of the random perturbation is extremely important in
the Metropolis–Hastings algorithm. If the steps are too large, it may
result in drastic changes that would cause most new models to be
rejected. However, if the perturbation size is too small, the algorithm
may remain ‘trapped’ in a local minimum for an extended period
of time. The selection of the perturbation size therefore becomes
complicated, particularly with a problem that has a large number
of free parameters (as is the case for forward modeling of receiver

functions), in which each parameter may have a different optimal
step size.

An extension to the Metropolis–Hastings algorithm described
above is the Gibbs sampler (e.g. Liu 2008). Gibbs sampling bases
its next ‘step’ on 1-D conditional probability distributions that are
global in scale (i.e. it compares the perturbed model, m′, to several
other previous models in which the same parameter was perturbed).
Therefore, unlike the Metropolis–Hastings algorithm, it does not re-
quire any step ‘tuning.’ Details of the McMC approach with Gibbs
sampling, based on work by Korenaga & Karato (2008), are pro-
vided below and shown as a flow chart in Fig. 1. For a more com-
prehensive review of MC methods in general, we refer the reader to
Liu (2008).

(1) Model initialization: For each model parameter, draw a ran-
dom number rk from the interval [0,1]. Set the value of the parameter
to m0,k = mL

k + rk(mU
k − mL

k ), where mL and mU are the parame-
ter’s a priori lower and upper bounds, respectively.

(2) Random scan (Generating a conditional probability distribu-
tion for Gibbs sampling): Pick one model parameter at random, mr.
While holding all other model parameters fixed, select P random
numbers from the interval [mL

r , mU
r ] and calculate the correspond-

ing likelihood values. Save the highest likelihood as Lmax.
(3) Gibbs sampling: Pick one random number from the interval

[mL
r , mU

r ] and refer to it as mr . Draw a random number, s, from
the interval [0, 1]. If s < L(m′

r)/Lmax, continue to the next step.
Otherwise, repeat this step.
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(4) Model update: Redefine the old model m0 with m′. Go back
to Step 2, until the maximum number of iterations is reached.

We adopt the likelihood function for Gaussian distributed errors:

L(m) ∝ exp

(
−1

2
χ 2(m)

)
,

where,

χ 2 =
∑ (XData − XModel)

2

σ 2
.

The variance, σ 2, is not known and so it was adjusted such that
the acceptance rate of new models in Step 3 was ∼15–50 per cent;
this process is referred to as tempering (e.g. Rothman 1985, 1986;
Sambridge 2014). In this case, L(m) is not strictly a likelihood, thus
the parameter distributions returned by the McMC algorithm cannot
necessarily be interpreted as the underlying probability distribution
of the parameters (hereafter referred to as ‘biased’). Nevertheless,
the algorithm will still explore high likelihood regions of parameter
space more than low likelihood regions, thereby achieving the main
goal of a more efficient and useful way to extract information from
receiver function data. In Section 6.1, we explore alternative ap-
proaches and forms of the likelihood function that may offer further
improvement.

McMC algorithms are meant to densely sample areas of model
space with high fitness values. Therefore, rather than focusing our
interpretation solely on the model with the lowest misfit (or highest
likelihood value), it is better to get an overall impression of where
the Markov chain spent most of its ‘time’ in model space, or the
biased probability distributions of the parameters. To this end, we
chose to visualize our searches using a series of 2-D histograms that
clearly show what areas of model space were most highly sampled.

We implemented a version of the McMC algorithm described
above to explore model space for the forward modeling of
anisotropic radial and transverse component Ps receiver functions.
We wrote a version of the algorithm that incorporates previously
written codes for generating synthetic seismograms in dipping-
anisotropic media (Frederiksen & Bostock 2000) and computing
receiver functions using the multitaper correlation method (Park &
Levin 2000). These codes invoke hexagonal anisotropic symmetry,
which is a common and appropriate assumption for upper-mantle
anisotropy. The anisotropy parameter (η), which controls the propa-
gation velocity for orientations other than parallel and perpendicular
to the anisotropic symmetry axis, is defined such that the 3-D ex-
pression of velocity is purely ellipsoidal, consistent with Levin &
Park (1997; see also Sherrington et al. 2004). As the McMC algo-
rithm with Gibbs sampling easily lends itself to parallel computing,
we carried out most runs on Yale University’s High Performance
Computing cluster using Open MPI running on a total of 32 proces-
sors. To evaluate the viability of the McMC approach, we first ran a
series of synthetic tests. For a series of user-defined models of Earth
structure (including the number of layers, layer thickness, VP, VS,
density, the strike and dip of each layer, the azimuth and tilt of the
anisotropic symmetry axes and the strength of anisotropy), we gen-
erated synthetic seismograms and then computed receiver functions
that serve as ‘data’ for our test runs. The McMC search uses the
algorithm described above to explore model space, and compares
receiver functions generated based on potential models for Earth
structure to the receiver functions representing actual (synthetic)
‘data.’

4 R E S U LT S O F S Y N T H E T I C T E S T S

Synthetic tests were performed for three different scenarios with
increasing complexity, including a model where parameters in one
layer are unknown (i.e. nine free parameters), two layers are un-
known (i.e. 18 free parameters), or four layers are unknown (i.e.
36 free parameters). As receiver functions can be visually assessed
for the presence of sharp impedance contrasts, yielding an estimate
as to how many layers should be modeled, we elect to pre-define
the number of layers in each scenario before running the sampling
algorithm.

4.1 Case A: 1 ‘unknown’ layer

We applied the McMC algorithm to a hypothetical scenario in which
the characteristics of one layer of Earth structure (i.e. nine parame-
ters) are unknown (a sketch of Earth structure for this scenario, along
with synthetic receiver function data generated from the model, is
shown in Fig. 2). The free parameters, their a priori bounds, the
actual values of the parameters and the values estimated from the
McMC model with the lowest misfit are shown in Table 1. However,
we emphasize that it is generally more informative to look at the
distribution of parameter values with the lowest model misfit. To
this end, we plot a series of distributions illustrating the results of
the McMC model space search for this scenario (Fig. 3). (Again,
we note that these distributions are biased, based on the choice of
likelihood function—and therefore not the true posterior probabil-
ity distribution.) The biased distributions for the full parameter sets
are represented via a series of 2-D histograms, which demonstrate
parameter values that resulted in low model misfit and how different
sets of parameters trade-off against each other.

For Case A, the ‘unknown’ parameters are accurately constrained
by the McMC algorithm and our choice of likelihood function. For
example, despite the trade-offs that are typically inherent among VP,
VS and layer thickness (defined as the thickness beneath the station),
low model misfits are concentrated around the true parameter values,
a result of matching Ps phase timing and amplitude exactly (Figs 3a
and b). The parameters that characterize anisotropic structure (i.e.
trend and plunge of the anisotropic symmetry axis, strength of the
anisotropy) are also highly sampled at the correct values, and the
distributions shown in Fig. 3 demonstrate some important points.
First, the trend of the anisotropic symmetry axis is well constrained
(Fig. 3c). The hint of bimodality in the orientation of the anisotropic
symmetry axis (‘anisotropy trend’) is simply due to symmetry con-
siderations. Specifically, since we assume hexagonal symmetry, if
the anisotropic symmetry axis is in the horizontal plane and aligned
with a backazimuth of θ , the resulting receiver functions are iden-
tical to those that would be produced for anisotropy aligned to a
backazimuth of θ + 180◦.

A second important inference is that the plunge of the anisotropic
symmetry axis from horizontal (which manifests itself in small
changes in Ps phase amplitude) is not as tightly constrained as
the azimuthal orientation. This is clearly shown in Fig. 3(c) by
the ‘strip’ of highly sampled regions along all possible plunges
of the anisotropic symmetry axis, as long as the trend is set at
∼120◦–150◦. This ambiguity may be partially due to the trade-off
between the strength of anisotropy and the plunge of the anisotropic
symmetry axis, both of which contribute to Ps phase amplitude.
Fig. 3(e) provides further evidence of this trade-off, in that models
with a plunge of ∼40◦–60◦ exhibit weaker anisotropic strengths
(i.e. ∼1–2 per cent), while models with a more modest plunge
(∼10◦–20◦) require stronger anisotropy (i.e. 1–4 per cent). Finally,
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14 E.A. Wirth, M.D. Long and J.C. Moriarty

Figure 2. Sketch of model Earth structure for Case A (left), in which the parameters of 1 layer (in colour) are ‘unknown.’ The corresponding synthetic receiver
functions that the McMC code attempts to match are also shown (right). Receiver functions are plotted as a function of time (horizontal axis), where t = 0
is the arrival of the P wave at the seismic station, and grouped by backazimuth (vertical axis). In general, positive pulses (blue) represent a velocity decrease
experienced by the wave as it moves towards the surface (indicated by grey, dashed arrow) and negative pulses (red) represent a velocity increase. Figure is not
to scale.

for the Case A synthetic test, we see that the strike and dip of the
inclined interface at the top of the anisotropic layer is not particularly
well constrained (Fig. 3d). However, for models with steeper dip
angles (which make the signature of an inclined interface more
apparent in receiver functions), the biased probability distributions
suggest (correctly) that the strike of the dipping structure is aligned
roughly N-S.

4.2 Case B: 2 ‘unknown’ layers

Next, we evaluated an alternative synthetic scenario in which two
layers (i.e. 18 parameters) are unknown using the McMC algo-
rithm (Fig. 4). With a few exceptions, we found that regions of low
model misfit (i.e. highly sampled regions) could be used to infer
approximate parameter values (Fig. 5). In the upper layer, the esti-
mated magnitude of VS appears well constrained (Fig. 5b), which is
understandable considering that variations in VS control P–SV con-
versions (i.e. a drop in S-wave velocity with no corresponding drop
in P-wave velocity will still result in a P-to-SV conversion, while
the opposite scenario will not). By interpreting the 2-D histograms
of layer thickness versus VP or VS simultaneously (i.e. comparing
the highly sampled regions in both plots concurrently; Figs 5a and
b), layer thickness and VP can also be reasonably inferred.

In the Case B model, the upper layer was defined as isotropic.
This is well captured by the results of the model space search, in
that most models sampled had very weak anisotropy in the upper
layer (i.e. <3 per cent; Fig. 5e). In models where stronger anisotropy
was present, this was compensated for by a shallow plunge of the
anisotropic symmetry axis (i.e. resulting in low-amplitude P-to-
SH arrivals; Figs 5c and e). (We note that this result could be
modified slightly by a different definition of the shape parameter,

η.) Because the anisotropy is so weak in the models favoured by
the McMC algorithm, the trend of the anisotropic symmetry axis
(Fig. 5c) cannot be interpreted. Finally, the strike and dip of the
upper interface appears very well constrained (Fig. 5d).

It is more difficult to infer information about the structure of
the lower layer, as the histograms are generally multimodal. This
is the case for layer thickness, VP, and VS, with a greater layer
thickness being compensated for with a faster VP (Figs 5f and g).
However, if the more highly sampled mode is chosen as the more
likely solution, VP and layer thickness are also correctly constrained
(Fig. 5f). Using these implied constraints, VS is correspondingly
(and correctly) constrained (Fig. 5g). However, we note that this
distinction is subtle, and with real data, users would not likely be
truly confident in choosing one mode over the other.

The trend and plunge of anisotropy in the lower layer are also
well matched (Fig. 5h), although the strength of anisotropy is sig-
nificantly underpredicted by the algorithm and chosen likelihood
function (Fig. 5j). The strike of the upper boundary is poorly con-
strained, likely because the dip of the layer is predicted to be ex-
tremely low (i.e. essentially a horizontal layer). However, the poor
constraints on dipping structure actually result from the fact that
the dipping interface does not cause a corresponding prominent
feature in the receiver function data; rather, it mainly results in am-
plitude changes of already existing patterns, and is therefore poorly
constrained by the synthetic data.

4.3 Case C: 4 ‘unknown’ layers

Ideally, we would like to be able to apply the McMC algorithm to
complicated, real-world data sets that might include a large number
of anisotropic and/or dipping layers beneath a station. While it is
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Figure 3. 2-D histograms showing the range of model parameters sampled by the McMC model space search for Case A. Warm colours represent regions that
were highly sampled by the Markov chain (i.e. where a solution is likely), and cool colours represent very sparsely sampled regions of parameter space (i.e.
where a solution is unlikely). Black and grey dashed lines enclose 10 and 50 per cent of sampled models, respectively. Pink stars denote the true parameter
values. In this synthetic example, one layer of the model was solved for (i.e. nine parameters). A 2-D histogram for density is not shown since density has a
minimal effect on the properties of the receiver functions. Histograms are smoothed using a Gaussian kernel density estimator.

Figure 4. Sketch of model Earth structure for Case B (left), in which the parameters of two layers (in colour) are ‘unknown,’ for a total of 18 parameters.
Corresponding synthetic receiver functions are plotted using the same conventions as in Fig. 2.

already clear from Case B (above) that there is ambiguity in the res-
olution of several parameters for even a relatively simple two-layer
model, we also tested a more complicated four-layer model that is
based on structure inferred in a previous study. Our final synthetic
model (Case C) is based on the best-fit model for lithospheric struc-
ture beneath station WCI in the central United States put forth by

Wirth & Long (2014), with a few additional complexities (i.e. an
isotropic layer is made anisotropic and dipping structure is added).
Model C includes a total of 36 free parameters (Fig. 6) and therefore
provides a test of the McMC algorithm’s performance for a com-
plex model with a large number of unknown parameters. For our
Case C scenario, we find that 2-D histograms exhibit considerable
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Figure 5. 2-D histograms for the Case B synthetic example. Plotting conventions are the same as in Fig. 3.

scatter (Fig. 7) and are heavily subject to trade-offs among parame-
ters (e.g. layer thickness and isotropic P- or S-wave velocity). Since
transverse component receiver function features are less affected by
such serious trade-offs, we focus on those model parameters that
describe anisotropy or dipping interfaces, which result in promi-
nent polarity reversals of P-to-SH converted phases on transverse
components and should be relatively robustly constrained by the
data. Therefore, Fig. 7 shows only histograms of the trend of the
anisotropic symmetry axis and the strike of any dipping interfaces
for each layer.

In the uppermost layer (‘Layer 1’), the strike of the dipping in-
terface is reasonably well constrained, consistent with the idea that

dipping structure results in a prominent polarity reversal in the
receiver function data (Fig. 7a). The trend of the anisotropic sym-
metry axis is less well constrained (perhaps due to the relatively
weak anisotropy in the ‘actual’ data, ∼3 per cent); regardless, the
most highly sampled region as illuminated by the 2-D histogram
does in fact suggest the correct orientation of anisotropy. Addi-
tionally, because the symmetry axis is oriented in the horizontal
plane (as it is for all layers in this synthetic model), an orien-
tation that is ±180◦ should also give the same results (although
we note that this does not appear to be a particularly highly sam-
pled region), perhaps explaining some of the apparent ambiguity in
Fig. 7(a).
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Figure 6. Sketch of Earth structure for Case C (left), in which the parameters of four layers (in colour) are ‘unknown’. Dashed interfaces indicate a change in
the orientation of anisotropy, without a co-located change in isotropic velocity. Corresponding receiver functions are plotted using the same conventions as in
Fig. 2.

In Layer 2, the strike values suggested by the algorithm are in-
significant because the dip was predicted to be extremely shallow
(<10◦), and the interface is therefore essentially horizontal (Fig. 7b).
With this in mind, it is clear that the trend of the anisotropic sym-
metry axis is somewhat well constrained, if the results for each
trend bin are summed across all strikes (although there is a sug-
gestion of multimodality). For Layers 3 and 4, there is no dipping
structure, which is apparent in the considerable scatter in McMC
models (Figs 7c and d). It is clear that even when the scatter due
to the algorithm attempting to assign a strike to a non-dipping
layer is taken into account, the trend of anisotropy in Layer 3 is
still very poorly constrained by the synthetic data. In Layer 4, the
McMC search does show some evidence of higher sampling at
the correct orientation of the anisotropic symmetry axis, although
the constraints are decidedly weak.

4.4 Summary of inferences from synthetic tests

Synthetic tests demonstrate that if there are some pre-existing con-
straints on Earth structure and the number of free parameters is
small (i.e. akin to Case A with nine free parameters), the McMC
algorithm works well for placing relative constraints on anisotropic
Earth structure. In more realistic scenarios (e.g. Cases B and C),
clear trade-offs begin to emerge between parameters that affect the
timing and amplitude of the Ps phase arrivals (e.g. layer thickness,
VP, VS, per cent anisotropy and plunge of the anisotropic symme-
try axis). However, because prominent polarity reversals of P-to-SH
converted energy are not subject to parameter trade-offs, the McMC
algorithm presented here can be used to place constrain the orienta-
tion of anisotropy at depth, even for models with complex structure.

Our synthetic tests also demonstrate that there are significant
benefits to visualizing the distribution of potential models (i.e. by
utilizing a suite of 2-D histograms), as opposed to simply examining
a singular ‘best-fit’ model. For instance, inspection of the ensemble

of models allows the viewer to directly assess trade-offs between
parameters (e.g. layer thickness and isotropic velocity, Fig. 5f; the
plunge and strength of anisotropy, Fig. 3e). Furthermore, in certain
instances it is useful to view the distribution of several parameters
at once. For example, if the strength of anisotropy is predicted to be
very weak or have a low plunge angle (e.g. Fig. 5e), both of which
would result in low amplitude P-to-SH conversions for a vertically
propagating wave, this suggests that the interpretation of the trend
of the anisotropic symmetry axis in this layer (e.g. Fig. 5c) may not
be particularly meaningful.

5 A P P L I C AT I O N T O A C T UA L DATA

We apply the McMC algorithm to actual receiver function data
from permanent broad-band station WCI, located at the eastern
edge of the North American craton. In previous work, we examined
radial and transverse component receiver functions at this station
and used a grid search approach to constrain the orientation of
anisotropy in the mantle lithosphere (Wirth & Long 2014); our pre-
ferred model suggested multiple sharp contrasts in anisotropy at
lithospheric depths. This previous result provides a useful compar-
ison to constraints on the orientation of anisotropy provided by the
McMC algorithm.

Since actual receiver function data often exhibits considerable
noise, and because our synthetic tests suggest that many parame-
ters cannot be constrained for complex models, we chose to only
search for the best-fit trends and plunges of anisotropy in four layers
of mantle lithosphere (i.e. 50–70, 70–90, 90–110 and 110–200 km
depths, based on the results of Wirth & Long (2014), for a total of
eight free parameters). The results from the McMC algorithm ap-
plied to actual data (Fig. 8) provide reasonable bounds (i.e. distinct
regions of parameter space with low model misfit) on the orienta-
tion of anisotropy at mid-lithospheric mantle depths, particularly
in the depth range from ∼70 to 110 km. Since models with steep
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Figure 7. 2-D histograms for a synthetic example in which four layers of the model were solved for (i.e. 36 parameters). Since most parameters were poorly
constrained, only the results for trend of the anisotropic symmetry axis and strike of an inclined interface are shown. Plotting conventions are as described in
Fig. 3.

plunges of anisotropy sampled by near-vertically incident rays be-
gin to resemble isotropy and are difficult to distinguish from weak
anisotropy, we also plot 1-D histograms of the trend of anisotropy
only (e.g. Figs 8c and d). At 70–90 km depth, the algorithm suggests
a clear N-S orientation of anisotropy, with a clear 180◦ periodicity in
the probability distribution that indicates a horizontal axis of sym-
metry (Fig. 8c). At 90–110 km depths, the probability distribution
favours an eastward orientation of the anisotropic symmetry axis,
but without the 180◦ periodicity (Fig. 8d). This suggests that the
symmetry axis is plunging out of the horizontal plane, but because
of the trade-offs inherent to the strength and plunge of anisotropy
(Section 4.2), we do not seek to constrain the steepness of this
plunge.

A comparison among synthetic transverse component receiver
function polarity reversals for the best-fitting model identified by the
McMC algorithm, synthetic receiver functions for the best-fitting
model from Wirth & Long (2014), and actual data from station WCI
(Fig. 9) demonstrates that both the McMC model and the previous
grid search approach suggest parameter values that provide a good
fit to the data. Additionally, an McMC algorithm is much more
computationally efficient that a grid search approach. Overall, this
test demonstrates the ability of the McMC algorithm to place con-
straints on anisotropic Earth structure using actual receiver function
data. In addition to robustly constraining certain parameters, such as

the orientation of anisotropy, it also provides valuable information
on the limitations of the data. That is, the McMC results clearly
demonstrate that for certain parameters and depth ranges, receiver
function data cannot be used to infer particular aspects of Earth
structure.

6 S U G G E S T I O N S F O R F U T U R E
I M P L E M E N TAT I O N S

6.1 Alternative misfit evaluations

As previously mentioned, the way in which the likelihood of a mod-
eled receiver function is evaluated is extremely important, as the
interpretation of the underlying probability distribution of the pa-
rameters is contingent upon the correctness of the likelihood. In
the examples presented in this paper, the likelihood was calculated
assuming independent Gaussian distributed errors with a variance
set to maximize the efficiency of the algorithm. This description
of the likelihood is imperfect, as receiver functions are known to
exhibit correlated noise (Sambridge 1999b). However, our defini-
tion is sufficient for the task of guiding the McMC algorithm to
more important regions of parameter space. Future implementa-
tions could utilize a properly defined likelihood function that in-
corporates correlated noise (Sambridge 1999b; Piana Agostinetti &

 at Y
ale U

niversity on N
ovem

ber 30, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


20 E.A. Wirth, M.D. Long and J.C. Moriarty

a

d

b

c

Figure 8. (a) and (b) 2-D histograms for the trend and plunge of anisotropy in two layers of lithospheric mantle, generated using the McMC algorithm and
actual receiver function data from station WCI. (c) and (d) 1-D histograms for the trend of anisotropy in the same two layers of lithospheric mantle.

Malinverno 2010; Bodin et al. 2012; Dettmer et al. 2014), which at
the expense of additional complexity at the onset, is rewarded with
truly quantitative estimates of parameter constraints and errors.

In keeping with our chosen definition of likelihood, the value of
σ could be amended to suit the character of the data at hand. For
instance, σ could be correlated with the level of background noise
in the actual receiver function data, thereby assigning less weight to
fitting receiver functions that correspond to noisy data traces. This
would still result in biased probability distributions that are guided
by our chosen misfit function, but may provide a more accurate
definition of model misfit. Additionally, we note that the ensemble
of models produced by the McMC algorithm can be unbiased at
a later time. For example, Sambridge (1999a) produced a biased
model ensemble (i.e. similar to this work) using a neighbourhood
algorithm, and later unbiased the ensemble to obtain quantitative
parameter constraints, using a properly defined likelihood function
(Sambridge 1999b).

A substantially different estimate of model fitness could also be
tested. A potential example of this is dynamic time warping (DTW;
for a detailed description, see Berndt & Clifford 1994). A pitfall of
an L2-norm or χ 2 misfit function is that it aligns the ith point of one
time-series (i.e. the actual receiver function data) to the ith point in
another time-series (i.e. receiver functions generated by the McMC
algorithm). However, in a hypothetical situation in which all the

model parameters that describe Earth structure are correct except for
one (say, layer thickness), the predicted receiver function patterns
may provide a good match to the data, but their timing would be
offset. In this hypothetical case, the ‘acceptability’ of the model
should be high, but a measure of misfit that uses point-by-point
Euclidean distances would imply that the model likelihood would be
low. In contrast, algorithms such as DTW focus on similarities in the
shape of the two time-series by allowing for non-linear alignment
(Fig. 10). Using DTW or a similar construction of model fitness
could improve the efficiency of the McMC algorithm in finding
‘acceptable’ fits to the data. In order to provide a proof of concept,
we wrote a module for determining receiver function misfit based
on DTW and re-ran the McMC algorithm on some simple models
for Earth structure (i.e. akin to Cases A and B with 1 or 2 ‘unknown’
layers).

Example ensembles from an McMC run using one such model,
Model D, with DTW to evaluate misfit is shown in Fig. 11. For
this particular scenario with one ‘unknown’ layer, DTW does an
excellent job constraining the trend and plunge of anisotropy and
the strike and dip of the inclined interface (Figs 11c and d). However,
it struggles to constrain the layer thickness and isotropic velocities
(Figs 11a and b), precisely because it allows for non-linear alignment
of waveform patterns. (It is worth noting, however, that the ‘best-fit’
model has a layer thickness that is off only by ∼5 km, and estimates
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Figure 9. Comparison of P-to-SH conversions at various depths from station WCI (left), the best-fit model suggested by the McMC algorithm (middle) and
the grid search results of Wirth & Long (2014; right). Each circle represents the polarity (red—negative and blue—positive) and amplitude (darker colours
indicate greater amplitudes) of the Ps phase at a particular backazimuth. Polarity reversals should occur at backazimuths parallel and perpendicular to the
anisotropic symmetry axis.

Figure 10. Example of two time-series that are out of phase. Although
similar in shape and pattern, an L2-norm or χ2 misfit would be unrealistically
high when comparing these two time-series because of the offset in time (e.g.
this offset in time could be due to one inaccurate parameter, for instance
an incorrect layer thickness, even if all the other parameters are correct).
However, if the misfit between the two time-series is characterized in a non-
linear manner (i.e. using dynamic time warping), the misfit between these
two time-series would be smaller than the corresponding χ2 misfit. Figure
modified after Rakthanmanon et al. (2012).

for layer velocities are off by <0.1 km s−1 for both VP and VS.)
Although DTW did not prove to be a significant improvement over
an L2-norm or χ 2 misfit for 1–2 layer models for the tests we ran,
it is possible that DTW could potentially provide advantages when
applied to complicated Earth structure that results in more complex
receiver function patterns. Additionally, it may be a better choice
for studies that focus on resolving the orientation of anisotropy or
dipping interfaces, but do not attempt to constrain isotropic velocity
profiles or precise interface depths.

6.2 Incorporating additional observational constraints

One of the most valuable results from this work is the demonstration
that while certain parameters are well constrained by anisotropic re-
ceiver function data (e.g. the trend of the anisotropic symmetry axis
and the strike of dipping interfaces), even in the case of complex,
multilayered Earth structure, other parameters cannot be robustly
constrained from receiver function data alone. If precise estimates
of parameters such as absolute P- and S-wave velocities and layer
thickness are desired, additional constraints are necessary. To alle-
viate the trade-offs between seismic velocity and interface depth,
some previous studies have jointly inverted receiver function data,
which is sensitive to sharp impendence contrasts, and surface wave
dispersion data, which is sensitive to vertically averaged seismic
velocity (VS) structure (e.g. Julia et al. 2000; Shen et al. 2013;
Obrebski et al. 2015). Future work will seek to incorporate addi-
tional constraints from surface wave data into the McMC algorithm
presented here to improve the constraints on the aforementioned
parameters.
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Figure 11. 2-D histograms for a synthetic example (Case D) in which parameters for one layer of the model were unknown (i.e. nine parameters total) and
misfit was calculated using dynamic time warping. Plotting conventions are the same as in Fig. 3. Although it does not make a significant difference in terms
of the interpretation of Earth structure, we find that parameter trade-offs are most clearly illustrated when we only plot the last third of the Markov chain.
Therefore, for instructional purposes, here we only plot the last ∼4000 model iterations. A sketch of Earth structure beneath the receiver is provided in the
lower right corner.

Additionally, in some regions, multiple phases (e.g. Moho rever-
berations) contribute significantly to the receiver function signal.
Information from multiple phases could be incorporated into the
algorithm presented here by either (1) employing a separate tech-
nique for inferring seismic velocity and layer thickness, and using
this to guide a priori constraints on the parameters, or (2) using
the McMC algorithm described above, but explicitly attempting to
match multiple phases when generating synthetic receiver functions.
In this study, we do not model multiple phases as they were found
to not contribute significantly to the receiver functions generated in
Wirth & Long (2014), but this could be easily adapted for future
implementations.

7 S U M M A RY

Model space searches such as the McMC algorithm presented here
provide a framework for forward modeling of receiver functions
to obtain estimates of parameters that describe Earth structure in a
systematic and robust manner. We have developed and implemented
an McMC with Gibbs sampling approach for the interpretation of
radial and transverse component receiver functions, in an algorithm
that is computationally efficient compared grid search approaches
and straightforward to run in parallel. Synthetic tests suggest that
this algorithm provides useful information regarding a reasonable
number of free parameters (<∼20), as long as the parameters being
constrained actually contribute to prominent features in the receiver
function data. Parameters that result in clear polarity reversals in
P-to-SH converted energy as a function of backazimuth, such as the
trend of anisotropy or the strike of a dipping interface, are the most
robustly constrained parameters from anisotropic receiver function
data. Meanwhile, trade-offs are apparent between parameters such
as absolute seismic velocities and interface depth (which contribute

to the timing of Ps phase arrivals), and the strength and plunge of
anisotropy (which contribute to the amplitude of P-to-SH conver-
sions). Possible extensions of the McMC algorithm presented here
include unbiasing the ensemble of models to obtain quantitative
error estimates, incorporating additional constraints from multiple
phases or surface wave data to reduce parameter trade-offs, or us-
ing alternative misfit functions such as DTW, which may allow this
method to be of use in more complex tectonic settings.
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