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ABSTRACT

This study explores the dynamics of thermohaline staircases: well-defined stepped structures in tempera-

ture and salinity profiles, commonly observed in regions of active double diffusion. The evolution of staircases

in time is frequently characterized by spontaneous layer-merging events. These phenomena, the authors

argue, are essential in regulating the equilibrium layer thickness in fully developed staircases. The pattern and

mechanics of merging events are explained using a combination of analytical considerations, direct numerical

simulations, and data analysis. The theoretical merger model is based on the stability analysis for a series of

identical steps and pertains to both forms of double diffusion: diffusive convection and salt fingering. The

conceptual significance of the proposed model lies in its ability to describe merging events without assuming

from the outset specific power laws for the vertical transport of heat and salt—the approach adopted by earlier

merging models. The analysis of direct numerical simulations indicates that merging models based on the

four-thirds flux laws offer adequate qualitative description of the evolutionary patterns but are less accurate

than models that do not rely on such laws. Specific examples considered in this paper include the evolution of

layers in the diffusive staircase in the Beaufort Gyre of the Arctic Ocean.

1. Introduction

One of the most dramatic signatures of active double

diffusion in the ocean is related to the formation of

thermohaline staircases—a series of mixed layers sepa-

rated by thin stratified interfaces. While the appearance

of well-defined staircases has been firmly linked to

double diffusion (e.g., Schmitt 1994), the mechanics of

their generation and equilibration are still debated [see

the review in Radko (2013)]. Theories proposed to

explain the origin of staircases include the collective

instability mechanism (Stern 1969), which attributes

layering to the interaction between waves and double

diffusion, and the suggestion that steps in temperature

and salinity profiles represent intrusions evolving into

a staircase (Merryfield 2000). More recently, it has been

proposed (Radko 2003, 2005) that layers form as a result

of the instability of the flux-gradient laws, which was

referred to as the gamma instability mechanism. This

instability manifests itself in the form of growing, hor-

izontally uniform perturbations, which transform the

smooth temperature and salinity stratification into a well-

defined thermohaline staircase. Layers that develop

initially are relatively thin and unsteady; they merge

continuously.

Several recent studies, numerical and observational,

have attempted to quantify the role of various layering

mechanisms in the generation of oceanic staircases.

Morell et al. (2006) examined field measurements of the

staircase in a cyclonic eddy in the eastern Caribbean and

concluded that most of the layered structures can be

attributed to either intrusion or gamma instability mech-

anisms, possibly to a combination thereof. Stellmach et al.

(2011) analyzed direct numerical simulations (DNS) of

fingering convection and concluded that layering is
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consistent with the gamma instability hypothesis. In

Part I of this study (Radko et al. 2014), we examined the

origin and dynamics of staircases using a large-scale

model of the subtropical thermocline in which fingering

was parameterized rather than resolved. These simula-

tions were consistent with the gamma instability mecha-

nism for staircase formation.

In addition to the initiation of layering, another

unresolved—and perhaps even more pressing—problem

concerns the evolution of staircases and their equilib-

rium structure. To explain the dynamics of staircases,

observers and modelers have to face a number of

challenges. In most locations, staircases are in a quasi-

equilibrium state, and therefore the available field data

do not provide a description of their full evolutionary

sequence. Numerical modeling capabilities are still a long

way from fully resolving all relevant spatial scales, from

the diffusive salinity scale of millimeters to the equilib-

rium layer thickness as large as tens, in some cases hun-

dreds, of meters. The wide range of time scales in

staircase dynamics, from minutes to years, adds another

element of complexity. Nevertheless, several promising

attempts to explain the evolution of staircases have al-

ready been made. Direct numerical simulations (Radko

2003), initiated with uniform temperature and salinity

gradients, revealed the tendency for thin layers to form

first and then merge spontaneously. The solution of a

one-dimensional model with parameterized double

diffusion (Radko 2005) indicated that, after a series of

merging events, layers attain a critical scale at which

coarsening is arrested and the staircase reaches a stable

equilibrium state. The three-dimensional simulations

in Part I confirmed the importance of mergers as a means

of controlling the average step height in equilibrated

staircases. The goal of the present analysis (Part II) is to

examine the dynamics of mergers in greater detail, to

develop the most general mechanistic model of this phe-

nomenon, and to quantify the merits of extant merging

theories.

Double-diffusive convection comes in two distinct

forms: fingering and diffusive convection. Comprehensive

discussions of both phenomena are offered in Schmitt

(1994) and Radko (2013). The salt-finger regime is re-

alized when warm and salty water overlies cold and

fresh—conditions that are typical for the subtropical

thermocline. Diffusive convection is more common in

high-latitude oceans, where temperature T and salinity

S frequently increase downward; signatures of diffusive

convection in the Arctic Ocean have been observed

and recorded by Neal et al. (1969), Neshyba et al. (1971),

and Padman and Dillon (1987). Our knowledge of Arctic

staircases has improved dramatically since the com-

mencement of the Ice-Tethered Profiler (ITP) Program,

providing repeated sampling of the ice-covered upper

ocean (Timmermans et al. 2008). While the mechanics of

primary diffusive and fingering instabilities differ con-

siderably (Turner 1973), their large-scale consequences

are often dynamically similar. Thermohaline layering

occurs in both types of doubly diffusive environment and,

as illustrated in this study, the evolution of diffusive and

fingering staircases have many features in common.

Direct numerical simulations indicate that mergers

are ubiquitous in both diffusive and fingering staircases.

Figure 1 presents a numerical example of the evolution

of a diffusive staircase. This direct numerical simulation

was initiated by a uniform background T–S gradient,

perturbed by small-amplitude computer-generated noise.

The first stage of the experiment (Fig. 1a) is characterized

by the appearance of small-scale perturbations driven by

primary diffusive instabilities. Next, the irregular, verti-

cally elongated perturbations reorganize into horizontally

coherent structures (Fig. 1b) and then into well-defined

layers (Fig. 1c). The subsequent evolutionary stage

consists of a series of binary-merging events in which

strong interfaces, characterized by large temperature and

salinity jumps, grow further at the expense of weaker

interfaces that gradually erode and eventually disappear.

Themergers continue until there is only one interface left

within the limits of our computational domain (Fig. 1f).

Note that these mergers occur without any systematic

vertical displacement of interfaces. This property is il-

lustrated by tracing the location of the ultimate survi-

vor—the interface that persists throughout the entire

experiment (marked by white arrows in Figs. 1d–f). The

same merging pattern was observed in the DNS of fin-

gering staircases (Radko 2003), which suggests that the

evolution and equilibrium structure of staircases can be

explained in terms of a unified theoretical framework.

Development and testing of such a model is one of the

central objectives of this study.

The present analysis is motivated by the proposition

(Radko 2005; Part I) that mergers exert a controlling

influence on the geometry of thermohaline staircases. In

this scenario, the point when mergers cease sets the

equilibrium step height in staircases and, consequently,

determines the vertical transport of heat and salt. Sev-

eral attempts have already been made to explain the

mechanisms of layer merging in thermohaline staircases

(Huppert 1971; Kelley 1988; Radko 2003, 2005). One of

the uncertainties in the formulation of these models

concerns their reliance on the four-thirds flux laws

(Turner 1965, 1967) that are used to represent heat and

salt transport through high-gradient interfaces. The ap-

plication of the four-thirds flux laws to thermohaline

staircases has been repeatedly questioned (Kunze 1987;

Kelley et al. 2003). Therefore, the proposed model
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FIG. 1. Formation and evolution of layers in a DNS of diffusive convection. The experiment

was initialized by a uniform, diffusively favorable gradient. Presented are the instantaneous

deviations of temperature fields from the uniform background gradient at time t equal to

(a) 89, (b) 166, (c) 283, (d) 298, (e) 325, and (f) 337 h. Red (blue) corresponds to high (low)

values of temperature. The white arrows in (d)–(f) point to the interface that persists through

a series of mergers. The background density ratio is Rr*5 1:1, the diffusivity ratio is

t5 kS/kT 5 1/6, and the size of the computational domain is 3:4m3 1:7m3 6:9m, which

is resolved by 7683 3843 1536 grid points. Detailed description of the numerical model is

given in section 3.
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attempts to describe merging events in a less restrictive

manner, without assuming from the outset specific re-

lations for the vertical fluxes of heat and salt.We find that

merging models based on the four-thirds flux laws offer

adequate qualitative description of the evolutionary

patterns. However, they are less accurate than our new

model that does not rely on such laws. In this study,

merging events are also examined through the analysis of

field data. The inspection of several instances of mergers

in theArctic ITP data reveals that their patterns generally

conform to the prediction of the layer-merging model.

This paper is organized as follows. Section 2 presents

the layer-merging staircase theory in its most general

form, without assuming specific flux laws. The model is

applicable for both diffusive and fingering staircases. In

section 3, we examine a series of direct numerical sim-

ulations, which validate and quantify the analytical ar-

guments. Next, we identify merging events in the ITP

data for theArctic staircases and interpret them in terms

of the proposed merging theory (section 4). We sum-

marize and draw conclusions in section 5.

2. Theory

As is common in theoretical discussions of staircase

evolution (Huppert 1971; Radko 2005, 2007), layer-

merging events are best described in terms of the sta-

bility problem illustrated in Fig. 2. We consider the basic

steady state consisting of identical layers of thickness H

(Fig. 2a) that are perturbed in the manner indicated in

Fig. 2b. Variations in temperature, salinity, and buoy-

ancy across the interfaces are slightly modified relative

to that in the basic state, and the interfaces are slightly

displaced vertically. The system in Fig. 2 is periodic with

the z wavelength of 2H, and perturbing the basic state in

such a manner does not affect the background T–S gra-

dients. Our objective is to determine the susceptibility of

this system to spontaneous layer-merging events.

Radko (2007) suggested that layered systems can ex-

hibit two distinct modes of instability: B and H insta-

bilities. In the first mode (B instability), slightly stronger

interfaces strengthen further at the expense of weaker

interfaces, which gradually erode as indicated in Fig. 3a. In

the second mode (H instability), slightly thicker layers

thicken evenmore, while thin layers shrink and ultimately

disappear (Fig. 3b). These instabilities are controlled

by the dependencies of the heat/salt fluxes in each step

( ~FT , ~FS) on its temperature and salinity variations ( ~T, ~S)

and the step height ( ~H):

~FT 5 ~FT( ~T, ~S, ~H) and
~FS 5 ~FS( ~T, ~S, ~H) .

(
(1)

In our analysis (details of which are given in the appen-

dix), the interfacial variations of properties ( ~T , ~S) are

defined as differences in temperature and salinity be-

tween the centers of the layer immediately above the

interface and the layer below. Cross-interfacial fluxes

FIG. 2. Schematic diagram [after Radko (2007)] illustrating the stability analysis for an infinite series of layers and

interfaces. (a) Basic state consisting of identical steps. (b) Perturbed state in which the T–S jumps at even and odd

interfaces are modified in a compensating manner that does not affect the background large-scale gradients (Tz, Sz).
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( ~FT , ~FS) are defined positive downward (as indicated in

Fig. 2), in the salt-finger sense. However, the chosen

convention does not lead to any loss of generality, and

the theoretical framework is fully applicable to diffu-

sive systems as well.

The extant merging models (Radko 2005, 2007) sug-

gest that the variation of fluxes with ~T and ~S can lead to

Bmergers, whereas the variation of fluxes with ~H results

in H mergers. If both modes of instability are engaged,

the preferred evolutionary pattern is determined by the

unstable mode with the largest growth rate. In the con-

text of the thermohaline staircase problem, much more

common is the B-merger scenario. Merging by the ero-

sion of weak interfaces has been observed in all our

numerical simulations (e.g., Fig. 1), as well as in the ITP

data (section 5). An example of the B merger in field

data, discussed in Part I, was presented by Zodiatis and

Gasparini (1996), who documented temporal changes in

the Tyrrhenian Sea staircase. However, it should be noted

that H mergers have been observed in some laboratory

experiments with one-component fluids (e.g., Ruddick

et al. 1989; Park et al. 1994). The reason for the general

preference for the B-merger events can be rationalized

using the same classical argument that is invoked in the

justification of Turner’s four-thirds laws. The vertical T–S

fluxes are assumed to be controlled by the high-gradient

interfaces, which play the role of transport bottlenecks for

themixing of heat and salt in thermohaline staircases. The

interfaces respond to conditions in their immediate vi-

cinity. Thus, if layers are sufficiently thick, fluxes across

each interface are not sensitive to the step heights and are

determined by the variation of temperature and salinity

across each step. In this case, the staircase is expected to

evolve in time following the B-merger scenario. The H

mergers can occur at the initial stages of the staircase

coarsening process, where interfaces are still affected by

the circulation at the adjacent steps, but not in mature

oceanic staircases with thick fully developedmixed layers.

Given the overall preference for B-type mergers, we

focus our analysis on the corresponding instability mode.

FIG. 3. Schematic representation of the two possible merging scenarios: (a) the B merger, which occurs when some interfaces gradually

erode without moving vertically, and (b) the H merger, which occurs when interfaces drift vertically and collide. Numerical simulations

and field data indicate that B mergers are more common in thermohaline staircases.
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In the appendix, we derive an expression for the

B-instability growth rate for the configuration in

Fig. 2:

l21
4

H

 
› ~FT

› ~T
1

› ~FS

›~S

!
l

1
16

H2

 
› ~FT

› ~T

› ~FS

›~S
2

› ~FS

› ~T

› ~FT

› ~S

!
5 0. (2)

This expression can be made explicit if the free co-

efficient is small, which is to be expected on the basis of

simple scaling arguments (see the appendix). In this

case, the larger—positive in the case of instability—root

can be approximated by

l5
4

H

› ~FS

› ~T

› ~FT

› ~S
2

› ~FT

› ~T

› ~FS

› ~S
› ~FT

› ~T
1

› ~FS

›~S

. (3)

The conceptual significance of the relationships (2)

and (3) lies in their generality. Previous evolutionary

models of thermohaline staircases were based on the

four-thirds flux laws (Turner 1965, 1967):

a ~FT 5C(Rr)(a
~T)4/3 and

b ~FS 5
a ~FT

g(Rr)
,

8>>><
>>>:

(4)

whereC is the flux-law coefficient, g is the flux ratio, and

(a, b) are expansion/contraction coefficients of the as-

sumed linear equation of state. BothC and g are assumed

to be determined by the density ratio Rr 5a ~T/b ~S. While

(4) finds support in laboratory experiments (e.g., Schmitt

1979a), serious doubts have been raised (Kunze 2003;

Kelley et al. 2003) with regard to the relevance of the

four-thirds laws for oceanic staircases. Kunze (1987) finds

that the extrapolation of the laboratory-calibrated four-

thirds flux laws in the salt-finger regime overestimates the

observed fluxes in the Caribbean staircase by more than

an order of magnitude.

While the situation with regard to diffusive staircases

may not be as extreme, the diffusive flux laws should also

be applied to observations with caution. For instance,

Flanagan et al. (2013) performed a series of direct nu-

merical simulations in the parameter regime relevant for

the Arctic staircase. These simulations suggest that ex-

tant laboratory-derived flux laws (e.g., Marmorino and

Caldwell 1976; Kelley 1990) can underestimate heat

transport by as much as a factor of 2–3 and even the flux-

law exponent may require downward revision from 1.33

to 1.11. Flanagan et al. (2013) attribute the discrepancy

between the laboratory-derived and numerical results to

the presence of rigid boundaries and the rundown char-

acter of the laboratory experiments. The uncertainties

with regard to the four-thirds flux laws could be exacer-

bated in the context of the layer-merging problem.

Mergers are driven by subtle imbalances of T–S fluxes

in the adjacent steps, and therefore even modest in-

accuracies in the formulation of the flux laws may lead to

substantial errors in predicting the evolutionary patterns

of staircases.

On the other hand, it is comforting to see that if the

four-thirds laws are assumed, the general result (3) re-

duces to earlier estimates of merging growth rate. Thus,

substituting (4) into the growth rate expression (3), we

arrive at

l5
(a ~T)1/3

H
G(Rr) , (5)

where

G(Rr)5

16C2 ›g

›Rr

R2
r

3
›C

›Rr

gR2
r 2 4Cg22 3

›C

›Rr

g2Rr 2 3C
›g

›Rr

R2
r

.

(6)

The expressions (5) and (6) are fully consistent with

previous layer-merging models (Huppert 1971; Radko

2005). In particular, the sign of the growth rate—hence

the stability/instability of a staircase—is controlled by

the flux ratio pattern. If the flux ratio decreases with

increasing density ratio (›g/›Rr , 0), then the system of

layers is unstable and layers tend tomerge spontaneously.

Otherwise, the staircase is fully equilibrated. Laboratory

experiments (e.g., Turner 1965; Schmitt 1979a) and direct

numerical simulations (e.g., Traxler et al. 2011; Radko

and Smith 2012) indicate that, in both fingering and diffu-

sive regimes, the gamma instability condition ›g/›Rr , 0

is satisfied when the density ratio is sufficiently close to

unity. However, as layers merge, the system evolves to-

ward a more stable configuration, and merging events

eventually cease (Radko 2005).

3. Numerics

a. Formulation

To test the foregoing layer-merging theory and, in

particular, to assess themerits of the four-thirds flux laws,

we turn to direct numerical simulations. The temperature

and salinity fields are separated into the basic state (T, S),

representing a uniform vertical gradient and a departure
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(T, S) from it. The governing Boussinesq equations of

motion are expressed in terms of perturbations T and S.

To reduce the number of controlling parameters, the

system is nondimensionalized using l5 (kTn/gajTzj)1/4,
kT /l, l

2/kT , and r0nkT /l
2 as the scales of length, velocity,

time, and pressure, respectively. Here, (kT , kS) denote

the molecular diffusivities of heat and salt, and r0 is the

reference density used in the Boussinesq approximation.

The expansion/contraction coefficients (a, b) are incor-

porated in (T, S), and aTzl is used as the scale for both

temperature and salinity perturbations. To distinguish

between nondimensional and dimensional variables, the

latter will be denoted in the remainder of this section by

the subscript ‘‘dim.’’

For the fingering regime (Tz . 0, Sz . 0), the gov-

erning equations reduce to

›T

›t
1 v � $T1w5=2T ,

›S

›t
1 v � $S1 w

Rr

5 t=2S ,

1

Pr

�
›

›t
v1 v � $v

�
52$p1 (T2 S)k1=2v, and

$ � v5 0,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(7)

where Rr 5aTzdim /bSzdim is the background density ratio,

t5 kS/kT is the diffusivity ratio, Pr5 n/kT is the Prandtl

number, v5 (u, y, w) is the velocity vector, and k is the

vertical unit vector. The system used for diffusive con-

vection (Tz , 0, Sz , 0) is identical to (7) in all respects

except for the sign of the w terms in the temperature and

salinity equations, which take the following form:

8><
>:

›T

›t
1 v � $T2w5=2T and

›S

›t
1 v � $S2Rr

*w5 t=2S .

(8)

In discussions of diffusive convection, it is more common

to use the diffusive density ratioRr
*5 1/Rr 5bSzdim /aTzdim

and the diffusive flux ratio g*5b ~FS
dim/a

~FT
dim in lieu of Rr

and g. We shall follow suit.

DNS of double-diffusive convection, both fingering

and diffusive, still represent a considerable computa-

tional challenge, particularly in the oceanographic (heat–

salt) context. The key difficulty is the vast separation of

spatial and temporal scales that require adequate reso-

lution in the staircase problem. The scale of salt dissipa-

tion is less than the scale of heat dissipation by a factor offfiffiffi
t

p � 1, and the scale of heat dissipation is, in turn, much

less than the typical step height in the staircase. Merging

simulations are especially demanding because the time

scale of merging events—typically several weeks or

more—greatly exceeds that of primary double-diffusive

effects (measured in minutes). Such severe computa-

tional constraints place three-dimensional merging DNS

for the heat–salt parameters (t; 0:01) beyond the reach

of modern computers. Staircase modelers have two op-

tions: either to compromise on the governing parameters

and use the diffusivity ratio that is higher than the heat–

salt value or to resort to two-dimensional simulations. On

the positive side, neither approach leads to qualitative

inconsistencies. As discussed in Stern et al. (2001) and

Radko (2008), the use of a moderate diffusivity ratio is

not expected to alter the fundamental physics and char-

acteristics of salt fingering, as long as t remains signifi-

cantly less than unity. Three-dimensional simulations

tend to elevate vertical fluxes by a factor of 2 or so relative

to the corresponding 2D simulations. However, on the

qualitative level, all major double-diffusive phenomena

appear to be adequately represented by two-dimensional

models. It should also be noted that sheared environ-

ments favor formation of salt sheets aligned in the di-

rection of the background current (Linden 1974; Kimura

and Smyth 2007), in which case double-diffusive dy-

namics become effectively two-dimensional. It is perhaps

ironic that because large-scale shears are ubiquitous in

the ocean, salt fingers may be better represented by two-

than by three-dimensional simulations.

In this study, we pursue both approaches.We use two-

dimensional simulations to focus directly on the ocean-

ographically relevant parameters (t; 0:01). To ensure

that these calculations are not compromised by neglecting

TABLE 1. The domain and grid sizes for the merging experiments (Expt) 1–4 are listed along with the interfacial density ratios

pre- and postmerger.

Size Grid

Interfacial density ratio

Premerger Postmerger

SF2D (Expt 1) 400 3 400 6144 3 6144 1.3345 1.4745

DC2D (Expt 2) 60 3 60 1536 3 1536 3.785 4.435

SF3D (Expt 3) 335 3 335 3 536 384 3 384 3 768 1.118 1.129

DC3D (Expt 4) 90 3 45 3 180 192 3 96 3 768 1.383 1.435
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fundamentally three-dimensional effects, we supplement

our two-dimensional simulations by three-dimensional

runs in a computationally accessible regime. Dynamical

consistency of the two- and three-dimensional simulations

instills greater confidence in the ability of our models to

capture the zero-order dynamics at play. The discussion in

this section is based on the analysis of four representative

merging experiments:

d Experiment 1: 2D fingering simulation with realistic

parameters (Rr, t, Pr)5 (1:3, 0:01, 7);
d Experiment 2: 2D diffusive simulation with realistic

parameters (Rr
*, t, Pr)5 (3, 0:005, 13);

d Experiment 3: 3D fingering simulation in the accessi-

ble regime (Rr, t, Pr)5 (1:1, 1/3, 7); and
d Experiment 4: 3D diffusive simulation in the accessi-

ble regime (Rr
*, t, Pr)5 (1:3, 1/16, 13).

Experiment 1 represents relatively mild tropical/

midlatitude conditions, characteristic of fingering stair-

cases in the Caribbean, Tyrrhenian, and Mediterranean,

where t; 0:01, Pr’ 7, and 1:1,Rr , 1:7. Experiment 2

was designed to represent diffusive staircases in the

Beaufort Gyre of the Arctic Ocean. The diffusivity ratio

in cold Arctic waters (t; 0:005) is less than in typical

fingering staircases (experiment 1). The high-latitude

Prandtl number (Pr 5 13) is larger than in experiment

1, and the representative diffusive density ratio is Rr
*;

3. The choice of the diffusivity ratio in experiments 3

and 4 was dictated by considerations of computational

feasibility. In each 3D experiment, the best resolution

was used, given the available resources. The diffusivity

ratio t, in turn, was taken to be as small as possible while

still adequately resolving the salinity dissipation scale.

The result of this increase in t is a change in the pattern of

the flux ratio, which shifts the merger-favorable param-

eter range toward the density ratios close to unity.

Therefore, the density ratios used in three-dimensional

simulations are also unrealistically low: Rr 5 1:1 for the

fingering experiment 3 and Rr
*5 1:3 for the diffusive

experiment 4. The domain and grid sizes used for each

experiment are listed in Table 1.

Each of these experiments was initiated by the state at

rest with the T–S distribution consisting of two identical

steps. The initial steps were represented by perfectly

mixed layers with homogeneous total temperature and

salinity patterns, separated by horizontal discontinuous

interfaces. To expedite development of double-diffusive

instabilities, the initial T–S distribution was slightly per-

turbed by small-amplitude, random, computer-generated

noise. We assumed periodic boundary conditions for

(T, S, v, p) in each spatial direction and integrated

the governing equations using the dealiased pseu-

dospectral method, described and used in numerous

FIG. 4. Instantaneous salinity field for the numerical experiment 1

(two-dimensional fingering). (a) The whole computational do-

main; (b) an enlarged view of the square area marked in (a); and

(c) an enlarged view of the square area in (b). The domain size in

this calculation is (Lx, Lz)5 (400, 400) and the numerical mesh

consists of (Nx, Nz)5 (6144, 6144) nodes. The sizes of the regions

shown in (b) and (c) are 633 63 and 103 10 nondimensional

units, respectively.
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double-diffusive modeling studies (e.g., Stern et al. 2001;

Traxler et al. 2011; Stellmach et al. 2011). The model

employed adaptive time stepping; at each time level, the

optimal step (Dt) was chosen internally in a way that en-

sures numerical stability of the code.

b. Results

Figure 4 presents the salinity distribution at the early

stage of experiment 1 at t 5 6 (equivalent to the di-

mensional value of tdim ’ 1 h). The domain size in this

calculation (Lx, Lz)5 (400, 400) corresponds to the

dimensional values of (Lxdim , Lzdim )5 (3:7m, 3:7m).

Figure 4 vividly illustrates the wide range of dynamically

active scales in the staircase problem and the associated

numerical complications. The entire computational do-

main is shown in Fig. 4a, while Fig. 4b presents an en-

larged view of the small square area marked in Fig. 4a.

Figure 4c, in turn, zooms in on a small area in Fig. 4b and

shows one of the salt fingers forming at the high-gradient

interface. The evolutionary pattern of the two-layer sys-

tem is revealed in Figs. 5a–d, which presents the total

horizontally averaged density field rtotal at various times.

It shows the gradual merger of two initially identical

layers into a single step that spans the entire computa-

tional domain. The merger pattern suggests that the

evolution of the system follows the B-merger scenario—

continuous strengthening of the stronger interface at the

expense of the weaker one, which gradually erodes and

eventually disappears.

The simulation in Fig. 6 represents the evolution of

the diffusive system (experiment 2), which proved to be

analogous to that in experiment 1. Two nearly identical

layers gradually merge as the property variations across

the slightly stronger interface monotonically increase,

while the variations across the weaker interface decrease

until the interface vanishes completely. The horizontally

averaged density profiles in Fig. 7 reveal that interfaces

remain largely confined to their initial positions through-

out the experiment, in accord with the B-merger scenario.

Figure 8 attempts to quantify the strength of the

merging perturbation in the experiments shown in

Figs. 4–7 and examine its temporal pattern. Here, we

plot the difference in the temperature jumps across the

two interfaces:

DTsw5 ~Ts 2
~Tw , (9)

where ~Ts( ~Tw) denotes the temperature jump across the

stronger (weaker) interface. This difference gradually

increases in time to the maximum value of TzLz fol-

lowing the complete merger of two steps. Of particular

significance is the exponential character of DTsw(t),

which confirms that themerging process is appropriately

interpreted (section 2) as a manifestation of staircase

instability. The exponential growth of merging pertur-

bation is illustrated by superimposing the numerical re-

cord of DTsw(t) with its exponential fit:

DTfit(t)5DTfit(0)1 T̂[exp(lnumt)2 1] . (10)

The analysis based on the temporal variation of salinity,

rather than temperature, reveals similar exponential growth

FIG. 5. The total x-averaged density for the experiment 1 at t equal to (a) 5, (b) 459, (c) 543, and (d) 736. Note the gradual erosion of the

weaker (lower) interface and its eventual disappearance, suggestive of the B-merger dynamics.
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of merging perturbations and yields nearly identical

estimates of its growth rate.

Aside from their high-frequency variability, which is

expected for turbulent double-diffusive processes, the

time records of merging perturbations closely follow

their exponential fits during the linear (small DTsw)

simulation phase. This is a generic property of merging

simulations, realized both in fingering (e.g., Fig. 8a) and

diffusive (e.g., Fig. 8b) experiments. It is also interesting

to examine the final fully nonlinear phase of the exper-

iments, which is characterized by the rapid acceleration

of mergers. The difference in the linear and nonlinear

merging rates is particularly dramatic for the diffusive

experiments. Thus, for the simulation in Fig. 8b, the

temperature perturbation exponentially increased over

the period 0, t, 2:43 104 (equivalent to the dimensional

time of 6 months) during which the temperature pertur-

bation reached DTsw ’ 20. Upon reaching this amplitude,

perturbation growth temporarily slowed (2:43 104 , t,
2:653 104) and then rapidly increased to DTsw ’ 60 over

a time interval of Dt’ 500, corresponding to the di-

mensional time scale of only 4 days. The difference in

time scales between the protracted preconditioning phase

and the rapid final stage becomes important in the dis-

cussion of mergers observed in the Arctic staircases

(section 4).

The evolutionary features seen in two-dimensional

experiments (Figs. 4–8) have also been realized in three-

dimensional simulations (experiments 3 and 4). In Fig. 9,

we present visualizations of the temperature perturba-

tion fields shortly after the beginning of each run and at

their final stages. Recall that in order to make 3D sim-

ulations feasible, the diffusivity and density ratios have

been modified relative to their typical oceanic values.

Nevertheless, the three-dimensional simulations in Fig. 9,

both fingering (Fig. 9a) and diffusive (Fig. 9b), are similar

FIG. 6. Evolution of the perturbation salinity field S for experiment 2 (two-dimensional diffusive convection). The

upper interface gradually weakens and eventually disappears. Salinity patterns are shown at t equal to (a) 9,

(b) 20 651, (c) 26 462, and (d) 26 807.
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to their two-dimensional counterparts. They exhibit all

the defining characteristics of the B merger: the absence

of vertical interfacial drift and the gradual erosion of

weaker interfaces. It is interesting that the preference

for B mergers seems to be an inherently double-diffusive

effect. For instance, Radko (2007) considered the evo-

lution of layers in a one-component turbulent fluid. The

parametric 1Dmodel ofmechanical turbulence produced

H mergers of layers forming in the initially uniform

gradient—the configuration analogous to that in

Fig. 1—and in the two-layer systems (counterparts of

the foregoing experiments 1–4).

The significance of merging events lies in the possi-

bility that mergers control the equilibrium structure of

staircases (Kelley 1988; Radko 2005). It was hypothesized

that relatively small steps are susceptible to merging

instabilities, but as their size reaches a critical value,

the staircase becomes stable and mergers cease (Radko

2005). The proposed equilibration mechanism is associ-

ated with the systematic drift of the interfacial density

ratios toward larger values, which has a stabilizing effect

on a staircase. The merging simulations examined here

cannot offer a definitive confirmation of the equilibration

hypothesis because we operate in the strongly merger-

favorable regime. The sizes of the numerical steps are

less, by an order of magnitude, than that in the corre-

sponding observations [e.g., ;20m in the fingering

Caribbean-Sheets and Layers Transect (C-SALT) stair-

case and ;3m in the diffusive staircase in the Beaufort

Gyre]. Nevertheless, it is of interest to determine whether

the anticipated merger-induced upward drift of the in-

terfacial density ratios is realized in DNS. Therefore, for

each experiment we compute the interfacial density ra-

tios prior to and following the merger (Table 1). The

operational definition of an interface for these diagnostics

is based on the horizontally averaged density gradient,

which was required to exceed a threshold value in the

interfaces. In all experiments, we find that the postmerger

interfacial density ratio exceeds the premerger value,

which tends to support the equilibration hypothesis

(Radko 2005). Note that the background density ratio

remains fixed throughout the simulations, and therefore

the drift of interfacial values points toward the signifi-

cance of the inhomogeneity of the convecting layers for

merging dynamics.

c. Validation of theoretical models

To be more quantitative in the analysis of merging

events, the growth rates derived from the simulations

lnum are now compared to the theoretical expression

ltheor in (2) and to its approximation based on the four-

thirds flux law l4/3 in (5). The numerical growth rates

were determined by fitting the exponential pattern (10)

to the time records of the merging perturbations DTsw(t)

in each experiment.

The estimate of the theoretical growth rate is more

involved. It requires knowledge of the ‘‘one step’’ fluxes

in (1). The response of fluxes to changes in the tem-

perature and salinity jumps ( ~T, ~S) was evaluated using

one-step experiments with different ~T and ~S, as shown

in Fig. 10a. For each of the two-step merging experi-

ments 1–4 described in sections 3a and 3b, we performed

four auxiliary one-step simulations, for a total of 16 one-

step runs. The resolution and horizontal domain size of

the one-step runs was identical to that used for the

corresponding two-step experiment (Table 1). The ver-

tical extent of the domain was halved, and therefore the

step size was identical to the premerger step height in

FIG. 7. As in Fig. 5, but for experiment 2. Density profiles are shown at t equal to (a) 9, (b) 20 651, (c) 23 393, and (d) 26 807.
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the two-step experiments. The prescribed overall tem-

perature and salinity variations differed slightly from the

initial T–S jumps in the corresponding two-layer experi-

ments, as shown in Fig. 10b. Thus, for a given two-step

experiment with the cross-step T–S variation of ( ~T0, ~S0),

the four auxiliary runs used ( ~T, ~S) 5 ( ~T0 1DT, ~S0),
( ~T0 2DT, ~S0), ( ~T0, ~S0 1DS), and ( ~T0, ~S0 2DS), where
DT � ~T0 and DS � ~S0. For instance, the two-step exper-

iment 1 (2D fingering) was based on ( ~T0, ~S0)5 (200, 154),

and the perturbations used in the four corresponding

one-step runs were (DT, DS)5 (5, 6). All experiments

were initiated by uniform total temperature and sa-

linity fields in the mixed layers separated by a discon-

tinuous interface.

In each one-step run, the equilibrium vertical tem-

perature and salinity fluxes ( ~FT , ~FS) were evaluated by

computing the time averages of fluxes after adjustment

to a quasi-steady regime (Fig. 10c). These equilibrium

values were used to evaluate the derivatives of the T–S

fluxes as follows:

› ~FT

› ~T
’

~FT( ~T01DT , ~S0)2
~FT( ~T02DT, ~S0)

2DT
,

› ~FT

› ~S
’

~FT( ~T0,
~S01DS)2 ~FT( ~T0,

~S02DS)

2DS
,

› ~FS

› ~T
’

~FS( ~T01DT, ~S0)2
~FS( ~T02DT, ~S0)

2DT
, and

› ~FS

› ~S
’

~FS( ~T0,
~S01DS)2 ~FS( ~T0,

~S02DS)

2DS
,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(11)

which, in turn, were utilized to compute the growth rates

in (2). Similarly, the auxiliary one-step experiments have

FIG. 8. The strength of merging perturbation DTsw is plotted as a function of t for (a) ex-

periment 1, representing 2D fingering and for (b) experiment 2, the 2D diffusive case. The solid

curves represent the exponential fits to the DNS data evaluated during the linear phase of the

instability growth. The total vertical temperature variation across the computational domain is

DTtot 5TzLz 5 400 for experiment 1 and DTtot 5 60 for experiment 2.
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been used to determine ›g/›Rr and ›C/›Rr and thereby

to predict the growth rates using the four-thirds law

model in (5) and (6).

The results of the growth rate analysis are summarized

in Table 2. In all cases, we find that mergers are well

described by the general merging theory (2). The esti-

mates based on the simplified expression (3) for the

growth rate (ltheora) are close to ltheor. This suggests that,

for most intents and purposes, the full model (2) can be

replaced by its approximate but simpler counterpart (3).

The prediction (5) based on the four-thirds law is less

accurate overall, although it still offers a reasonable

estimate of the growth rate with the relative error of

;20% in most cases. The worst agreement was ob-

served in the three-dimensional diffusive simulation

(experiment 4) in which the general theory (ltheor)

overestimated the numerical growth rate by 57% and

the four-thirds law model (l4/3) underestimated it by

a factor of 2.

It should be emphasized that both ltheor and l4/3 were

estimated using numerically determined fluxes, which

are dynamically consistent with the two-layer merging

experiments. A more interesting and challenging test of

merging theory is to determine the growth rates in a

FIG. 9. Three-dimensional merging experiments. (a) The fingering simulation (experiment 3) at t5 22 (premerger)

and t 5 1893 (postmerger). (b) The diffusive simulation (experiment 4) for t 5 26 (premerger) and t 5 2534

(postmerger). Visualizations of the temperature perturbation are shown at the (left) early stages of each experiment

and in the (right) final, fully merged states.
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completely independentmanner, without the information

provided by the auxiliary one-step runs. For that we turn

to the well-known laboratory-based estimates of flux

laws. For fingering interfaces, the laboratory fluxes can be

described (Schmitt 1979a; Hamilton et al. 1989) as

gb ~FS
dim5CS(kTg)

1/3(b ~Sdim)
4/3 and

CS 5 0:051 0:3R23
r . (12)

The flux ratio pattern g(Rr), on the other hand, can be

readily estimated using the analytical, fastest-growing

finger model (Schmitt 1979b). Numerical simulations

(e.g., Radko and Smith 2012) indicate that Schmitt’s

model offers a qualitatively consistent representation of

the flux ratio, overestimating it by only;10%. Combining

this flux ratiomodel with (12)makes it possible to evaluate

the merging growth rate in (5). The resulting estimates

(llaboratory based) for the salt-finger cases (experiments 1

and 3) are also shown in Table 2. Understandably, these

laboratory-based growth rates are less accurate in de-

scribing numerical mergers than ltheor or l4/3. However,

they still offer a reasonable (a factor of 2 or better) pre-

diction of merging growth rates.

For the diffusive cases, an independent laboratory-

derived flux law is given by Kelley (1990):

a ~FT
dim5CT

�
gk2T
n

�1/3

(a ~Tdim)
4/3 and

CT 5 0:0032 exp[4:8(Rr
*)20:72] , (13)

FIG. 10. The setup of one-step experiments used to determine the response ofT–S fluxes to changes in the property

variations across the interface. (a) Visualization of a typical instantaneous temperature field in a one-step 3D fin-

gering experiment (Lx, Ly, Lz)5 (335, 335, 268). (b) Selection of the cross-step property variations ( ~T, ~S) in the

one-step experiments. For each two-step experiment (indicated by the back square), we perform four auxiliary one-

step runs (indicated by the black crosses) with slightly different ~T and ~S. (c) The time record of the T–S fluxes for the

experiment in (a).
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and the corresponding diffusive flux ratio is

g*5
Rr*1 1:4(Rr*2 1)1:5

11 14(Rr
*2 1)1:5

. (14)

Using (5), (13), and (14), we compute llaboratory based

for the diffusive cases (experiments 2 and 4). In the

two-dimensional case, llaboratory based yields an estimate

that is sufficiently close to the numerical merger growth

rate. However, it is not the case for experiment 4, in

which llaboratory based and lnum differ by a factor of 5. The

reason for the mismatch is attributed to the sensitive

dependence of diffusive transport on the diffusivity ratio

t (e.g., Caro 2009; Carpenter et al. 2012). Fingering

convection is less sensitive to t (Stern et al. 2001; Radko

TABLE 2. The growth rates of simulated mergers along with the corresponding estimates based on the theoretical layer-merging model.

Variable lnum represents the growth rate diagnosed from the two-layer DNS; ltheor is based on the most general prediction of the layer-

merging theory (2); ltheora is based on its simplified version (3); the estimate l4/3 assumes that fluxes can be adequately represented by the

four-thirds flux law (5) and calibrates those using one-step DNS; and llaboratory based is also based on the four-thirds flux laws but uses the

versions suggested by the laboratory experiments—(12) for fingering and (13) for diffusive convection.

ltheor ltheora l4/3 lnum llaboratory based

SF2D (Expt 1) 0.005 32 0.005 69 0.004 26 0.005 51 0.003 52

DC2D (Expt 2) 0.000 235 0.000 236 0.000 251 0.000 240 0.000 16

SF3D (Expt 3) 0.003 17 0.003 34 0.003 13 0.003 37 0.0045

DC3D (Expt 4) 0.005 20 0.005 55 0.001 63 0.003 44 0.016 25

FIG. 11. An example of the T and S profiles recorded by an ITP in the Beaufort Gyre in the

diffusive region between 200 and 300m. Note the well-defined steps consisting of well-mixed

layers separated by high-gradient interfaces.
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2008), and therefore the discrepancy between numeri-

cal- and laboratory-derived values in the 3D fingering

case (experiment 3) is much lower.

4. Observations

The foregoing numerical simulations lend credence to

theoretical layer-merging models and suggest that the

merging framework is ready for application to field

measurements. The analysis in this section is based on

high-resolution salinity, temperature, and depth mea-

surements made by ITP systems (www.whoi.edu/itp;

Toole et al. 2011; Krishfield et al. 2008) operating in the

Arctic Ocean’s Canada Basin. The ITPs are automated

systems designed to profile the upper Arctic Ocean be-

neath the permanent sea ice cover to a depth of around

750m. Each system consists of a surface buoy that sits on

a sea ice floe and drifts with it. A tether extending be-

neath the surface buoy supports an underwater profiling

unit, cycling vertically up and down the tether to obtain

water column measurements of salinity, temperature,

and depth. ITPs have proven to be very effective at

measuring the properties of a double-diffusive staircase

in the Arctic because of their high vertical and hori-

zontal resolution (around 25 cm and a few kilometers,

respectively). Further details of ITP measurements

through the staircase and system capabilities with re-

gards to these measurements are given in Timmermans

et al. (2008). Here, we do not provide a comprehen-

sive statistical analysis of all existing ITP measure-

ments through the staircase, but rather outline a few

examples that appear to support our layer-merging

framework.

A double-diffusive staircase is observed in the Canada

Basin between around 200- and 300-m depth at the top

boundary of a relatively warm and salty layer (of Atlantic

origin) that underlies cooler, fresher surface waters. The

representative step structure of temperature and salinity

in this staircase is shown in Fig. 11. Figures 12 and 13

illustrate what appears to be a layer-merging event

measured by one of the ITP systems (ITP 1; http://www.

whoi.edu/page.do?pid528755) in the central Canada

Basin. Salinity profiles separated by Dt5 8:5 days (Fig.

12a) indicate that, at the same vertical depth range, the

number of layers reduces in time because of themerger of

two layers. The resultant layer has a middepth around

209.5m. A time series of salinity at the middepths of each

of these two merging layers clearly shows the merger

reflected by the systematic drift of two distinct sequences

of salinity values toward a single value (Fig. 12b). The

evolutionary pattern suggests that the merger occurred

via the gradual reduction in strength of an interface that

ultimately disappears (i.e., the B merger). Although

the profiles are separated laterally by about 30 km, the

structure change is not likely the result of this spatial

separation; Timmermans et al. (2008) have shown that

individual mixed layers in the staircase are coherent

over hundreds of kilometers, with well-defined lateral

temperature and salinity gradients.

Note that the merging time scale deduced on the basis

of ITP measurements is typically on the order of several

days. Such short time scales indicate that measurements

reflect the final violent stage of merging events, such as

that observed in the numerical simulations (Fig. 8b) in

which this final stage lasted 4 days. The initial phase of

slow linear perturbation growth, which preconditions

merging layers for the final stage characterized by rapid

disintegration of the weakened interface, is clearly

identifiable in simulations (section 3), but may be diffi-

cult to detect in the ITP measurements.

FIG. 12. (a) Profiles of S showing an example of a merging event

measured by ITP 1 in the central CanadaBasin. Profiles were taken

at 0600 UTC 10 Jun (gray) and at 1800 UTC 18 Jun (black) 2006.

The dashed oval shows the result of a merger. Note the small

vertical offset (,1m) between profiles, which is due to vertical

excursions of the water column. (b) Time series of S at the centers

of the mixed layers above and below the vanishing interface for the

event shown in (a). In time, the S difference between adjacent

layers reduces to zero, which effectively eliminates the interface,

a process referred to as the B merger.
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Temperature–salinity diagrams (e.g., Fig. 13) offer yet

another dynamic view of merging events. The clusters

of points in Fig. 13 correspond to individual mixed

layers, coherent across hundreds of kilometers, withwell-

defined lateral gradients in temperature and salinity (see

Timmermans et al. 2008). A merger is evident by the

coalescence of two distinct adjacent clusters into a new

cluster in temperature–salinity space. The T–S diagrams

also illustrate interesting effects that are fundamentally

associated with the large-scale lateral variability—effects

that are present in the Arctic staircase, but not repre-

sented by the relatively small-scale numerical simula-

tions in section 3. Because ITPs drift laterally with an

ice floe, the variability of temperature and salinity re-

flects spatial as well as temporal changes. Observations

reveal a trend associated with ITP drift into regions

with different T–S properties, which is manifested by

the elongated appearance of each cluster in the T–S

diagram (Fig. 13). The combination of the merging-

induced coalescence of clusters in T–S space and the

systematic trend induced by lateral ITP drift show up

as characteristic Y-shaped patterns in T–S diagrams. If

the merger occurs near the end of the time series, as in

Fig. 13a, a V-shaped feature is observed. These T–S

patterns have been used for preliminary identification

of mergers in ITP data.

The analysis of mergers leads us to yet another po-

tentially important conclusion. The observed mergers,

which are recorded in Table 3, are characterized by

relatively small step heights and property variations

(H, DT0, and DS0). This feature is illustrated by com-

paring H, DT0, and DS0 for each merger with the cor-

responding average values (Havg, DTavg, and DSavg), for
comparable density ratios Rr*. In all cases, we find that

H,Havg, DT0 ,DTavg, and DS0 ,DSavg. This can be

viewed as a sign that mergers effectively regulate step

heights and property variations in response to long-term

changes in the environment. They eliminate small steps in

a staircase and thereby increase the average layer thick-

ness by engaging the familiar ‘‘survival of the fittest/

demise of the weakest’’ dynamics. The importance of

these events for regulating step characteristics of fingering

staircases was advocated in Part I of our study on the basis

of large-scale modeling. Given the strong analogies that

exist between the diffusive and fingering cases, it is per-

haps not surprising that the diffusive Arctic staircases

might be governed by the same principles.

5. Discussion

The existence of thermohaline staircases—striking

series of regular steps in vertical T–S profiles—is firmly

FIG. 13. Potential T (8C) vs S through the staircase measured by ITP 1; shown are measurements made between

December 2005 and July 2006 in the central Canada Basin, during which time the ITP drifted about 200 km. Each

data cluster represents an individual layer (see Timmermans et al. 2008). The examplemerger (Fig. 12) is reflected by

the coalescence of two distinct clusters into a single one (shown by the arrow) that was not present before themerger.

Red crosses and green circles represent the layer properties immediately before and after the merger, on 10 and 18

Jun 2006, respectively (gray and black profiles, Fig. 12). Blue triangles show the T–S values from a profile taken on 1

Dec 2005 at the start of the series.
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linked to the presence of active double-diffusive pro-

cesses in the ocean (e.g., Schmitt 1994). However, spe-

cific mechanisms for staircase formation, evolution, and

ultimate equilibration are uncertain and much debated.

Particularly intriguing are the questions related to the

selection of the thickness of steps in fully developed

staircases. One of the hypotheses (Radko 2005, 2007)

views the quasi-permanent staircases as being the result

of a series of merging events, which systematically in-

crease the height of steps. The merging model assumes

that the coarsening is arrested when layers become suf-

ficiently thick. Therefore, observed staircases are in-

terpreted as marginally equilibrated structures whose

average step characteristics represent the boundary be-

tween the merger-favorable and merger-unfavorable re-

gions in the parameter space. These effects have been

observed in the large-scale simulations presented in Part I

of our study. The possibility that mergers control the

geometry of staircases, and thus their mixing character-

istics, motivates a detailed inquiry into the merging dy-

namics. The present communication (Part II) attempts

to explain the mechanics of such events using a combi-

nation of analytical arguments, numerical simulations,

and observations.

The recipe for the analysis of staircase evolution is

provided by the analytical layer-merging model, which,

in turn, is based on the stability analysis of a series of

identical steps. Mergers occur when relatively weak in-

terfaces, characterized by low temperature and salinity

variations, gradually erode and eventually disappear, a

process referred to as the B merger. The layer-merging

model finds support in direct numerical simulations that

indicate that layer-merging phenomena are ubiquitous in

both fingering and diffusive staircases. The layers formed

first in DNS are thin and merge sequentially—see Radko

(2003) for fingering and Fig. 1 for the diffusive examples.

More quantitative analysis (section 3) indicates that the

pattern and time scale of the simulated merging events

are consistent with the layer-merging theory. DNS

make it possible to evaluate the accuracy of its various

versions. For instance, we show that the merging model

based on the four-thirds flux laws offers adequate pre-

diction of the merging growth rates. However, it is less

accurate than the new model that does not assume such

laws a priori and deduces the flux dependencies from

one-step simulations.

While it is straightforward to examine the formation

of staircases in numerical models, the real world is less

accommodating. Most oceanic staircases are in the quasi-

equilibrium state, and the initial phase of layering—the

formation of layers from smooth stratification and sys-

tematic increase of their thickness—has not been re-

corded. However, the ITP observations in the Beaufort

Gyre of the Arctic Ocean reveal occasional layer-

merging events, most likely triggered by changes in the

large-scale environmental conditions. The analysis of

the continuous temperature and salinity time series

recorded by the ITPs suggests that the patterns of ob-

served mergers generally conform to the prediction of

the analytical layer-merging model. The mergers act

preferentially on relatively thin layers, and therefore

in the long run they can effectively regulate the quasi-

equilibrium structure of the staircase. All mergers

identified in this study occurred when the thickness of

merging layers H was less than the average thickness of

layers with the same density ratio Havg(Rr*). Another

suggestive conclusion from the fieldmeasurements is that

mergers follow the B-merger scenario—the gradual ero-

sion of relatively weak interfaces. Future work will build

on these explorative observational results and focus on

robust statistical analyses of the entire ITP dataset.
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5 3 6.28 1.66 2.46 0.0346 0.0374 0.0104 0.0154
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APPENDIX

Growth Rate of Merging Events

The following is an outline of the one-dimensional

theory for layer-merging events in a thermohaline stair-

case that extends theRadko (2007)model to systemswith

two distinct density components. We examine the sta-

bility of the steady state consisting of identical steps of

height H (Fig. 2a). We are concerned by balanced per-

turbations to that state—perturbations that do not affect

the background temperature and salinity gradients. Thus,

a slight decrease in temperature variation across one of

the interfaces (Fig. 2b) is compensated for by an equiv-

alent increase across the other,

T1,22T0,1 5T02 d

T2,32T1,2 5T01 d ,
jdj � jT0j ,

(
(A1)

and the same holds for salinity,

S1,2 2S0,1 5S02 «

S2,3 2S1,2 5S01 « .
j«j � jS0j ,

(
(A2)

where Tn,n11 (Sn,n11) denotes the value of temperature

(salinity) at the level exactly between two adjacent in-

terfaces zn,n11 5 0:5(zn 1 zn11). The equilibrium jumps,

T0 5TzH and S0 5 SzH in (A1) and (A2), could be

positive (for the salt-finger case) or negative (for the

diffusive case). The system of layers and interfaces in

Fig. 2 is periodic with the z wavelength of 2H.

In principle, it is possible to consider, in a similar

manner, themerging instabilities resulting in the vertical

drift of the interfaces (Radko 2007) by allowing bal-

anced changes in step heights (Fig. 2b). The associated

unstable modes (classified as H instabilities in Radko

2007) are driven by the (weak) variation of the inter-

facial T–S fluxes with step height. As a result, H in-

stabilities are characterized bymuch lower growth rates.

The detailed analysis of H mergers will not be pursued

here because measurements and simulations considered

in this study suggest a preponderance of B mergers.

Therefore, we assume that depths of adjacent layers (H)

are equal and constant in time.

The following stability analysis is based on the one-

dimensional conservation equations for temperature

and salinity:

dT

dt
5
dFT

dz
and

dS

dt
5

dFS

dz
.

8>>><
>>>:

(A3)

Integrating (A3) over the interval from zn to zn11 be-

tween two adjacent interfaces results in

d

dt

ðz
n11

z
n

T dz5FT
n112FT

n and

d

dt

ðz
n11

z
n

S dz5FS
n112FS

n ,

8>>>><
>>>>:

(A4)

where Fi 5F(zi). The major contribution to the integral

of buoyancy in (A4) comes from the interior well-mixed

layers, and therefore,

ðz
n11

z
n

T dz’Tn,n11H and

ðz
n11

z
n

S dz’ Sn,n11H ,

8>>><
>>>:

(A5)

where Tn,n11 and Sn,n11 are the temperature and salinity

values at the layer centers (n 5 1, 2). Combining (A1),

(A2), (A4), and (A5) leads to the evolutionary equa-

tions for d and «, which are then simplified using peri-

odicity conditions:

H
dd

dt
522(FT

2 2FT
1 ) and

H
d«

dt
522(FS

2 2FS
1 ) .

8>><
>>: (A6)

At this point, it becomes necessary to specify how the

fluxes in (A6) depend on temperature–salinity jumps

across the steps. For that, we replace the instantaneous

fluxes in interfaces Fn in (A6) with the steady one-step

flux laws in (1) based on the parameters of a region

extending between the centers of two adjacent layers

(zn21,n and zn,n11):

FT
1 ’ ~FT(T1,22T0,1,S1,22 S0,1)

FT
2 ’ ~FT(T2,32T1,2,S2,32 S1,2)

FS
1 ’

~FS(T1,22T0,1, S1,22 S0,1)

FS
2 ’

~FS(T1,22T0,1, S1,22 S0,1) .

8>>>>><
>>>>>:

(A7)

For small («, d), the difference between fluxes at the

adjacent interfaces in (A7) reduces to
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FT
2 2FT

1 5 2d
› ~FT

› ~T
1 2«

› ~FT

› ~S
and

FS
2 2FS

1 5 2d
› ~FS

› ~T
1 2«

› ~FS

› ~S
,

8>>>><
>>>>:

(A8)

and (A6) becomes

d

dt
d52

4d

H

› ~FT

› ~T
2
4«

H

› ~FT

› ~S
and

d

dt
«52

4d

H

› ~FS

› ~T
2

4«

H

› ~FS

› ~S
.

8>>>><
>>>>:

(A9)

Finally, substitution of the normal modes (d, «)5
(d0, «0) exp(lt) into (A9) yields the eigenvalue equation

for the B-merger growth rates:

l21
4

H

 
› ~FT

› ~T
1

› ~FS

›~S

!
l

1
16

H2

 
› ~FT

› ~T

› ~FS

›~S
2

› ~FS

› ~T

› ~FT

› ~S

!
5 0. (A10)

The solution of the quadratic equation (A10) can be

simplified by expressing the temperature flux as ~FT 5
(b/a)g ~FS and estimating the scales of its coefficients as

follows:

b5
4

H

 
› ~FT

› ~T
1

› ~FS

› ~S

!
;

4

H

~FS

~S
and

c5
16

H2

 
› ~FT

› ~T

› ~FS

› ~S
2

› ~FS

› ~T

› ~FT

› ~S

!
;Dg

 
4

H

~FS

~S

!2

.

8>>>>>><
>>>>>>:

(A11)

In deriving (A11), we have assumed thatO(1) changes in
~S or ~T result in theO(1) response in ~FS and thata ~T;b~S.

The flux ratio, on the other hand, ismore constrained, and

thereforeDg � 1. Hence, c � b2 and the discriminant of

the quadratic (A11) is positive: D5 b2 2 4c. 0. This

implies that (A10) has two real roots and that the larger

one is given by

l5
2b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 4c

p

2
’

c

b
5

4

H

› ~FT

› ~T

› ~FS

› ~S
2

› ~FS

› ~T

› ~FT

›~S
› ~FT

› ~T
1

› ~FS

› ~S

.

(A12)
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